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1. Introduction  

The objective of this paper is to provide generally possible interpretations of the vectors and 

corresponding vector spaces. The geometrical generalization of vectors based on dimensionality of the 

configuration space is discussed. Actually the starting point of the proposed theory is dimensional characteristics 

associated with the configuration space. The intrinsic characteristics of a specific numbered dimensional space 

have intrinsic analytical importance. The intrinsic dimensional characteristics those come with every number of 

dimension are conventionally called as n-volume and n-plane. Both these characteristics imply classes of length, 

area, volume and point, line, plane respectively. There is another important dimensional characteristic- 

geometrical relation meaning class of distance, angle & solid angle. We found such characteristics useful for 

defining notion of vector. In the initial section we make mathematical propositions and prove the useful theorems 

amenable to provide a general interpretation of vectors & vector spaces. It will be proved that every number of 

dimensions comes with a type of ordered direction, facilitating definition of corresponding dimensional vector. 

Hence different types of vectors can be constructed or identified based on the dimension of underlying ordered 

direction.  It is also that different types of vectors can be interpreted to be elements of arbitrary vector space. The 

theorems in section 2 regard general n-dimensional spaces. Then in the successive section 3, special case of the 

universe as 4-dimensional space locally having time evolution & three spatial dimensions is considered. In that 

section, the types of vectors existing in the universe and their properties are discussed. The theory model is 

developed in section 2 and applied to a case in section 3. Results from the paper are to be used for a theory with 

consolidation about physics, proposing in [1].  

In the paper, dimension is to be referred as Euclidean dimension. In the article, n-dimensional space or 

geometrical space means the Euclidean space unless specified.  

2. Dimensional Characteristics 

In geometrical sense a dimension is a linearly independent direction. Thus the dimension has associated 

geometrical characteristics those have certain realization in certain number of dimensions. An m-dimensional 

space embedded in and n-dimensional space with n>m leads to specific realization for each m; point, line, plane 

are the examples. Further, the Lebesgue measures on such embedded spaces also serve as a geometrical 

characteristic with respect to the number of dimensions concerned. Let’s denote set of all points in m-dimensional 

space which may be embedded in higher spaces by Im i.e. Im = {(x1,x2,…,xm)I xi ∈ ℝ}. With this notation, points 

are identical with I0s, lines with I1s and planes are with I2s. In this paper, the highest dimensional space concerned 

for analysis (in which different Ims can be identified) will be denoted by Xn n being the highest number of 

dimensions.  For specific choice of m except m=n, there are infinitely many Ims existing in Xn. Im & Im’ such that 

m≠m’ are different types of Ims; in general the Ims can be classified depending on number of dimensions spanned 

by them. In other words, Ims can be classified on different values of m. 

Definition 1: An observer in Xn is defined as any entity in Xn that can identify open neighborhoods of all 

the points in Xn along all the n dimensions for purpose of analysis.  

The observer can identify points in Xn and is amenable to do the mathematical analysis. 

Lemma 1: An observer in n-dimensional space can manifest n+ 1 types of Ims. 

Proof: An observer in n-dimensional space Xn can draw at most n number of mutually perpendicular lines 

at a point identifying the n dimensions. Also, she can consider m lines only out of the m; the subspace of Xn 

consisting the m mutually perpendicular lines is nothing but the Im. Hence she can manifest Im such that 0< m≯ n. 

In this way she can manifest n types of Ims differing by number of dimensions.  Additionally the one can manifest 

points as I0s; thus in total manifests n+ 1 types of Ims in Xn.  
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■ 
For fruitful analysis on the spaces, quantification of subsets of the space is required. In any space Xn , we 

can identify different Ims in it. Quantification of subsets of the Ims then would provide us a useful tool for 

quantitative analysis. Any quantification in Xn is possible through quantifications of subsets of Ims only. We can 

quantify subsets of Ims by defining appropriate measures on them. Lebesgue measure provides trivial 

quantification of subsets of the Ims.  

 Let’s denote the quantification of a proper subset E of Im given by Lebesgue measure on it by Lm (E). For 

ease of expression, we can omit the E in bracket as long as possible i.e. Lm(E) can be written hereafter as just Lm.  

Thus length, area and volume are L1, L2 & L3 respectively. I0s being just a point don’t have any proper 

subset. Hence we can’t define Lebesgue measure on I0; hence there is no existence L0.  

Going a step forward with the lemma 1, an n-dimensional geometrical object i.e. proper subset of Xn will 

have n types of Lms obtained by Lebesgue measures on all the types of corresponding Ims except on I0. For instant, 

a 3-dimensional object has length (or perimeter), area (or surface area) and volume. We can regard the Lms as 

trivial geometrical properties (or quantifications); in Xn any subset would have at most n types of geometrical 

properties. 

  Definition 2: In Xn nm, m+1 points as relative positions of m points with respect to a point can be 

specified by single real valued function defined as m-dimensional Geometrical Relation (Rm) of the m points 

about the point .i.e. m n mR : X    ℝ 

For instance, let’s assume that such function exists for each m. Soon we will make a conjecture about 

detail of the function. But such functions do exist in Euclidean geometry; we can check that distance and angle are 

the functions which fit in definition 2. 

Distance is R1 which specifies positions of two points i.e. relative position of a point with respect to 

another point yields distance. Angle is R2 obtained by relative positions of three points- as of two points about a 

point. In similar fashion solid angle is R3 obtained from four points (relative positions of three points about a 

point).  

Distance, angle & solid angle are defined by using concept of the dimensional spheres. Hence spheres 

seem to be useful for defining Rms. Topology can be induced on Xn by considering collection of all the open 

subsets of Xn. Spheres exist in general topological space. Let’s denote an m-sphere in Xn by Sm i.e. 

 m

mS x : x r   . By a sphere about a point we will mean the sphere having centre at the point. 

Rms are most important dimensional characteristics for dynamical analysis as they facilitate specification 

of relative positions. Here we propose a useful conjecture. 

Conjecture: The m-dimensional geometrical relation (Rm) of m points about a point is given by  

                  1

m-1

L (E)
R =

r

m
m

  (1) 

Where, E is the m vertex open set formed by projections of the m points on a Sm-1 having the point (about 

which Rm is defined) at centre. And r is the radius of the Sm-1 on which E is realized.  
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m-dimensional geometrical relation of an open set (E) formed by the m points of interest on the sphere 

can be signified as: Rm(E) with respect to centre point of the sphere. Further, for consideration of E and 

quantification Rm a frame in Xn is essential. The frame should facilitate Sm-1 with the point at centre. 

Lemma 2: Rm defined by the conjecture is a measure in Xn such that nm 

Proof: In n-dimensional space Xn nm, embedding of Sm-1 is possible. Hence there exists Sm-1 about each 

point (i.e. considering it to be centre). Further, any point can be projected on a Sm-1 about a point along the radial 

direction.    

Thus any m points can be projected on a Sm-1 about a point, so that on the spherical surface they lead to an 

open set E (analogous curved polygon) fixed by the projections as vertices. Let ∑ be a σ-ring of open sets over the 

Sm-1; then the Rm given by (1) is function from ∑ to ℝ. Lm-1 of any E is non-negative and therefore Rm is non-

negative as r too is non-negative. i.e for all sets E on the Sm-1,  

            Rm(E) ≥ 0 (2) 

As we are considering open sets E, an empty set would be that which has no point excluding the boundary 

points. For the empty set ∅ containing no points Lm-1(∅)=0, thus by (1) Rm of empty set is zero 

       i.e. Rm(∅) = 0 (3) 

For all countable collections 
 i i N
E

 of pair wise disjoint sets in Σ, by the conjecture:   

             m i

1

R E
i

 = 
 m-1 i

m-1
1

L E

ri

  

As the sets in
 i i N
E

 are disjoint & Lm-1 is a measure, 
 m-1 i

m-1
1

L E

ri

 = 

m-1 i

i=1

m-1

L E

r

 
 
 

 

Hence rewriting the RHS by using the conjecture, 

           m i

i=1

R E = m i

i=1

R E
 
 
 

 (4) 

Essential conditions for a function to be measure are non-negativity, null empty set and countable 

additivity (or σ-additivity) which are proved by (2), (3) and (4) respectively. Hence the conjecture is a measure on 

Sm-1 embedded in Xn.  

Sn-1 about the centre point exists in Xn. Rm is defined for m points about the centre point (the centre point 

is fixed by the frame). And any m points in Xn can be radially projected on a Sm-1 about the point.  Sm-1 is subset of 

same centered Sn-1; hence any Sm-1 needed to realize radial projections of the m points exists on the Sn-1. Thus Rm 

can be used for any m+1 points in Xn by proper choice of the Sm-1; hence it is measure in Xn. 

■ 
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For every value of an Rm, because of continuity of Sm-1 & Lm-1 we can find at least one corresponding 

point in Xn in fixed frame (i.e. given centre point of Sm-1 and the fixed m points). Hence Rm is surjective map from 

Sm-1 to real numbers Rm: m 1S    ℝ.  

 For m=1, the conjecture is meaningless due to geometry of S0. It is fact that end points of a diameter 

(arbitrary line segment) represent S0; but there is no existence of proper subsets of S0. This makes Lm-1(E) in (1) 

meaningless.  Hence the conjecture is meaningless for m=1.  However, we can indeed identify R1 by using S0 & 

obeying definition 2. The R1 should be amenable to specify relative positions of two points. We can conjecture R0 

to be diameter of S0 on which the two points lie. A S0 lies on a line i.e. I1 thus it is embedded in higher 

dimensional spaces; and any two points can be considered to lie on a S0. Thus what we conventionally know as 

distance is nothing but R1. R1 too is a measure in Xn.   

Rm and Lm, both are measures in Xn. Lm is measure of proper subset in the space and Rm is measure of 

relative positions of points about a point. For a dynamical analysis where changes happen with time, essential 

characteristic of a measure to be parameter is that continuous variation in its magnitude is possible in certain 

reference frame. Existence of Cauchy sequences is essential for this. Rm is better measure for studying dynamics 

where out of m+1 points, m can be fixed as the references frame and variation in positions of a point object can be 

analyzed as variation in its Rm in the frame. 

As n types of spheres exist in Xn, the n types of geometrical relations such that m n are evident. 

Variation in position of a point object with respect to certain reference frame can be measured in form of its 

varying Rms. Thus in n-dimensional space, a motion can be characterized by any of n types of Rms as suitable. In 

3-dimensional space a motion can be described in terms of variation in distance or that in angle or even in solid 

angle whichever is suitable. Here we can make difference between general direction and ordered direction. 

Direction is the manifestation of variation in positions of a point object in its neighborhood in a reference frame. 

It can be configured by variation of Rms in the frame. An ordered direction is special in a sense that it is realized 

in ordered pattern and can be configured by single type of Rm. 

Definition 3: In Xn, a continuous path  is defined as an m-dimensional ordered direction (Dm) if in a 

frame, there exists an isomorphism mR : x   ℝ for every point x  such that m n .  

When all points on a path are described by values of single typed geometrical relation in a frame, then the 

direction described by the path is to be called as ordered direction. Rectilinear path is set of points that can be 

analyzed by concerning only distances in a frame. Curvilinear path is set of points that can be analyzed by 

concerning distances and angles in a frame. While angular path is the set that can be analyzed by concerning only 

angles in a frame. Thus rectilinear and angular are ordered directions, while curvilinear isn’t. It is easy to identify 

rectilinear direction as D1 & angular direction as D2. 

Lemma 3: In a frame in Xn, Cauchy sequence along a Dm exists converging to a point along the Dm.  

Proof: Consider a sequence of points {xi} = x1, x2, x3,… along an m-dimensional ordered direction Dm in 

Xn. Then the sequence {xi} is identified by varying values of Rm in a constant frame. The points are identified by 

values of Rm in the frame i.e.  m-1 i
i m-1

L (E )
x =

r
 where, Ei is the set defined by the point xi & the reference points on 

the Sm-1 of the frame. As the m points are fixed due to frame, only xi determines Ei. As range of Lm-1(Ei) is ℝ, for 

any positive real number ε and N < i, j, Nℕ we can obtain I Lm-1(Ei) – Lm-1(Ej) I  ε. This ensures existence of 
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the Cauchy sequence {Lm-1(Ei)}. And as Rm is division of Lm-1(Ei) by just a positive number
m 1r 

, for any positive 

real number ε and N < i, j, Nℕ we have 
m-1 jm-1 i

m-1 m-1

L (E )L (E )

r r
   ε, equivalently we have IRm(xi)– Rm(xj)I  ε. 

This proves that Cauchy sequence on the range of Rm exists. And as Rm is surjective map, Cauchy sequence for 

Rm in Xn exists.   

As all the points along a Dm are described by single type of geometrical relation i.e. Rm, such direction 

can be parameterized by the Rm in the frame. As Cauchy sequences for the Rms exist, their continuous variations 

are possible. In fact Dm is manifestation of varying Rm in Xn, thus the Cauchy sequence along Dm exists. 

■ 

If a point object is taking different positions x  varying with time, then the path  describes the 

motion. Thus the motions of point objects along the Dms can simply be defined as ordered motions. Then 

according to definition 3, an observer in n-dimensional space can manifest m-dimensional ordered motions such 

that m n . Hence in n-dimensional space, one can manifest at most n types of ordered motions (& directions). 

Thus in 3-dimensions one can manifest 3 types viz. rectilinear (D1), angular (D2) & solid angular (D3) of ordered 

motions.   

There is no unique geometric interpretation of vectors. But it is clear that a vector has magnitude & 

direction. Here we will generalize notion of vector while preserving all the algebraic properties. The directions 

Dms would be useful for interpreting/identifying vectors in Xn. Let’s proceed with primary theorems. 

Theorem 1: In a frame in Xn m n , continuous variation in Rm signifies direction along the. Im. 

Proof: In a frame in Xn the Rm is map from a Sm-1, defined for all points on the Sm-1. Recognize that the 

reference points needed for Rm are fixed by the frame. 

m 1
m m-1

L (E)
R =

r

      E is the set formed by the m points on the Sm-1. Lm-1(Ei) is conventionally called (m-1)-

surface area. It for entire Sm-1is given [2] as  

 mm 11L S   =

m/2
m 12

r
m

2
Γ



 
 
 

  (5) 

Where, Γ denotes gamma function and r is the radius. For a set formed on the sphere, the Lm-1(Ei) will be 

fraction of (5).  

i.e.      Lm-1(Ei) =

m/2
m 1i2f .

r
m

2



 
 
 

Γ

  , i0 f 1 
 

 

Putting this in the conjecture (1) we get 
m/2

i
m

2f .
R =

m
Γ

2



 
 
 

       (6) 
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This new expression (6) of the Rm indicates that in a frame, Rm is defined irrespective of radius of the 

sphere. As Sm-1 exists in m-dimensional space (and concentric Sm-1s cover the m-dimensional space), now Rm can 

be thought as a function on whole m-dimensional space spanned by the Sm-1s. But m-dimensional space embedded 

in higher dimensional space is nothing but an Im. Thus Rm is morphism from the Im to ℝ.   

 Thus any point x in an Im can be identified by a value of Rm as the Rm(x) in the frame. Due to existence of 

Cauchy sequence for Rm in a neighborhood of x, for each neighboring point the Rm will either increase or decrease 

(or may be unchanged). We can assign directions to such variations, suppose we assign direction Dm to 

manifestation of increasing Rm, then -Dm will be manifestation of decreasing Rm. No change in Rm of neighboring 

point will not lead to manifestation of the direction Dm as on the ordered path Rm is isomorphism according to 

definition 3. Conclusively, any change in Rm manifests single direction Dm in (or along) the Im. And, no change in 

Rm manifests no Dm.  

■ 

Dm is actually algebraic notion of direction realized by varying Rm. For manifestation of direction along 

the Im, there should be continuous variation in Rm so that Dm is continuously manifested. If Rm value of 

neighboring points remain same, then no Dm is realized during the variation. 

Im is collection of points that is equivalent to m-dimensional space. Thus co-ordinate chart on an Im is 

possible by identifying points in Im with elements of ℝm as mC : I   ℝm. But Theorem 1 & (6) suggest that 

points in Im can be identified by Rm with elements of ℝ i.e. m m mC R : I   ℝ. Thus Rm may be thought as the 

1-dimensional co-ordinate system for m-dimensional space; but it has non empty kernel, all points along a radius 

of the Sm-1 (frame) are mapped to same element of ℝ. Further, all the points having same Rm (those don’t 

manifesting the Dm) are too mapped to same element of ℝ. However, we get a useful corollary from theorem 1. 

Corollary 1.1: Any m-dimensional space can be identified with set of real numbers by Rm as the chart 

m m mC R : I   ℝ. Hence the geometrical relations provide trivial real numbered chart for corresponding 

dimensional space. 

All points in neighborhood of a point nx X  having same Rms in the frame constitute to kernel of the 

chart Cm. As Rm is same for all points along a radial direction, it is inevitably non-injective surjective map. A 

good coordinate chart is needed to be injective & surjective. In order to achieve this, extra components should be 

considered in the chart amenable to distinguish the kernel points. This can be done by considering extra 

components from lower dimensional geometrical relations i.e. Rm’s such that m’<m in the chart. For example, 

points along same radial direction in the frame having same Rm can be distinguished by considering the radial 

distance (i.e. R1) as a component of the chart. Two points having same Rm in a frame can be distinguished by 

values of Rm’ in a subframe. By subframe we mean subset of the frame amenable to provide m’ fixed reference 

points in order to quantify Rm’ of a point. By adopting lower dimensional geometrical relations in the chart in 

order to make it bijective, we are needed to consider all the m types of Rm m=1,2,3..m. Thus eventually we get 

map of Im to ℝm. In other words, set of the geometrical relations provide a potential co-ordinate chart for 

mC : I   ℝm.  
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Realization of an infinitesimal path is nothing but the direction defined by the path. The directions 

realized in Xn are useful for interpretation of directional quantities i.e. vectors. Before exploring characteristics of 

the directions, let’s clarify two concepts. 

Definition 4:  A set of directions S= {Di} near a point is to be called as mutually exclusive directions if 

realization of a direction Dj S along a path in Xn implies non-realization of all other directions Di≠j S along 

same path. 

Definition 5:  A set of directions S= {Di} near a point is to be called as collectively exhaustive directions 

if no direction other than elements of S can be realized along any path in neighborhood of a point in Xn. 

Definitions of mutually exclusive and collectively exhaustive directions can be used for ordered 

directions. This is clear as ordered directions are special type (subsets with respect to underlying paths) of general 

directions: as paths configured by Rms are examples of general paths.   

Theorem 2: In n-dimensional space, continuous variation in position of a point object can lead to 

manifestation of n types of mutually exclusive ordered directions. 

Proof:  In an n-dimensional space Xn, Sm-1 m being at most n exists. Thus highest dimensional spherical 

path would exist on Sn-1. The direction along Sn-1 configured by continuously varying Rn in a frame is Dn.  As 

implied by definition 3, Dn isn’t manifested on the continuous path defined by the non varying Rn value because 

of conditional isomorphism Rn in definition of Dn. 

If in neighborhood Nx of a point x in Xn, Rn values of all the points in a frame are same, then Nx 

constitutes kernel of Rn. The n reference points being constant in the frame, the set E is identified by point x only. 

Hence it is fair to call the Lm(E) be Lm of x i.e. Lebesgue measure of the point.  From (1) we infer that same Rn 

implies same Ln-1 of the points in the frame. If a Lebesgue measure of continuous (neighboring) points is same, 

then we can find a subframe wherein an ordinate (in same dimension) of all the points is same. That is- all those 

points lie in a lesser dimensional cross section of the space. The cross sectional space accommodating all those 

point has number of dimensions one lesser than that of the prior space. In short, if Lm of continuous points is 

same, then all those points lie in single Im-1 (i.e. a lesser dimensional section of the Im). Thus points in Nx having 

same Rn should lie on cross section of the Sn-1with the In-1 containing Nx. Cross section of the Sn-1with In-1is 

nothing but the Sn-2. Hence Nx lies on a Sn-2 which is subset of Sn-1.  Frames for Sn-2 are subsets of frames for Sn-1; 

thus in the same frame we can obtain map n 1 xR : N ℝ for the points which do not lead to manifestation of Dn. 

Continuous varying Rn-1 signifies direction Dn-1 along the Sn-2. The general Rms aren’t injective (or bijective) but 

the Dms are defined by the isomorphism i.e. Dms pick up the subsets on which corresponding Rms are bijective. 

Hence on the Sn-2 (equivalently in Nx), there will be some continuous points (let’s identify their set be Nx’) leading 

to a path for which Rn-1 is constant and not manifesting of Dn-1. This is possible only when Nx’ n 3 n 2S S   . 

Then paths on the Sn-3 for which Rn-2 uniquely identifies the points, are manifested as Dn-2. But yet there would be 

continuous points having same Rn-2. Such points must lie on Sn-4 leading to Dn-3. Following this scheme, on the 

most general sphere i.e. Sn-1, different ordered directions are manifested as Dn, Dn-1, Dn-2,…,D3, D2. Direction D2 

is manifested on S1, and on S1, there are no two points having same R2 i.e. angle in a frame.  

 In addition to these ordered directions, a type of ordered directions is possible along paths that change 

radius of the spheres considered so far. This is manifestation of direction along a straight line , in terms of 
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distances as R1: ℝ. Straight line is nothing but I1. Such rectilinear path is manifested as primary ordered 

direction D1. Hence there are n types of ordered directions Di , 1 i n,i    in Xn.  

When Rm doesn’t lead to identification of difference in points along a path, then we adopt Rm-1 to identify 

the points. Equivalently when Dm is not manifested along a path, then Dm-1 can be manifested; and sequentially 

when Dm-1 isn’t manifested, we may manifest Dm-2 by employing Rm-2. This sequence is followed till 

manifestation of D1. Further, any two neighboring points having varying Rm don’t lie on same Sm-2 (or lower 

spheres), thus they can’t be distinguished by Rm-1(or lower dimensional geometrical relations). That is when Dm is 

manifested, then no lower dimensional ordered direction is manifested. Hence no two ordered directions Di are 

manifested on same path in the frame. In other words, the n types of ordered directions Dis existing in Xn are 

mutually exclusive. 

■ 

In Xn, there exist infinitely many Dms such that m n . This is because with this condition, infinitely 

many Sm-1s exist about a point in Xn.  While there only one Sn-1 exists at a point; thus single Dn is manifested. This 

is a useful corollary.  

Corollary 2.1: In Xn there exists infinitely many Dms such that 1 m n,m   , but only one Dn.  

Ordered directions are manifested by paths on spheres or along straight lines. But there are general 

infinitesimal paths which are neither along any sphere nor along lines. Such paths manifest directions different 

from ordered directions. Therefore different directions can be manifested in Xn which aren’t ordered direction. 

This leads to following proposition. 

Corollary 2.2: The n types of ordered directions manifested in Xn aren’t collectively exhaustive. 

 Theorem 3: Different Dms obey triangle law of addition in Xn m n . i.e. if points nA,B,C X  and 

Dm for specific m are manifested along the paths joining any two of these three points, then  

i.e. Dm(AB) +Dm(BC) = Dm(AC)    

Where, Dm(ij) implies the direction along the path going from i to j manifested as Dm. 

Proof:  In Xn, Sm-1 exist m being at most n. A Sn-1 having centre at point x accommodates many Sm-1 for 

every m n .  The cross section of Sn-1 made by a Im is set of all points in the Im equidistant from x. Set of all 

points in Im equidistant from a point is nothing but a Sm-1. If the cross section contains x, then radius of Sm-1 is 

same as radius of the Sn-1. Otherwise Sm-1 has smaller radius and centre at projection of x on the Im. Thus every 

cross section of Sn-1 made by an Im is a Sm-1.  As Dm is manifestation of path along Sm-1 (continuously varying Rm), 

the path along arbitrary section of Sn-1 made by a Im leads to manifestation of Dm. Different cross sections of a Sn-1 

made by different Ims in Xn lead to manifestation of different Dms. Sn-1 has infinitesimally Sm-1 structure in the 

cross section with Im. 

 Consider left hand side of the equality as Dm(AB) +Dm(BC). It implies that in Xn, Dm along paths AB & 

BC exists. Thus existence of the isomorphisms Rms from the paths in a frame is evident. According to the 

conjecture (which is used for defining Ds), all the points along path AB should lie on a Sm-1 of radius r. Similarly 

all points along path BC too lie on a Sm-1 of same radius r as it goes through common point B. Thus points A & C 

lie on same sphere of radius r. As arbitrary cross section of Sn-1 made by an Im leads to manifestation of Dm , for 
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any two points A & C in the frame we can get a cross section to manifest Dm along AC. We get a path on Sm-1 of 

radius r going from A to C the points along which can be isomorphically identified by the Rm in the frame.   

Conclusively, we have Dm(AB) +Dm(BC) = Dm(AC)  for any nA,B,C X .  

■ 

Theorem 4: Set of the Dms with consideration of specific path length forms vector space over field of 

numbers.  

Proof: Dms are manifestations of paths along Sm-1s. Consider in a frame in Xn, a set Vm of all the Dms 

having associated specific length of the path on the Sm-1s.   

i.e.  Vm = {va=vDm
a: v ℝ, & Dm

a is identification of a Dm out of various other Dms} (7) 

Above v is assumed to be field of real numbers. One can form the complex field by direct product of two 

real number fields. The formalism with real numbers would be similar to that with complex numbers. Elements of 

Vm are m-dimensional ordered directions Dms having certain path length v. The path length can be quantified in 

terms of Rm values of path extremities in a frame; this is due to the continuous variation in Rm leads to 

manifestation of Dm. Many Dms are possible depending on number n of dimensions of the space in which the set 

Vm is considered (as stated by corollary 2.1).  

On a path, if Dm
a is manifestation of increasing Rm, then -Dm

a is manifestation of decreasing Rm on same 

path. If a point object goes path length v along a Dm
a, then further going same v along -Dm

a (or –v along Dm
a) will 

bring it to the initial point. Thus va & - va are inverses of each other under addition. Here addition of elements of 

Vm is meant to successively following paths (along with lengths) described by the elements.   

Denote elements of Vm having either v=0 or absence of Dm by 0. Then 0 followed with a va implies no 

variation in va i.e. the initial point. Thus for any va
mV we have va + 0= 0 + va = va i.e. 0 is identity element of 

Vm under addition.   

The Sm-1 are obtained as arbitrary cross sections of higher sphere Si>m made by Ims. As an Sm-1 represents 

the Im in which it exists, two Sm-1s are transverse or parallel (or inclined at specific angle) only if corresponding 

Ims are so. Therefore such spheres can be adopted to facilitate projections of va
mV  at desired points in Sn-1 

thereby in Xn. Thus projection of a va on every other vb is defined due to existence of unique Im transverse to the 

Dm
b (i.e. to vb) & going through the extremity of va .   

As projections of the Dm
as on every other Dm

bs are defined and all Dms span higher spheres, we can 

transfer any va
mV  to any point on the sphere. Thus at every point on the sphere we have all the Dms. Thus 

effectively can transfer every element of Vm to any point on the sphere.  Consider a point O on the Sn-1 relative to 

which path length v of all vas mV is defined. Then let points A & B are described by vA & vB
 

mV respectively 

i.e. there is equivalence in the frame OA  vA =vADm
a & OB  vB =vBDm

b. Note that paths like OA, OB etc. 

are along Dms and not just one dimensional curves. vA + vB
 means going from O to A by vA and then further from 

A by vB. An element of Vm must preserve its intrinsic direction Dm
a while transferred to any point in Xn i.e. any 

element should be transported at any point of Xn as parallel to its original position in the frame. Hence when we 

say going from point A by vB, it means to cover path length of vB along the path specified by Dm
b parallel to OB. 

Let the resultant position due to vA + vB
 from O be C, thus according to theorem 3 we can write OC  vA + vB. 

Transfer of vB to A means equivalence AC  vB. As two paths are manifested along same direction if they are 

parallel, OB & AC are parallel with same path length vB. Now consider vB + vA, it means going from O to B by vB 

and then from B by vA. Let the resultant position due to vB + vA from O be D i.e. OD  vB + vA. Here too we have 

equivalence BD  vA and OA & BD are parallel with same path length vA. Thus OA & OB are parallel to BD & 
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AC respectively having same path lengths, so are the Ims specified by them. Two pairs of parallel Ims, each pair 

having same path length form a closed four vertex set (very primarily, two pairs of parallel lines having same 

parallel lengths form parallelogram). The three vertices being fixed by O, A & B, positions of points C & D are 

identical, thus OC=OD; this directly means vA + vB = vB + vA what is commutativity of addition of elements of 

Vm. 

As transfer (& projections) of all elements of Vm at any desired point on the Sn-1 is possible and geometry 

of neighborhoods of all points on Sn-1 is identical, addition of the elements should be associative under addition. 

Elements of Vm are defined in (7) as direct products of numbers (scalars) field & directions, thus 

arithmetic characteristics of scalar multiplication are obvious. The characteristics are Compatibility of scalar 

multiplication with field multiplication, identity element of scalar multiplication, distributivity of scalar 

multiplication with respect to addition, distributivity of scalar multiplication with respect to field addition. Thus 

all the axioms for a set to be vector space are satisfied and we can conclude that Vm is a vector space.  

Any point x in the Xn can be identified with an element x of Vm in certain frame.  

■ 

There several Dms are possible depending on dimensionality n of the space. Different vector spaces Vms 

having different value of m lead to different realizations of the vector elements. For instance, elements of V1 have 

rectilinear direction while those of V2 have angular direction. Dimensionality of elements of vector spaces is 

inherently intrinsic due to directions Dm in their definition. Thus we can explicitly define dimensional vectors. 

Definition 6: The m-dimensional vector is defined as element of Vm having direction along a Dm. 

According to Theorem 2, in n-dimensional space we manifest n types of ordered directions. Hence in n-

dimensional space we have n-types of vectors viz. m-dimensional vectors with m n,m ℕ. Also according to 

Theorem 1, Rm signifies direction along the Im. There exists only one In, hence only one Dn in Xn. Therefore Vn 

has only one direction for all elements. Thus Vn is not much useful for analysis in Xn as the Vms m n, m ℕ 

are.  

We can identify the scalar number field v in definition (7) of vector space Vm with range of Rm in same 

frame. For utilization of Vms for analysis on Xn, every xXn should be identified with single element of Vm. We 

have a simple scheme to do so. Any xXn can be considered on a path defined by single Dm. For this we need a 

frame having fixed centre for all the Sm-1s to be considered and having fixed points on the Sn-1 (this implies fixed 

rays for varying radii of the spheres) for quantification of Rms. Then any point x will lie along specific Dm 

specified by cross section of corresponding Im with the Sn-1. The reference points fixed by the frame & x define 

the cross sectional Im. In this way specific direction Dm
a for every x is identified. The scalar value corresponding 

to x can be simply identified with path length given by Rm of the x from the reference point on the sphere. As Rm 

is isomorphsm on the Dm, no two points have same path length in same direction. Hence in order to identify 

points in Xn with elements of Vm, we should use the configuration v: XnVm given by 

v(x) = Rm(x)Dm
a   (8)   

Where Rm(x) is the path length of x along the Dm
a  w.r.t. the reference point of the frame (x along with the 

m-1reference points defines the E needed for Rm). Thus a vector space is direct product of the directions Dm
as and 

range of Rm for points along corresponding Dm
as. 
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Further, every element of Vm configured in Xn can be identified with a scalar as Rm: mV  ℝ with 

reference to same frame in which the configuration done.  

Theorem 5: In n-dimensional space, Vms m n,m ℕ are topological Banach spaces.  

 Proof: Theorem 4 clearly concludes existence of vector space Vm in Xn and definition 3 defines it for all

m n,m ℕ. Also from the definition & above configuration, map Rm for every element of Vm is evident. Now, 

consider Rm: mV ℝ along specific Dm
a. In a specific frame, all the elements of Vm can be identified with 

corresponding value of Rm irrespective of Dm
a.  Specifically elements of Vm have directions Dm

as along different 

Sm-1s on the Sn-1; and Theorem 1 implies that Rm is measure from Sm-1 in the frame quantifying a Dm. Hence all the 

elements of Vm can be identified with corresponding Rms.  

As by lemma 2 Rm is a measure, for any mVv , always Rm(v) 0 i.e. Rm is non negative. Further, when 

for a mVv , Rm(v)=0 it means that the Lm-1(E) concerned by the conjecture is zero. In such case, no separation 

of the point x (which is identified with v) from the reference point occurs; thus no manifestation of any path by x 

& hence of any Dm. Thus in such case the element v has no direction i.e. v = 0. Conclusively we get non 

degeneracy of Rm i.e. Rm(v)=0 v=0. By linearity of the conjecture, scalar multiplicativity is obvious i.e. 

Rm(λv)= λ Rm(v). Further for mVv,w , let Pv & Pw be corresponding Lm-1(Ex) as considered in (1). Let the Lm-1 

corresponding to the vector element v + w be Pv+w. As Lm-1 is Lebesgue measure from the open sets on spheres to 

ℝ, using property of sum of the sets Pv+w = Pv + Pw - PIv-wI. Using this relation in the conjecture we get Rm(v+w)

m mR ( ) R ( ) v w what is the triangle inequality. As Rm has essential properties of non negativity, non 

degeneracy, multiplicativity and triangle inequality on Vm, Rm is norm on Vm. Rm makes Vm a normed vector 

space.   

Lemma 3 implies that every Cauchy sequence in Vm with respect to the norm converges to points 

(elements) in Vm. Alternatively, the spheres are complete. Therefore Vm is a complete normed space i.e. Banach 

space. Further, a norm always gives raise to metric and thus induces the topology on same space. Thus Vms are 

topological Banach spaces.  

■ 
From this point, one can derive all the aspects of conventional vectors spaces such as geometrical, 

topological, algebraic, functional etc. for Vm.  

Theorem 6: If an entity exists as a vector quantity in n-dimensional space then it essentially exists in all 

the n types of vectors as elements of Vms m n,m ℕ; and induces same dynamics with all the types. 

Proof: An entity existing in n-dimensional space can be considered as a point object in corresponding n-

dimensional configuration space Xn. If the entity exists as a vector quantity, then it intrinsically has magnitude & 

direction. That is the point object is to be considered along with a direction (& a path length being its magnitude) 

in Xn with respect to the frame. Image of the entity in Xn can have any direction; however an arbitrary direction 

can be considered as resultant of several simultaneous ordered directions. Importantly, theorem 2 states that 

continuous variation in position of a point object leads to manifestation of n types of mutually exclusive ordered 

directions. Hence the vector quantity should be intrinsically along all the possible ordered directions Dm m n

mℕ in order quantify any infinitesimal change in it. The entity should be configured along the Dms. Scalars 
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(magnitudes of the entity) along these directions according to Theorem 4 form vector spaces Vm m n . Thus 

overall n types of vectors spaces Vm exist. Thus the entity exists as n types of vector as elements of corresponding 

Vms. 

Further, Theorem 2 implies existence of mutually exclusive ordered directions in Xn. Therefore variation 

in point object is along any of the n types of ordered directions independently. An infinitesimal variation results in 

change in magnitude of any one type of vector (along any Dm m n ) and not of other. Therefore in order to 

configure any change in the configuration, the entity essentially comes in all the vector versions as elements of  

Vms m n,m ℕ. 

Further, any other vector quantity too should come in all the versions (i.e. the n types). Thus in every type 

of vector space, all the quantities exists. Additionally field of scalars exists for all the vector spaces. If x & y are 

two vector quantities, then in all types of vector spaces Vm m n their versions exist as xm & ym correspondingly. 

Then all the mathematical operations of arithmetic, geometry & calculus are possible with them. Thus their 

relation is preserved in every version out of m. Thus a vector quantity induces or derives same dynamics in all 

typed vectors spaces Vms m n,m ℕ.  

■ 
Now we have reached to the point from which the mathematics developed can be applied to special 

objective. The trivial case of the application is of our physical universe. In upcoming section we will discuss the 

universe with respect to the work done in this section. 

Elements of any algebraic vector space can be interpreted in Xn as discussed. Conventionally they are 

interpreted to be straight line segments (D1), while now we can interpret them to be segments along any of Dms. 

For the new interpretation, dimensionality n of Xn & m of the Dm is important. In same Xn, dimensionality of Vm 

varies with m due to limitation on number of mutually perpendicular Ims.  

3. Case of the universe 

Our universe can be identified with a 4-dimensional general manifold. Out of the four dimensions, locally 

3 are spatial & 1 is temporal. Such space having 3 spatial dimensions and a parameter of evolution will be written 

as 3+1-dimensional space. More precisely, the universe U is globally 4-dimensional while locally it is 3+1-

dimensional. Theorem 5 clearly implies that for n=4, Vms m 4,m ℕ form topological Banach spaces i.e. there 

would exist 4 types of vectors as elements of V1, V2, V3 & V4. But out of them, 4-dimensional vectors i.e. 

elements of V4 are useless for analysis. This is because in U, single D4 exists i.e. V4 (configured) in U is 1-

dimensional Banach space; 1-dimensional vector space has least analytical value since it can be considered as 

scalar space. If linearly independent directions of vectors exist, then the vectors are useful for analysis. In this 

sense in U there are three types of analytical vectors viz. 1-dimensional, 2-dimensional & 3-dimensional (4-

dimensional being dormant for analysis).  

1-dimensional vectors are the conventional vectors having directions along straight lines; let’s call them 

rectilinear vectors. 2-dimensional vectors have directions along S1 i.e. circular path; let’s call them angular 

vectors. While 3-dimensional vectors are having directions along S2; let’s call them sangular vectors. In the 

immediate subsection, we will elaborate on the 2-dimensional vectors.  

The case study of our universe is presented here purposefully. A theory in physics to be proposed in [1] 

concerns the universe as configuration space accommodating four types of vectors. 
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3.1 Angular Vectors 

It is well accepted that the infinitesimal angular rotations can be represented as vectors [3]. As a special 

case of vectors in curvilinear coordinates, the angular vectors are already explored. Special spherical vectors r, θ 

& φ are useful for analysis of conventional (rectilinear) vectors. If one ignores r, then the space can accommodate 

angular vectors only (and no rectilinear vector). In such angular vector space, directed angles can be identified 

with elements of any algebraic vector space. For convention we will consider anticlockwise or right handed 

angular direction to be positive and the clockwise or left handed to be negative.  

Angle is measure of arc of circle in plane. And as every section of the sphere made by a plane is a circle, 

every infinitesimal curve on circle can be measured in terms of angle (i.e. R2). In general Rm is measure on a Sm-1, 

and every cross section of Im & higher sphere is Sm-1. Thus the higher spheres have infinitesimally piecewise Dm 

structure to accommodate m-dimensional vectors.   

Definition 7: Elements of V1 having direction along D1 are defined as rectilinear vectors. 

Definition 8: Elements of V2 having direction along D2 are defined as angular vectors. 

For configuration/identification of rectilinear vectors, in the frame, origin in form of a point is needed. 

For angular vectors, origin in form of a ray (giving centre and a point on every radius sphere) is needed. Origin 

ray for angular vectors is the line starting from the centre of the frame Sn and propagating in a direction. The 

angular magnitudes are measured with respect to this ray. (In general for m-dimensional vectors, origin in form of 

Im-1 is needed for fixing of all the m points for Rm. And the norm of a vector point is measured relative to such 

origin.) The angular vectors can exist on higher spheres or 4-balls. 

Algebraic expressions for all types of vectors are same such as linear combination of components, 

identities of dot product & cross product etc. This is valid if the magnitude in terms of Rm is considered for m-

dimensional vectors. As discussed in proof of theorem 5, in the universe trivial norms for vectors are Rms i.e. 

distance, angle & solid angle correspondingly. But comparison of different typed vector magnitudes can be done 

by fixing all the quantifications (Rm) in terms of distances. For this, we can exploit the conjecture. Angle can be 

written as ratio of arc and radius. Basis can be easily identified for the vector spaces, wherein an arbitrary vector 

can be expanded in terms of basis vectors. Suppose an angular vector a is written as 

 a = Mm + Nn   (9) 

Where, M & N are quantified in angles and m & n are basis angular vectors in X3. Then same can be 

written as  

a = 
r

M
m + 

r

N
n           

 Where, M & N are quantified in distances (or lengths) on sphere of radius r. In Xn 3, the resultant vector 

and its components form spherical triangle on S2. We have equality from spherical trigonometry [4] as 

         cos cos M cos N sin M sin osύN .c a     (10) 

Where a, M and N are sides of spherical triangle formed on a sphere. ύ is angle opposite to side a. The 

spherical triangle formed by resultant angular vector and its components is right angled, i.e. if a is resultant of M 
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& N, then ύ = 

c

2


. Hence second term in RHS of (10) vanishes. Thus using (9) & (10) we get magnitude of 

angular vector as 

    carccos os M cos Na   (11)     

Further, we obtain unit angular vector as 

u = 
a

a
 = 

    arcco

 M N

cos M os Ns c

m n
        (12) 

Let two angular vectors in spatial universe X3, a =Mm+Nn and b =M’m+N’n then we get magnitude of 

the vector obtained by their addition as  

Ia + bI = arccos [cos(M+M’).cos(N+N’)]                        (13) 

The essential triangle inequality Ia + bI  IaI +IbI holds for angular vectors as used in Theorem 5.  

The scalar product of two vectors is obtained as product of their projections on each other. Consider 

projections of two angular vectors on each other in their space i.e. S2 as shown 

in fig.1. Let GA=a & GB=b. From spherical law of sine [5] for triangle GAA’ 

sin

sin


2

a
 = 

sinx

sin          
                                                                (14) 

i.e.  x arcsin sin .sin a  

Then using general formula (10) for same triangle, 

  arcsi

cos
GA' ' arccos

co n sin . sis n

 
 




 



a
a

a  
       (15) 

Repeating same procedure for triangle GBB’, 

  arcsin sin

cos
GB' b ' arcc

. sin       
os

cos

 
 


 
 
  b  

b
                (16) 

Combining (15) & (16) we get scalar product of angular vectors in terms of their magnitudes and angle 

between them  

a.b= a’b’=  
  arcsin sin .

cos
arccos

co sins

 
 
 
  

a

a  
.

  arcsin sin . sin

cos
arccos

cos       

 
 
 
   

b

 b
        (17)         

      To verify- it is commutative and fulfills desired properties of scalar product such as a.a = a2, and for 

basis units m.m =1, n.n =1 and m.n =n. m =0. Using these relations for basis vectors, it is easy to get the scalar 

product in terms of components (equivalent to general expression) as 

a.b = (MM’)+(NN’)  (18) 

Fig.1: Projections of two angular 

vectors a & b on each other 
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Vector product of two angular vectors can be developed using crux of vector product i.e. combination of 

perpendicular component of vector acting on magnitude of other. If a vector a acts on another vector b, then by 

geometric definition of cross product we take magnitude of component of a that is transverse to b and multiply it 

by magnitude of b. Formulae for spherical trigonometry in [5] i.e. like (14) assists the derivation. Then we have 

the magnitude of cross product as 

IaxbI =a”b     where a” magnitude of component of a that is transverse to b.  

By using equations for spherical triangles, we get  

     

cos
x arccos .

cos arcsin sin .sin

a b

 
 
 
     

          2

a
b

a

  (19) 

Crux behind the vector product clearly implies that the vector product of two vectors is perpendicular to 

both of them. This is possible only if the product has direction linearly independent to that of both. In the 

example, a & b are expressed in terms of basis m & n. Hence the vector product should have direction linearly 

independent to m & n. Let’s denote the unit vector in the new direction by l; thus the vector product (19) has 

direction l. That is, 

 

cos
x arccos .

cos arcsin sin .sin

a b l

  
  
  
      

            2

a
b

a
  (20) 

 Using (20) we obtain the essential properties of angular vector product as 

m x m = 0 and n x n =0   and I m x n I = I n x m I = 1 

Also m x n = l and n x m = –l    

Using these properties, in terms of basis we obtain (equivalent to general expression)  

  a x b = (MN’- NM’)l = – (b x a)  (21) 

In this subsection we have revealed basic details about 2-dimensional vectors or angular vectors which 

are elements of V2 & have directions along D2. The formulary is consistent with that of V1. Thus one may 

generalize the scalar & vector products for higher dimensional vectors in terms of basis. The algebraic properties 

of all types of vectors (at least of rectilinear & angular) are identical; and one can’t distinguish between their 

algebras. If angular vectors are identified to be rectilinear vectors by appropriate morphism, then algebraically one 

can’t reveal the fact. Different typed vectors are algebraically identical but have geometrically different.   

During evolution of physics, we encountered many examples of angular vectors such as angular velocity, 

angular momentum, torque etc. We assumed them to be rectilinear vectors by assigning right hand thumb rule as 

the morphism. Further, these vectors are always cross products of other rectilinear vectors. As algebraic properties 

of angular vectors and rectilinear vectors are same, their algebras are indistinguishable and no trouble occurred in 

the analysis. But when their geometry is concerned, the difference explicitly arises. At first glance everyone feels 

that these vectors are fundamentally different from other rectilinear vectors, but abandons this fact as the analysis 

plays fine. Most effective sensation of geometry, next to physical realization is symmetry. These vectors indicate 
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their difference when studied under symmetries. The scientific community compensated this matter by making 

two classes of vectors as pure vector (or polar vector) and pseudovector (or axial vector).  The pseudovectors 

don’t obey laws of symmetry e.g. reflection. Pseudovector is always associated with the cross product of two pure 

vectors [6]; and the cross product implies a vector acting on another vector. Mathematically the pseudovectors 

should be angular vectors (according to the theorems in last section, quantities having direction D2 are essentially 

angular vectors belonging to V2). We have to accept the fact that scheme of pseudovectors is misleading (it is 

misinterpretation) and they are actually angular vectors. If we consider the angular vectors instead of 

pseudovectors, all physical systems are invariant under all trivial symmetry operations including reflection.  

Vector is just a tool to analyze physical system; the system must be invariant if frame of such tool is changed- this 

is possible only if we consider angular vectors instead of pseudovectors.  

3.2 Sangular Vectors 

As discussed earlier, in 4-dimensional space the vector space V3 having elements as 3-dimensional 

vectors can be configured. Such vectors will exist on the 4-balls (or 3-spheres) existing in U; and have directions 

along D3 and norm in terms of R3 i.e. solid angle. This norm will induce metric in terms of solid angle for the 

sangular vectors.  

Definition 9: Elements of V3 having direction along D3 are defined as sangular vectors. 

U being 4-dimensional, can be configured as sangularly 2-dimensional vector space. Continuous random 

change in positions of a point object on surface of S2 leads to manifestation of sangular vector. 

For configuration of vectors, appropriate frame is needed. For rectilinear vectors it could be any of the 

conventional; for angular vectors in the frame a fixed point on the S1 is needed from which angles can be 

measured. Analogously, for sangular vectors in the frame two points on S2 are needed referring to which area 

traced by a point on S2 (i.e. E in the conjecture) can be measured. Both ends of a diameter can be considered as 

the origin in the frame, these two points and the object point form triangle on the sphere. Area of such triangle 

divided by square of radius of the sphere yields the solid angle i.e. norm of the sangular vector of the object point 

in the frame. For quantification of area on the spheres, any two reference points would work, but we concluded 

end points of a diameter because this makes symmetry for choice of frames on the spheres. Further the end points 

of a diameter mean S0, this would help for generalization for higher dimensional vectors. 

Area of the spherical triangle formed by two reference points & an object point characterizes norm of the 

sangular vector of the object point. Area A of plane triangle is half of the product of base & height (b.h/2); and 

area A of spherical triangle having same base b & height h has different but comparable area due to spherical 

excess. We can write A= g b.h/2 where, g is the deviation due to spherical area. We don’t need to explore g here.  

Further, for any sangular vector, the base concerned is constant as out of the three points, two are always 

reference points (or end point of a diameter). The spherical distance between ends of a diameter is πr i.e. b= πr. 

Using this substitution, we get area of the spherical triangle formed by point x as Ax= g πr.hx/2, where location of 

x characterizes hx. Using this in the conjecture we get  

R3(x)= xgπh

2r
     (22) 
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3.3 Vectors in the universe 

In the universe U, rectilinear, angular & sangular types of vectors should exist. An angular vector spans 

over two dimensions as S1 exists in 2-dimensional space. Similarly a sangular vector spans over three dimensions. 

Let in a frame, the four rectilinear basis dimensions of U are x1, x2, x3 & x4; let x1 be time dimension. Let the unit 

angular vectors in planes x1x2, x1x3 & x1x4 be basis for V2 in same frame. Note that any combination xixj with i 

being same & j varying over three others forms basis for angular vector space, and all basis sets are equivalent 

related by linear transformations.  

In 4-dimensional space only two linearly independent sangular vectors can exist and a sangular vector 

spans over three rectilinear (Euclidean) dimensions.  

In the universe U, there exist three types of vectors viz. rectilinear, angular and sangular. According to 

theorem 6, any quantity like displacement, momentum etc. should come in these four versions. The formalism on 

a type (or for general vector) is to be followed for all the types of vectors. This means if rate of change (w.r.t. a 

quantity) of a vector quantity v is defined as u, then it holds for any type of vector. Therefore if a quantity is 

conserved, then it should be conserved in all typed vectors.   

According to Theorem 6, a vector quantity should exist in all the types of vectors. If it changes in U, then 

it must change locally i.e. the change must be manifested in spatially 3-imensional space with time evolution. 

Vector has magnitude & direction, if change happens in magnitude, then it is explicitly manifested as change in 

the path length along the ordered direction. But if a vector of fixed magnitude exists and can change via variation 

in direction only, then local geometry on U is important. If two linearly independent vectors of a type are 

manifested locally, then change in the typed vector via change in direction is manifested due to there are many 

vector directions possible. Local space of manifestation is spatial 3-dimensional portion of U with time evolution. 

As in 3-dimensional space at least two linearly independent vectors of rectilinear & angular type can exist, change 

in them due to direction can be manifested. This isn’t the case with sangular vectors as only one such vector spans 

whole 3-dimensional (spatial) space.  

According to theory of relativity, U is globally 4-dimensional continuum while locally is 3+1-

dimensional having Minkowskian geometry. Thus if there exists 4-ball in U, then locally it is manifested as 3-ball 

with a dimension being evolution parameter. Two linearly independent sangular vectors can exist on 4-ball, but 

only one such on 3-ball. The 3-ball is projection of 4-ball aligned with local spatial space of manifestation Us. If 

change in a sangular vector direction happens, then the change must be perpendicular to Us. If a vector changes 

direction (or rotates) perpendicular to a subspace, then its projection on (or component in) the subspace should 

change. If a path along Dm having specific path length is changed (rotated) perpendicular to the accommodating 

Im, then path length along the projection of the path in the Im will be changed depending on the amount of change 

(rotation). Thus even the path length is generally constant, for the projection in the subspace- it changes. Thus in 

effect, in local portion of U, change in sangular vector is manifested as change in its magnitude on the 3-ball 

(even if its magnitude on 4-ball is constant).  

3.4 Comparison of Magnitudes of different typed vectors 

Three types of vectors exist in the universe. For fruitful analysis, comparison between magnitudes of 

different typed vectors is must. All the m-dimensional vectors such that m is greater than 1 exist on the respective 

spheres or balls. Rectilinear vectors are fundamental vectors quantified in terms of R1. The universe is 

infinitesimally piecewise rectilinear. All the comparison should be done with respect to magnitude of rectilinear 

vector. 
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Consider a rectilinear vector vR of norm IvRI, it should exist along D1 i.e. straight line. But the same norm 

i.e. curved line segment of the length IvRI can exist on spheres. Initially, let’s find comparison with angular vector 

existing on a sphere of radius r. Magnitude i.e. norm of an angular vector vA is given by R2 i.e. IvAI = P/r, P being 

difference between the L1s of extremities of the vector. As L1 is length, P is length on the S1. Comparison can be 

obtained by substituting IvRI for P meaning that same path length is used to construct both the vectors. Then we 

get 

R

A
r


v

v      (23) 

Relation (23) provides comparison of magnitudes of the angular & rectilinear vectors if same amount of 

geometric content (in terms of Lebesgue measure) is used to generate both the vector. This relation is similar to θ 

= l/r of arc length & angle. 

Norm of sangular vector is given by difference in R3s of its extremities. Thus norm IvSI of sangular vector 

vS is ratio of area due to vS on the sphere to square of the radius. It is as given in (22). There hx is curved length 

which can be regarded as magnitude of the corresponding rectilinear vector for comparison. In other words, for 

comparison purpose R3(x) in (22) is magnitude of a sangular vector vS while hx is magnitude of a corresponding 

rectilinear vector vR. It takes the form  

R

S

gπ
=

2r
v

v
     (24) 

This equality provides abstract comparison of magnitudes. Here g is general function and we haven’t 

explored it. The relative magnitudes of the three types of vectors are essential in the physical theory proposed in 

[1].  

4 Conclusion 

Vectors have ordered directions that not needed to be rectilinear always. The paper provides 

generalization of conventional interpretation of vectors. It concludes that a type of ordered direction exists for 

every number of Euclidean dimensions. Paths with the path lengths along such ordered directions satisfy axioms 

of the vectors, hence they can be considered as vectors. Thus every number of dimensions comes with a type of 

vector. Algebra of all the typed vectors is identical. Expressions in terms of basis or components for scalar 

product & vector product are identical. But different typed vectors differ in magnitude; an n-dimensional vector 

has magnitude in terms of Rn. Elements of arbitrary algebraic vector space may be interpreted as of any type in 

corresponding geometrical (configuration) space. All types of the vector form Banach spaces and have metric 

induced topologies. 

In 4-dimensional Euclidean space, three types of vectors exist viz. rectilinear, angular & sangular. A gross 

comparison of their magnitudes is obtained as (23) & (24). The types of the vectors retain their directions 

infinitesimally i.e. it is meaningless to say that an angular (or sangular) direction is infinitesimally rectilinear. This 

makes the generalized vectors different from that through the differential geometry.  
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