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We discuss the Riemann zeta function, the topology of its domain, and make an argument against
the Riemann hypothesis. While making the argument in the classical formalism, we discuss the
material as it relates to the theory of infinite complexity. We extend Riemann’s own (planar)
analytic continuation R → C2 into (bulk) hypercomplexity with C2 → ?C. We propose a solution
to the Banach–Tarski paradox.

FIG. 1. This figure shows the features of the complex plane
that are most relevant to the Riemann zeta function.

Consider the analytic continuation of the Dirichlet se-
ries
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onto the complex numbers via the Riemann zeta function
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, with Z ∈ C2,Z 6= 1 .

(2)

We say ζ is interesting, among other reasons, because we
can’t be sure if it is the correct analytical form of the
continuation z → Z. If ζ(Z) was well understood, and
we could be sure that equation (2) is the correct form of
the analytic continuation, then we would likely also know
if it has any non-trivial zeros off the critical line.

The Riemann hypothesis says that all of the non-trivial
zeros of ζ(Z) are such that if Zn is a non-trivial zero then

Re
(
Zn
)

=
1

2
. (3)

Hardy proved in 1914 that there are an infinite number
of these non-trivial zeros

Zn =
1

2
+ iγ , with γ ∈ R , (4)

and in this paper we will make an argument that there
should also exist at least one nontrivial zero such that

ζ
(
Z̄n̄
)

= 0 , with Re
(
Z̄n̄
)
6= 1

2
. (5)

In our argument we will take as a lemma that Hardy’s
proof of the existence of an infinite number of zeros on
the critical line can be reduced to a symmetry argument
that says an infinite number of zeros are on the critical
line because it is in the center of the critical strip. If the
argument cannot be so paraphrased then what follows
will be of less relevance than hoped.

The domain of ζ(Z), CZ , is different than the extended

complex plane Ĉ which is defined as

Ĉ ≡ C2 ∪ {∞̂2} . (6)

Ĉ is also the 2-sphere S2 up to a complex phase factor so
we have another definition

Ĉ ≡ S2 ∪ {̂i} . (7)

What we will call the Riemann sphere shall be defined as

SR ≡ Ĉ / {θ = π} , (8)

where θ is the zenith angle on S2. The domain of ζ(Z)
is shown in figure 1 and its topology is

CZ ≡ Ĉ / {θ = π,Z = 1} . (9)

The two null points θ 6= π and Z 6= 1 built into its
definition show two distinct types of singularity: one is
a polar coordinate singularity and one is a singularity in
the domain of analyticity of ζ(Z). We will use concepts
of hypercomplexity to describe how these two types of
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singularities are different and can be used to make a good
case for at least one novel, new non-trivial zero.

The analyticity of the Riemann zeta function means
that its Taylor series expansion around every Z0 ∈ CZ
has to converge to ζ so ζ(1) = ∞ means that ζ is not
analytic at Z = 1. The point θ = π represents a defect
in the domain of ζ but Z = 1 is a defect in its range.
The overall topology of CZ is the 2-sphere with one null
polar point and another one due to

ζ(1) ≡ D(1) = 1 +
1

2
+

1

3
+

1

4
+ ... =∞ . (10)

Therefore we see there are two points on the 2-sphere not
in the domain of ζ: θ = π and Z = 1. A 0-sphere is just
two points so CZ can be completely specified in terms of
spheres as

CZ ≡ S2 / S0 . (11)

Since SR ≡ C2, the object ∞̂2 in figure 2 must act on
SR and C2 in the same fashion: it completes the topol-
ogy with real and imaginary infinity. Despite adding only
these two values there are any number of directions that
the ∞̂2 vector can point. To see this, consider the re-
tracement of a planar spiral by the ray shown in figure
3. As the spiral approaches the open boundary of the
non-extended complex plane, in which direction does the
ray point? What is the direction of ∞̂2 at the bound-
ary r = ∞ that is included with the extended complex
plane? Shortly we will show that the possible directions
for ∞̂2 can be more complicated than the four planar
boundaries {±∞,±i∞} shown in figure 2. We will de-
scribe two new orientations for the hypercomplex version
of ∞̂2 which we will call ∞̂4. The two new directions are
concepts from the transfinite analysis of hyperreal num-
bers ∗R. These two added directions will be “beyond
infinity” and “inside zero.” The polar singularity X in
figures 2 and 3 can be approached in Ĉ from the î and
1̂ directions but now we need to add details so that the
null point can be approached from the big upper sphere
or the small inner sphere, as in figure 4. We will do this
with the hypercomplex number system ?C which is the
extension of the hyperreals ∗R into complex numbers.

Nota bene, CZ is not quite Ĉ. If the domain of ζ was
Ĉ then we would expect to be able to calculate ζ(∞)
but we have no such expectation. ζ(∞) is neither well
defined nor an object we will consider until later. Per
definitions (8) and (9), CZ has two holes in it but SR
only has one. The domain CZ of ζ(Z) will therefore,
due to equation (11), have properties that are univer-
sal under the sphere theorem in a way that cannot be
accommodated by the topology of the Riemann sphere
SR. (In the present context “the sphere theorem” can be
understood as “partial differential equations.”) CZ does
have spherical topological symmetry but perhaps when
one uses an analysis whose topology is the same for the

FIG. 2. The figure shows the stereographic projection of the
complex plane onto a curved surface. To preserve the null
topological component at θ = π, which is a critical defining
element of CZ , we will mark it with an X.

FIG. 3. By tracing the ray all the way out to r = ∞ this
figure demonstrates that there is no unique direction for ∞̂2.

analytic and polar singularities, i.e.: a nondescript topo-
logical pinprick, that causes a reliance on the SR topology
which causes a breakdown in what would otherwise be a
useful symmetry in the domain of ζ(Z): that shown in
figure 5. Said another way, perhaps when one treats ana-
lytical singularities as having identical topological prop-
erties to polar coordinate singularities one inadvertently
relies on SR and its one type of null point which leads to
breakdown in analytical rigor resulting in an unanswered
question about ζ’s zeros.

What the sphere theorem shows is that SN , for any
N > 1, can undergo a smooth deformation that swaps the
sphere’s interior region with its exterior region. There-
fore, whatever we inscribe on the smallest sphere of figure
4 can undergo topological inversion to become the big ex-
terior sphere, as in figure 5. In this paper we will extend
this topological truth into transfinite analysis by requir-
ing that infinitesimal information encoded on the smaller
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sphere can be algorithmically permuted with infinite (di-
vergent) information on the larger sphere, as in figure
4.

In figure 1 we have coordinates (Re(Z), Im(Z)) and
on the 2-sphere we have the polar angles (θ, φ). The
2-spherical polar angles are defined such that

θ ∈ [0, π] , and φ ∈ (−π, π] , (12)

and we mention these specific coordinates because they
demonstrate the quirky features that arise when any infi-
nite plane is mapped onto a finite sphere with conformal
coordinates. The map from the extended complex plane
to the 2-sphere is everywhere surjective but the inverse
map from S2 back to the plane is not even a well defined
function. When one asks which planar point is the tar-
get of the polar point θ = π under the inverse map, one
quickly realizes that the question makes no sense. To get
the properly bijective map we make the change S2 → SR
(which is the largest region of S2 that can be covered with
a single chart.) In developing the argument presented
here we will make great use of a bijective map between
planar and spherical representations of CZ (which is SR
with one point removed.)

The infinite extent of the Cartesian coordinates in fig-
ure 1, stretching from the origin out to infinity, is con-
densed onto the surface of the 2-sphere with conformal
coordinates whose precise definitions are irrelevant. All
that is required to move the domain of ζ(Z) onto the
sphere is to make a conformal change of coordinates in
the ordinary fashion. When the Riemann sphere is con-
structed from planar C2, the endpoints of the real and
imaginary lines are mapped to θ = π. To extend the com-
plex plane all the way into hypercomplexity, which is the
purpose of this paper, we will use ∞̂4 instead of ∞̂2 so
in some sense we are adding the point at infinity to each
of four orthogonal directions and then condensing their
eight endpoints to the polar point of S2, as Riemann did
with the four endpoints of the real and imaginary axes.

It is our belief that the four-to-one multiplicity here
described is certainly related to the ontological resolution
of the identity [1]

1̂ =
1

4π
π̂ − ϕ

4
Φ̂ +

1

8
2̂− i

4
î , (13)

where the Φ̂ term is negative through an intuitive defini-
tion of the golden ratio

Φ =
1 +
√

5

2
, and ϕ =

1−
√

5

2
. (14)

Certainly this connection between the ring at infinity and
the ontological resolution of the identity is evocative of
the idea that “the ring is unity” but we only mention it
in advance of a few qualitative comments that we will
make later.

FIG. 4. This figure demonstrates what is meant by an analytic
continuation of planar C2 into bulk ?C.

FIG. 5. An illustration of the surprising non-intuitive result
that S2 is smoothly invertible. This result has been extended
to the N -sphere as the sphere theorem which follows from
Perelman’s (and Hamilton’s) proof of the Poincaré conjecture.

We have defined all of the above objects in preparation
for an argument which will use concepts from the hyper-
real number system ∗R. The real and complex lines exist
on one tier of infinitude and we add two more tiers of
infinitude according to figure 4: ∞̂ and 1̂/∞. The reals
R are extended to complex numbers C2 with

z → α1̂ + βî , with α, β ∈ R , (15)

and, using very preliminary formalism, we will extend to
hypercomplex numbers ?C with

z → α1̂ +βî+υε̂+χ∞̂ , with υ ∈ C2, χ ∈ Ĉ . (16)

To understand equations (15) and (16) consider that in

figure 4, 1̂ and î, are on the surface of SR, ε̂ points to the
interior, and ∞̂ points to the exterior but we will not use
the {ε̂, ∞̂} notation going forward. We will use notation
of the form

{ε̂, ∞̂} −→ {1̂/∞, ∞̂} −→ {Φ̂n−1, Φ̂n+1} .
(17)
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Every real analytical argument will have a correspond-
ing topological framework and any transfinite, complex
analytic continuation of R must have a sufficiently com-
plex topology that modularizes its finite and transfinite
sectors. Without topological modularization, such as the
separation of the interior and exterior of a sphere, all el-
ements of order unity will always wash out elements of
order ε, elements of order ∞ will always wash out every-
thing, and we would have no way to differentiate ℵ0 from
ℵN , or any of the other kinds of infinities that one might
define.

Among infinities, ℵ0 is the smallest possible countable
infinity and ℵN refers to a set of a N countably infi-
nite infinites {(ℵ0)1, (ℵ0)2, ..., (ℵ0)N}. Regarding larger

infinity, Φ̂n can indicate successive tiers of hypercomplex
infinitude such that the entire infinite expanse of R on
Φ̂n is on the order of a cut in RΦ̂n+1. ℵN and Φ̂n are
two very different concepts of transfinite infinity and it
is the latter whose tiers of infinitude we will call levels of
ℵ [2]. The difference in the character of the two infinities
is qualitatively demonstrated as

ℵ3 := 3× ℵ0 , and Φ̂3 := ℵ 3
0 , (18)

and we ignore the implication ℵ1 ≡ ℵ0 because we will
only be using the Φ̂n notation. Perhaps ℵ0 is an object
in set theory and ℵ1 is an object in multiset theory.

Beginning to make precise hypercomplex definitions, if
we say that ∞̂2 is the ring at infinity around the plane

that exists on the nth level of ℵ then ∞̂ and 1̂/∞ shown

in figure 4 exist on the Φ̂n+1 and Φ̂n−1 levels of ℵ respec-
tively. Real analysis has no tools to distinguish one type
of infinity from another so the only infinity relevant to
real analysis is ∞. To make the extension of finite real
analysis into some transfinite continuation R→ C2 → ?C
we need to make some analytical definitions and there
must exist a sufficient topological framework for them.
Whatever that topology is, it must have an element

R̂ ≡ R ∪ {∞} . (19)

If the topology required by the new definitions is not
reducible to a generic form

CX ≡ R̂ ∪X , (20)

then the definitions will amount to what Laithewaite
has called “the multiplication of bananas by umbrellas”
meaning that the definitions are contrived.

We suggest the inability to demonstrate the existence
or non-existence of non-trivial zeros of ζ off the criti-
cal line may be due to the idea that correct definitions
on CZ might become contrived definitions on Ĉ or SR.
All non-contrived definitions will have a valid topology
and perhaps it is the condensing of two types of null
points into one that causes a paradoxical reliance on some

non-spherical topology. We will argue that by maintain-
ing all null points separately we can use the spherical
CZ ≡ S2/S0 topology to add a simplifying symmetry to
the framework of analysis. By “maintaining them sepa-
rately” we mean that they must be defined to have differ-
ent topologies. As an example, it is possible to consider
two null points separately in a way such that the system
is described by two independent objects on a shared SR
topology and this is what we will be careful to avoid.

We can see that Riemann’s definition of analytic con-
tinuation meets the topological requirement of equation
(20) with

Ĉ ≡ R̂ ∪ {̂i} , (21)

but it does not meet the modularization requirement.
When everything lives on one surface of the sphere, there
is no way to distinguish one kind of infinity from another.
For this reason we will say that hypercomplex analysis
is truly transfinite whereas extended complex analysis is
only infinite. The modular topology will be the critical
element in pushing from the finite, to the infinite, and
then beyond, into the transfinite.

A typical analytic continuation of the elements of real
analysis {0, 1;÷} into some framework of transfinite anal-
ysis begins as

1

0
≡ “undefined” 7→ New Defintion . (22)

As we have just made clear, all new definitions are con-
strained by our ability or inability to define a sufficient
topological complex which will preserve the logical pred-
icate of our new definitions without causing a paradox.
One such paradox would be that if we put infinity next
to a finite quantity in the same modular sector then the
infinite will always eat the finite. For example, consider
~r such that

~r =
(
53∞2 −∞

)
x̂+

(
∞762

)
ŷ +

(
7ε+

∞
137

)
ẑ (23)

=∞x̂+∞ŷ +∞ẑ . (24)

The system {x̂, ŷ, ẑ} represents a globally modular topol-
ogy but within each modular sector êi there is no nested
modular structure. We have no way to differentiate ∞2

from any other permutations of infinity that appear. As
a workaround, we will define a new class of transfinite
infinities and label them with Φ̂n so that ~r could be rep-
resented as

~r =
(
53Φ̂2 − Φ̂

)
x̂+

(
Φ̂762

)
ŷ +

(
7Φ̂−1 +

1

137
Φ̂

)
ẑ (25)

=

(
1

137
ẑ − x̂

)
Φ̂ +

(
53x̂
)
Φ̂2 +

(
ŷ
)
Φ̂762 + ...

...+
(
7ẑ
)
Φ̂−1 . (26)
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Here we will make a definition that something is only
transfinite if it spans more than two levels of ℵ. We
say “more than two” because the analytical framework
that we have criticized above as being only infinite but
not transfinite can be said to span two levels of ℵ if one
replaces the ∞ symbol with Φ̂2 and writes the identity
as −ϕΦ̂. Hypercomplex infinity ∞̂4 has four orthogonal
channels but only spans three levels of ℵ so

{
ε, {1, i},∞

}
−→ {Φ̂n−1, Φ̂n, Φ̂n+1} . (27)

To extend finite real analysis into the smallest possible
infinite complex analysis Ĉ we need î and we need to
take the undefined element of real analysis 1/0 and make
a definition for it like

∞̂1 ≡ 1

0
. (28)

Riemann extended R to Ĉ with ∞̂2 which implicitly con-
tains ∞ and i∞. However, to get compliance with what
he have required in equation (20) we should only consider
∞ added to the end of r in the plane polar coordinates
(r, θ) rather than to the end of both the real and imag-
inary lines in the rectangular coordinates. Then we can
take the definition

∞̂2 ≡ {̂i, ∞̂1} , (29)

so that equation (6) is replaced with

Ĉ ≡ R ∪ {∞̂2} . (30)

By going into bulk hypercomplexity with Ĉ→ ?C, as in
figure 4, we introduce four channels with

∞̂4 ≡ {̂i, ∞̂1, ∞̂, 1̂/∞} , (31)

so that

?C ≡ R ∪ {∞̂2} ∪ {∞̂} ∪ {1̂/∞} . (32)

?C clearly conforms to equation (20). Here ∞̂ refers to
“infinity bigger than infinity” which is only a concept
that be analyzed with rigor on a modular topology but
should be familiar from the analysis of ∗R.

Riemann complexified real analysis with complex num-
bers on the extended complex plane and we hyper-
complexify the 2-sphere by extending the neighborhood
around every point in S2 into the bulk, as in figure 4.
Riemann used ∞̂2 for his analytic continuation of R and
we will use ∞̂4 instead. This new hypercomplex infin-
ity contains ∞̂2, and adds the hyperreal-valued infinite

and infinitesimal elements: ∞̂ and 1̂/∞. Hypercomplex-
ity shall differ from infinite complexity through the re-
striction of infinity to only three simultaneous tiers of
infinitude, or levels of ℵ, that shall be denoted as

Φ̂n+1 = Φ̂n + Φ̂n−1 , with n ∈ Z . (33)

With three levels of ℵ we expect

∞̂ := Φ̂n+1 (34)

1̂ := Φ̂n (35)

1̂

∞
:= Φ̂n−1 , (36)

and we also expect the most important form of equation
(33) to be Φ̂2 = Φ̂+1̂. This is an interesting case because
n = 1 makes the LHS of equation (35) exactly identical
with the RHS of equation (36). In the real analysis that

doesn’t know about Φ̂n we have corresponding definitions
like

∞̂ ∼= ∞ (37)

1̂ ∼= Z (38)

1̂

∞
∼= dZ . (39)

These equations demonstrate an important symmetry be-
cause equation (38) says that Z is like 1̂ and not like ∞̂
or 1̂/∞, but equation (35) says 1̂ is like any random Φ̂n.
This is the beginning of a paradox, and paradox is often
the beginning of proof.

Searches for zeros off the critical line can only ap-
proach null points in the domain of ζ by finite incre-
ments. Therefore when we consider any point p close to
a null point, there are infinitely many other points that
are closer to the null point than p. It is the utility of
hypercomplex analysis that we can define other points P
that are immediately adjacent to a given null point in
the finite analysis of a certain level of ℵ. Near the polar
singularity θ = π infinitely complex points are defined as

(θ, φ) =

π +

N∑
j=1

εjzj(Z) , φ0 +

M∑
k=1

εkzk(Z)

 .

(40)
For ease of analysis we are defining hypercomplexity

to be the limit of infinite complexity where N = M = 2,
as in equation (33). For further ease we will consider two
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lower levels of ℵ rather than a lower one and a higher one
and this looks like

1̂ ∼= Z (41)

1̂

∞
∼= dZ (42)

1̂/∞
∞

∼=
(
dZ
)2

. (43)

In this way we hope to simplify things by removing
the object ∞ from the RHS definitions. Terms of or-
der (dZ)2 are completely mundane and ∞ is essentially
impossible to work with directly. What we have done
here is to translate our analysis by one discrete unit of ℵ
which is Φ̂. To understand how this might be useful, con-
sider that when using the sphere theorem to permute the
interior and exterior of a sphere, that can happen fully
within a larger sphere whose interior remains its interior
throughout the rearrangement of the interior and exte-
rior of the smaller sphere. (We only mention the sphere
theorem in this paper because it implies the existence of
a calculus based argument dual to our mostly geometric
argument.)

Consider one sphere that exists by itself. When the in-
terior is swapped with the exterior, the finite interior re-
gion is rarefied to spread over all of space. Now consider
that sphere situated on the interior of another sphere.
When the interior and exterior of the inner sphere swap,
two finite elements get mapped to two finite elements.
For applications that involve only the surface of the
sphere and a pair of arrows pointing “in” and “out,” the
problem of one sphere is exactly the same as the problem
of one sphere embedded in another but with the embed-
ding all of our maps are finite-to-finite. In the former
situation we had one finite-to-infinite map and another
infinite-to-finite one, and both of these types of maps
present a lot of problems for analysis. Recall that the
finite-to-infinite map ζ : 1 7→ ∞ has driven a large part
of the present discussions.

Equations (34-36) are formatted for consistency with
equations (41-43) as

1̂ := Φ̂0 (44)

1̂

∞
:= Φ̂1 (45)

1̂/∞
∞

:= Φ̂2 , (46)

where we have reversed the (arbitrary) direction of in-
creasing n with respect to increasing infinitude. Now
higher n means a lower level of ℵ.

Moving away from the specific point θ = π specified
by equation (40) we may define the hypercomplex coor-
dinates around an arbitrary point as

(∆θ,∆φ) =

 2∑
j=1

Φ̂jzj(Z) ,

2∑
k=1

Φ̂kzk(Z)

 (47)

=
(
zθ1 Φ̂ + zθ2 Φ̂2 , zφ1 Φ̂ + zφ2 Φ̂2

)
. (48)

Here we have to ask an important question. Are the Φ̂n

that appear in ∆θ the same ones that appear in ∆φ? The

answer is yes. zθ1 and zφ1 specify a point on the surface
of the first infinitesimal sphere, which is the small sphere

in figure 4, and (zθ2 ,z
φ
2 ) is a point on a second nested

infinitesimal sphere written in the doubly infinitesimal
(θΦ̂2, φΦ̂2) coordinates that live there (not shown in fig-
ure 4.) This is all well and good but it begs a second
question. Even if they are the same, do they have to
be? In that case the answer is no and it gives us some
guidance about how we can define two different types of
singularity on the same sphere and thereby avoid the SR
topology.

Among analytic and coordinate singularities we can
say that one goes “in” and the other goes “out,” or we can

even take combinations of {∞̂, 1̂/∞} as either “mostly
in” or “mostly out.” Furthermore, we can say that the
answer to our first question was yes because the Φ̂n were
attached to the same null point (θ, φ), but that the Φ̂n

attached to some other point (θ′, φ′) exist completely in-
dependently. This will mean that every point has its
own uniquely associated transfinite structure but there
is something particular about Φ̂0 ≡ 1̂ which all points of
CZ must have in common if they are to constitute a co-
herent sphere. If every point was disconnected on every
level of ℵ then we would have no continuum.

Here we will have a brief aside about physics and the
theory of infinite complexity, and how it might relate to
the Riemann zeta function. When the {Φ̂, Φ̂2} in ∆θ are
different than those in ∆φ, for any reason, not only the
one proposed above, then the hypercomplex coordinates
become

(
∆θ,∆φ

)
−→

(
∆θ+, ∆θ−, ∆φ+, ∆φ−

)
, (49)

and it looks very much like something that would be writ-
ten in the ontological basis {̂i, Φ̂, 2̂, π̂}. Let’s consider
that basis in terms of an interpretation of numbers sug-
gested by Gauss. Positive numbers shall be called direct,
negative numbers inverse, and imaginary numbers shall
be called lateral. To that end, consider two groupings of
equation (13)

1̂ =

(
1

4π
π̂ − ϕ

4
Φ̂

)
−
(
i

4
ı̂− 1

8
2̂

)
(50)
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1̂ =

(
1

4π
π̂ − i

4
î

)
−
(
ϕ

4
Φ̂− 1

8
2̂

)
. (51)

In Gaussian terminology, each grouping of the resolu-
tion of the identity has a direct parenthetical term and
an inverse parenthetical term. Within each of those two
terms, there exists another pair of direct and inverse (pos-
itive and negative) terms and we can also compare this
to equation (2) in ordinary terms of what it means to be
direct or inverse. When direct means “numerator” and
inverse means “denominator” the analytical structure of
ζ exhibits the exact same nested structure as the ontolog-
ical resolution of the identity. Considering equation (2),
perhaps the direct parenthetical term from equation (50)
or (51) is on the top of ζ and the inverse term is on bot-
tom, and the denominator in each integrand is controlled
by the inverse term that appears in each parenthetical
term of the grouped resolution of the identity.

We have developed the ontological basis in support of
other efforts to unify gravitation with quantum mechan-
ics [1–7] but somehow we have been able to do almost

all of it with just π̂ and Φ̂. In that work we have shown
little reliance on î and 2̂ so if they are equally important
members of the ontological basis {̂i, Φ̂, 2̂, π̂} then why
aren’t they used as prominently? The answer is that we
have only treated non-relativistic quantum theory which
is the limit of QFT where the third and fourth compo-
nents of the Dirac vector vanish because they depend on
the relativity parameter β = (v/c)2. If we associate 2̂ and

î with these vanishing parts of the Dirac bispinor then
it makes perfect sense that we would be able to fully
describe the nonrelativistic limit of the theory without
them. However, in terms of pure analysis, even when an
analytical β = 0 constraint is imposed, the topology that
allows four channels doesn’t go away. In physics it is nor-
mal to assume a minimal topology, but for analysis we
should consider that all four channels are always there,
even when two of them tend to zero.

The Gaussian interpretation of the resolution of the
identity demonstrates the exact spinor-bispinor form of
the Dirac vector, and even ζ itself shows this structure
in the Gaussian interpretation. The ontological basis
vectors that we have chosen as not contributing to non-
relativistic quantum theory, 2̂ and î, appear as the inverse
terms to the direct terms Φ̂ and π̂ in equation (51) and
are the entire inverse parenthetical term in equation (50).
Furthermore, every non-trivial zero of ζ(Z) is symmet-
ric about the real line with another zero and if there are
any zeros off the critical line they will have a symmetric
zero on the other side of the critical line. This means
that non-trivial zeros always appear in pairs, and if there
is one off the critical line then it will be symmetric with
three other zeros. Therefore, if they exist, Z̄n̄ will always
appear in pairs of pairs. Now that we have taken note of
these features, back to the Riemann hypothesis.

Consider the map from the plane to the sphere shown
in figure 6. The origin of the planar coordinates is shown

FIG. 6. The planar domain of ζ is mapped onto a sphere.
The preimage of the origin of coordinates O on the sphere is
the planar point Z = 1/2.

with a black dot and the singularity at Z = 1 is shown
with a white dot. The origin of coordinates on the sphere
is marked with O and the sphere’s coordinate singular-
ity is marked with X. The planar points of interest are
mapped to polar points as

Z = 0 7→
(
θ, φ
)

=
(π

2
,−π

2

)
(52)

Z = 1 7→
(
θ, φ
)

=
(π

2
,
π

2

)
(53)

Z =
1

2
7→

(
θ, φ
)

=
(
0,multivalued

)
(54)

Z =∞ 7→
(
θ, φ
)

=
(
π,multivalued

)
(55)

Z = i∞ 7→
(
θ, φ
)

=
(
π,multivalued

)
, (56)

and here the reader should be careful not to assume that
the multivaluedness of the coordinates is only a property
of the sphere. When we write the complex number Z
in terms of the plane polar coordinates (r, θ) we see the
same behavior with

Z = 0 7→
(
r, θ
)

=
(
0,multivalued

)
. (57)

The key features to note in figure 6 are that the critical
line becomes the φ = {0, π} meridian, the hemisphere
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toward the reader is the upper complex half-plane, and
the hemisphere away from the reader (not shown) is the
lower complex half-plane. We send the planar real line
to the two great semicircles φ = ±π/2. Whatever the
conformal coordinates are, we have chosen them so that
the real line between zero and one is mapped onto the
lower semicircle in the plane of the page.

Why have we chosen the specific map in figure 6? We
could have put the origin of the plane at the origin of
the sphere, or we could have put the analytic singularity
there but instead we have chosen to send planar Z = 1/2
to θ = 0. To see our motivations consider equation (2)
and note that ζ is technically a function of Z − 1. Z is
constructed directly from the z that appears in equation
(1) so that the origins of R and C2 are collocated. How-
ever, since ζ only depends on Z−1 that means ζ(Z) is not
a properly irreducible representation of the continuation
of D(z). Written in irreducible form we have

ζ
(
Z
)

=



∫
∞

0

xZ

ex − 1
dx∫

∞

0

xZ

ex
dx

 , with Z = Z − 1 .

(58)

Among the several choices for points to map to O we
have chosen the critical line as the most important fea-
ture and if one wishes to argue against the argument
presented here then the specific choice of the map in fig-
ure 6 might be a good starting point. Nevertheless, this
is the map we will use in the present argument.

Figure 7 shows roughly how the critical strip appears
on the sphere in the chosen conformal coordinates and
figure 8 shows the polar region around θ = π. In figure 8
we see that the lines all approach the null point at θ = π.
Since these are all straight lines in the plane, they ap-
proach planar infinity and therefore they must approach
the polar null point after mapping to the sphere. In fig-
ure 8 the purpose of the X, in addition to marking θ = π,
is to remind the reader that the lines do not actually ter-
minate on the point, they merely approach it. In figure
9 the lines do terminate on the circle but their endpoints
are separated by non-vanishing hypercomplex infinitesi-
mal elements {η1, η2}. Also note that the point θ = π is
multivalued in φ but if we consider an infinitesimal disk
instead then each point on its perimeter can be identi-
fied with a value from φ ∈ (−π, π]. The reader should
further note that all the lines in figure 9 point directly
to the center of the circle even though the figure does
not show that. Instead the figure demonstrates that the
three lines Re(Z) = {0, 1/2, 1} become approximately
parallel near the pole. In extended complex analysis we
can make true statements regarding figure 9 like

η1 = 0 , and η2 = 0 , (59)

FIG. 7. This figure shows how the critical strip is arranged
on the surface of the sphere. There are many other possible
arrangements but this is the one presently considered.

FIG. 8. This figure shows the region around what has been
the top of the sphere in previous figures.

but in hypercomplex analysis there is a clear, important
distinction between

η1 ◦ Φ̂0 = ε , and η2 ◦ Φ̂0 = ε , (60)

and

η1 ◦ Φ̂1 = finite , and η2 ◦ Φ̂1 = finite . (61)

Now here we will show why CZ is absolutely critical for
our argument against Riemann’s hypothesis, and that we
could not possibly hope to make it using SR. Consider
two Riemann spheres SR, one of order unity on Φ̂0 and
an infinitesimal one embedded inside at Φ̂1 so that the
null points of each sphere are at the same north polar
point, as in figure 4. Certainly we can create figure 9
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via smooth deformation of the hypercomplexly infinites-
imal neighborhood around that shared null point. As
we widen that neighborhood into a finite region on the
larger sphere, the smaller sphere will be pulled up into
that space and flattened. Certainly it easy to see how the
material around the perimeter of figure 9 is part of the
larger sphere, and the inside of the circle is the complete
surface of the smaller sphere stretched out for visualiza-
tion purposes. With SR, if we wanted to consider a third
level of ℵ, as in figure 10, we would have to punch a hole
in the Φ̂1 sphere where none exist.

When we map the plane to the sphere, the ring at
infinity becomes a point at the pole and what we have
described above is the reverse process. By spreading out
the null point onto a finite region the point becomes a
ring. When the single null point on the first infinites-
imal Riemann sphere SRΦ̂1 is the ring shown in figure
9, there is no other null point for us to spread over a
smaller but still finite region at the center of the Φ̂1 cir-
cle. However, if we replace SR with CZ then one of the
infinitesimal sphere’s null points is the ring in figure 9
and there will be a second one in the center. This would
be the south pole of the smaller sphere that gets pulled
directly upward when the north pole is rarefied directly
outward in all directions according to the operation that
creates the representation in figure 9. When we have
that second null point, we can spread its neighborhood
out into another finite region as in figure 10 but if we
had been working with SR then we would have had to
punch a hole in the topology which is not allowed in the
conformal transformations that we are considering.

Figure 7 shows that the behavior of straight planar
lines is non-trivial in the sphere’s Φ̂0 region because of
the curvature on S2 and because of our asymmetrical
choice to put Z = 1/2 at O (which we will say yet more
about later.) For instance, any parameterization of the

imaginary axis Re(Z) = 0 in the (θΦ̂0, φΦ̂0) coordinates
will depend on both θ and φ. However, near the polar
point all lines are radial and point directly to θ = π
which is in the center of figure 10’s Φ̂2 region. This is
very interesting because of the interpretation that all the
points in the Φ̂1 region lie within the domain of ζ(Z).

The coordinates of the ∆θ 6= points in the Φ̂1 region are
all of the form

(
θ, φ
)

=
(
π+∆θ, φ0+∆φ

)
, with π+∆θ < π , (62)

so this means none of the points in the Φ̂1 region are the
polar singularity and we can say this about the points in
the Φ̂n region. Therefore in precise language we should
say that the interior of Φ̂1 circle is a hypercomplexly in-
finitesimal neighborhood of θ = π rather than the point
itself but that if we were to consider only points on the
order of Φ̂0, the circle and the point are the same. The
important distinction is that we are conducting a hyper-
complex analysis not restricted to Φ̂0 alone. The fact that
θ = π is a singularity shall imply that it is irreducibly in-
finitesimal. If the Φ̂1 points are in CZ then the bijection

FIG. 9. The CZ topology has a hole in it at θ = π and we
can spread the hypercomplex neighborhood around it into a
finite region to consider what could be happening within.

FIG. 10. This figure demonstrates the beginning of an infi-
nite series of nested, expanded, increasingly hypercomplexly
infinitesimal neighborhoods around the polar coordinate sin-
gularity at θ = π.

with the plane must send those points somewhere and
since they are inside the sphere’s Φ̂1 ring, they should
be mapped to a planar point beyond infinity. However,
our plane is just a plane; it is not yet an extended plane
that includes infinity. (This follows because the plane
we refer to is CZ , the domain of ζ, and ζ is not ana-
lytic at ∞.) Therefore we will say that we are using
the hypercomplex plane CZ which does not include the
boundary at uncountable infinity but does include the re-
gion between countable and uncountable infinity so that
ζ(∞) → ζ(Φ̂∞) is the point of analytic breakdown but

ζ(∞) → ζ(Φ̂n) is allowed. It is clear that, if so desired,
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we could construct a convergent Taylor series expansion
around the point Z = Φ̂n.

The critical reader might ask, “A precise number big-
ger than infinity doesn’t make sense as a concept, seems
contrived, and even if those points exist, what numbers
could we use to describe them?” In that case we remind
the reader of the number

√
−1 that Riemann used in his

own analysis. A number that is the square root of a neg-
ative number doesn’t make any sense, certainly seems
contrived, and is in fact completely imaginary! If Rie-
mann (and everyone else) can simply call that number i
then we can likewise call our tiers of transfinite infinitude
Φ̂n. We can answer the critical reader’s question about
the bijective target point in the plane using the notation
from equation (48). Under bijection the planar identity
of the point is

(
∆θ,∆φ

)
=
(
zθ1 Φ̂1,zφ1 Φ̂1

)
7→ Z =

(
z+ iγ

)
Φ̂1 . (63)

This completely solves the problem because we can
keep adding Φ̂n without ever getting to the ring at un-
countable infinity or, in the spherical representation, the
irreducible singularity at θ = π. Interestingly, as we keep
adding regions of infinity beyond infinity the planar rep-
resentation becomes exactly like the area around the sin-
gularity, as in figure 10. Furthermore if the plane is the
surface of a sphere whose radius is infinity, then per-
haps the boundary at uncountable infinity is where the
curvature becomes non-negligible after being completely
negligible through all the Φ̂n planar annuli and that ul-
timately we have developed the hypercomplex version of
the ordinary inversion map between the two coordinate
charts that cover S2. (Note that if we have two singular-
ities in CZ and we put it on S2, then there will be four
singularities associated with it: a pair of singularities in
each of a pair of charts.)

If we want to consider the planar representation as
different than the spherical representation, then we can
consider a stack of planes, each one labeled with Φ̂n, and
let the bijection be between the surface of one hypercom-
plex sphere and an infinite number of planes. This likely
has immediate application to the Banach–Tarski para-
dox because a complete sphere can be constructed from
each of the infinitely many planes. Also note that a stack
of N discrete planes is an excellent example of what we
have called modular topology and a series of concentric
planar annuli also has the requisite modular properties.
Finally, note that nothing in our definitions prevents the
stacked planes of ascending levels of ℵ from having their
own countably transfinite annuli defined according to the
objects in equation (18).

Here we will make a simplistic statement that is wrong
(italic) to demonstrate a qualitative principle, and then
shortly we will show that a slightly different true state-
ment affirms the truth of that principle. Considering
figures 9 and 10 the important thing to note is that re-
gardless of the non-trivial parameterizations of rectangu-
lar grid lines in the coordinates on the Φ̂0 surface of the

FIG. 11. This figure shows a subtle asymmetry related to the
off-center position of the critical strip in C2. The critical line
is colored white in the dark region for contrast.

sphere, once those lines get to the Φ̂1 circle, they have
achieved their asymptotic limits and all point in the ra-
dial direction. Therefore, the parameterizations of the
lines in the Φ̂1 region can depend only on θ but not φ.

There exists a famous argument about infinity that
says a larger circle must have more points than a smaller
circle. The argument states if that one traces a ray from
the center of a small circle to each point on its circumfer-
ence, and then continues those rays onto the circumfer-
ence of a larger concentric circle then there will be gaps
between the rays meaning that the larger circle has more
points. There are a number of counter arguments but we
will simply require that the points on the Φ̂2 circle are
“infinitesimal points” with respect to those on the Φ̂1 cir-
cle. The circles are self-similar in every way other than
that they exist on different levels of ℵ. Therefore we can
say that all the nested circles considered have the same
number of points; they are just different kinds of points.
Furthermore, it is obvious that there exist smooth ana-
lytic continuations of the critical line, the real axis, and
the imaginary axis across any number of circles as they
tend toward θ = π forever. Therefore, without even ex-
tending the lines through the Φ̂1 region we can draw the
real and imaginary axes in the Φ̂2 region. Since the num-
ber of points in each circle is the same, and the lines that
connect the points of each must lie along some line of
constant φ, all the points of the Φ̂2 circle that are in its
first quadrant should be connected radially to the points
in the first quadrant of the Φ̂1 circle, and likewise for the
other quadrants. Figure 11 shows that we are unable to
accommodate the requirement for one-to-one point map-
ping with purely radial lines.

The critical reader will ask why we can’t just deform
the point density in the circumference of the Φ̂2 circle so
that the lines would be radial and we have an excellent
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answer for that. Due to the argument in figure 3, there
can be no preferred azimuthal directionality beyond in-
finity. Therefore anything that we create beyond infinity
must have perfect rotational symmetry. If we said that
the Φ̂2 circle had more points on one side than the other,
that would be the opposite of rotational invariance.

Now we have derived a contradiction that shows the
lines reach their asymptotic radial behavior at the Φ̂2

circle, not the Φ̂1 as stated above in italics. Since the de-
viation induced by the choice of map in figure 6 does not
have rotational symmetry, the argument about the dis-
tribution of points on the Φ̂2 circle applies equally to the
directionality of the lines within the Φ̂2 region. Therefore
the lines must reach their asymptotes at Φ̂2 even if they
cannot have reached them at Φ̂1. Furthermore, it is com-
monly understood in mathematics that there can be no
demonstrable structure between countable and uncount-
ably infinity but here we have demonstrated a non-trivial
structure in the region between Φ̂1 and Φ̂∞. Above we
claimed wrongly the lines will reach their asymptotes at
Φ̂1 but we see that they do not reach them until Φ̂2.

The reader might ask, “Why isn’t the Φ̂1 region also
constrained to have a uniform distribution of points on its
circumference? Surely the argument from figure 3 applies
to Φ̂1 and Φ̂2 equally.” It does not. To see this, consider
the planar representation of CZΦ̂0 (figure 1) without the

Φ̂n annuli out beyond countable planar infinity. Since
the critical strip is asymmetrical in this planar region
and we have put the critical line at the origin of spherical
coordinates, the conformal coordinates are asymmetrical
on the corresponding spherical region, and that region
touches the Φ̂1 circle.

Now consider how the points beyond the planar ring
at infinity are mapped into the spherical Φ̂1 region. If
we expand the sphere’s polar point, or rather the hyper-
complex neighborhood around it, into the finite region
Φ̂1, as in figure 9, then we have to get some better rep-
resentation of the area beyond the ring at planar infinity
before we can even begin to consider its bijection. We
can map an infinite plane to S2 because we can choose
an origin of coordinates and then let the conformal co-
ordinates take care of the behavior at infinity. When we
are considering a transfinite plane such as the Φ̂1 pla-
nar annulus we cannot even begin to consider the origin
because the entire region is hidden beyond infinity. We
have increased the area of the polar point from zero to
some finite value where we can see the infinitesimal coor-
dinates so we must decrease the transfinite area of the Φ̂1

region to be the only-infinite planar area whose bijection
with SR is well known. We know how to map the plane
to a sphere, but we do not know how to map the annu-
lus beyond the ring at planar infinity to a sphere so we
need to make a change that puts it into a workable form.
This requires shrinking the planar region on the interior
of the first annulus to a point. When this is completed
the entire Φ̂0 real line is compactified to a point that
becomes the origin of the infinite but not transfinite Φ̂1

planar region, as in figure 12. Afterwards, with respect

FIG. 12. The critical strip is off-center in the Φ̂0 region but
not in the finite analysis of Φ̂1 region after conversion from a
transfinite annulus to an infinite plane.

FIG. 13. To accommodate the radial line requirement in the
Φ̂1 region we may attempt to shift critical strip by η1.

to the finite analysis of the bijection, the critical line is
perfectly symmetric in the Φ̂1 plane. This explains why
the Φ̂2 circle is constrained in a way that the Φ̂1 circle is
not. After mapping the Φ̂0 planar region to the sphere,
the global asymmetry of the that region touches the Φ̂1

circle. However, there are no asymmetric features of the
Φ̂1 planar annulus or, for that matter, any other planar
annulus Φ̂n with n > 1. Therefore both regions touching
the Φ̂2 circle will be populated with perfectly symmet-
rical maps but this was not true for the Φ̂1 circle. Also
note that it would have been impossible to make this ar-
gument without introducing at least the third level of ℵ
to make our analysis fully transfinite.

If we are to force the lines to be only radial between
the Φ̂1 and Φ̂2 circles then we could redraw figure 11 as in
figure 13. Since η1 and η2 are infinitesimal with respect
to Φ̂0, we might shift the critical line over slightly so as
to avoid any paradoxical φ dependence in the Φ̂1 region.
However! This creates another contradiction. When the
null point is only a point, the azimuthal angle φ is mul-
tivalued there as in equations (55) and (56). When the
hypercomplex neighborhood around θ = π is deformed
into a small circle, then each point on that circle does
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have a unique φ value and clearly φΦ̂0 = φΦ̂1. Then
if figure 11 shows the case where the critical line is the
great circle φΦ̂0 = {0, π}, the critical line in figure 13 can
no longer be specified in that way because now the line
Re(Z) = 0 terminates at φ = 0 and they are separated

by η1 ◦ Φ̂1 = finite. The angle is finite in both regions
but the associated arc length is only finite in Φ̂1; it is
infinitesimal in Φ̂0 because of the relatively infinitesimal
radius of the Φ̂1 circle. This is clearly shown in figure 13
but it contradicts the original map from figure 6 which
put the critical line on the great circle with φ = {0, π}.
Obviously any great circle of S2 passing through the poles
of its coordinate system will maintain the same φ value
across any number of levels of ℵ. However, since η1 ◦ Φ̂1

is finite we see that after shifting the strip over by a in-
finitesimal distance η1 ◦ Φ̂0, we have changed the φ value
at which the critical line touches the Φ̂1 circle by a finite
increment.

One might try to argue that since we have shifted the
critical strip by an infinitesimal η1 with respect to the Φ̂0

scale that means the change in φ is also infinitesimal. On
closer inspection, one sees that if η1 is finite with respect
to Φ̂1 then the angular displacement is evidently finite in
Φ̂1 as well. Therefore φΦ̂0 = φΦ̂1 and the φΦ̂0 values at
which the critical line strikes the Φ̂1 circle must deviate
by exactly φΦ̂1 radians from the values {0, π} it had in

figure 11. Then one notices that φΦ̂n = φΦ̂m has the
implication that there is no such thing as infinitesimal
azimuthal angle but that is also subtly not right. Cer-
tainly we can add infinitesimal azimuth to meridians near
the equator to distinguish several hypercomplex meridi-
ans sharing a common φΦ̂0 coordinate but we cannot do
this near the pole. If we considered infinitesimal φΦ̂0 at
the Φ̂1 circle it would tell us how the lines that come in
from the Φ̂0 region all terminate on the same point of the
Φ̂1 circle but are actually separated by infinitesimal arc
lengths. This is wrong because we have already shown
that, with respect to the φΦ̂1 = φΦ̂0 azimuth, the arc
lengths separating the elements of the critical strip are
proportional to finite η in Φ̂1, not infinitesimal ε, as in
equation (61). If φΦ̂0 was infinitesimal, then so too would

φΦ̂1 be infinitesimal, but then the arc lengths correspond-
ing to the infinitesimal angular displacements would also
be infinitesimal, and that contradicts the structure de-
scribed in equations (60) and (61).

So... we cannot shift the critical strip as in figure 13
because it changes the φ at which the critical line strikes
the Φ̂1 circle and this is not allowed for polar great circles.
Polar great circle means “constant φ” and the critical line
has been defined as such, as in figure 6. If a great circle
leaves the south pole with φ′ but gets to the north pole
with φ′′ 6= φ′ then it is not a great circle. We cannot
achieve radial lines in the Φ̂1 region by deforming the
density of points on the Φ̂2 circle because that violates
rotational invariance but there is one more thing we can
consider. This has to do with the map chosen in figure
6. If we had mapped Z = −1 to the origin O of the
spherical coordinates instead of Z = −1/2 then the lines

would have already been arranged as in figure 13 without
us having to do anything.

If the plane is infinite then we can set a sphere on top
of any point in the plane and use the polar ray to define
a bijective map as in figure 2. (We can use the linear ray
to put the deformed coordinates on the sphere by first
doing a conformal transformation in the plane.) If we set
the sphere on the point {Z,Z} = {0, 1} that strengthens
our argument because it increases the off-centeredness
that has to be corrected with non-radial lines in the Φ̂1

region, as in figure 11. The point {Z,Z} = {−1, 0} that
would naturally produce the contradiction-free figure 13
is the only point on the entire plane that allows us to
avoid the contradictions we have developed above.

What reason do we have to set the sphere there and
to do the ray tracing with respect to that point? Why
should we put the sphere at the origin of the Z (and z)
coordinates when the Z coordinates are the ones most
natural to ζ? Can we say that if there exists even one
map which implies the existence of Z̄n̄ then they must
exist, as in equation (5)? That question certainly begs
another: if there is only one map that does not imply the
existence of Z̄n̄ then why should we prefer that one over
infinitely many others that do imply Z̄n̄? (This implica-
tion is shown below.) If it is true that we should use the
one singular map that negates our argument, the reason
would be that we are considering an analytic continua-
tion of the real line z from equation (1) so we should
put the sphere at the origin of z when we construct the
bijection. However, that argument is very weak because
we can use the real part of Z, call it z, to rewrite the
Dirichlet series as

D
(
z
)

=

∞∑
N=1

1

N (z+1)
, with z > 0, z ∈ R , (64)

in which case the point {z,Z} = {0, 0} is no longer fa-
vored. Furthermore, there is a seemingly relevant result
in general relativity that says every manifold has at least
one point where it is possible to construct a coordinate
system such that the metric can be written in canoni-
cal form and all its first derivatives vanish. Perhaps the
point Z = 0 is the one point in C2 where, by symmetry,
the interesting features are suppressed. If so this is im-
portant because finding one form where the interesting
features vanish does not imply that they don’t exist; the
result says that it is a general property of manifolds that
one such point always exists so if we did not have one
point that suppresses our result then that might indicate
a problem with our analysis.

Even so, we are still faced with the truth that there is
a certain case where our argument fails and the theory of
gravitation may or may not be relevant. There might be
some subtle point we have neglected which would imply
that this certain case is preferred and the other points are
not valid for the purposes we have put them to. That
would negate our argument which is based on sending
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Z = 1/2 to O. On the other hand, if the point where our
result fails simply exists but is not preferred then we can
consider a similar property of the complex exponential.
Let’s say we want to prove that eiθ takes on imaginary
values for θ ∈ R. We have to choose some value for θ so
take θ = 2πξ which gives

e2πiξ =
(
e2πi

)ξ
= 1ξ =⇒ Im

(
eiθ
)

= 0 ∀ θ .
(65)

Here we were able to choose a specific θ that gives
the wrong answer and it seems like choosing the point
{Z,Z} = {−1, 0} is the same type of outlying exception
to the rule. The only reason (that we have noticed) to
choose Z = 0 as the origin of coordinates on the sphere
was that it is also the origin of coordinates in equation
(1), but that is only one of an infinite number of ways to
write the Dirichlet series. It is true that equation (1) is
the most irreducible form of the the Dirichlet series, but
why should we favor the irreducible form of D over the
irreducible form of ζ, as in equation (58)?

What does this all mean for the Riemann hypothesis?
Consider the first and second quadrants of the Φ̂1 region
in figure 11. There is no deviation from radiality near
+ReΦ̂0 so there must be a gradient of increasing φ de-
pendence as one moves toward ±ImΦ̂0. Therefore the
right side of the critical strip will be pulled toward the
right more strongly than the critical line meaning that
the line Re(Z) = 1/2 will not be in the center of the
critical strip when it achieves its asymptotic behavior at
the Φ̂2 circle. We have taken as a lemma that the proof
of an infinite number of zeros on the critical line is re-
ducible to a symmetry argument that says there are an
infinite number of zeros centered in the critical strip but
we see that, beyond the Φ̂1 circle, the center of the criti-
cal strip no longer has Re(Z) = 1/2 due to the gradient
in φ dependence. Therefore if the symmetry reduction
of Hardy’s argument holds, and the rest of the argument
holds, then there will be zeros whose real parts are
not equal to one half. It is true that these zeros will
have to be specified with Φ̂n but that is surely allowed if
other zeros are specified with ±i.

The only remaining issue is to note that it is possible
to squeeze an infinite number of zeros into the part of the
critical strip within the Φ̂0 region so that the gradient in
φ never affects any of them. Consider this: if there are
infinitely many zeros on the critical line, and there are in-
finity of them in the Φ̂0 region, then Hardy’s result does

not strictly imply that there will be yet more zeros in the
Φ̂n planar annuli. If it can be shown that the infinitieth
zero lies inside the Φ̂1 circle then our argument is good
but if it does not then our argument fails completely. It
is known that the density of zeros increases as one goes
up the critical strip toward infinity and this would be
contradicted if there were no zeros inside the Φ̂1 region.
If the density of zeros is N/L then obviously we can se-
lect small segments L that contain no zeros to show a
semantic contradiction when the density decreases from
Lj that contains a zero to Lj+1 that doesn’t. However,
if we always consider |Lj+1| ≫ | Lj | with Lj+1 further
up than Lj then the result about increasing density is al-
ways true. Therefore, in the planar representation, if we
take L1 as the length of the critical strip in the Φ̂0 planar
region, and L2 as the length that crosses the Φ̂1 and Φ̂2

planar annuli, which are both infinitely large with respect
to Φ̂0 then the density in L2 will have to be greater than
the density in L1 which was not zero. Therefore, there
must be zeros of the Riemann zeta function beyond the
Φ̂0 region and this, per the above, implies the existence
zeros with Re(Z̄n̄) 6= 1/2. This is another part of our
argument that could be considered “less solid” but to re-
fute it the burden of proof would lie elsewhere with those
who want to demonstrate that the density of zeros even-
tually stops increasing and then decreases to zero so that
there are no zeros beyond Φ̂0. In the absence of such a
demonstration we cite the general form of the result says
that the density of non-trivial zeros increases forever as
one goes up the critical strip.

Therefore we have made a good argument against
the Riemann hypothesis and likely resolved the Banach–
Tarski paradox along the way. As a final note, it may
prove useful in the future to label the transfinite annuli
and infinitesimal discs, which are also annuli, with oppo-
sitely signed Φ̂±n.
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