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We discuss the Riemann zeta function and make an argument against the Riemann hypothesis.
While making the argument in the classical formalism, we discuss the argument as it relates to the
theory of infinite complexity. We extend Riemann’s own (planar) analytic continuation R → C2

into (bulk) hypercomplexity with C2 → ?C.

Consider the analytic continuation of the Dirichlet se-
ries
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onto the entire complex plane via the Riemann zeta func-
tion
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 , with Z ∈ C2,Z 6= 1 ,

Note that the domain of ζ is different than the ex-
tended complex plane Ĉ which is defined as

Ĉ ≡ C2 ∪ ∞̂ . (2)

Z only samples from finite values. The object ∞̂ is com-
plex infinity so Ĉ contains four values that are not in C2.
These are ±∞ and ±i∞, and when the Riemann sphere
is constructed from C2, all of these points are mapped
to one polar null point: θ = π in the familiar polar co-
ordinates. If the domain of ζ(Z) was C2 then we would
expect to be able to calculate ζ(∞) but we have no such
expectation. ζ(∞) is neither well defined nor an object
we will consider. The domain of ζ(Z) is the non-extended
complex plane as in figure 1; it is the Cartesian plane with
one real axis and one imaginary axis.

The Riemann hypothesis says that all of the non-trivial
zeros of ζ(Z) are such that if ζ(Zn) is a non-trivial zero
then

Re(Zn) =
1

2
, (3)

and in 1914 Hardy proved that there are an infinite num-
ber of of these non-trivial zeros

Zn =
1

2
+ it , with t ∈ R . (4)

In this paper we will make an argument that there
should also exist at least one nontrivial zero

ζ(zn̄) = 0 , with Re(zn̄) 6= 1

2
. (5)

Since the domain of definition of ζ(Z) is a subset of
the extended complex plane, we can map the complex
plane and the details shown in figure 1 onto the surface
of a 2-sphere. We simply do not include the the polar
point that holds ∞̂ so that the polar angles are

θ ∈ [0, π) , and φ ∈ [0, 2π) . (6)

The azimuthal angle φ cannot contain both points 0
and 2π because then that point would be double valued.
The zenith angle θ would contain π if we were using the
extended complex plane, but we are not so it is removed.
Even if we did include it, there would be the other prob-
lem about it being infinitely multiply valued and θ = π
would be the same point for any given φ. If we did need
to include θ = π we would simply introduce a second co-
ordinate chart per the standard prescription but we do
not need to do that, and we will work with a single co-
ordinate chart on the surface of the 2-sphere. These are
the coordinates in equation (6). The infinite extent of
the Cartesian coordinates in figure 1, stretching from the
origin out infinity, are condensed onto the surface of the
2-sphere with conformal coordinates whose precise defi-
nitions are irrelevant. This is all totally standard. All
that is required to move the domain of ζ(Z) onto the

FIG. 1. This figure shows the features of the complex plane
that are most relevant to the Riemann zeta function.
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sphere is to make a conformal change of coordinates in
the ordinary fashion.

=========================
The object ∞̂ is complex infinity so Ĉ contains four

values that are not in C2. These are ±∞ and ±i∞, and
when the Riemann sphere is constructed from C2, all of
these points are mapped to one polar null point: θ = π
in the familiar polar coordinates. It is our belief that the
four-to-one multiplicity here described is certainly related
to the ontological resolution of the identity

1̂ =
1

4π
π̂ − ϕ

4
Φ̂ +

1

8
2̂− i

4
î . (7)

We define an avenue for chronos and chiros to act in-
dependently when we act on a qubit with 2̂. Then on
the chirological copy of the qubit we act again to replace
the ordinary concept of orthonormalism. The traditional
idea of orthogonal fields usually relies on a phase differ-
ence of π/2 in the sines and cosines that make use of C2

through the Euler’s identity

eiθ = cos
(
θ
)

+ i sin
(
θ
)
. (8)

We have physically motivated 2̂ in quantum mechan-
ics by only making a connection between non-relativistic
quantum theory and QFT. Although the ontological ba-

sis {̂i,
√̂

2, Φ̂, π̂} has four channels like the Dirac vector,
we have been able to fully describe non-relativistic quan-
tum theory with only Φ̂ and π̂ because in that limit the

third and forth components,
√̂

2 and î, which are directly
proportional to the special relativistic factor

γ =
1√

1− β2
, (9)

all vanish in the nonrelativistic limit of the theory, al-
ways.

In the limit of mathematical analysis for physics, they
never vanish due to the finite precision of the relevant
testing apparati and, and even when β → 0 is imposed
as analytical constraint, the all topological channels of
the spinors and the bispinor in the Dirac vector exist
in the ensemble that describes the statistical mechanics.
The present analysis regards determinism and we will shy
away from stochasticism because it is not immediately
relevant to the argument about the Riemann hypothesis.

If we did need to extend the TOIC connection to QFT,
which we do not because QM is already connected to
QFT, then we would have to operate with 2̂, and make
four copies of the qubit by the commutativity of multi-
plication

2̂× 2̂ = 1̂ + 1̂ + 1̂ + 1̂ ≡ 4 . (10)

We can achieve this same operation with

2̂ + 2̂ = 1̂ + 1̂ + 1̂ + 1̂ ≡ 4 . (11)

The symmetry between the additive and multiplica-
tive properties of 2̂ is similar, in some way to the unique
symmetry of Φ̂

2̂ = 1̂ + 1̂ ≡ 2 ∈ Z (12)

Φ̂2 = Φ̂ + 1̂ := Φn+∆ + Φn−1+∆ (13)

Now also consider the four primary objects in ζ(Z).
The numerator in each integrand is identical so we see
the O(1,3) topology emerging. Take one qubit and oper-

ate act with 2̂ twice to make four objects. We separate
chronos and chiros by making the direct and inverse sec-
tors as in ζ(Z). Then we act with 2̂ on the entire system
to make direct and inverse sectors within each integrand.
Then we conjure the identity from nowhere, which we can
do because it is an axiom of the theory that the identity
exists, and then decompose it onto the ontological ba-
sis, and then put each of these four identical qubits onto
the orthogonal but not orthonormal (“not normal” and
“non-unitary” mean the same thing in this sense.).

Why do we say that the four qubits are identical? Ev-
erything we have said about making them direct or in-
verse relates to their arrangement inside ζZ. The slight
“-1” phase shifts, which are all on the scale of any of the
ontological vectors, have an obvious association with the
non symmetry of ζ’s critical strip existing in the positive
half plane and not being centered on the origin of coordi-
nates in C2. Then we can say they are identical because
after we operate with 2̂ twice, we would also have to ap-
ply some translation operations to achieve the analytical
form of the double-double direct and inverse qubits in ζ.
We can put the four identical qubits onto the four or-
thogonal basis vectors after 2̂ but before the translation
operators. Perhaps the fullest utility of the ontological
basis will be solve for a new completely new analytic con-
tinuation. Although we have written equation (2), it is
only an integral representation of the complete analytic
continuation of D(z). The Riemann hypothesis is an in-
teresting problem because it is known that we can’t be
sure if we have the correct functional form of the true an-
alytical continuation. Perhaps the ontological resolution
of the identity, equation (7), is that form and if we can
show the existence of one zero Zn̄ not on the critical line,
then we will have disproven Riemann’s hypothesis. We
will certainly be happy to accept the million dollars but
if it means that this writer would have to compromise on
his personal ethical standards then he will be happy to
show solidarity with Perelman letting it be written even
more clearly than it already is: people who do the biggest
things don’t do them for money.

If we are to replicate ζ(Z) in the ontological basis, then
we should first consider its domain. This is very inter-
esting because it says the identity is not in the domain



3

of ζ(Z). This is induced as an axiom that it is there.

Where π̂ points in the 3 directions of space, let Φ̂ be a
vector located at Z = 1 which points in the direction of
the arrow of time. Spacetime is emergent. Chronos
and chiros are different, but we have required that the
chronos component defined on π̂ contain the ordinary
theory. We simply aim to explain it better on the three
chirological channels in the timecube {2̂, Φ̂, î}. We have
most recently used the idea of inserting vector objects
that come predefined with their own locations to fill in
the null points in certain topological configurations that
make certain operations cumbersome. By doing this, in
reference [1], we have shown a good place to look for the
precise origin of the fine structure constant αMCM .

====================
Here we will make a disambiguation regarding what we

have called the Riemann sphere. The Riemann sphere is
a 2-sphere whose two dimensions are those of both C2

and Ĉ. However, for the mapping operation from planar
C2 to the 2-sphere S2 to work perfectly, we have to make
sure they have exactly the same topology. The domain
of Z in equation (2), even when we include the ring at
infinity ∞̂, there is still this point at Z = 1. It means
that if we sample Z from C2 in general with Z = 1, the ζ
will not be a map from C2 everywhere in its domain C2.
This is a critical element of what it means to be an ana-
lytic function in complex analysis. Therefore we should
first complete C2 with ∞̂, which is ring at infinity with
U(1) topology that introduces a new degree of freedom θ
which appears in equation (XXX). To complete the do-

main, we insert Φ̂ and say that it is an operator that
has an odd (chirological) coordinate transformation that
does something with the value Z = 1, such as storing it
instead of using it to produce a divergent value. Then we
expect that the topology of the 2-sphere will have inter-
esting, and likely novel interactions with the rectangular
topology of the time cube.

When we start with a classical qubit we need to unsup-
press the π̂ vector and then project it onto Φ̂ to do the
math trick. π̂ is the arrow of space so it gets projected
onto Φ̂ three times as space gets contracted onto time
for translation through the hypercomplex bulk. That
bulk comprises is both the interior and exterior of the 2-
sphere. There is no way to invert S2 so that the interior
and exterior may be permuted, but the sphere theorem
proves that this is possible for

Sj , with j > 3, j ∈ Z+ . (14)

Riemann began with real analysis in R and saw he
could use C2 Dirichlet series in the complex where it had
bee

=======================
Figure 1 shows a region of C2 near its origin of coor-

dinates O.
Also, the reader should note that we are using the def-

inition of the Riemann sphere that includes ∞̂ at θ = π
and this contrasts other work where we have used the

FIG. 2. We put the origin of the domain of ζ at the point
(π/2, 0) in the (θ, φ) coordinates. The point z = 1 goes to
(π/2, π). The line that connects z = 0 and z = 1 in the plane
becomes the semicircle that goes through θ = 0; the horizontal
line in figure 1 is not to be considered the “equator” shown
here, at least for the purposes of this argument. We have
brought forward the black and white dots from figure 1 and
added an X to show the Reimann sphere’s null point.

name “Riemann sphere” to describe the sphere without
θ = π included. It should be clear from the context which
object is being used, and we

=========================
Now that we have decided to move the function’s do-

main onto a sphere we need to decide how the coordinates
of the plane will be oriented with respect to the polar an-
gles. If we were going to define conformal coordiantes to
condense the infinite extent of C2 onto the finite surface
of S2, that would be the next step after defining the ori-
entation. For that, consider figure 1 again. The function
ζ is a map from C2 to C2 for every point in C2 except
z = 1. At that point ζ maps an element of C2 onto an ele-
ment of Ĉ2 as shown in figure 1. The argument presented
in this paper mostly examines the relationship between
this odd point z = 1 and the null point on the Riemann
sphere. Note that these cannot be the same point; the
open boundaries of the complex plane at infinity will get
mapped onto the open boundary of θ ∈ [0, π) after we
project onto the sphere with the above mentioned con-
formal coordinate transformation.

So... to begin we take the coordinates of the Riemann
sphere, φ and θ and we will say where the interesting
points from figure 1 should go in these coordinates, and
this is illustrated in figure 2.

Here we will reduce the argument that all the zeros lie
on the line where Re(z) = 1/2 to a symmetry argument.
Due to the style of the analytic continuation of ζ onto the
entire complex plane, all the zeroes will lie on the critical
line because it is exactly in the middle of critical strip.
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Where Hardy has shown that there are an infinite num-
ber of zeros of the form of equation XXX, by symmetry,
all those zeros lie on the great circle that passes through
φ = π/2 and φ = 3π/2. We can squeeze an infinite num-
ber of them onto that circle, spaced arbitrarily far apart,
because of the conformal coordinates. The upper half of
the critical line in figure 1 is mapped to the semicircle
with θ ∈ [0, π) at φ = π/2, and likewise for the lower half
of the critical line at φ = 3π/2.

The null point on the Riemann sphere makes it easy
to map the infinite extent of the imaginary line onto the
vertical meridian. At the point θ = 0, which is the point
labeled 1/2 in figure 1, there is a distance of π radians
to the reach null point X in any direction so the con-
formal coordinates are totally symmetric. However, also
consider that we must map the infinite extent of the real
line onto the sphere.

Figure three clearly shows how the symmetry argu-
ment about the critical line, which is the meridian shown
in figure 3, breaks down. Also consider if there was an
asymmetry like the one shown in figure 3, then the criti-
cal line would simply be the one circle that does respect
symmetry. This is also problematic because that could
no longer be a great circle, meaning that the circle would
no longer pass the null point X, and then positive imagi-
nary infinity would connect to negative imaginary infinity
somewhere around the star in figure 3. This is also not al-
lowed because it violates the definition of of the domain of
ζ as the non-extended complex plane C2. However, there
are some well known issues associated with the idea that

∞
2
6= ∞

2
− 1 , (15)

so we will improve the argument.

FIG. 3. XXXXXXXXXXXXXXXXXX.

FIG. 4. Now we have redefined the coordinates so the critical
line at z = 1/2 lies at z′ = ε/2.

From real analysis, it possible to claim that the com-
plex plane exists solely on the basis that everything about
real analysis that is true (most of it anyway), must also be
true for complex numbers whose imaginary part is zero.
We can also extend the reals to the hyperreals in this
way by claiming that any real analysis that is true must
also be true if that analysis was carried out on infinitely
smaller but completely self-similar domain.

Therefore we should introduce a new hyperreal coor-
dinate system on figure 1 that says the distance from
the origin to z = 1 is an infinitesimal ε, and that ±∞
lie at ±1. This means the new coordinates are defined
on a higher tier of hyperreal infinitude than the previous
coordinates. This gives us figure 4.

Now everything that was true
=====================
In the plane we know that any off-critical line zeros will

be symmetric about the critical line, but on the sphere
they are symmetric about the critical line and the real
line. Both of these symmetries must be respected due to
the spherical symmetry.

However by going to the
=========================
Actually as soon as we convert to figure 5 we can say

that period three in the U(1) gauge symmetry implies
chaos, and then there must be infinitely many points in
the critical strip that are zeros such that Re(Z) 6= 1/2.

=======================
ve the domain of ζ(z) onto surface of a sphere is to

make a conformal change of coordinates in the ordinary
fashion.ve the domain of ζ(z) onto surface of a sphere is to
make a conformal change of coordinates in the ordinary
fashion.ve the domain of ζ(z) onto surface of a sphere is to
make a conformal change of coordinates in the ordinary
fashion.ve the domain of ζ(z) onto surface of a sphere is to
make a conformal change of coordinates in the ordinary
fashion.ve the domain of ζ(z) onto surface of a sphere is to
make a conformal change of coordinates in the ordinary
fashion.ve the domain of ζ(z) onto surface of a sphere is to
make a conformal change of coordinates in the ordinary
fashion.ve the domain of ζ(z) onto surface of a sphere is to
make a conformal change of coordinates in the ordinary
fashion.ve the domain of ζ(z) onto surface of a sphere is to
make a conformal change of coordinates in the ordinary
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fashion.ve the domain of ζ(z) onto surface of a sphere is to
make a conformal change of coordinates in the ordinary
fashion.ve the domain of ζ(z) onto surface of a sphere is to
make a conformal change of coordinates in the ordinary
fashion.ve the domain of ζ(z) onto surface of a sphere is to
make a conformal change of coordinates in the ordinary
fashion.ve the domain of ζ(z) onto surface of a sphere is to
make a conformal change of coordinates in the ordinary
fashion.ve the domain of ζ(z) onto surface of a sphere is to
make a conformal change of coordinates in the ordinary
fashion.ve the domain of ζ(z) onto surface of a sphere is to
make a conformal change of coordinates in the ordinary
fashion.ve the domain of ζ(z) onto surface of a sphere is to
make a conformal change of coordinates in the ordinary
fashion.ve the domain of ζ(z) onto surface of a sphere is to
make a conformal change of coordinates in the ordinary
fashion.ve the domain of ζ(z) onto surface of a sphere is to
make a conformal change of coordinates in the ordinary
fashion.ve the domain of ζ(z) onto surface of a sphere is to
make a conformal change of coordinates in the ordinary
fashion.

FIG. 5. Now we have redefined the coordinates so the critical
line at z = 1/2 lies at z′ = ε/2.
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