
Human Readable Feature Generation for Natural Language Corpora

Tomasz Dryjanski

tomekd789@gmail.com

Abstract
This paper proposes an alternative to the
Paragraph Vector algorithm, generating
fixed-length vectors of human-readable
features for natural language corpora. It
extends word2vec retaining its other
advantages like speed and accuracy, hence its
proposed name is doc2feat. Extracted
features are presented as lists of words with
their proximity to the particular feature,
allowing interpretation and manual
annotation. By parameter tuning focus can be
made on grammatical aspects of the corpus
language, making it useful for linguistic
applications. The algorithm can run on
variable-length pieces of texts, and provides
insight into what features are relevant for text
classification or sentiment analysis. The
corpus does not have to, and in specific cases
should not be, preprocessed with stemming or
stop-words removal.

1. Introduction
Multiple machine learning algorithms exist for
automated feature or topic extraction, but they have
got certain weaknesses: widely used bag-of-words
models that focus on words co-occurrence in
documents (e.g. Latent Dirichlet Allocation; Blei et
al., 2003) lose information about words proximity
across documents, making these methods less
precise; Paragraph Vector (Quoc V. Le, Tomas
Mikolov, 2014) overcomes this weakness, but it
generates features that are not easily available for
human interpretation.

The doc2feat algorithm proposed in this paper runs
word2vec (Mikolov et al., 2013) on the corpus and
interprets its output as a semantic space further
denoted as S, which is then used to generate a
feature space further referred to as F. The
supporting intuition for F is following: from the
classical “King” - “man” + “woman” = “Queen”
equation the author derives an unproven hypothesis
that S is a linear space generated by some set of
hidden features. By direct observation canonical
vectors of S do not contain readily available

information; then it is assumed that S is a linear
combination of some more fundamental aspects, or
features, of the corpus. Hence the K-means
algorithm (described later) is used to extract these
features, and they become the linear basis for F. For
this reason doc2feat assumes by default that S and
F have the same dimensionality, but this can be
overridden by command line parameters. To avoid
confusion, note that a single feature has a vector
representation in S, but it also is a canonical vector
in F, being an element of its canonical basis. F is
then used to annotate documents: for every
document in the corpus a fixed-length vector of
features is generated, denoting their similarities in S
to the document; sparse representation with a cut-
off threshold is also possible for real-life
applications. The generated features are presented
as lists of words close to them in S, with the
similarity information.

For all similarity calculations cosine similarity is
used because of good experimental results. This can
be supported by the following intuition: with K-
means we calculate features as centers of word
clouds in S, then we are interested in how much
a word, or a document represented as a sum of its
words, point in a feature center direction. The
vector length is then disregarded as not relevant.
Cosine similarity is defined in the standard way as
the cosine of the angle between two vectors; the
range of similarity can vary from 1.0 (the same)
down to -1.0 (opposite), i.e. the higher the number
the more similar these vectors are.

S can be later disregarded and deleted to release a
potentially large amount of storage space. It can
also be reused for subsequent annotation of other
corpora, assuming they share similar features. Note
that after S is generated, all next steps are
deterministic and can be rerun giving the same
results. This does not stand for the S generation.

1.1. Linguistic Analysis
Author’s experiments show that setting a narrow
sliding window, like e.g. 5, promotes generation of
features related to grammatical aspects of the
corpus language. This is particularly visible in

fusional languages, as in the example shown in
Table 1. A larger window of e.g. 10 makes the
doc2feat generate features more related to their
meaning. Presentation of the sliding window
concept is available in (Quoc V. Le, Tomas
Mikolov, 2014); the word2vec and Paragraph
Vector algorithms use it to decide what words
should be considered as occurring together, and it is
decided by their relative distance, measured in
words, in the analyzed document.

Table 1.Example grammatical features generated from 100,000
documents crawled from Polish automotive portals. An outlier is
marked with the strikethrough font. By a courtesy of the
Applica sp. z o.o. company (http://www.applica.ai/).

Nouns, Plural, Genitive Case Verbs, Plural, 3rd Person
przedsięwzięć 0.542953 mają 0.641664
placówek 0.523090 są 0.607566
modeli 0.521040 uzyskują 0.553228
pojazdów 0.507653 stosują 0.542330
określeń 0.506733 uzyskają 0.541744
programów 0.505354 będą 0.517885
metod 0.505253 wprowadzają 0.512920
ekip 0.500873 modyfikują 0.503788
pakietów 0.498335 kierują 0.502854
projektów 0.497558 testują 0.501535
wzorów 0.495480 traktują 0.500137
akcentów 0.493637 wykorzystują 0.487044
aut 0.492617 zajmują 0.483918
hoteli 0.491948 wytwarzają 0.483917
komentatorów 0.491538 patrzą 0.483068
grup 0.490884 mogą 0.482310
funkcji. 0.488429 indywidualni, 0.481537
kroków 0.483650 oferują 0.481276
udogodnień. 0.483207 kupowali 0.479684
zastosowań. 0.482917 tworzą 0.477042

2. Algorithm
The doc2feat algorithm is arranged in the following
steps:

Semantic Space Creation: The corpus is processed
by word2vec to generate vectors for vocabulary
words; they are interpreted as the semantic space S.

Feature Space Creation: K-means is then run on S
to generate the feature space F, in the same way it
is done in word2vec, with the only difference that
the L1 norm is used. This is advised in (Aggarwal et
al., 2001), to avoid the curse of dimensionality (i.e.
the diminishing ability to distinguish between two
vectors based on their distance, with growing
dimensionality). The L1 norm is also known as the
taxicab distance, and is defined as

providing a computationally feasible tool to
measure distances between vectors in high-
dimensional spaces. As described in the cited
publication a generalization exists, known as the
fractal norm Lk, defined as

Multiple fractal norms were tried out by the author,
but their computational cost makes them
impractical in real-life applications, while they do
not add significant value: e.g. features presented in
the Table 1 were generated with the L1 norm, and
top 50 words are matching with just one outlier for
each feature. Similar precision is observed in other
features, and it is considered by the author to be a
very stable result.

doc2feat lists words closest to these features with
similarities as the output.

Feature Vectors Creation: Next, every document
in the corpus is reviewed and linked to a fixed-
length feature vector in F, with cosine similarity
provided between the document and a particular
feature. Document vectors are calculated as sums of
word vectors in S.

3. Experiments
Experiments were performed to see if extracted
features can be connected to observable aspects of
text corpora, and to look for clues for the tool
usage.

Experimental protocol
doc2feat was run separately on two datasets with
the window set to 10, and the dimensionality set to
200. Each annotated phrase was taken as a separate
document to make use of the available labeled data.
Documents were then looked up for features.

3.1. Stanford Sentiment Treebank Dataset

The dataset is maintained by (Socher et al., 2013)
as a benchmark for sentiment analysis. It has 11855
sentences taken from the movie review site Rotten
Tomatoes. Every sentence in the dataset has a label
which goes from very negative to very positive in
the scale from 0.0 to 1.0. In total there are 239,232
labeled phrases in the dataset. The dataset can be
downloaded at: http://nlp.Stanford.edu/sentiment/

[as of Feb 2017].

Results: a feature labeled further as A was found to
correlate with the sentiment; see Figure 1. If the
feature is found in a phrase with similarity 0.3 or
closer, its sentiment falls in the [0.2, 0.8] range with
a 94.4% probability. Without checking the
similarity the probability would decrease to 88.9%.
The example is shown to demonstrate that
removing stop-words as part of a preprocessing can
lead to a loss of important data.

Feature A Sentiment (horizontal) / Similarity
. 0.922

to 0.919
that 0.908
, 0.906
the 0.898
a 0.878
in 0.847
of 0.845
it 0.838
but 0.835
and 0.829
is 0.796
's 0.777
for 0.776
this 0.774
with 0.767
as 0.761
so 0.667
or 0.666
have 0.661
at 0.659

Figure 1. A plot of 239,232 phrases with their proximity to the
feature A, and sentiment. Two overlapping clouds can be visually
distinguished: an ellipsoid one around the center that is typical for
other features as well, and a parabolic-shaped one correlating strongly
with the sentiment.

3.2. UCI Dataset

This dataset was created for (Kotzias et al., 2015).
It contains 3,000 sentences labelled with positive or
negative sentiment (tagged ‘1’ or ‘0’ respectively),
extracted from reviews of products, movies, and
restaurants. The correlating features are presented
in Table 2.

Table 2. Features extracted from the corpus and their correlation
to the sentiment. (a) Number of documents having the feature
(similarity > 0.3; the threshold was selected arbitrarily, based on
author’s experience); (b) Ratio of documents annotated to have the
positive sentiment.

Feature A Feature B
super 0.758627 great! 0.682735
performance 0.633872 headphones 0.679787
cool 0.626024 Battery 0.631001
beautiful. 0.614319 Nice 0.612433
staff. 0.542778 BEST 0.582279
friendly. 0.512033 priced 0.484854
cinematography 0.434619 steak 0.476392
Service 0.424387 new 0.449579
staff 0.408308 Good 0.448354
atmosphere 0.399221 reasonable 0.447734
gives 0.391106 fine. 0.437000
fit. 0.388146 simple 0.428868
ending 0.387151 arrived 0.421529
Our 0.379828 Best 0.411903
makes 0.376765 Its 0.403946
phone, 0.369432 terrible. 0.388678
An 0.359260 device 0.379474
Works 0.357251 Food 0.370406

Feature C Feature D
someone 0.517472 However, 0.583670
show 0.510152 minutes. 0.571949
lines 0.484348 directing 0.484432
bad. 0.411627 piece 0.373891
involved 0.336632 finally 0.372256
wasted 0.332233 worse 0.352793
said 0.322294 kept 0.325823
action 0.322079 years. 0.323748
sucks, 0.310266 movie. 0.313669

Feature (a) (b)
A 139 82.7%
B 107 85.0%
C 63 14.3%
D 96 20.8%

4. Source Code
The source code can be found here:
https://github.com/tomekd789/doc2feat [as of
March 2017]. It also provides a tool to look up a
corpus to find documents matching a selected
feature. The word2vec part of doc2feat is taken
directly from the original source code available at:
code.google.com/p/word2vec/ [Feb 2017]. Clear
annotations are made in the source code for parts
added during the research published in this paper.

5. Discussion
In this paper the concept of a feature space is
proposed, and L1 norm is used for its generation.
Features spanning the feature space as its canonical
basis are presented as sets of words, allowing their
manual annotation and tagging. Documents are then
mapped to vectors in the generated feature space.
Experimental results show state of the art stability
and precision of generated features, and their ability
to describe important aspects of analyzed corpora.

References
Aggarwal, Charu C., Hinneburg, Alexander, Keim,

Daniel A, On the Surprising Behavior of
Distance Metrics in High Dimensional Spaces.
ICDT '01 Proceedings of the 8th International
Conference on Database Theory; Pages 420 –
434, 2001.

Blei, D., Ng, A., Jordan, M. Latent Dirichlet
allocation. J. Mach. Learn. Res. 3 (January
2003), 993–1022, 2003.

Kotzias et al., From Group to Individual Labels
using Deep Features, KDD, 2015.

Le, Quoc V., Mikolov, Tomas, Distributed
Representations of Sentences and Documents.
arXiv preprint arXiv:1405.4053, 2014.

Mikolov, Tomas, Chen, Kai, Corrado, Greg, and
Dean, Jeffrey. Efficient estimation of word
representations in vector space.
arXiv:1301.3781, 2013.

Socher, Richard, Perelygin, Alex,Wu, Jean Y.,
Chuang, Jason, Manning, Christopher D., Ng,
Andrew Y., and Potts, Christopher. Recursive
deep models for semantic compositionality over
a sentiment treebank. In Conference on
Empirical Methods in Natural Language
Processing, 2013.

