
Human Readable Feature Generation for Natural Language Corpora 

Tomasz Dryjanski 

tomekd789@gmail.com

Abstract 
This paper proposes an alternative to the 
Paragraph Vector algorithm, generating 
fixed-length vectors of human-readable 
features for natural language corpora. It 
extends word2vec retaining its other 
advantages like speed and accuracy, hence its 
proposed name is doc2feat. Extracted 
features are presented as lists of words with 
their proximity to the particular feature, 
allowing interpretation and manual 
annotation. By parameter tuning focus can be 
made on grammatical aspects of the corpus 
language, making it useful for linguistic 
applications. The algorithm can run on 
variable-length pieces of texts, and provides 
insight into what features are relevant for text 
classification or sentiment analysis. The 
corpus does not have to, and in specific cases 
should not be, preprocessed with stemming or 
stop-words removal. 

1. Introduction 
Multiple machine learning algorithms exist for 
automated feature or topic extraction, but they have 
got certain weaknesses: widely used bag-of-words 
models that focus on words co-occurrence in 
documents (e.g. Latent Dirichlet Allocation; Blei et 
al., 2003) lose information about words proximity 
across documents, making these methods less 
precise; Paragraph Vector (Quoc V. Le, Tomas 
Mikolov, 2014) overcomes this weakness, but it 
generates features that are not easily available for 
human interpretation. 

The doc2feat algorithm proposed in this paper runs 
word2vec (Mikolov et al., 2013) on the corpus and 
interprets its output as a semantic space further 
denoted as S, which is then used to generate a 
feature space further referred to as F. The 
supporting intuition for F is following: from the 
classical “King” - “man” + “woman” = “Queen” 
equation the author derives an unproven hypothesis 
that S is a linear space generated by some set of 
hidden features. By direct observation canonical 
vectors of S do not contain readily available 

information; then it is assumed that S is a linear 
combination of some more fundamental aspects, or 
features, of the corpus. Hence the K-means 
algorithm (described later) is used to extract these 
features, and they become the linear basis for F. For 
this reason doc2feat assumes by default that S and 
F have the same dimensionality, but this can be 
overridden by command line parameters. To avoid 
confusion, note that a single feature has a vector 
representation in S, but it also is a canonical vector 
in F, being an element of its canonical basis. F is 
then used to annotate documents: for every 
document in the corpus a fixed-length vector of 
features is generated, denoting their similarities in S 
to the document; sparse representation with a cut-
off threshold is also possible for real-life 
applications. The generated features are presented 
as lists of words close to them in S, with the 
similarity information. 

For all similarity calculations cosine similarity is 
used because of good experimental results. This can 
be supported by the following intuition: with K-
means we calculate features as centers of word 
clouds in S, then we are interested in how much 
a word, or a document represented as a sum of its 
words, point in a feature center direction. The 
vector length is then disregarded as not relevant. 
Cosine similarity is defined in the standard way as 
the cosine of the angle between two vectors; the 
range of similarity can vary from 1.0 (the same) 
down to -1.0 (opposite), i.e. the higher the number 
the more similar these vectors are. 

S can be later disregarded and deleted to release a 
potentially large amount of storage space. It can 
also be reused for subsequent annotation of other 
corpora, assuming they share similar features. Note 
that after S is generated, all next steps are 
deterministic and can be rerun giving the same 
results. This does not stand for the S generation. 

1.1. Linguistic Analysis 
Author’s experiments show that setting a narrow 
sliding window, like e.g. 5, promotes generation of 
features related to grammatical aspects of the 
corpus language. This is particularly visible in 



fusional languages, as in the example shown in 
Table 1. A larger window of e.g. 10 makes the 
doc2feat generate features more related to their 
meaning. Presentation of the sliding window 
concept is available in (Quoc V. Le, Tomas 
Mikolov, 2014); the word2vec and Paragraph 
Vector algorithms use it to decide what words 
should be considered as occurring together, and it is 
decided by their relative distance, measured in 
words, in the analyzed document. 

Table 1.Example grammatical features generated from 100,000 
documents crawled from Polish automotive portals. An outlier is 
marked with the strikethrough font. By a courtesy of the 
Applica sp. z o.o. company (http://www.applica.ai/). 

Nouns, Plural, Genitive Case Verbs, Plural, 3rd Person 
przedsięwzięć 0.542953 mają 0.641664 
placówek 0.523090 są 0.607566 
modeli 0.521040 uzyskują 0.553228 
pojazdów 0.507653 stosują 0.542330 
określeń 0.506733 uzyskają 0.541744 
programów 0.505354 będą 0.517885 
metod 0.505253 wprowadzają 0.512920 
ekip 0.500873 modyfikują 0.503788 
pakietów 0.498335 kierują 0.502854 
projektów 0.497558 testują 0.501535 
wzorów 0.495480 traktują 0.500137 
akcentów 0.493637 wykorzystują 0.487044 
aut 0.492617 zajmują 0.483918 
hoteli 0.491948 wytwarzają 0.483917 
komentatorów 0.491538 patrzą 0.483068 
grup 0.490884 mogą 0.482310 
funkcji. 0.488429 indywidualni, 0.481537 
kroków 0.483650 oferują 0.481276 
udogodnień. 0.483207 kupowali 0.479684 
zastosowań. 0.482917 tworzą 0.477042 

2. Algorithm 
The doc2feat algorithm is arranged in the following 
steps: 

Semantic Space Creation: The corpus is processed 
by word2vec to generate vectors for vocabulary 
words; they are interpreted as the semantic space S. 

Feature Space Creation: K-means is then run on S 
to generate the feature space F, in the same way it 
is done in word2vec, with the only difference that 
the L1 norm is used. This is advised in (Aggarwal et 
al., 2001), to avoid the curse of dimensionality (i.e. 
the diminishing ability to distinguish between two 
vectors based on their distance, with growing 
dimensionality). The L1 norm is also known as the 
taxicab distance, and is defined as 

 

providing a computationally feasible tool to 
measure distances between vectors in high-
dimensional spaces. As described in the cited 
publication a generalization exists, known as the 
fractal norm Lk, defined as 

 

Multiple fractal norms were tried out by the author, 
but their computational cost makes them 
impractical in real-life applications, while they do 
not add significant value: e.g. features presented in 
the Table 1 were generated with the L1 norm, and 
top 50 words are matching with just one outlier for 
each feature. Similar precision is observed in other 
features, and it is considered by the author to be a 
very stable result. 

doc2feat lists words closest to these features with 
similarities as the output. 

Feature Vectors Creation: Next, every document 
in the corpus is reviewed and linked to a fixed-
length feature vector in F, with cosine similarity 
provided between the document and a particular 
feature. Document vectors are calculated as sums of 
word vectors in S. 

3. Experiments 
Experiments were performed to see if extracted 
features can be connected to observable aspects of 
text corpora, and to look for clues for the tool 
usage. 

Experimental protocol 
doc2feat was run separately on two datasets with 
the window set to 10, and the dimensionality set to 
200. Each annotated phrase was taken as a separate 
document to make use of the available labeled data. 
Documents were then looked up for features. 

3.1. Stanford Sentiment Treebank Dataset 

The dataset is maintained by (Socher et al., 2013) 
as a benchmark for sentiment analysis. It has 11855 
sentences taken from the movie review site Rotten 
Tomatoes. Every sentence in the dataset has a label 
which goes from very negative to very positive in 
the scale from 0.0 to 1.0. In total there are 239,232 
labeled phrases in the dataset. The dataset can be 
downloaded at: http://nlp.Stanford.edu/sentiment/ 

[as of Feb 2017]. 



Results: a feature labeled further as A was found to 
correlate with the sentiment; see Figure 1. If the 
feature is found in a phrase with similarity 0.3 or 
closer, its sentiment falls in the [0.2, 0.8] range with 
a 94.4% probability. Without checking the 
similarity the probability would decrease to 88.9%. 
The example is shown to demonstrate that 
removing stop-words as part of a preprocessing can 
lead to a loss of important data. 

Feature A Sentiment (horizontal) / Similarity 
. 0.922  
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is 0.796 
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this 0.774 
with 0.767 
as 0.761 
so 0.667 
or 0.666 
have 0.661 
at 0.659 

Figure 1. A plot of 239,232 phrases with their proximity to the 
feature A, and sentiment. Two overlapping clouds can be visually 
distinguished: an ellipsoid one around the center that is typical for 
other features as well, and a parabolic-shaped one correlating strongly 
with the sentiment. 

3.2. UCI Dataset 

This dataset was created for (Kotzias et al., 2015). 
It contains 3,000 sentences labelled with positive or 
negative sentiment (tagged ‘1’ or ‘0’ respectively), 
extracted from reviews of products, movies, and 
restaurants. The correlating features are presented 
in Table 2. 

Table 2. Features extracted from the corpus and their correlation 
to the sentiment. (a) Number of documents having the feature 
(similarity > 0.3; the threshold was selected arbitrarily, based on 
author’s experience); (b) Ratio of documents annotated to have the 
positive sentiment. 

Feature A Feature B 
super 0.758627 great! 0.682735 
performance 0.633872 headphones 0.679787 
cool 0.626024 Battery 0.631001 
beautiful. 0.614319 Nice 0.612433 
staff. 0.542778 BEST 0.582279 
friendly. 0.512033 priced 0.484854 
cinematography 0.434619 steak 0.476392 
Service 0.424387 new 0.449579 
staff 0.408308 Good 0.448354 
atmosphere 0.399221 reasonable 0.447734 
gives 0.391106 fine. 0.437000 
fit. 0.388146 simple 0.428868 
ending 0.387151 arrived 0.421529 
Our 0.379828 Best 0.411903 
makes 0.376765 Its 0.403946 
phone, 0.369432 terrible. 0.388678 
An 0.359260 device 0.379474 
Works 0.357251 Food 0.370406 

Feature C Feature D 
someone 0.517472 However, 0.583670 
show 0.510152 minutes. 0.571949 
lines 0.484348 directing 0.484432 
bad. 0.411627 piece 0.373891 
involved 0.336632 finally 0.372256 
wasted 0.332233 worse 0.352793 
said 0.322294 kept 0.325823 
action 0.322079 years. 0.323748 
sucks, 0.310266 movie. 0.313669 

Feature (a) (b) 
A 139 82.7% 
B 107 85.0% 
C 63 14.3% 
D 96 20.8% 

4. Source Code 
The source code can be found here: 
https://github.com/tomekd789/doc2feat [as of 
March 2017]. It also provides a tool to look up a 
corpus to find documents matching a selected 
feature. The word2vec part of doc2feat is taken 
directly from the original source code available at: 
code.google.com/p/word2vec/ [Feb 2017]. Clear 
annotations are made in the source code for parts 
added during the research published in this paper. 

5. Discussion 
In this paper the concept of a feature space is 
proposed, and L1 norm is used for its generation. 
Features spanning the feature space as its canonical 
basis are presented as sets of words, allowing their 
manual annotation and tagging. Documents are then 
mapped to vectors in the generated feature space. 
Experimental results show state of the art stability 
and precision of generated features, and their ability 
to describe important aspects of analyzed corpora. 
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