Exploring the Combination Rules of D Numbers
From a Perspective of Conflict Redistribution

Xinyang Deng and Wen Jiang
School of Electronics and Information
Northwestern Polytechnical University

Xi'an 710072, China
Email: xinyang.deng@nwpu.edu.cn (X. D.)
jlangwen@nwpu.edu.cn (W. J.)

Abstract—Dempster-Shafer theory of evidence is widely ap- strong hypotheses and hard constraints which limit itshiamt
plied to uncertainty modelling and knowledge reasoning bemuse development and application to a large extend. For one hand,
of its advantages in dealing with uncertain information. Bu some the elements in the frame of discernment (FOD) are required t
conditions or requirements, such as exclusiveness hypotie and . . . .
completeness constraint, limit the development and applation be mutually exclusive. Itis cglled the e?(.cllusweness hiypsis. )
of that theory to a large extend. To overcome the shortcoming FOr another, the sum of basic probabilities of a mass functio
and enhance its capability of representing the uncertaintya must be equal to 1, which is called completeness constraint.

novel model, called D numbers, has been proposed recently.|n this paper, we will show how these conditions limit the
However, many key issues, for example how to implement the application of DST.

combination of D numbers, remain unsolved. In the paper, we T th hort . in DST and st th
have explored the combination of D Numbers from a perspectier 0 overcome these shortcomings In and strengthen

of conflict redistribution, and proposed two combination rules its capability of representing uncertain information, avelo

being suitable for different situations for the fusion of two D model called D numbers has been proposed recently [11].
numbers. The proposed combination rules can reduce to the Compared with the classical DST, D numbers abandon FOD's
classical Dempster's rule in Dempster-Shafer theory undera oyc|ysiveness hypothesis and mass function’s completenes

certain conditions. Numerical examples and discussion al the traint. Theref it h t bility of deali
proposed rules are also given in the paper. constraint. Therefore, it has stronger ability of dealimger-

Index Terms—Combination rule, D numbers, Dempster-Shafer tain information. So far, there were already some exployato

theory, Information fusion, Uncertainty modelling research and applications with D numbers [12], [13], [14],
[15], [16], [17], [18], [19], [20], [21]. But some key issues
|. INTRODUCTION still remain unsolved. One of the most important issues is

Since first proposed by Dempster and developed by Shatbigt how to combine effectively multiple D numbers. Ideally
Dempster-Shafer theory of evidence [1], [2], also callea combination rule for D numbers can be degenerated to the
Dempster-Shafer theory (DST) or belief function theorys hdempster’s rule of combination, since the model of D numbers
been paid much attention for a long time and continualig designed as a generalization of DST. From this perspeectiv
attracted growing interests [3], [4]. This theory needs keea the existing studies on the combination rules of D numbers
conditions than the Bayesian theory of probability, so it iare basically not satisfactory [11], [14], [22], [23]. Ineth
often regarded as an extension of the Bayesian theory [paper, we try to study the issue of D numbers’ combination
Many studies have been devoted to further improve and pgerfedles from a perspective of conflict redistribution [24] tha
this theory in many aspects, for instance combination ofiginally from the investigations of evidence combinatio
evidences, conflict management, independence of eviderid8T. A new combination rule for D numbers is proposed in
generation of mass function, similarity measure between ewhich the redistribution of global conflict and partial caetfl
dences, uncertainty measure of evidences, to name but a fleas been simultaneously involved. The details of the pregos
Due to its advantages in handling uncertain informationT DSombination rule will be presented in the following secton
has been extensively used in many fields, such as infornfezd the merits and demerits of the rule are discussed as well.
tion fusion, statistical learning, classification and g, The rest of this paper is organized as follows. Section Il
granular computing, uncertainty and knowledge reasonirgjyes a brief introduction about DST. In Section lll, the rebd
decision making, risk assessment and evaluation, knowledgf D numbers is introduced. Then, novel combination rules
based systems and expert systems, and so forth [6], [7], [B]f D numbers are proposed in Section IV. In Section V some
[9], [10]. discussion is given. Finally, Section VI concludes the pape

As a theory of reasoning under the uncertain environment,
DST has the advantage of directly expressing the “uncer- ] )
tainty” by assigning the probability to the subsets of th&- Basic concepts in DST
set composed of multiple objects, rather than to each of theFor completeness of the explanation, some basic concepts
individual objects. However, it is also constrained by many DST are introduced as follows.

Il. DEMPSTERSHAFER THEORY



For a finite nonempty se® = {Hy,Hs,--- ,Hn}, 2 is
called a frame of discernment (FOD) when satisfying

HiﬂHj:(Z), Vi, j={1,---,N}. (1)
Let 22 be the set of all subsets 6f, namely
22 ={A | ACQ}, (2)

29 is called the power set db.
Given FODY2, a mass function is a mapping from 2¢ to
[0,1], formally defined by

m: 22 510,1] (3)
which satisfies the following condition:
m®) =0 and Y m(A)=1. (4)

Ag2f

In DST, a mass function is also called a basic probabili

assignment (BPA). Given a BPA, the belief measie
2¢ — [0,1] is defined as

Bel(A)= Y m(B).

BCA

®)

The plausibility measur@! : 22 — [0, 1] is defined as

PI(A)=1-Bel(A)= > m(B),
BNA#D

(6)

where A = Q) — A. These measureBel and Pl express the
lower bound and upper bound in which subskthas been
supported, respectively.

B. Combination rules for DST

Evidence combination is a core issue in DST. Amon
existing combination rules for DST, the conjunctive rulé [1

and disjunctive rule [25], [26] are two representative slile
which respectively

(minma)(A) = Y mi(B)ma(C) =mn(4)  (7)
BNC=A

(miums)(A) = Y mi(B)ma(C) =myu(4)  (8)
BUuC=A

and K = mn~ () is called the global conflict between BPAs" '

my andms, andm, (B)mo(C) with BN C = § the partial
conflict caused byB andC.

andmp () = 0 in the close world. As for the redistribution of
partial conflict, a representative rule was proposed by Bubo
and Prade [28] which is defined by

mpp(A) =ma(A)+ > mi(Byma(C)  (10)
BUC=A
BNC=0
with A C Q, A # 0, andmpp((i)) = 0.
IIl. D NUMBERS

In the mathematical framework of DST, there are several
strong hypotheses and constraints on the FOD and BPA.
However, these hypotheses and constraints limit the wbilit
of DST to represent uncertain information.

First, a FOD must be a mutually exclusive and collectively
exhaustive set, the elements of FOD are required to be
mutually exclusive, as shown in Eg. (1). In many situations,
however, it is very difficult to be satisfied. Take assessment

fas an example. In evaluating one object, it often uses lin-

Juistic variables to express the assessment result, such as
“Very Good”, “Good”, “Fair”, “Bad” and “Very Bad”. Due to
given by human, it inevitably exists intersections amoresth
linguistic variables. Therefore, the exclusiveness hiypsis
cannot be guaranteed precisely so that the application af DS

is gquestionable for such situations. There are already some
studies about FOD with non-exclusive hypotheses [29],.[30]

Second, the sum of basic probabilities of a normal BPA must
be equal to 1, as shown in Eq. (4). It is called the completenes
constraint. But in some cases, due to lack of knowledge and
information, it is possible to obtain an incomplete BPA wéos
sum of basic probabilities is less than 1. For example, if an
assessment is based on little partial information, the Iaick
information may result in a complete BPA cannot be obtained.
Furthermore, in an open world [9], the incompleteness of
FOD may also lead to the incompleteness of BPA. Hence the
Qompleteness constraint is hard to completely meet in some
cases and it restricts the application of DST.

To overcome these existing shortcomings in DST and en-
hance its capability in expressing uncertain informatian,
novel model, named as D numbers, has been proposed recently
[11]. D numbers loose FOD’s exclusiveness hypothesis and
BPA's completeness constraint.

Definition 1. Let © be a nonempty set©

The way of managing conflict leads to different combination

rules for DST. Two typical ways are the redistribution of

global conflict and the redistribution of partial conflich the
redistribution of global conflict, if the global conflidt is all
redistributed to the FOD, it leads to Yager's rule [27];Hf

{F\,Fy,--- ,Fy} satisfying F; # F; if i # j, Vi,j =
{1,---,N} , a D number is a mapping formulated by
D:2° = 0,1] (12)
with
> DMB)<1 and D) =0 (12)

BCO

wheref is the empty set and is a subset of.

It is found that the definition of D numbers is similar with

is uniformly redistributed to non-empty focal elementse thihe definition of BPA. But note that, differ from the definitio

widely used Dempster’s rule is derived:

THQ(A)
1-K’

mp(A) = VACQ,A#D 9)

of FOD in DST, the exclusiveness hypothesis is removed,

i.e., the elements i® don’t require mutually exclusive for
D numbers.



Example 1:Assume a local government plans to build a IV. PROPOSED COMBINATION RULES FORD NUMBERS

hyd.ropower. station ne_arby a river. Before to im.pleme.nt this In DST, Dempster’s rule of combination is mostly used to
project, environmental impact assessment (EIA) is cawie ynthesize all knowledge involved in initial BPAs. However

.Wh‘Ch IS 1o identify anq assess the consequences or pdterﬁﬁ/% combination of D numbers is still an unsolved issue
impacts of human activities to the environment. Two grouPalsfnong current research. In this paper, a combination rule is

of experis are employed fo execute the task, 'ndepende;%%posed for D numbers to synthesize uncertain information

Asls ur}}g t]? e]\;zv;allbuatlozéczsult gnexprressedvbly “Pgu,:ﬁt'ft\rl] rom a perspective of conflict redistribution as used in DST.
3 esttg f,th'e ““.nit tr‘:w' €9 oupé'ahue}rﬁs ti efore presenting the combination rule, we will study the-no
amage ot this project to the environmeniti3gn. The other oy oysiveness in D numbers first.

group’s is M edium.

If these results are modeled by using DST, two BPAs ca Non-exclusiveness in D numbers
be obtained thain;(High) = 1, ma(Medium) = 1. The
Dempster’s rule of combination is then used to combine th%
evaluations given by these two groups. However, due:to
andm, are completely conflicting, i.e = 1, the Dempster’s
rule is unable to handle this situation. Actually, in DSTrhis
a hypothesis thatligh and M edium are mutually exclusive,
i.e., High N Medium = (), as shown in Fig. 1.

The non-exclusiveness is the opposite of exclusiveness.
e exclusiveness refers to the characteristic that onecbbj
excludes the others. For example, suppose there are two
propositionsA and B, we say they are mutually exclusive

if AN B = (; Corresponding, ifAN B # () then A and B

are of non-exclusiveness, as shown in Fig. 3. Noted that the
concept of non-exclusiveness is an either-or related thirtg

not the similarity.

Medium High A 8 A B
O ‘x ANB =D
Fig. 1. The linguistic variables offigh and Medium in DST
But in_ the_ rt_'-_\al si_tuation,_it inevitably exist_s interseciso (a) Exclusiveness (b) Non-exclusiveness
among linguistic variables given by human beings. D numbers
abandon the exclusiveness hypothesis that elements must be Fig. 3. Exclusiveness and non-exclusiveness

mutually exclusive, as shown in Fig. 2. In D numbers, these

evaluation results can be indicated by two D numbers thatAS mentioned above, in D numbers the elements in the FOD
Dy(High) =1, Dy(Medium) = 1. The model of D numbers g 5o pot required to be mutually exclusive, which means that
is more reasonable and capable to model the |mpreC|§e 'may be not completely exclusive 6, for F;, F; € ©, and
ambiguous, and vague information. also, at the same timé3; may be not completely exclusive to
B; evenB;NB; = (), for non-empty set®;, B; C ©. In order
to express the non-exclusivenessan in the paper we use
Medium High a fuzzy membership function to measure the exclusive/non-
- exclusive degree.
0 x' Definition 3:Let B; and B; be two non-empty elements in
29, the non-exclusive degree betwe&y and B; is charac-
Fig. 2. The linguistic variables affigh and Medium in D numbers terized by a fuzzy membership functien,; as follows

Besides, the completeness constraint is also released in u-pg: 29 x 29 = [0,1] (14)
D numbers. If Y D(B) =1, the information is said to
BCO with

be complete; if Z D(B) < 1, the information is said to

1, BinB; #0
be incomplete. The degree of information’s completeness is u-p(Bi, Bj) = { D, DE [071]731' NB; =0 (15)
defined as below.
Definition 2:Let D be a D number on a finite nonempty sef"d
O, the degree of information’s completenesdlris quantified u-g(Bi, Bj) = u-g(B;, B;) (16)

by If the exclusive degree betwedsy and B; is denoted as.g,

Q = Z D(B) (13) thenug =1 — u_g.
Bco Based on the above definition, the matrix of non-exclusive
For the sake of simplification, the degree of information’sr exclusive degrees can be obtained once the BA®given.
completeness of a D number is called as@tvalue. An illustrative example is shown as follows.



4 bination of D; and Dy, indicated byD = D;®1 Ds, is defined
a b c by
0, A=0
——( 3 u-n(B.C)D:i(B)D:y(C)+
D(A) = BNC=A
(0] -
> u-p(B,C)Di(B)D2(C) |, A#0
Fig. 4. Non-empty se® = {a, b, c} as the FOD of D numbers 5%26‘
(20)
with

Example 2:Assume there is a non-empty @t= {a,b, c}
wherea, b, c are three fuzzy linguistic variables as shown in  Kp = Z (1 —u-g(B,C)) D1(B)D2(C). (21)
Fig. 4. BNC=0

And suppose in the initial we have_g(a,b) = 0.1,
u-g(b,c) = 0.2, andu_g(a,c) = 0. It must be noted again
that the non-exclusiveness is not the similarity between t
objects. Then, the matrix of non-exclusive degrees reggrdi
O can be constructed based on the following equation:

In Definition 4, the quantity redistributed to the union of
ropositions, namely3 U C, is not the partial conflict but the
on-exclusive degree multiplyinB; (B) D2 (C). The rationale

behind that is to thinkB andC' are not completely conflicting
but useA = B U C to reflect the possible non-exclusiveness

B O . i th finiti
wp(Bi By) = max {up(z,y)}, Bi,B; € 2°. (17) between B and C. In addition, in the above definition,

z€B;,yEB; the global conflict is decreased since the existence of non-
exclusiveness. In essence, the combination rule DCR1 given
For exampleu-g(a, {b, c}) = max{u-g(a,b),u-r(a,c)} = in Definition 4 is similar to the idea behind the Dempster's
0.3. Hence, the matrix of non-exclusive degrees is rule in DST. It is easy to find that DCR1 can be degenerated
to the classical Dempster's rule if_g(B,C) = 0 for any
M-p = BNC =0.
{a} {6} {c} {a0} {a,c} {bc} {a,b,c} . - N
{a} 1 01 0 1 1 01 1 Now let us simply revisit Example 1 based on combination
{0} 0r 1 02 1 02 1 1 rule DCR1 proposed above. Assumeg (High, Medium) =
{({z(,:l];} (1) Of 0%2 Of } } } p, wherep # 0 andp € [0,1]. For these two D numbers
{a,c} 1 02 1 1 1 1 1 Dy(High) = 1 and Dy (Medium) = 1, according to Defini-
{6, c} 61 1 1 1 1 1 1 tion 4, we have the result of combining, and D,:
{a,b,c} 1 1 1 1 1 1 1 8

Kp = (1—u-g(High, Medium)) D1(High)Ds(Medium)

And the matrix of exclusive degrees can be calculated by —1-p

Mp=1-M.p. W) p({High, Medium})

~g(High, Medium)D1(High)Dy(Medium) .
1.

proach to derive all non-exclusive degrees according to tha — T-(1-») —
of between single elements in FOB.

_ 1
Within the above example, Eg. (17) shows a simple ap- 1*15,13“

Noted that, on the one hand the result is the same to any
p > 0; On the other hand, ip = 0, we still cannot combine
B. Combination rule for D numbers: Case 1 the two D numbers using the DCR1 because the denominator

. . - of —-— becomes 0.
In this subsection, we initially assume that all D num- !—Xp

bers have complete information, therefore only the nor(n;— Combination rule for D numbers: Case 2
exclusiveness is considered in the proposed combinatien ru” '
for D numbers. Recalling the combination rules in DST, the In this subsection, the incompleteness of D numbers are
key issue is how to deal with the conflict. In Dempster’s rulsimultaneously taken into consideration in constructihg t
the global conflict is uniformly redistributed to non-emptyp numbers combination rule. The designed combination rule,
propositions (see Eq. (9)), while in Dubois and Prade’s rutienoted as DCR2, is given as below.
each partial conflict is redistributed to the union of asatad Definition 5 (DCR2):Let D; and Dy be two D numbers
propositions (see Eq. (10)). In this paper, we propose a combver O, the combination ofD; and D,, indicated byD =
nation rule for D numbers by simultaneously considering th®; ©, D-, is defined by
redistribution of global and partial conflict as follows.

Definition 4 (DCR1):Let D, and Dy be two D numbers 0, A=0

over® with > D;(B) =1and Y. D(B) = 1, the com- D(4) = f(Q1,Q2)%7 A#0 (22)
BCO BCO BCO



with Overall, the main advantage of the proposed combination

Di(A)= 3 u.g(B,C)D\(B)D:s(C)+ rule D_CRZ is that it. has simultgneously considereq the non-
BNC=A exclusiveness and information-incompleteness which lage t
> u-p(B,0)Di(B)Do(C), YA€© (23) two major characteristics of D numbers, by integrating the

Bo= idea of global conflict redistribution and partial conflie-r
and distribution from DST. Essentially, DCR2 can be seen as a

generalization of Dempster’s rule for the model of D numbers
Q1= Z Di(B), Q2= Z Dy(B) (24)  since it can totally reduce to the classical Dempster’s rule
BLO BeO under a certain conditions. The work provides a practical
where f(Q1,Q-) is a function satisfying) < f(Q1,Q2) < combination rule for D numbers. Based on this rule, the theor
max{Q1,Q2}, f(Q1,Q2) =1if Q1 =1andQ, = 1. of D numbers can be really used in many related applications.
In respect to the combination rule DCR2, at first, it is Meanwhile, we have to admit that there are some drawbacks
derived based on the perspective of conflict redistributiowithin the proposed rule. The major problem is that it doets no
Second, it contains the normalization step that is used fiteet the associativity. For this problem, if there are mbeat
Dempster’s rule. Third, at the same time it also considezs thtvo D numbers, we have to either combine them together at
factor of incomplete information by normalizing the suptsor the same time, or generate the average of all D numbers and
of all propositions to the quantity (Q,,Q2) which reflects repeatedly combine the average like References [31], [32].
the information volume after the combination. Fourth, DCRgourse, the proposed combination rule is suitable to fusé®th
can be totally reduced to DCR1 @; = 1 and@Q, = 1, and numbers having orders. Besides, in DCR2, the matrix of non-
DCR1 can be re-written in the form of DCR2, therefore DCRgxclusive degreed/_r and functionf must be determined
can also be degenerated to the classical Dempster’s rule. in advance before the combination. The problems mentioned
In the next, a simple example is given to show the combabove must be further addressed in the future research.
nation process of D numbers according to DCR2.

VI. NCLUSION
Example 3:Assume there are two D numbers over= CONCLUSIONS

{a,b,c}: In this paper, the combination of D numbers have been
Di({a}) = 0.7, D:({b,c}) = 0.1, D1({a,b,c}) = 0.1; studied. Inspired by related research in DST, two novel com-
Ds({a}) = 0.5, Dy({c}) = 0.3. bination rules, DCR1 and DCR2, have been proposed for the

Suppose the non-exclusive degrees between pairs of prop@mbination of two D numbers based on the perspective of
sitions are shown in Eq. (18), and I&tQ1, Q2) = Q1 x Q. conflict redistribution. DCR1 is suitable for the situatiaith

The combination result of?; and D, can be obtained asNon-exclusiveness and information-completeness, and 2DCR

follows. can be used in the case of non-exclusiveness and information
At first, we can have Table I, and” D,(B) = 0.465. incompleteness. DCR2 has generalized DCR1. Both of these
BCO rules can degenerate to the classical Dempster’s rule in DST
In this sense, the model of D numbers with the proposed
TABLE | combination rules is compatible with the framework of DST.
INTERSECTION TABLE IN COMBININGD1 AND D2 At last, the features of these rules have been discussed. In
D55 D5 5yl =05 Dl =03 the futu_re researc_h, the combination _of multiple D nl_meers
Di({a)) = 0.7 Di({a}) =035  Di(la,c]) =0 (> 3) will be studied, and the properties and applications of
Dyi({b,c}) =0.1 Di({a,b,c}) =0.005 Dy({c}) = 0.03 combination rules for D numbers will be further investighte
Di({a,b,c}) =0.1 D¢({a}) =0.05 D({c}) =0.03 as well.
Then, since@; = 0.9 and Q2 = 0.8, f(Q1,Q2) = 0.72. ACKNOWLEDGEMENTS
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