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ABSTRACT 
 
The present paper shows that a principle known as emergence lies beneath the strong 
Goldbach conjecture. Whereas the traditional approaches focus on the control over the 
distribution of the primes by means of circle method and sieve theory, we give a proof of the 
conjecture that involves the constructive properties of the prime numbers, reflecting their 
multiplicative character within the natural numbers. With an equivalent but more convenient 
form of the conjecture in mind, we create a structure on the natural numbers which is based 
on the prime factorization. Then, we realize that the characteristics of this structure 
immediately imply the conjecture and, in addition, an even strengthened form of it. 
Moreover, we can achieve further results by generalizing the structuring. Thus, it turns out 
that the statement of the strong Goldbach conjecture is the special case of a general 
principle. 
 
 
 
 

1. INTRODUCTION 
 
In the course of the various attempts to solve the strong and the weak Goldbach conjecture 
– both formulated by Goldbach and Euler in their correspondence in 1742 – a substantially 
wrong-headed route was taken, mainly due to the fact that two underlying aspects of the 
strong (or binary) conjecture were overlooked. First, that focusing exclusively on the 
additive character of the statement does not take into account its real content, and second, 
that a principle known as emergence lies beneath the statement, a principle any existing 
proof of the conjecture must consider. 
 
Let us discuss some of the most important milestones in the different approaches to the 
problem. 
 
When a proof could not be achieved even for the sum of three primes (the weak conjecture 
for odd numbers) without additional assumptions, in the twenties of the previous century 
mathematicians began to search for the maximum number of primes necessary to 
represent any natural number greater than 1 as their sum. At the beginning, there were 
proofs that required hundreds of thousands (!) of primes (L. Schnirelmann [2]). In 1937 the 
weak conjecture was proven (I. Vinogradov [4]), but only above a constant large enough    
to make available sufficient primes as summands. 
____________________ 
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Almost an entire century passed before the representation for all integers > 1 could be 
reduced to the maximum of five or six summands of primes, respectively (T. Tao [3]).         
In 2013 the huge gap of numbers for the weak Goldbach version was closed, using 
numerical verification combined with a complex estimative proof (H. Helfgott [1]). 
 
The so-called Hardy-Littlewood circle method in combination with sophisticated techniques 
of sieve theory was employed and constantly improved upon in those approaches. 
However, these methods do not reflect the primes’ actual role in the problem as originally 
formulated by Goldbach and Euler, by continuously examining ‘how many’ prime numbers 
are available as summands. As this does not work for the binary Goldbach conjecture, 
concern for that original problem has gradually been sidelined up to the present day, even 
though a solution would definitively resolve the issue of integers represented as the sum of 
primes. 
 
We will show that the solution lies in the constructive characteristics of the prime numbers 
and not in their distribution. 
 
 
 
 

2. THE STRONG GOLDBACH CONJECTURE 
 
Theorem 2.1 (Strong Goldbach conjecture (SGB)). Every even integer greater than 2 can 
be expressed as the sum of two primes. 
 
Moreover, we claim 
 
Theorem 2.2 (SSGB). Every even integer greater than 6 can be expressed as the sum of 
two different primes. 
 
 
Proof. In order to prove SGB and SSGB, we proceed by contradiction. The basic idea of 
the proof is as follows: SGB is equivalent to saying that every composite number is the 
arithmetic mean of two odd primes. Correspondingly, SSGB means that every integer 
greater than or equal to 4 is the arithmetic mean of two different odd primes. We achieve 
this result by using the constructive properties of the prime numbers within the natural 
numbers. Specifically, we provide a structured representation of the natural numbers 
starting from 3 and we show that this representation leads to an arithmetic sum formula 
which becomes contradicted when we assume that the above equivalent reformulation of 
SGB is not true. In addition, this results in SSGB. 
 
 
Notations. Let  denote the natural numbers starting from 1, let n denote the natural 
numbers starting from n > 1 and let 3 denote the prime numbers starting from 3. As usual, 

 is used to denote the set of all integers. Furthermore, we denote the projections from    
 x  x  onto the i-th factor by πi, 1 ≤ i ≤ 3. 

 
 
 
 

http://en.wikipedia.org/wiki/Even_and_odd_numbers
http://en.wikipedia.org/wiki/Integer
http://en.wikipedia.org/wiki/Prime_number
http://en.wikipedia.org/wiki/Even_and_odd_numbers
http://en.wikipedia.org/wiki/Integer
http://en.wikipedia.org/wiki/Prime_number
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At first, we replace SGB and SSGB with the following equivalent representations: 
 
Every integer greater than 1 is prime or is the arithmetic mean of two different primes, p1 
and p2. 
 
and 
 
Every integer greater than 3 is the arithmetic mean of two different primes, p1 and p2. 
 
 
 
SGB    n  , n > 1 : ( n prime     p1, p2  3   d                                           (2.1) 
                with  p1 + d = n = p2 – d ) 
 
SSGB  n  , n > 3 : (  p1, p2  3   d                                                             (2.2) 
                with  p1 + d = n = p2 – d ) 
 
 
 
Now, we define 
 

Sg := { (pk, mk, qk) | k, m  ; p, q  3, p < q; m = (p + q) ∕ 2 } 
 
and call Sg the g-structure on 3. 
 
According to (2.1), SGB is equivalent to saying that all composite numbers n  4 occur as 
arithmetic mean m in a triple of Sg. This is equivalent to saying that for any fixed k all 
multiples nk, n ≥ 3, are given by the triple components pk, mk, qk. Correspondingly, SSGB 
is equivalent to saying that all integers n  4 occur as arithmetic mean m in a triple of Sg. 
 
We note that the whole range of 3 is represented by the triple components of Sg. This is a 
simple consequence of prime factorization and is easily verified through the following three 
cases: 
 
The primes p in 3 are represented by components pk with k = 1; the composite numbers  
in 3, different from the powers of 2, are represented by pk with p  3 and k  ; the 
powers of 2 in 3 are represented by mk with m = 4 and k = 1, 2, 4, 8, 16, … . 
 
We call this representation by the components of Sg a ‘covering‘ or also a ‘structuring‘ of 3 
(for a generalization see section 4). The following examples for the number 42 illustrate the 
redundant character of the covering: 
 
(42, 54, 66) = (7∙6, 9∙6, 11∙6) 
 
(18, 42, 66) = (3∙6, 7∙6, 11∙6) 
 
(30, 36, 42) = (5∙6, 6∙6, 7∙6) 
 
(42, 70, 98) = (3∙14, 5∙14, 7∙14) 
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(33, 42, 51) = (11∙3, 14∙3, 17∙3) 
 
(38, 42, 46) = (19∙2, 21∙2, 23∙2) 
 
(41, 42, 43) = (41∙1, 42∙1, 43∙1) 
 
(5, 42, 79)   = (5∙1, 42∙1, 79∙1) 
 
 
 
Additionally to the covering of 3, we will use the following two other properties of Sg in the 
proof. 
 
Equidistance: The successive components in the triples of Sg are always equidistant. So, 
we call these triples as well as the structure Sg equidistant. We note that the numbers m in 
the triples are uniquely determined by the pairs (p, q) as the arithmetic mean of p and q. 
 
Maximality: Actually, for a complete covering of 3 it would be sufficient if we chose       
(3k, 4k, 5k) together with triples (pk, mk, qk) in which all other odd primes occur as p, q     
or m. However, for our purpose we use the structure Sg that is based on all pairs (p, q) of 
odd primes with p < q. We call this the maximality of the structure Sg. 
 
The structure Sg can be written as a matrix where each row is formed by the triple 
components pi∙k, mij∙k, qj∙k with pi < qj running through 3 and mij = (pi + qj) ∕ 2 for a fixed     
k ≥ 1. So, we have an infinite matrix indexed by pairs of the form ((i, j), k). It starts as 
follows: 
 
(3∙1, 4∙1, 5∙1), (3∙1, 5∙1, 7∙1) … (5∙1, 6∙1, 7∙1), (5∙1, 8∙1, 11∙1) ... 
(3∙2, 4∙2, 5∙2), (3∙2, 5∙2, 7∙2) … (5∙2, 6∙2, 7∙2), (5∙2, 8∙2, 11∙2) ... 
… 
… 
… 
 
Written down the complete matrix, what we see is the whole 3 in redundant form, i.e.       
a structured 3. 
 
 
Now, we will check if for any fixed k ≥ 1 there exists an additional nk, n ≥ 3, that does not 
appear in the k-th row of the matrix. As we have seen, SGB is proved if we can show that 
such an nk does not exist. 
 
Due to the covering of 3 through the Sg matrix, it is not possible that this nk lies in a 
subset of 3 which is not covered by the matrix. 
 
Note: Based on the covering, for a composite n > 5 a representation of nk as nk = n'k',       
k' ≠ k, in the matrix (with n'  3 when nk not a power of 2 and with n' = 4 when nk a power 
of 2) is always possible. So, when we say that nk does not appear in the k-th row of the 
matrix then it refers to the fixed factor k in the decomposition nk of this number. 
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Due to the maximality of Sg, it is also not possible that this nk equals some mk in a triple 
(pk, mk, qk) that is based on a pair of primes (p, q) not used in Sg. 
 
Since all triples in Sg are equidistant, this implies: For every n, if nk does not appear in the 
k-th row of the matrix, then for every pair of primes p, q with p < q we have n < m  or  n > m, 
where m is the arithmetic mean of p and q. 
 
So, as the pairs (p, q) are the exclusive parameters in the triples for each k, the 
construction of Sg would lead to the above consequence if we added that decomposition nk 
with fixed factor k to the k-th row of the matrix. As we shall now see, this implies that such 
an additional nk can not exist. In other words: As the matrix represents 3, the structure Sg 
leaves no space in 3 for such an nk. 
 
 
We can express our reasoning arithmetically by using the following sum. 
 

sumg :=  ∑  k  (  ∑  (q−m) − (m−p)  )  =  ∑         ∑  (pk + qk − 2mk) 
                                     k       p,q  3                                   k       p,q  3 
                                            p < q                                             p < q 
                                                m=(p+q) ∕ 2                                            m=(p+q) ∕ 2 

 
 
That is, over all rows and over all pairs (p, q) of the matrix we sum up the difference of the 
distances between the successive triple components. Due to the equidistance of all triples 
(p, m, q), trivially we have sumg = 0. 
 
As the term in the inner sum of sumg has a constant value of zero for each pair (p, q), p < q, 
and so sumg is absolutely convergent, we are allowed to rearrange it. Any rearrangement of 
sumg is exclusively based on the summands pk, qk, 2mk. Therefore, it does not depend on 
whether there exists a number x  5 with x ≠ m for all m, because such an x would 
already be contained in the sum as pk when it is not a power of 2, or as (p+q)k when it is a 
power of 2. That is, without changing the sum value zero, sumg can be rearranged as if 
such an x ≥ 5 with x ≠ m for all m does not exist. 
 
Since we build the sum over all pairs of odd primes, this implies: For every y  5, in sumg 
represented by y = pk or by y = qk when it is not a power of 2 and represented by y = 
(p+q)k when it is a power of 2, and for all decompositions y = y'k' with y' ≥ 4 and k' ≥ 1, 
there are arithmetic means m of two odd primes such that y' = m. 
 
 
Let us assume now that for any fixed k ≥ 1 there exists an nk, n ≥ 3, that does not appear in 
the k-th row of the Sg matrix. We have seen that this leads to an n  3 that is additional to 
all p, q, m and that must be located either between p and m or between m and q for every 
pair of primes p, q with p < q. The case n = 4 is covered by m = (3+5) ∕ 2 so that we 
consider n > 5. 
 
As we have seen above, on the one hand sumg is clearly zero, but on the other hand, using 
the assumption, we can now recalculate sumg in a different way. 
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The assumed n is represented by some pk or by some (p+q)k in sumg, but since n is 
different from all p, q, m, with respect to the equalities described above, for n the 
corresponding negative part mk' with k' = 1 is missing in the sum. So, assuming such an n 
we can split up sumg in the following manner. 
 

sumg  =  ∑  kn    +    ∑         ∑  (pk + qk − 2mk) 
             k                 k       p,q  3 
                                              p < q 
                                          m=(p+q) ∕ 2 
 
 
Therefore, under the assumption about n, we obtain 
 

sumg  =  ∑  kn  =  +∞ 
                k   
 
This is a contradiction to the initial calculation sumg = 0. In case of more than one n with the 
assumed condition, the same contradiction applies because for each n the corresponding 
changes on sumg would be additive. 
 
 
So, we realize that the three properties, covering, equidistance and maximality, that we 
identified in our structure Sg, lead to the following consequence: 
 
The multiples in the triple form (pk, mk, qk) already represent all multiples nk, n ≥ 3, of a 
fixed k ≥ 1. More specifically, the triples are divided into two types: First, all triples (pk, mk, 
qk) where m is composite, and second, all remaining triples (pk, mk, qk) where m is prime. 
The first type yields SGB and the second type, together with the first, implies SSGB. 

                                                                                                                                               □ 

 
 
 
Note. The structure Sg reveals that a principle known as emergence lies beneath the 
Goldbach statement: For a given nk, n ≥ 4, k ≥ 1, the existence of two odd primes p, q such 
that nk is the arithmetic mean of pk and qk becomes visible only when we consider all odd 
primes and all k simultaneously. The triple form (pk, mk, qk) for all multiples nk, n ≥ 3, of a 
fixed k ≥ 1 is an effect that emerges from the interaction of all such triples when k runs 
through . See also the Remark 5.3. 
 
 
 
 

3. EXAMPLES FOR SGB AND SSGB 
 
In the previous chapter we have seen that the multiples of the numbers k in 3 are strictly 
set by our structure Sg. Let us call these multiples the occurrences of k within the structure. 
In the proof it was essential to understand that the representation of a nk, where n > 5 is 
composite, as nk = n'k', n'  3 or n' = 4, k' ≠ k, constitutes two distinct occurrences, i.e. one 
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of the number k and another of the number k'. The occurrences of both, k and k', are ruled 
by the triples separately. 
 
 
3.1.  n = 14 and k = 3: 
Let us assume that n is not the arithmetic mean of two primes. For nk = 42, we find for 
example (pk', mk', qk') = (3∙6, 5∙6, 7∙6), which is part of the occurrence of 6 in the structure. 
But there is no triple (p∙3, m∙3, q∙3) that contains n∙3. Thus, n∙3 violates the occurrence of 3 
in the structure. 
 
This contradiction can be resolved only if n = m, that is, n must be the arithmetic mean of, 
for example, 11 and 17. 
 
 
3.2.  n = 9 and k = 3: 
Let us assume that n is not the arithmetic mean of two primes. For nk = 27, we only 
find (pk', mk', qk') = (3∙9, m∙9, q∙9), which is part of the occurrence of 9 in the structure. But 
there is no triple (p∙3, m∙3, q∙3) that contains n∙3. Thus, n∙3 violates the occurrence of 3 in 
the structure. 
 
This contradiction can be resolved only if n = m, that is, n must be the arithmetic mean of, 
for example, 7 and 11. 
 
 
3.3.  n = 19 and k = 3: 
Let us assume that n is not the arithmetic mean of two primes. For nk = 57, we find for 
example (p'k, m'k, q'k) = (17∙3, 18∙3, 19∙3), which is part of the occurrence of 3 in the 
structure. But there is no triple (p∙3, m∙3, q∙3) with p < 19 < q that contains n∙3. Thus, n∙3 
violates the occurrence of 3 in the structure. 
 
This contradiction can be resolved only if n = m, that is, n must be the arithmetic mean of 7 
and 31. 
 
 
 
 

4. GENERALIZATION AND FURTHER RESULTS 
 
First, we will embed the structure used in the proof of SSGB in a general concept. We give 
the following definitions: 
 
Definition 4.1. Let T be a non-empty subset of 3 x 3 x 3. A triple structure, or simply, 
structure S in 3 is a set defined by S := { (t1∙k, t2∙k, t3∙k) | (t1, t2, t3)  T; k   }. 
 
Definition 4.2. Let S be a structure in 3, given by the triples (s1, s2, s3). Then, a set          
N  3 is covered by the structure S if every n  N can be represented by at least one si,  
1 ≤ i ≤ 3; that is, n  N   si, 1 ≤ i ≤ 3, such that n = si. We say that the structure S provides 
a covering of N. 
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Based on these definitions, we can make the following elementary statement: 
 
Lemma 4.3.  Let S be a structure based on the set T. Then, 3 is covered by S if and only 

if   3  { 4 }      πi(T). 
                       1 ≤ i ≤ 3 

 
 
Proof.  Let the union of the sets πi(T), 1 ≤ i ≤ 3, contain all odd primes and the number 4. 
 
Then, every prime number in 3 is represented by a component ti∙k with ti  3  and k = 1. 
 
Furthermore, every composite number n, different from the powers of 2, has a prime 
decomposition n = pk with p  3 and k  , and as such, is represented by a triple 
component ti∙k of S. 
 
The powers of 2 are represented by ti∙k with ti = 4 and k = 1, 2, 4, 8, 16, … . 
 
So, the whole range of 3 is covered by S. On the other hand, if any odd prime or the 
number 4 is missing in the union of the sets πi(T), 1 ≤ i ≤ 3, at least one of the 
representations described above is no longer possible. 

                                                                                               □ 

 
 
 
For the structure Sg, used in chapter 2, that covers 3 we have π1(Tg) = 3 and 4  π2(Tg). 
Based on the above definitions, we can generalize Sg in the following manner: 
 
Let P be a subset of the set of all odd numbers in 3 with at least two elements. For a 
subset TP  P x 3 x P, where p < m < q  for all (p, m, q)  TP, we then define the structure 
SP := { (pk, mk, qk) | k  ; (p, m, q)  TP }. We call the structure SP maximal if all pairs    
(p, q)  P x P with p < q are used in TP. Furthermore, we call the structure SP distance-
preserving if for all (p, m, q)  TP : (q – m) – (m – p) = c with a constant c. Specifically, we 
call SP equidistant if c = 0. We note that in a distance-preserving SP the component mk is 
uniquely determined by pk, qk. In the case of an equidistant SP, we obtain the arithmetic 
mean for m. 
 
In order to get a covering of 3  { powers of 2 } through the components pk, qk of SP,        
P must contain all odd primes. In this case, due to the construction of SP, a maximal and 
distance-preserving SP covers 3 and is equidistant because the triples (3k, 4k, 5k) are 
contained. We then obtain the structure Sg by setting P = 3 and we realize that 3 is the 
smallest subset of odd numbers in 3 that enables such a complete covering of 3 through 
the triples (pk, mk, qk) with p, q  3. 
 
 
Now, for a generalization in terms of the numbers m we consider functions f : 3 x 3  .           
To achieve useful results, we define the following restrictions on f: 
 
First, we restrict f with the condition (f1): For all pairs (p, q)  3 x 3 with p < q the triples 
(p, q, f(p,q)) have the same numerical ordering and the difference between the two 
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distances of successive components remains constant. I.e., the resulting triples (t1, t2, t3) 
satisfy: t1 < t2 < t3 and (t3 – t2) – (t2 – t1) = c with a constant c. 
 
Additionally, we set the condition (f2):  (p, q)  3 x 3, p < q, with f(p,q) = 4. So, the 
powers of 2 are contained when we consider the triples (pk, qk, f(p,q)k) for all k ≥ 1. 
Therefore, according to Lemma 4.3, the whole range of 3 is covered by the components 
of these triples. 
 
For the function f with the conditions (f1), (f2) we then define a f-specific, distance-
preserving, structure which covers 3 by 
 

Sf := { (pk, qk, f(p,q)k) | k  ; p, q  3, p < q; f(p,q)  3 } 
 
and call it the f-structure. Also here we use the maximality considering all pairs (p, q) of odd 
primes with p < q. And again the pairs (p, q) are the exclusive parameters in the triples   
(pk, qk, f(p,q)k) for each k. Moreover, for each fixed k the triples (pk, qk, f(p,q)k) distribute 
their components uniformly in accordance with (f1). 
 
From this we obtain the following: 
 
Any function f as above generates exactly one of three possible classes of numbers: only 
even numbers or only odd numbers or both. We call this the f-class. In case of odd 
numbers, f cannot satisfy (f2) so that the f-structure would not yield a complete covering of 

3. So, f is restricted to be a function which generates either only even numbers or both 
even and odd numbers. Furthermore, we notice that a f-structure provides a distribution 
exclusively for f(p,q)k by means of the triples (pk, qk, f(p,q)k) for each k. If, for example,       
f produces only even numbers, only such even multiples of k are being distributed through 
the structure Sf. In this case, we would have no information regarding the odd multiples 
which are not prime. 
 
A few observations on the special case when f is the arithmetic mean: 
 
In the proof of SSGB we used the function f = g that determines the arithmetic mean           
g(p,q) = (p + q) ∕ 2 = m.  g generates even and odd numbers and satisfies the conditions    
(f1) and (f2) for building the g-structure on 3. In this case, c = 0 so that distance-
preserving means equidistance. The pairs (pk, qk) are expanded into triples (pk, mk, qk) 
including the powers of 2 through (3k, 4k, 5k). As is easily verified, the arithmetic mean is 
the only function fulfilling (f1) and (f2) that has its values in the middle component of the 
ordered triples and that generates even and odd numbers. 
 
 
For the definition of Sf we replaced the arithmetic mean m used in the structure Sg by 
numbers f(p,q)  3 determined by a function f with the conditions (f1), (f2). Now, we apply 
the proof of SSGB to the triples (pk, qk, f(p,q)k) generalizing the argument of equidistance 
by the condition (f1), where the parameter n used for the multiples nk in that proof is now of 
the f-class. Then, based on the f-structure Sf, we obtain the following property as a 
generalization of SSGB: 
 

(F)  For each fixed k ≥ 1 the triples (pk, qk, f(p,q)k) form a distribution of all nk, 
                 n ≥ 4, n of the f-class, with respect to pk, qk  that is determined by (f1). 
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Let us now consider other functions f which satisfy the conditions (f1) and (f2) and build a   
f-structure on 3, with the outcome that f(p,q) represents all even integers greater than 2. 
Due to (f2), in this case f(p,q) is always the first component in the ordered triples. 
 
For example, we can state 
 
Corollary 4.4. All even positive integers are of the form 2p – q + 1 with odd primes p < q. 
 
Proof.  For the number 2 we have: 2 = 2∙3 – 5 + 1. For all even numbers in 3 we apply our  
concept of the f-structure. 
 
As is easily verified, f(p,q) = 2p – q + 1 satisfies the conditions (f1) and (f2) for building a     
f-structure on 3. We consider only those f(p,q) which lie in 3 and we note that by the 
Bertrand-Chebyshev theorem: p  3, p > 3,  q  3, q > p, such that  f(p,q)  3. 
 
We now assume that there is an even integer n > 2 which is not of the form n = 2p – q + 1 
with two odd primes p, q. We then consider the multiple nk for any k ≥ 1 and note that nk 
belongs to none of the triples ((2p – q + 1)k, pk, qk). This causes a contradiction to (F) and 
proves the corollary. 

                                                                                               □ 

 
 
 
Note. If we interchange the primes p, q and consider f ' (p,q) = 2q – p + 1, then f ' also 
satisfies the condition (f1) for building a f-structure. But for a complete covering of 3 the 
number 4 is missing, and we can easily verify that there are other even numbers in 3 
which cannot be represented by f '(p,q). 
 
Another interesting example is f(p,q) = 2p – q – 3 versus f ' (p,q) = 2q – p – 3. f satisfies all 
conditions, including the covering, and therefore represents all even numbers, whereas f ' 
satisfies the covering because of f ' (3,5) = 4, but it violates numerical ordering and 
distance-preserving. There are even numbers in 3 which cannot be represented by           
f ' (p,q). 
 
 
 
 

5. REMARKS 
 
5.1. Due to the unpredictable way that the primes are distributed, all studies on the 
representation of natural numbers as the sum of primes are problematic when they use 
approaches based on the distribution of the primes. 
 
Despite tremendous efforts over the centuries, the best result so far was five summands. I 
was always convinced that the solution must lie in the constructive characteristics of the 
prime numbers and not in their distribution. 
 
 
5.2. The statement in the binary Goldbach conjecture actually is nothing more than the 
symmetric structure (pk, mk, qk) used in the proof. As we have shown, it is in fact a specific 
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case of a general distribution principle within the natural numbers. Furthermore, we note 
that the multiplicative property of the prime numbers ensures the complete covering of 3 
through the structure. 
 
In order to discard the usual interpretation of the conjecture that focuses on the sums of 
primes and thus opposes their multiplicative character, we have tackled the problem 
differently after shifting to the triple form: Instead of searching for primes which determine 
the needed arithmetic mean equal to a given n, we have approached the issue from the 
opposite direction. Based on the multiplicative prime decomposition, we identify nk as the 
component of a structure, in this case determined by the arithmetic mean. 
 
A key point in the proof is the dual role of the numbers k: As multiplier they generate 
composite numbers while their own multiples in 3 are strictly set by the used structure. 
 
 
5.3. In other subject areas, the effect of the formation of new properties after the transition 
from single items to a whole system is called emergence (‘The whole is more than the sum 
of its parts.’). The structure Sg reveals that such principle lies beneath the Goldbach 
statement: For a given nk, n ≥ 4, k ≥ 1, the existence of two odd primes p, q such that nk is 
the arithmetic mean of pk and qk becomes visible only when we consider all odd primes 
and all k simultaneously. There is a remarkable aspect of this emergence: The two primes 
which form the so-called Goldbach partition of a given even number 2n are located before 
2n, however, the reason for the existence of that partition also involves the primes beyond 
2n. 
 
It can be expected that also other questions in number theory own a solution based on this 
underlying principle. 
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