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Abstract 

 

This paper presents a complete proof of the Cullen Primes are infinite, even 

though only 16 of them have been found as of 21 Feb 2017. We use a proof 

found in Reference 1, that if p > 1 and d > 0 are integers, that p and p+ d are 

both primes if and only if for integer m: 

 

m = (p-1)!(  + ) +  +  

 

We use this proof for d =  to prove the infinitude of Cullen prime numbers. 

The author would like to give many thanks to the authors of 1001 Problems in 

Classical Number Theory, Jean-Marie De Koninck and Armel Mercier, 2004, 

Exercise Number 161 (see Reference 1). The proof provided in Exercise 6 is the 

key to making this paper on the Cullen Prime Conjecture possible. 

 
 
 

Introduction 

 
 

James Cullen, (19 April 1867 – 7 December 1933) was born at Drogheda, 

County Louth, Ireland.  At first he was educated privately, then he studied pure 

and applied mathematics at the Trinity College, Dublin for a while, he went to 
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Mungret College, Limerick, before deciding to become a Jesuit, studying in 

England in Mansera House, and St. Mary's, and was ordained as a priest on 31 

July 1901.  In 1905, he taught mathematics at Mount St. Mary's College in 

Derbyshire and published his finding of what is now known as Cullen numbers in 

number theory. 

 

In number theory of prime numbers, a Cullen number is a natural number of the 

form  

Cn =  n2n + 1  

 

Cullen numbers were first studied by James Cullen in 1905. The only 16 

known Cullen primes are those for n equal: 

 

1, 141, 4713, 5795, 6611, 18496, 32292, 32469, 59656, 90825, 262419, 361275, 

481899, 1354828, 6328548, 6679881 

 

Still, it is conjectured that there are infinitely many Cullen primes. As of February 

2016, the largest known Cullen prime is 6679881 × 26679881 + 1. It is 

a megaprime with 2,010,852 digits and was discovered by a 

PrimeGrid participant from Japan. 

 

Proof 

 

To prove there are an infinite number of Cullen Primes, the author will need to 

use another famous number theory conjecture, the Goldbach Conjecture, which 

has been unsolved for hundreds of years, until recently proved by the author (see 

reference 2).  

 

The Goldbach Conjecture states that for every even integer N, and N > 2, then N 

= P1 + P2, where P1, and P2, are prime numbers. 
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Again, Cullen numbers are of the form Cn =  n2n + 1, using the Goldbach 

Conjecture n2n is always even since any n multiplied by 2 is even and 2 raised to 

any power is also even.  Therefore, we can rewrite n2n as follows: 

 

n2n = P1 + P2, for any n and where P1 and P2 are both prime. 

 

Then we can rewrite Cn =  n2n + 1 as follows: 

 

Cn =  P1 + P2  + 1  

 

Now we will rewrite Cn as the sum of prime number and any other integer d > 0 

 

Cn =  P1 + P2  + 1 = P1 + (P2  + 1) = P1 + d, where d = P2  + 1 

 

Now that we have rewritten the Cullen number equation, we shall proceed to 

prove that there are an infinite number of Cullen primes.  First we shall assume 

that the set of 16 Cullen Primes are finite and then we shall prove that this is 

false, which will prove that are Cullen primes are infinite.  Even though we have 

assumed that the set of 16 Cullen primes is finite since there are an infinite 

number of prime numbers we can pick a prime number p which is outside the 

finite Cullen Primes.  Therefore a prime p + d, where d = P2  + 1 cannot exist 

that is outside our finite set of Cullen primes otherwise we would have discovered 

a Cullen prime which is outside our assumed set of finite Cullen primes.  Thus all 

we need to do is to prove that there exists a Cullen prime outside our assumed 

finite set is to prove that p + d is prime. 

 

Now we shall proceed to prove at least one p + d is prime as follows:  

We use the proof, provided in Reference 1, that if p > 1 and d > 0 are integers, 

that p and p + d, where for our case, d = P2  + 1, are both primes if and only if for 

positive integer m: 
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m = (p-1)!(  + ) +  +  

 

Please note that ^ indicates an exponent,  is equivalent to   

raised to the  power 

 

For our case p (also known as P1, but p will be used for the remainder of this 

proof) is known to be prime and d = P2  + 1 for Cullen primes, therefore: 

 

 

m = (p-1)!(  + ) +  +  

 

Multiplying by p, and since P2  + 1 is always even since P2 is always odd since 

it is prime, then  = 1 

mp = (p)!(  + ) + 1 +  

 

Multiplying by (p + ), 

(p + )mp = (p + )(p)!(  + ) + p +   + p 

Reducing again, 

(p + )mp = (p)!(  + ( ) ) + 2p +  

 

Factoring out, (p)!, 

(p + )mp = p(p-1)!(  + ) + 2p +  

 

And reducing one final time, 
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(p + )mp = (p-1)!(  + ) + 2p +  

 

We already know p is prime, therefore, p = integer. Since p is an integer and by 

definition  is an integer, the right hand side of the above equation is an 

integer (likewise the left hand side of the equation must also be an integer). 

Since the right hand side of the above equation is an integer and p and  

are integers on the left hand side of the equation, then p +  is also an 

integer. Therefore there are only 4 possibilities (see 1, 2a, 2b, and 2c below) that 

can hold for m so the left hand side of the above equation is an integer, they are 

as follows:  

 
1) m is an integer, or  

2) m is a rational fraction that is divisible by p. This implies that n =  where, p is 

prime and x is an integer. This results in the following three possibilities:  

a. Since m =  , then p =  , since p is prime, then p is only divisible by p 

and 1, therefore, the first possibility is for n to be equal to p or 1 in this 

case, which are both integers, thus m is an integer for this first case.  

b. Since m = , and x is an integer, then x is not evenly divisible by p 

unless x = p, or x is a multiple of p, where x = yp, for any integer y. 

Therefore m is an integer for x = p and x = yp.  

c. For all other cases of, integer x, m = xp , m is not an integer.  

 

To prove there is a Cullen Prime, outside our set of finite Cullen Primes, we only 

need to prove that there is at least one value of m that is an integer, outside our 

finite set. There can be an infinite number of values of m that are not integers, 

but that will not negate the existence of one Cullen Prime, outside our finite set of 

Cullen Primes.  
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First the only way that n cannot be an integer is if every m satisfies paragraph 2.c 

above, namely, m = , where x is an integer, x ≠ p, x ≠ yp, m ≠ p, and m ≠ 1 for 

any integer y. To prove there exists at least one Cullen Prime outside our finite 

set, we will assume that no integer m exists and therefore no Cullen Primes exist 

outside our finite set. Then we shall prove our assumption to be false.  

 

Proof: Assumption no values of m are integers, specifically, every value of m is   

m =   ,where x is an integer, x ≠ p, x ≠ yp, m ≠ p, and m ≠ 1, for any integer y. 

Paragraphs 1, 2.a, and 2.b prove cases where m can be an integer, therefore 

our assumption is false and there exist values of m that are integers.  

 

Since we have already shown that p and p+ , where d = , are both 

primes if and only if for integer m: 

m = (p-1)!(  + ) +  +  

 

It suffices to show that there is at least one integer n to prove there exists a 

Cullen Prime outside our set of finite set of Cullen Primes. 

Since there exists an m = integer, we have proven that there is at least one p 

and  that are both prime. Since p +  is prime and it is also greater 

than p then it also is not in the finite set of Cullen primes, therefore, since we 

have proven that there is at least one p +  that is prime, then we have 

proven that there is a Cullen prime outside the our assumed finite set of Cullen 

primes. This is a contradiction from our assumption that the set of Cullen primes 

is finite, therefore, by contradiction the set of Cullen primes is infinite. Also this 

same proof can be repeated infinitely for each finite set of Cullen primes, in other 

words a new Cullen prime can added to each set of finite Cullen primes making 

the Cullen primes countably infinite. This thoroughly proves that an infinite 

number of Cullen primes exist.  
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