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Introduction

In 1918, several years after Einstein’s announcement of the general theory of relativity, the great German
mathematical physicist Hermann Weyl proposed a generalization of Riemannian geometry that appeared to show
that electromagnetism—like gravitation—is a purely geometrical construct. Weyl accomplished this by eliminating
the constraint of invariant vector length under parallel transport in Riemannian geometry, a restriction that he
believed was unnecessary. By sidestepping this constraint, Weyl was able to derive all of Maxwell’s equations from
a formalism that was initially hailed as the first workable unification of gravity and electromagnetism, the only
forces of Nature known at the time.

Weyl’s effort led directly to the notion of gauge invariance, which today is a cornerstone of modern quantum
theory. Although Weyl’s original 1918 theory was found to be unphysical (by Einstein, no less), it also introduced
the notion of conformal invariance in general relativity, an idea that may ultimately lead to breakthroughs in the
understanding of dark matter and dark energy.

In this paper we show that the so-called Weyl vector field φµ, which Weyl used to fashion a conformally invariant
connection Γ λµν for his action Lagrangian, is unnecessary. By assuming only that the Ricci scalar R be a non-zero
universal constant, we demonstrate that the Weyl Lagrangian

p
−g R2 in ordinary Riemannian space is

conformally invariant. As a consequence, the invariance of vector length under parallel transport is preserved, as
is metricity (the vanishing of the covariant derivative of the metric tensor gµν and its variants), and thus Einstein’s
primary objection to Weyl’s theory is removed.

Notation

Following Adler et al., we will denote covariant differentiation with a double subscripted bar and ordinary partial
differentiations with a single subscripted bar, as in the usual identity

ξµ||ν = ξµ|ν − ξλ
§

λ
µν

ª

where the quantity in braces is the Christoffel connection

§

λ
µν

ª

=
1
2

gλβ
�

gβν|µ + gµβ |ν − gµν|β
�

1. Conformal Variations

We define a conformal (or scale) variation by way of the local transformations

ḡµν = eπgµν, ḡµν = e−πgµν

where π(x) is an arbitrary, smooth scalar field. For simplicity we shall consider only infinitesimal variations
π→ επ, where ε� 1. We then have

ḡµν = (1+ επ) gµν or δgµν = επgµν (1.1)

where δgµν = ḡµν − gµν. Similarly,
δgµν = −επgµν (1.2)
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We will also have need of the variation of the metric determinant
p
−g, which is given by

δ
p

−g = −
1
2

p

−g gµν δgµν (1.3)

where δgµν here is any arbitrary variation of the metric tensor. For a conformal variation in four dimensions, this
becomes

δ
p

−g = 2επ
p

−g (1.4)

2. Review of Weyl’s Theory

Weyl’s 1918 theory has an extensive literature, and it will be assumed that the reader is already familiar with it.
The basic idea is the replacement of the Riemannian connection

Γ λµν =
§

λ
µν

ª

=
1
2

gλβ
�

gβν|µ + gµβ |ν − gµν|β
�

with the non-Riemannian form

Γ λµν =
§

λ
µν

ª

−δλµφν −δ
λ
νφµ + gµνgλβφβ (2.1)

where φµ is a vector field whose conformal variation is

δφµ =
1
2
επ|µ

(It was the resemblance of this variation with the gauge transformation property of the electromagnetic
four-potential that led Weyl to believe his theory might be the path to the unification of gravitation and
electromagnetism.) It is easily shown that the Weyl connection is conformally invariant (δΓ λµν = 0) as are the

Riemann-Christoffel curvature tensor Rλµνα and the Ricci tensor Rµν. However, the Ricci scalar R= gµνRµν is not
invariant, and so Weyl was forced to assume the form

S =

∫

p

−g R2 d4 x (2.2)

for his action. By comparison, the Einstein-Hilbert action for free space,

S =

∫

p

−g R d4 x

is not invariant for either the Christoffel or Weyl connection.

One complication of Weyl’s theory (and the one that motivated Einstein’s objection to it) is the fact that the
covariant derivative of the metric tensor does not vanish:

gµν||λ = 2gµνφλ (2.3)

This identity presents a problem. The magnitude or length L of an arbitrary vector ξµ is given by

L2 = gµν ξ
µξν

Under parallel transport, it can be shown that the length changes according to

2Ld L = gµν||λ ξ
µξνd xλ

which goes over to
d L
L
= φλ d xλ
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where we’ve used Weyl’s identity for gµν||λ. Thus, for φλ 6= 0 the length of a vector can never be truly invariant.
But there are certain vectors whose magnitudes can never change, such as the unit vector d xλ/ds (and any vector
proportional to this, like the four-momentum). This was the gist of Einstein’s objection, who argued that certain
vectors can be treated as clocks marking the histories of atoms, whose spectral lines never change with time. Since
atomic spectra are always the same, Einstein’s argument effectively killed off Weyl’s theory.

3. Equations of Motion of the Weyl Action in Riemannian Space

Let us now assume Weyl’s action

S =

∫

p

−g R2 d4 x

but with φµ = 0, so that we’re working in ordinary Riemannian space. By taking an arbitrary variation of the
action with respect to gµν, we can derive the equations of motion associated with this action, which will
incidentally provide an identity we can use to show that the action is also conformally invariant.

We therefore have

δS =

∫

�

R2 δ
p

−g + 2
p

−g RδR
�

d4 x

where δR= Rµνδgµν + gµνδRµν. We can now use Palatini’s identity

δRµν =
�

δ

§

α
µα

ª�

||ν
−
�

δ

§

α
µν

ª�

||α
(3.1)

(which is applicable for any variation of a symmetric connection) to greatly simplify the calculation. In addition,
the variation is further simplified by assuming a locally inertial frame, so that quantities like gαβδgµν|λ are

non-zero while quantities like gαβ|λδgµν can be ignored. Integration by parts will also be needed to isolate the
δgµν terms. After some simple algebra, the calculation leads to

δS = 2

∫

p

−g
�

R (Rµν −
1
4

gµν R) + R|µ||ν − gµν gαβ R|α||β

�

δgµν d4 x (3.2)

Setting the integrand to zero and dropping the
p
−g δgµν term then gives us the equations of motion

R
�

Rµν −
1
4

gµν R
�

+ R|µ||ν − gµν gαβ R|α||β = 0 (3.3)

Contracting this expression with gµν gives the trace, which leaves the condition

gµνR|µ||ν ≡
1
p
−g

�p

−g gµνR|µ
�

|ν = 0 (3.4)

so that (3.3) reduces to the fourth-order expression

R
�

Rµν −
1
4

gµν R
�

+ R|µ||ν = 0 (3.5)

The trivial solution is just R= 0, but if R is a non-zero constant we can simply write

Rµν −
1
4

gµν R= 0 (3.6)

Like the Einstein equations of motion, this is of second order in the metric tensor and its derivatives. The general
solution of (3.6) is easily obtained. For the Schwarzschild-like line element

ds2 = eνc2d t2 − eλdr2 − r2dθ 2 − r2 sin2 θdϕ2
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we have

eν = 1−
2GM
c2r

+κr2, eλ = e−ν (3.7)

where κ is a constant. In addition, solving for R = gµνRµν gives R = −12κ, consistent with the requirement that R
be a non-zero constant. It is also interesting to note that even if we had assumed the Ricci scalar to be some
function R(r) and tried to solve (3.5) by brute force, we would have gotten the same result.

4. Conformal Invariance of the Weyl Action in Riemannian Space

We note in (3.2) that the conformal variation δgµν = −επgµν trivially provides the same result as above.
However, we can instead conformally vary the Weyl action directly using the identities

δ
p

−g = 2επ
p

−g, δ

§

α
µν

ª

=
1
2
ε δαµπ|ν +

1
2
ε δανπ|µ −

1
2
εgµνgαβπ|β , δ

§

α
αν

ª

= 2επ|ν (4.1)

Using the Palatini identity as before along with a few integrations by parts gives

δI = −6ε

∫

p

−g gµνR|µπ|ν d4 x

and a final integration by parts over the parameter π gives us

δI = 6ε

∫

�p

−g gµνR|µ
�

|ν π d4 x (4.2)

The integrand vanishes by virtue of (3.4), indicating that the Weyl action in Riemannian space is indeed
conformally invariant.

5. Inclusion of the Electromagnetic Stress-Energy Tensor

The Einstein equations in the presence of matter and energy are

Rµν −
1
2

gµν R= −
8πG

c4
Tµν (5.1)

where Tµν is the energy-momentum tensor. For the electromagnetic field, we have the (traceless) tensor

Tµν = FαµFαν −
1
4

gµνFαβ Fαβ

where Fµν is the antisymmetric electromagnetic tensor. It is tempting to see if we can find a solution to the set of
associated Weyl equations

R
�

Rµν −
1
4

gµν R
�

= −
8πG

c4

�

FαµFαν −
1
4

gµνFαβ Fαβ
�

(5.2)

It is remarkable that this can indeed be solved using the assumption that eλ = e−ν and R= constant as before.
Given a radial electric charge Q at the origin, it can be shown that (see Adler et al.)

Tµν = −
GQ2

4πc4r4







eν 0 0 0
0 −eλ 0 0
0 0 r2 0
0 0 0 r2 sin2 θ







We now assume a solution of the form

eν = 1−
2GM

r
+κr2 + β rn
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where β and n are constants to be determined. For brevity, we will compute only the expression

R
�

R22 −
1
4

g22 R
�

= −
8πG

c4
T22

(where g22 = −r2), although the solution we obtain can be shown to be consistent for the other equations of
motion. Using ν= −λ we have

R22 = reνν′ + eν − 1

where ν′ = dν/dr. The problem is then to solve

reνν′ + eν − 1+
1
4

r2 R= −
GQ2

4πc4r2R

It is not difficult to show that

n= −2, β = −
GQ2

2π c4 R
so that

eν = 1−
2GM
c2r

+κr2 −
GQ2

2π c4 r2R
(5.3)

Remarkably, R= −12κ as before. With the exception of the r2 term, this is nearly identical to the solution of the
conventional Einstein equations (5.1) for a radial electric field.

6. Comments

The alert reader will note that the r2 term in (3.7) represents an effective acceleration in the Schwarzschild
solution, in which the classical gravitational potential ϕ(r) changes according to

ϕ = −
GM

r
→−

GM
r
−

c2r2R
24

Even in the absence of the central mass M , a test particle would experience an acceleration equal to

a =
c2rR
12

,

an effect that may help to explain dark energy and the Pioneer spacecraft anomaly.

The reduced Weyl equations of motion for an electromagnetic field

RRµν −
1
4

gµν R2 = −
8πG

c4

�

FαµFαν −
1
4

gµνFαβ Fαβ
�

have a particularly pleasing look to them. Both sides are quadratic, structurally similar and traceless,
characteristics that appear to show a deep correspondence between gravitation and electromagnetism.

It is also interesting to note that our simplified Weyl formalism preserves an intriguing remnant of Weyl’s original
theory. In that theory, Weyl showed that the electromagnetic source vector density

p
−g ρν appears as

p

−g ρν =
p

−g gµν
�

R|µ + 2Rφµ
�

whose divergence vanishes due to conservation of charge. Setting φµ = 0, the conservation condition is then

�p

−g ρν
�

|ν =
�p

−g gµνR|µ
�

|ν = 0

which is in agreement with (3.4).

Lastly, we note that the solutions of the revised Weyl equations of motion are remarkably similar to those of the
standard Einstein equations. Indeed, if we take κ= 0 in (3.7), all the predictions of Einstein’s gravity
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theory—including the deflection of light, the precession of the orbit of Mercury and the gravitational redshift
effect—are reproduced by (3.6). More importantly, we see that the formalism is, like Weyl dreamed, fully
derivable from a conformally invariant action principle.
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