
1

Memo, © 2000

A TUTORIAL ON SIMPLICITY AND COMPUTATIONAL DIFFERENTIATION FOR
STATISTICIANS

Stephen P. Smith
Visiting Scientist
UC Davis Physics Department
Davis, CA

Abstract. Automatic differentiation is a powerful collection of software tools that are invaluable
in many areas including statistical computing. It is well known that automatic differentiation
techniques can be applied directly by a programmer in a process called hand coding. However,
the advantages of hand coding with certain applications are less appreciated, but these advantages
are of paramount importance to statistics in particular. Based on the present literature, the
variance component problem using restricted maximum likelihood is an example where hand
coding derivatives was very useful relative to automatic or algebraic approaches. Some
guidelines for hand coding backward derivatives are also provided, and emphasis is given to
techniques for reducing space complexity and computing second derivatives.

Key words. Automatic differentiation, backward differentiation, Cholesky decomposition,
restricted maximum likelihood.

1. Introduction

A clear understanding of numerical algorithms is sometimes very important to statisticians for

both theoretical and applied reasons. The sweep operator (Goodnight 1979), and the eigenvector

and eigenvalue computation (Dempster, Selwyn, Patel and Roth 1984) are examples of numerical

operations that have been explored by statisticians. In the same tradition, this paper adds

automatic differentiation (AD) to the list of numerical tools that statisticians should understand,

and it is done in context of derivative computation for purpose of maximum likelihood

estimation (as it relates to linear models and variance component estimation).

2

More generally, AD represent a collection of software tools that are used to calculate derivatives.

It is finding application in many areas, not just statistics, but also including optimization,

dynamical systems, weather modeling, engineering and control theory. The typical situation

involves calculation of derivatives of a function, or a collection of functions, that are represented

by lines of computer code. The automatic differentiation of the computer code avoids the tedium

of direct programming of the derivatives. The benefits of AD are most apparent when the source

code is very large and when it is too costly to redesign the software from scratch.

This paper is very much about simplicity, and human insight and intervention, and how these

relate to AD. The following section provides an introduction to AD as it is commonly known,

and simplicity is treated in subsequent sections.

2. Automatic Differentiation

Automatic differentiation involves the evaluation of a derivative, or set of derivatives, by

applying the chain rule of calculous directly to the steps of an algorithm. These steps make up a

recursion list, and Griewank (1992) described differentiation as a series of matrix multiplications,

1 2 k iA ×A ×@@@×A , where a multiplication involving A applies the associated partial derivatives of

the i-th recursion as permitted by the chain rule. There are two main types of AD depending on

how the chain rule is applied, as indicated by the order of these matrix multiplications. If the

chain rule is applied in a forward mode, from input parameters to the final output of a function,

the process is called forward differentiation. The matrices are multiplied in the order they are

3

generated. If the chain rule is applied by reversing the order matrices are multiplied, the process

is called backward differentiation. In backward differentiation, the derivatives of the last function

(with respect to the intermediate calculations) are accumulated until they relate to the input

parameters. This permits the calculation of the entire gradient vector with one reverse application

of the chain rule, but this remarkable calculation is done with possible increased storage

requirements (or added complexity to treat the storage needs) because the program needs to

retrieve the intermediate calculations going backward.

Automatic differentiation depends on predefined parameters and the resulting intermediate

calculations, and therefore, the result of AD are real numbers or an algorithm to compute them.

While AD can be represented symbolically, it is important to understand that AD is not symbolic

differentiation as found in early versions of some popular software packages like S, Mathematica

or Maple. The main difference is that symbolic differentiation is applied to an expression and it

results in a new expression, whereas AD takes an algorithm and turns it into a new algorithm. As

a result, symbolic differentiation of some expressions is difficult because of combinatorial

explosion of symbolism, but this problem is not a quality of AD. Moreover, AD is not a

numerical method to approximate derivatives using finite differences. Aside from rounding

errors, AD gives exact derivatives. Forward differentiation requires the same work as numerical

derivatives derived from finite differences, whereas backward differentiation can provide a

significantly faster calculation of a gradient vector than what is achievable from either numerical

differentiation or forward differentiation.

4

The literature on AD is vast, but it is disconnected due to the variety of areas where it has been

used. Two conference proceedings (Griewank and Corliss 1991; Berz, Bischof, Corliss and

Griewank 1996), provide good surveys of the existing methods and software tools. The papers by

Baur and Strassen (1983) and Griewank (1989) are most insightful. While it is surprising how

little of AD has been disseminated to applied scientists, the popularity of the tools has been

expanding steadily since the first conference in 1991. The most recent advances in AD are found

in a text book by Griewank (2000).

One possible explanation of the slow introduction of AD is that it is sometimes treated as a

“black box”. That is, source code is presented to the black box and by some miraculous magic

the derivative code emerges. In this way the end users do not toil with the details hidden in the

box. While this is more positive than negative, a regrettable side effect is that users may not

develop a deep appreciation of automatic differentiation. The black box is not promoted because

it is not understood.

In this paper, we describe AD as a collection of software tools that can be used directly by

programers, and we also present the opposing view and point to cases where the automatic

treatment is more appropriate. While this paper is not intended to slight AD, we would like to

suggest that human insight deserves promotion. Moreover, the popularity of AD should benefit

when the techniques are understood more clearly by applied scientists that enjoy programing

5

3. Guidelines for Human Programmers

The approach to treat AD as a set of ideas that can be used while developing derivative code

directly is called hand coding, and this requires a thorough understanding of both forward and

backward differentiation. Even if a software tool is used, some hand coding may be required for

treating exceptions or to improve efficiency (Hovland, Bischof, Spiegelman and Casella 1997).

While this use of computational differentiation promotes understanding, large-scale hand coding

is not acceptable for the differentiation of a large computer program. Hand coding is useful for

small or simple computer programs or subroutines, and while hand coding has enjoyed an

obvious presence in application of AD (Christian, Davies, Dixon, Roy, and Van Der Zee 1997),

hand coding has not been actively promoted. This is abundantly clear from the unfortunate use of

the word “automatic”, and a resistence by educators to provide details like those presented

below. The prejudice may be due to the false beliefs that small or simple programs can be treated

adequately by analytic or symbolic methods, and that there is no big advantage from hand coding

of forward or backward derivatives in these cases. It sometimes happens that the hand coding

approach may produce useful results when available AD tools can’t be used efficiently.

3.1 Representing the Algorithm as a Recursion List

A useful notation for the algorithm is the recursion list given below.

1 1 1h 7f (S)

2 2 2h 7f (S)
 .
 .

6

 .

k k kh 7f (S)

r rwhere S is a subset of all the intermediate variables prior to step r in the algorithm, and f is the

r itransforming recursion. Mathematically, we write S fxc{h : i<r} and x is a parameter set of

1 1 2 2 n n r idimension n. But in general, h =x , h =x , ... h =x , so it may be assumed that S f{h : i<r} for

kr>n. The objective of differentiation is to write an algorithm for computing Mh /Mx. The

iintermediates, h , i=1, 2, ... k, are assumed to be scalar values, which is the optimum situation for

backward differentiation. While vector-valued intermediates can be permitted with a more

complex notation, the above representation can be forced. Forcing this representation has no

effect on the formulae of Sections 3.2 and 3.4 when human insight is used to define partial

iderivatives of f , i=1,2, ... k. The intermediates can still be computed by the most frugal algorithm

when the above representation is less than efficient.

iThe recursion list need not represent elementary operations. Each of the operations, f , i=1,2, ... k,

may be relatively complex, to reflect a high level of granularity (Bischof and Haghighat 1996). In

the case of backward differentiation, the optimum level of granularity is a balance between how

ieasy it is for the programmer to differentiate the f versus how much storage the programmer

wishes to use for the intermediates.

The focus of the remainder of this paper will be on backward differentiation. While forward

differentiation will not be described (is less problematic), it is important to appreciate that it can

be very useful for parts of the recursion list, particularly when some intermediates are vector-

7

valued (Bischof and Haghighat 1996; Hovland, et. al. 1997).

3.2 Backward Differentiation

k k kAs indicated, backward differentiation starts with the last recursion, i.e., h =f (S), and proceeds

backward through the recursion list. The chain rule is applied at each step, while accumulating

k ithe derivatives, Mh /Mh (i<k) in the vector g. Eventually the derivatives are related back to the

original parameters, x. This provides the calculation of the entire gradient vector with a single

reverse pass through the recursions:

i k1. Set g =0 for i<k, and g =1.

i i r r i i r2. g7g + g Mf /Mh for all i where h0S , r=k, k-1, ..., n+1.

k i i k i i3. Then Mh /Mx = g , i=1, 2, ... n, and, in general, Mh /Mh = g , i=1, 2, ... k.

Vendors of AD may call the human implementation of these instructions tedious and error prone,

but these qualities are only applicable to specific cases. The fact that backward differentiation

can be casts as an ordered series of matrix multiplications may conceivably confuse

programmers. But the above description has a deliberate structure that is hard to get wrong. Note

i iin particular, the correspondence in indexes used for h and g . This does not necessarily mean

ithat g is physically saved at the i-th position in g. But it is a useful restriction of sorts, because it

ipermits a programmer to set up a vector h containing h at location a(i). The programmer is then

ipermitted to store g at position a(i) in g, or use some other handy addressing function of i. Much

effort can be invested in the function a(i) to make its use very efficient, as in the case with sparse-

8

matrix operations. And hand coding permits the deliberate use of these same highly optimized

tools with backward differentiation without being at the mercy of software. Furthermore, the

i icorrespondence between h and g plays a key role in overwriting, as emphasized in the following

section.

3.3 Reducing Space Complexity

The major storage requirement for backward differentiation is for the vectors h and g. These

vectors are proportional to the number of intermediates, and with low granularity this implies that

the storage requirement will be proportional to the run-time. Hence, devices are needed to reduce

the storage needs. Approaches for reducing space complexity includes check-pointing and even

attempts to reverse the calculations (Griewank 1992). But what works best for hand coding is

increasing granularity, and/or utilizing overwriting. The effect of granularity is already apparent,

so in this section only overwriting is described.

iTo lend itself to overwriting, the algorithm must have two qualities: (1) the recursion list for h ,

i=1,2, ... k, must show overwriting, with h having fewer than k elements; and (2) it must be

ipossible to regenerate the partial derivatives for all the operations f , i=1, 2, ... k, from the vector

jh after the forward sweep. The first requirement implies that some h is lost going forward at

jsome step m (j<m), and this implies that h is never needed in the algorithm for all steps >m.

jWhat this means going backward is that g is not needed until steps # m. Since, going backward,

m j mg is needed only for steps $m, g can be initialized and used in place of g in g just after step m.

9

But to get the procedure in Section 3.2 to work, the second requirement must also hold.

m j m jThe common recursions that lead to overwriting are operations like h =h +f({S ! h }) where

a(m)=a(j), i.e., intermediates that are lost only affect the recursions in an additive way where all

the respective partials equal 1. During the reverse sweep, at step m, we have the trivial

j massignment g7g which can be ignored in implementation because a(m)=a(j).

A good illustration of the overwriting feature is presented in Section 4.2, where Cholesky

algorithm is differentiated while using the lowest possible granularity. It is also possible to

rearrange the Cholesky recursions there by permitting an increase in granularity, and accomplish

an almost identical feat without using any overwriting.

3.4 Second Derivatives

Second derivatives are calculated by applying automatic differentiation twice. This can consist of

two rounds of forward differentiation, or forward differentiation applied to the backward

equations, or backward differentiation applied to the forward equations. But the most tedious and

error prone combination, a double application of backward differentiation, will be demonstrated

in this section.

To define the recursion list, the recursions of Sections 3.1 and 3.2 must be concatenated to form a

larger algorithm. This algorithm is represented by the intermediates contained in the vectors h

10

and g, and to these vectors assign the vectors s and q for accumulating derivatives. This

assignment is given symbolically by

Partial derivatives are accumulated in the vectors q and s by progressing through the

concatenated algorithm in reverse order, just as before. But note that the overwriting principle in

Section 3.3 applies to the recursions representing g; see Step 2 in Section 3.2. In fact, g and q are

the same length as h and s, and this dimension is less than the number of intermediates involved

in the backward sweep of Section 3.2. These simplifications produce the following algorithm for

second derivatives:

v i j1. Set q =1 for some v0{1,2, ... n}, and q =0 for i�v. Set s =0 for all j.

r r i r i i r2. q 7q +q Mf /Mh , for all i where h0S ;

j j i r r i j i j rs7s +q g M f /Mh Mh , for all i and j where h ,h 0S ;2

r=n+1, n+2, ..., k.

i i r r i i r3. s7s + s Mf /Mh for all i where h0S , r=k, k-1, ..., n+1.

k v i i4. Then M h /Mx Mx =s , i=1, 2, ..., n.2

A few features are noteworthy. Firstly, Step 3 is identical to Step 2 in Section 3.2. Secondly, the

vcalculation of q is identical to forward differentiation of the recursion list with respect to x . It is

easy to adapt the calculations for directional derivatives by initializing q appropriately in Step 1.

Hence, the scheme is suitable for optimization techniques that use a small number of second

directional derivatives.

11

4. Some Experiences with Variance Component Estimation

4.1 Historical Perspective

Examples are described in this section where hand coding was found very useful, even in the

presence of analytic derivatives and AD software packages. These are among the variance

estimation problems that were thought to be intractable prior to 1993, partly because few knew of

backward differentiation. Variance component estimation has been a very active area of

investigation, and remarkably, there were many missed opportunities to re-invent backward

differentiation. Our failure to appreciate backward differentiation in treating these popular

problems is additional testimony of the slow dissemination of AD.

The variance component problems are related to the mixed linear model given by

y=X$+Zu+e

where y is a vector of observations, $ a vector of unknown fixed effects, u is a vector of random

effects, and e is a vector of random residuals. The X and Z are known incident matrices that

assign the various effects to observations. The mean of the random effects is null, and the

variance-covariance structure is defined by var{u}=G and var{e}=R. Therefore, the mean of y is

X$ and its variance matrix is V=ZGZN+R. The best linear unbiased estimate of $ and the best

linear unbiased prediction of u are obtained by solving the mixed model equations (Henderson,

Kempthorne, Searle and Von Krosigk 1959):

12

The mixed model equations depend on G and R, and estimates of these matrices are required if a

solution to (4.1) is sought. More precisely, G and R are typically functions of unknown variances

and covariances, and the estimation of these unknown parameters is called the variance

component problem.

One approach used to estimate the variance components is maximum likelihood. In the case of

multivariate normality, the log-likelihood is

const. !½log|V| !½(y!X$)UV (y!X$) (4.2)!1

The estimates of $ and the variance components (R and G) that maximize (4.2) are the

maximum likelihood estimates. But these estimates of the variance components can be seriously

biased by small-sample errors related to the estimation of $. To treat this situation, Patterson and

Thompson (1971) proposed restricted maximum likelihood (REML), where variance components

are found by maximizing

const. !½log|V| !½log|XUVX| !½(y!X$)UV (y!X$) (4.3)!1$ $

where $ is given from Equation (4.1). Harville (1977) described (4.3) as a likelihood function for$

error contrasts, i.e., all linear combinations of y that are invariant to $. An equivalent but

13

different form of the likelihood is usually more suitable for numerical computation. To construct

$this likelihood, follow Laird’s (1982) argument and treat $ as random with mean vector : and

variance matrix "I. This prior distribution becomes noninformative as "64, and this is required

to treat $ as fixed in the Bayesian context. Therefore, the mean and variance of y are:

$E{y}=X:

" "var{y}=V = WQ WU+R

where

These can be substituted into the multivariate normal likelihood, while using expressions for the

determinant and inverse of a matrix sum (Henderson and Searle 1981),

" "|V |=|"I|@|G|@|R|@|WUR W+Q |!1 !1

" "V = R !R W(WUR W+Q) WUR-1 !1 !1 !1 !1 !1 !1

By letting "64, the relevant part of the log-likelihood becomes

const. !½log|R| !½log|G| !½log|C| !½yUPy (4.4)

4 4where C=WUR W+Q is the coefficient matrix of the mixed model equation (4.1), and P=V .!1 !1 !1

$Note that (4.4) is independent of both $ and : .

Aside from the simple cases involving balanced designs, the major difficulty in maximizing

14

(4.2), (4.3) and (4.4) had been due to the need to calculate first and second derivatives. Harville

(1977) described this difficulty, and related it to the work required by several algorithms that use

various amounts of information from derivatives.

Approaches to simplify derivative calculation have been actively pursued by researchers, even

before AD was understood by many. The W transformation was one of the most important

discoveries (Goodnight and Hemmerle 1979; Hemmerle and Hartley 1973), and more recently it

has been imitated by a factorization technique for symmetric and indefinite matrices (Fraley and

Burns 1995). Originally the W transformation was a device to reduce matrix computation related

to derivatives of (4.2) or (4.3). But for REML, the benefits of this tool is already realized in the

form of log-likelihood (4.4). However, even with (4.4) the task was thought to be impractical at

one time, and required the inverse of large matrices as can be seen by symbolic differentiation of

two of the most computationally expensive terms in (4.4), i.e., log|C| and yUPy:

 Mlog|C|/Mw = tr[C AMC/Mw] (4.5)!1

M log|C|/MwMv = tr[C AM C/MwMv]!tr[C AMC/MvA C AMC/Mw] (4.6)2 !1 2 !1 !1

MyUPy/Mw = !yUPAMV/MwAPy (4.7)

M yUPy/MwMv = 2yUPAMV/MvAPAMV/MwAPy ! yUPAM V/MwMvAPy (4.8)2 2

Because Py equates to predictions of the residuals (multiplied by R) in the mixed linear model,!1

derivatives of yUPy are easy to derive and compute. While derivatives of log|C| have been harder

to compute than those for yUPy, simplifications were also found for log|C| when C is large and

15

sparse (Feller 1987; Tier and Smith 1989) or for the situation of repeated measures and nested

models (Giesbrecht 1978; Jennrich and Schluchter 1986; Laird, Lange and Stram 1987;

Lindstorm and Bates 1988). Moreover, special structures of C can sometimes be utilized to ease

the burden of computation (Dempster, et. al. 1984; Harville and Callanan 1990; Jensen and Mao

1988; Meyer 1985; Smith and Graser 1986). Unfortunately, analytic derivatives were still too

hard to compute for the general case, and Graser, Smith and Tier (1987) proposed an algorithm

that did not use derivatives and was based on the mixed model matrix:

N×NWhile M is usually very large, it is also sparse and its Cholesky decomposition (LLU=M , L

lower triangular) is typically easy to compute using sparse-matrix methods. Components of (4.4)

NN i<N ii ijcan be computed by noting that f(L) = !½log|C| !½yUPy = !½L !G log(L) where L is the2

ijth element of L, provided only that the first N!1 rows and columns of M are rearranged to

make L more sparse. This revelation paved the way for derivative-free algorithms (Boldman and

Van Vleck 1991; Meyer 1989; Meyer 1991), but surprisingly forward and backward

differentiation of f(L) was not developed until later. Meanwhile, methods that require derivative

computation were made feasible by advances in high-speed computing where AD was not used

(Misztal 1990; Searle 1989; Wolfinger, Tobias and Sall 1994).

16

Smith (1995) showed how to compute first and second derivatives of f(L) by backward

differentiation. This was done in real space as an extension of the sparse Cholesky factorization,

and it was implemented with near optimal run-time performance. The algorithmic approach

avoided all the heavy algebra of the past. This is not to say that algebraic manipulation is of no

value. Simplification of (4.8) can yield an algorithm that is as good as or better than backward

differentiation, and it can be used to approximate second derivatives of (4.4) (Johnson and

Thompson 1995; Meyer 1997). But it is important to note that equations (4.5) to (4.8) are not

algorithms, and attempts to manipulate these equations analytically did not regenerate forward

and backward derivatives except in the accidental case involving the sparse inverse described in

Section 4.2. History shows that direct manipulation of (4.5) and (4.6) frequently produced

complex algorithms that were difficult to use.

4.2 Differentiation of Cholesky’s Algorithm and the Sparse Inverse

In this section we will illustrate the use of backward differentiation to calculate (4.5), and we

N×Nstart with an algorithm for computing log|C |. Let L be the Cholesky decomposition of C, i.e.,

ij ijLLU=C. To evaluate log|C|, therefore, first set L =C (i$j), and apply the recursions:

k=1 to N

kk kkL 7L ½

jk jk kkL 7L /L , j=k+1, ..., N.

ij ij ik jkL 7L !L L , j=k+1, ...N, i=j, ...N.
end k

i iiThen log|C|=23 log(L).

17

These recursions can be backward differentiated by the rules of Section 3.2. However, one must

be careful to note that different intermediate calculations are represented by common symbolism.

At the same time one appeals to the overwriting principals of Section 3.3, and with minor

simplification we derive the following algorithm that involves a half-stored matrix G.

11 22 NNSet G=diag{2/L , 2/L , ..., 2/L } and apply the following recursions for k decreasing from N to
1.

j=k+1 to N, i=j to N

ik ik ij jkG 7G !G ×L

jk jk ij ikG 7G !G ×L
end i; end j

j=k+1 to N

jk jk kkG 7G /L

kk kk jk jkG 7G !G ×L
end j

kk kk kkG 7½G /L

Only at the end must the parameter w be specified to compute (4.5) as

i$j ij ijMlog|C|/Mw = 3 G AMC /Mw,

and hence the entire gradient vector is provided cheaply at this point. Alternatively, Misztal and

Perez-Encisco (1993) showed how to evaluate (4.5) using the sparse-matrix inverse of

Takahashi, Fagan and Chen (1973). Not only was this approach surprisingly economical, it

represents a rare example where symbolic or algebraic analysis works well and has so been

adopted in specialized software (Neumaier and Groeneveld 1998).

We now show that the sparse-inverse approach to evaluate (4.5) can be retrieved from our above

18

algorithm with minor substitution (showing their algorithmic equivalence), and this is despite the

fact that Takahashi’s derivation was unrelated to differentiation. Arranging the recursions of the

kk k+1,k NkCholesky decomposition as done above creates the side effect that {G ,G , ..., G } are

computed in isolation to other elements of G, at step k. Therefore, the step k calculations can be

kkexpressed with simple summations, and furthermore, the divisions involving L can be pulled

inside the respective summations to get the following. For k decreasing from N to 1:

ji ij jj jk kkwhere G =G for the cases where j<i. Note that G L /L occurs at two places in the top equation.

For purposes of substitution, let U be unit lower triangular and D diagonal such that UDUU=C.

Therefore, L=UD . The equations are expressed below in a more economical form. For k½

decreasing from N to 1:

This still does not look quite like the sparse inverse. However, the sparse inverse represent a

symmetric matrix, whereas, the above represents derivatives involving intermediates from a half-

stored matrix. To connect the two, make one more substitution:

19

The following algorithm is retrieved, and it is identical to the calculation of Takahashi’s sparse

inverse given as Z. For k decreasing form N to 1:

It is easy to verify that the above algorithmic equivalence between backward differentiation and

Takahashi’s sparse inverse is maintained when sparse structures are encountered. In which case

either methods can be used to evaluate (4.5), and avoidance can be made of the cubic work and

quadratic storage that would characterize full matrix inversion.

5. The Case for Automatic Tools

The complexity of REML is reduced because it relates to a simple algorithm involving the

Cholesky decomposition. The Cholesky decomposition only has three lines of computer code

that involve floating-point arithmetic. This makes forward and backward differentiation very

easy to develop and optimize by hand. But if consideration is to be given to AD, an appreciation

of purpose is required. While the Cholesky decomposition is a simple process, the REML

applications are, nevertheless, computer intensive. Additionally, REML applications are

20

repetitive enough to justify the human effort involved in writing efficient programs. Therefore,

efficiency is more important than ease of use, and this minimizes the main advantage that AD

tools have over hand coding. Nevertheless, ADIFOR is a very useful tool for evaluating forward

derivatives automatically (Bischof and Carle 1996), including forward derivatives of (4.4). But

backward derivatives are more useful than forward derivatives for typical REML applications

(Meyer and Smith 1996), and to compute backward derivatives automatically a tool like Odyssée

is required (Mohammadi, Male and Rostaing-Schmidt 1996). Attempts to compute backward

derivatives by applying an AD tool to REML code might add considerable costs, because of

possible check-pointing (Griewank 1992).

Because AD is most useful with complex problems, AD and hand coding complement each

other. The search for good illustrations of AD necessarily leads to complexity, just the opposite

of hand coding. Variance component estimation is almost too simple to provide a favorable

illustration of AD. But AD works best as a tool to calculate derivatives for the most troublesome

likelihood functions, like the likelihood for the rank-regression model given by Smith and

Hammond (1988). Independent of the issue of complexity, one does find application for

automatic calculation with nonlinear models (Bates and Chambers, 1992).

REFERENCES

Baur, W., and Strassen, V. (1983), The complexity of partial derivatives, Theoretical Computer

Science, 22, 317-330.

Bates, D.M., and Chambers, J.M. (1992), Nonlinear models, in Statistical Models in S, eds. J. M.

21

Chambers, and T.J. Hastie, Pacific Grove, CA: Wadsworth & Brooks/Cole, Ch. 10.

Berz, M., Bischof, C., Corliss, G., and Griewank, A., eds. (1996), Computational differentiation:

Techniques, applications, and tools, Philadelphia: SIAM.

Bischof, C.H., and Carle, A. (1996) User’s experience with ADIFOR 2.0 , in Computational

differentiation: Techniques, applications, and tools, eds. M. Berz, C. Bischof, G. Corliss, and A.

Griewank, Philadelphia: SIAM, pp. 385-392.

Bischof, C.H., and Haghighat, M.R. (1996), Hierarchical approaches to automatic

differentiation, in Computational differentiation: Techniques, applications, and tools, eds. M.

Berz, C. Bischof, G. Corliss, and A. Griewank, Philadelphia: SIAM, pp. 83-94.

Boldman, K.G., and Van Vleck, L.D. (1991), Derivative-free restricted maximum likelihood

estimation in animal models with a sparse matrix solver, Journal of Dairy Science, 74, 4337-

4343.

Christianson, D.B.,Davies, A.J., Dixon, L.C.W., Roy, R., and Van Der Zee, P., (1997), Giving

reverse differentiation a helping hand, Optimization Methods and Software, 8, 53-67.

Dempster, A.P., Selwyn, M.R., Patel, C.M., and Roth, A.J. (1984), Statistical and computational

Aspects of mixed model analysis, Applied Statistics, 33, 203-214.

Fellner, W.H. (1987), Sparse matrices and the analysis of variance components by likelihood

methods, Communication in Statistics and Simulation, 16, 439-463.

Fraley, C., and Burns, P.J. (1995), Large-scale estimation of variance and covariance

components, SIAM Journal on Scientific Computing, 16, 192-209.

22

Giesbrecht, F.G. (1978), Estimating variance components in hierarchical structures using

MINQUE and restricted maximum likelihood, Communications in Statistics: A - Theory and

Methods, 7, 891-904.

Goodnight, J.H. (1979), A tutorial on the sweep operator, The American Statistician, 33, 149-

158.

Goodnight, J.H., and Hemmerle, W.J. (1979), A simplified algorithm for the W-transformation

in variance component estimation, Technometrics, 21, 265-268.

Graser, H.-U., Smith, S.P., and Tier, B. (1987), A derivative free approach for estimating

variance components in animal models by REML, Journal of Animal Science, 64, 1362-1370.

Griewank, A. (1989), On automatic differentiation, in Mathematical Programming: Recent

Developments and Applications, eds. M. Iri and K. Tanabe, Kluwer Academic Publishers,

Dordrecht, pp. 83-108.

Griewank, A., and Corliss, G.F., eds. (1991), Automatic differentiation of algorithms: theory,

implementation, and application, Philadelphia: SIAM.

Griewank, A., (1992), Achieving logarithmic growth of temporal and spatial complexity in

reverse automatic differentiation, Optimization Methods and Software, 1, 35-54.

Griewank, A., (2000), Evaluating derivatives: principles and techniques of algorithmic

differentiation, Philadelphia, SIAM.

Harville, D.A. (1977), Maximum likelihood approaches to variance component estimation and to

related problems, Journal of the American Statistical Association, 72, 320-340.

23

Harville, D.A., and Callanan, T.P. (1990), Computational aspects of likelihood-based inference

for variance components, in Statistical Methods for Genetic Improvement of Livestock, eds. D.

Gianola and K. Hammond, New York: Springer-Verlag, pp. 136-176.

Hemmerle, W.J., and Hartley, H.O. (1973), Computing maximum likelihood estiamtion for the

mixed A.O.V. model using the W transformation, Technometrics 15, 819-831.

Henderson, C.R., Kempthorne, O., Searle, S.R., and Von Krosigk, C.N. (1959), Estimation of

environmental and genetic trends form records subject to culling, Biometrics, 15, 192-218.

Henderson, H.V., and Searle, S.R. (1981), On deriving the inverse of a sum of matrices, SIAM

Review, 23, 53-60.

Hovland, P., Bischof, C., Spiegelman, D., and Casella, M. (1997), Efficient derivative codes

through automatic differentiation and interface contraction: an application in biostatistics, SIAM

Journal on Scientific Computing, 18, 1056-1066.

Jennrich, I.R., and Schluchter, M.D. (`1986), Unbalanced repeated-measure models with

structured covariance matrices, Biometrics, 42, 805-820.

Jensen, J., and Mao, I.L. (1988), Transformation algorithms in analysis of single trait and

multitrait models with equal design matrices and one random factor per trait: a review, Journal of

Animal Science, 66, 2750-2761.

Johnson, D.L., and Thompson, R. (1995), Restricted maximum likelihood estimation of variance

components for univariate animal models using sparse matrix techniques and average

information, Journal of Dairy Science, 78, 449-456.

 Laird, N.M. (1982), Computing variance components using the EM algorithm, Journal of

24

Statistical Computation and Simulation, 14, 295-303.

Laird, N.M., Lange, N., and Stram, D. (1987), Maximum likelihood computation with repeated

measures: application of the EM algorithm, Journal of the American Statistical Association, 82,

97-105.

Lindstrom, J.M., and Bates, D.M. (1988), Newton-Raphson and the EM algorithms for linear

mixed-effects models for repeated measures data, Journal of the American Statistical

Association, 83, 1014-1022.

Meyer, K. (1985), Maximum likelihood estimation of variance components for a multivariate

mixed model with equal design matrices, Biometrics, 41, 153-166.

Meyer, K. (1989), Restricted maximum likelihood to estimate variance components with several

random effects using a derivative-free algorithm, Génétique Sélection and Evolution, 21, 317-

340.

Meyer, K. (1991), Estimating variances and covariances for multivariate animal models by

restricted maximum likelihood, Génétique Sélection and Evolution, 23, 67-83.

Meyer, K. (1997), An “average information” restricted maximum likelihood algorithm for

estimating reduced rank genetic covariance matrices or covariance functions for animal models

with equal design matrices, Génétique Sélection and Evolution, 29, 97-116.

Meyer, K., and Smith, S.P. (1996), Restricted maximum likelihood estimation for animal models

using derivatives of the likelihood, Génétique Sélection and Evolution, 28, 23-49.

Misztal, I. (1990), Restricted maximum likelihood estimation of variance components in animal

models using sparse matrix inversion and a supercomputer, Journal of Dairy Science, 73 (1990),

25

pp. 163-172.

Misztal, I., and Perez-Enciso, M. (1993), Sparse matrix inversion for restricted maximum

likelihood estiamtion of variance components by expectation-maximization, Journal of Dairy

Science 76, 1479-1483.

Mohammadi, B., Male, J.-M., Rostaing-Schmidt, N. (1996), Automatic Differentiation in Direct

and reverse modes: application to optimum shape design in fluid mechanics, in Computational

differentiation: Techniques, applications, and tools, eds. M. Berz, C. Bischof, G. Corliss, and A.

Griewank , Philadelphia: SIAM, pp. 309-318.

Neumaier, A., and Groeneveld, E. (1998), Restricted maximum likelihood estimation of

covariances in sparse linear models, Génétique Sélection and Evolution, 30, 3-26.

Patterson, H.D., and Thompson, R. (1971), Recovery of inter-block information when block

sizes are unequal, Biometrika, 58, 545-554.

Searle, S.R. (1989), Variance components-some history and a summary account of estimation

methods, Journal of Animal Breeding and Genetics, 106, 1-29.

Smith, S.P. (1995), Differentiation of the Cholesky Algorithm, Journal of Computational and

Graphical Statistics, 4, 134-147.

Smith, S.P., and Graser, H.-U. (1986), Estimating variance components in a class of mixed

models by restricted maximum likelihood, Journal of Dairy Science, 69, 1156-1165.

Smith, S.P., and Hammond, K. (1988), Rank regression with log gamma residuals. Biometrika,

75, 741-751.

26

Takahashi, K., Fagan, J., and Chen, M. (1973), Formation of a sparse bus impedance matrix and

its application to short circuit study, in 8 Power Industry Computer Applications Conference,th

New York: IEEE, pp. 63-69.

Tier, B., and Smith, S.P. (1989), Use of sparse matrix absorption in animal breeding, Génétique

Sélection and Evolution, 21, 457-466.

Wolfinger, R., Tobias, R., and Sall, J. (1994), Computing Gaussian likelihoods and their

derivatives for general linear mixed models, SIAM Journal on Scientific Computing, 15, 1294-

1310.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26

