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Abstract 

The quantization of second order nonlinear dynamical systems is well known to be a 

complicated Sturm-Liouville problem. This work is devoted to the numerical and exact 

quantization of a  quadratic Liénard type oscillator equation which admits a trigonometric 

function solution. The bound state solutions of the resulting Schrödinger equation expressed 

in terms of elementary functions and the possibility to recover the energy spectrum of the 

quantum harmonic oscillator are exactly and numerically discussed following the specific 

values of system parameters, using the Nikiforov-Uvarov method and nonlocal 

transformations.   

Keywords: Quadratic Liénard equation, Schrödinger equation, bound state solutions, 

quantum mechanics, elementary functions, nonlocal transformations. 

1. Introduction 

Many problems in physics and engineering applications were found to be adequately 

solved by considering the harmonic oscillator with position-dependent mass [1], so that the 

study of classical and quantum harmonic oscillator with a spatially varying mass has fast 

become an attrative research field of the mathematical physics. Numerous applications in 

various areas of engineering have been developped on the basis of harmonic oscillator with 

position dependent mass [2]. However, exact analysis is often hard to be carried out, and most 

research contributions are limited to the approximate and numerical investigations of 

differential equations governing the classical as well as quantum features of systems with 

position-dependent mass. The quadratic Liénard type differential equations constitute an 

important class of position-dependent mass oscillators, since it allows a more satisfactory 

description of nonlinear dissipative dynamical systems [3-6]. In this context, it appears 

reasonable to investigate the problem of finding exact quantum mechanics of quadratic 

Liénard type oscillator equations with bound states energy spectrum. More again, a high 

interest may be accorded to exact quantum mechanics of classical quadratic Liénard type 

oscillator equations having exact trigonometric solutions, since such nonlinear oscillator 

studies are known to be rare in the mathematical physics literature. Analytical quantum 

mechanics of quadratic Liénard type equations leads to solve in general a complicated 
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Schrödinger equation due to the quadratic term in velocity. In [7] the exact eigenfunctions are 

expressed in terms of associated Legendre functions and Gegenbauer polynomials. The 

position-dependent mass Schröndinger equation in [8-10] is analytically solved in terms of 

prolate spheroidal wave functions. In [11] the eigensolutions of the Schrödinger wave 

equation with position-dependent mass are exactly formulated as the prolate spheroidal wave 

functions. However, as before mentioned, it is not difficult to notice that few works about 

exact quantization of quadratic Liénard type equations are available in the literature. Recently 

in [12], it is shown for the first time the existence of a family of quadratic Liénard type 

nonlinear equations 

0))(2exp()(' 22  xxxxx                     (1)

  

which admits an exact trigonometric function solution but with amplitude dependent 

frequency, where the dot over a symbol stands for differentiation with respect to time and the 

prime denotes differentiation with respect to x . The choice )1ln(
2

1
)( xx   , yields the 

nonlinear differential equation      
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This equation may be regarded as a nonlinear oscillator equation with a quadratic velocity 

term. The exact trigonometric solution may be written [12] 

)(sin)( 0 tAtx                                                                                              (3) 

where 
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where 0t  is a constant of integration. 

For 0 , or 0 , (2) reduces to the linear harmonic oscillator equation with well known 

trigonometric solution, so that the parameter o  , becomes the natural frequency in this 

situation. In such a context a problem to investigate may be the exact quantization of (2) for a 

fixed   and arbitrary , or conversely, for a fixed   and arbitrary  . However no one is able 

to say whether quantization of (2) may be performed in terms of elementary functions. This 

consists then of a gap in the understanding of analytical properties of such an equation since 

nobody can answer the question: Does equation (2) admit exact quantization  in terms of 

elementary functions with discrete energy spectrum ?  The present work postulates that the 

classical equation (2) may be exactly quantized in terms of discrete bound states with 
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elementary functions in order to study easily the nonlinearity effects. This prediction is of a 

great interest since the energy spectrum of the quantum harmonic oscillator may be recovered 

as a limiting case of that of equation (2). The present formulation in terms of elementary 

functions of the eigensolutions of the Schrödinger wave equation is theoretically and 

practically interesting since these functions are deeply and intensively studied from 

mathematical as well as physical and numerical standpoint. Exact solutions in terms of 

elementary functions are physically important since they will enable to better understand and 

capture analytically interesting features of the quantum system under question and are also 

well convenient for engineering calculations. To demonstrate the preceding prediction, it is 

suitable to first establish the appropriate Schrödinger equation with position-dependent mass 

associated to the equation (2) (section 2), and secondly compute the discrete spectrum using 

the Nikiforov-Uvarov method [13] and the wave functions via nonlocal transformations 

(section 3).  Finally the predicted results are numerically verified (section 4) and discussed 

(section 5), and a conclusion is given for the developed work. 

 

2. Schrödinger equation  

The one dimensional Schrödinger differential equation requires the knowledge of the 

Hamiltonian associated to (2). Usually the Hamiltonian operator is derived from the classical 

Hamiltonian. As regards the equation (2) the mass distribution function may be written 


 

 dx
xexM 


1

1

)(                                                                                         (6a) 

or 

  )1()( 0 xMxM                                                                                     (6b)                                                                                                      

where 0M  is the integration constant, so that  the potential energy 

 

                                                                (7a) 

 

becomes 
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In this perspective the classical Hamiltonian 
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with xxMp )( , reads 
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which is such that the associated Hamiltonian operator is not Hermitian for 0 . In such a 

case the momentum and  position operators  do no longer commute. To overcome this 

difficulty, one may use the von Roos quantum Hamiltonian formulation [17] to write the 

Schrödinger eigenvalue problem. 

 

2.1. Schrödinger equation with mass M(x) 

In the literature various forms of Hamiltonian related to the von Roos formulation [18] 

  )()()()()()()(
4

xVxMxMxMxMxMxMH a
x

b
x

cc
x

b
x

a 


                                    (9) 

where the ambiguity parameters a , b and ,c must satisfy 1 cba , in order to render H  

Hermitian are used. Indeed, there is no law to fix the value of these parameters for a specific 

system of interest. So, a judicious choice of these parameters consists of a prerequisite for an 

adequate Schrödinger equation satisfying the expected performance objective. The 

requirement that it is desired to express the Schrödinger equation solution in terms of 

hypergeometric type polynomials involves to adequately solving the ambiguity parameters 

problem. To successfully perform this task, the set of parameters is chosen such that the 

Schrödinger equation becomes [11] 

  0)()(
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where E  denotes the energy eigenvalue, )(x  the wave function, and the prime means 

derivative with respect to x . Let us now precise the Schrödinger equation of interest. 

2.2. Schrödinger equation under study 

As the mass function 
 )1(

)( 0

x

M
xM


 , and the potential energy   22

0
2

1
xMxV  , for the 

equation (2), the preceding Schrödinger equation (equation (10a)) reduces, for 10  M , to 
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The equation (10b) constitutes the Schrödinger wave equation with variable coefficients 

related to the classical quadratic Liénard type oscillator equation (2). This equation consists of 

a Sturm-Liouville eigenvalue problem for which the Nikiforov-Uvarov (NU) method may be 

used to compute the discrete energy spectrum. The solution of (10b) clearly depends on the 

value of parameter . In this contribution the solution of equation (10b) will be investigated 

under ,2 in order to attain the fixed objective. In this way one may rewrite for ,2  

equation (10b) as  
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which may take the Sturm-Liouville form 

  0)(2
)(

)1( 222 
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
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
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Therefore, the mathematical problem to solve should be clearly stated. Let us consider the 

equation (11) on the semi-infinite interval 







 ,

1


 with 0 . The problem of interest can 

then be formulated as follows. Find energy eigenvalues nE   and associated bound state 

solutions 







 [,

1
[)( 2


 Lxn  for the Schrödinger wave equation (11), such that )(xn  should 

satisfy the conditions 0)( xn  for 


1
x  and x , and   ,1)(~)(2 dxxxn   where the 

weight function ,1)(~ xx    such that one may recover the interval   ,  for ,0  

corresponding to the unconfined harmonic oscillator model. 

3. Exact bound state solutions to Schrödinger equation 

The exact solution to Schrödinger equation (11) with 2 , is exhibited in this section using 

as before mentioned the Nikiforov-Uvarov approach and nonlocal transformations of 

variables. 

3.1. Discrete energy spectrum 

The exact spectrum to (11) under the boundary conditions previously mentioned may suitably 

computed using the Nikiforov-Uvarov method. By application of the Nikiforov-Uvarov 

approach [13] the requirement is that the Schrödinger wave equation (11) must be written as 

 

                                                        (12) 

                                                          

with 

         )()()( xyxx n                                                                                                          (13)                                                                                           

where )(xyn  becomes the solution of the hypergeometric type differential equation 
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The function )(x  is a polynomial of degree at most one such that 

)(2)(~)( xxx                                                                                                               (16)                                                    
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The hypergeometric-type function )(xyn  defined as a polynomial of degree n   is given by the 

Rodrigues formula 
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such that the weight function )(x  obeys 

  )()()()( xxxx
dx

d
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and nA  is normalization constant. With the following definitions 

,2)(~,2)(~ 22xExx    and 01)( xx    

the function )(x  which satisfies the requirement that the derivative of )(x  must be negative 

may be written as 
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Comparing the equations (17)  and (18) one may deduce 
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so that the desired discrete energy eigenvalues become 
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3.2.  Discrete wave functions 

As underlined in [14], point change of variables or in general, nonlocal transformations may 

be used, once the Nikiforov-Uvarov method has been applied to find the energy spectrum, to 

compute the wave functions. Such an approach may lead to obtain the exact eigenfunctions in 

terms of elementary functions [14]. Therefore consider the Liouville transformation  

X

Xz
x

)(
)(                                                                                                                          (26) 

where 

xX 1                                                                                                                             (27) 

In this regard the following theorem may be formulated 

Theorem. Consider the transformations (26) and (27). Then equation (11) may be reduced to 
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Proof. The first derivative of (26) with respect to x may be written as 
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Substituting (26),  (27) and (29) into (11) yields (28).  Equation (28) is of the same type as 

that of the hydrogen atom [15]. In order to obtain the eigenfunctions in terms of elementary 

functions, one may therefore consider the generalized equation  
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with the general solution 
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introduced recently in [16], where Aqla ,,,,  and B are arbitrary constants. Accordingly the 

following theorem may be proved. 
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where ,AaC l and .BaD l  

Proof. The comparison of (28) with (30), under ),()( XuXz   yields 
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The comparison of (33) with (34) leads to .q  In this way from (35) one may obtain 
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The use of ),()( XuXz   knowing (31) leads to obtain immediatly (32). Now to obtain 
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4. Numerical results using Matrix Diagonal Method 

In this section, the matrix diagonalisation method is presented to cross check the previous 

analytical calculation [19]. Let us consider the Hamiltonian 

 22)1(
2

1
xpxpH                                                                                                     (41)                                                       

in place of equation (8b) with 2 , 10 M , and 1 . The very purpose of writing the 

Hamiltonian in this form is that it must be invariant with reference to exchange of position 

and momentum part [19, 20]. Here the eigenvalue relation is solved as 

  EH                                                                                                                          (42) 

where  

  mAm                                                                                                                         (43)     

and m is the mth state harmonic oscillator eigenfunction satisfying the relation  

   mmmxp )12(22                                                                                                     (44)                   

Now, the following recursion relation is solved [20, 21]. 

0421124   mmmmmmmmmmmmm VAUATASARAQAP                                      (45) 

Here 

 4mHmPm                                                                                                                   (46) 

 2mHmQm                                                                                                                   (47)    

 1mHmRm                                                                                                                    (48) 

 1mHmTm                                                                                                                     (49)            

 2mHmUm                                                                                                                   (50) 

 4mHmVm                                                                                                                    (51)                                                                                                    

and  

  EmmmSm  322
82

1 2
2

                                                                                     (52) 



10 
 

It should be remembered that 0 km  for 4,2k . Further one has to carefully go step by 

step to achieve desired convergency in eigenvalues. The eigenvalues for different 

5.0;25.0 , are tabulated in table-1.  

Table-1: First four eigenvalues of  ])1([
2

1 22 xpxpH   .  

  n Numerical Results 

using MDM 

Analytical Results 

using Eq.(25) 

0.25 0 

1 

2 

3 

0.5 

1.4375 

2.3125 

3.125 

0.5 

1.4375 

2.3125 

3.125 

0.5 0 

1 

2 

3 

0.5 

1.25 

1.75 

2.020942 

0.5 

1.25 

1.75 

2.020942 

 

Further in order to make study complete, phase trajectory and 
2

n  is plotted in Figure 1 and 2 

for 25.0 .  

5. Discussion 

The Schrödinger equation with position-dependent mass has shown a more adequate 

ability to describe the quantum features of a rich variety of physical systems. In this work the 

exact quantum mechanics of a quadratic Liénard type oscillator equation that exhibits exact 

trigonometric solutions is performed. More precisely, the exact quantization of harmonic 

potential with position-dependent mass has been carried out.  By application of the Nikiforov-

Uvarov approach and nonlocal transformation, the discrete eigensolutions and the 

corresponding energy eigenvalues are obtained. The eigenfunctions are expressed in terms of 

elementary functions for the first time for a quadratic Liénard type dynamical system. As 

,0  0  , as previously mentioned, and the classical quadratic Liénard type equation (2) 

reduces to the classical linear harmonic oscillator so that one may notice that the energy 

eigenvalues nE  reduce as expected to those of the quantum harmonic oscillator, viz 

0)
2

1
(  nEn . For ,0n the equation (25) shows that the ground state energy is that of the 

quantum harmonic oscillator. It is worth to mention that numerical results match very well 

analytical predictions, and clearly show the effect of nonlinearity parameter   on the 

behavior of eigenvalues. 

6. Conclusion 

   The exact quantization of a quadratic Liénard type oscillator equation having exact 

trigonometric solution but with amplitude dependent frequency is developed in this work. For 

the first time for an equation which belongs to this class of quadratic Liénard type equations, 

the discrete bound state eigensolutions to the resulting Schrödinger equation are expressed in 

terms of elementary functions. The associated discrete energy eigenvalues are found to be 

ensured by the magnitude of the nonlinearity parameter using the Nikiforov-Uvarov theory. 
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The work shows that the discrete energy spectrum of the quantum harmonic oscillator may be 

recovered for the zero value of the nonlinearity parameter. The numerical results are found to 

be in consistent agreement with analytical predictions. 
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Figure 1: Phase trajectories of  ])1([
2

1 22 xpxpH    with 25.0 ,  for various values of 

 E = H. 

 

 
 

Figure 2: 
2

n of ])1([
2

1 22 xpxpH    with 25.0 , for (a) n=0, (b) n=1, (c) n=2 and (d) 

n=3. 


