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Abstract

Following to the two former papef$he Gyro-Gravitational Spin Vector Torque DynamafsMain Belt Asteroids
in relationship with their Tilt and their Orbitalnklination” and “Cyclic Tilt Spin Vector Variations of Main Belt
Asteroids due to the Solar Gyro-Gravitatignivherein we theoretically studied the tilt motioasd variations of
spinning asteroids, we continue the analysis withstudy of the orbit anomalies of satellites. €haations for the fly-
by of satellites near the Earth, or near planetgimeral are deduced.

Keywords Fly-by — satellite — planet — gravitation — gigtion — prograde — retrograde — orbit.
Method Analytical.

1. Basic equations of the former papers.

In the former papefThe Gyro-Gravitational Spin Vector Torque DynammisMain Belt Asteroids in relationship
with their Tilt and their Orbital Inclination} a physical deduction is found for the motion #mel variations of the tilt
of asteroids. This deduction is based upon the Mé#xfnalogy for Gravitation.

As explained, the gravito-magnetic field of the thandeed influences the path of satellites becatfisbeir velocity,
by the following equation, which is the analoguedrdz force for gravity:

FOm(g+vxQ) (1.1)

Hereing is the gravity field vector of the EartkR its gravito-magnetic field vector (also callggrotatior), andm
andv the mass and the velocity vector of the satelieexplained the gravito-magnetic field vectofaand out of the
Earth’s data (see eq.(3.8.a) in that paper and .2} lfelow).

The equations are totally valid for a spinning Ratttat is surrounded by orbiting satellites. ThetlEa angular

velocity is @, its moment of inertia ik

~_ Gl 3r (@)
Q= - 1.2.a
2r302[ re (1.2.2)
. 2 2
wherein for a sphere: | = Em R (1.2.b)

The value of the gyrotation can be found at eacleein the
universe, and is decreasing with the third powehefdistance

I . The factorwer represents the scalar vector-product, and
this value is zero at the equatorial level.

If we want to understand the accelerations of #tellites
due to the second field, gyrotation, we need toxktte vector

Fig. 1.1 : A spinning sphere with radiuR and

rotation velocityw is generating a rotary gravitati product VXQ in the vector equation (1.1) with the help of
field (or “gyrotation” field) 2 at a distance from the vector equation (1.2). Therefore, we need stefi@itions
the sphere's centre. of orbit angles, see fig.1.2.
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Fig. 1.2 :Definition of the anglesy andi . The orbital
plane is defined by the orbital inclinatidin relation to the

X axis. The location of the asteroid inside the toibi
defined by the angler . The equipotential line of the
gyrotationg through the asteroid has been shown as well.

In order to find the vector produatx Q , we need to know the angf@ in terms of the inclinatiom and the
position angler, since the scalar vector-product of (1.2 a) fingd by wr CO5.

Therefore we notice that (see fig.1.2): rsiny=r, =r cosx sin (1.3.a)

And sinceSiny = c0SG, we get : cosB = cosr sim (1.3.b) (1.3.0)
GmR 3 .

Hence, (QX,Qy,QZ):W{(O,O,a))—ﬁ(rx I rz)(af cosr sm)} (1.3.d)

wherein (rx,ry,rz) =r (cosx cois ,sir ,cas $i) (1.3.€)

The equations (1.3) constitute the detailed vefoionula of the equation (1.2). Remark thiat ahgyth-

2. Accelerations due to the Earth’s or planet’s spi.

In this paper, we will make abstraction of the Hitééés elliptic exact orbit shape, but the readan implement that

by defining an anglex, that defines the location of the orbit's pericentEhen, by applying the anglg, in the
equation (1.3.e), the correct variability of thalites can be expressed. By using the classical wglequations for

elliptical orbits, defined by the angles anda , the reader can find any primary velocity of dubit.
The analytical equations below are valid &oy= 0. This means that the orbit’s pericenter calasiwith the position of
a=0. They allow us to get graphical representatiointhe satellite accelerations due to the Eaghistation field.

Rotation of coordinate system to the ellipticaln@a

With (1.1), we find the acceleratio®sx Q due to gyrotation.

In order to see more easily what really happenk witatellite, let us make a transform in the plahthe satellite’s
orbit. More precisely a rotation of the system otrer orbit inclinationi. The coordinate systeX’ Y’ Z’ is given by a
clockwise rotation over the angle

(X',Y', Z)=( Xcosi+ Zsini,Y - X sini+ Z cog (2.1)

By doing this, we have put the satellite orbithe X’ Y’ plane, and we can easily find the correspondirrgtgyion
(QX,Qy,QZ):(Qxcos' +Q,sih Q,+Q, sin+Q, cog 2.2)

Equation (2.2) is written in full in Appendix A.
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Below, we will define the equations that coverptltal orbits and then we find the gyrotational éecations, which
are explicitly written down in the Appendix B.

3. Elliptical equations.

In order to adapt the equations for an elliptithpave apply the following Keplerian equations:
a(l-¢&°
L _ap-e)

= and V= GM(E,—EJ (3.1) (3.2
1+ & cosy

ra

wherein a is the ellipse’s major radius and is the eccentricity given by

£=1-(b/a)" =g a (3.3)

Herein,b is the ellipse’s minor radius,the coordinate of the focus (the planet) if the
center is taken in the middle of the ellipse, a@ad the shortest distance between the
ellipse and the planet’s center.

Remark that we have defined the anglas the angle between the major axis and the

Fig. 3.1 :Definition of the satellite’s position.
anglea for elliptic orbits.

Furthermore, the satellite’s position can be wniths (fig.3.1):
F=(r,.r,r,)=¢" cosar,’ sir ,0 (3.4)
If we want to find the coordinates of the orbit'slacity vector in the coordinate systdpd’,Y’,Z’), we need the
slope of the tangent, which is given by the andisee fig.3.1). Therefore we take the basic eqnatiothe ellipse

2
X =c 2
whereof the center of the coordinate system coaxiglith the planetg +§ =1. (3.5)
a
X-c 'd
By differentiating this equation, we come te(:iz) +%d_y =0 , orwith (3.1) and (3.3) this gives:
a X
d b’(X-c 7 ( rcosa - C F( cosr— &/ t te-£( 1 cos
9 _ o 0 (x=9__B(teosr—g__ bloow-af)  re-s(s o)
dx ay & rsina a sina siny
From (3.6) follows the following initial orbit vedities:
' V'sina
v, =V Cosd = =
\/sin2a+(1—£—£2(1+ com))
, . Vv (1—5—52 (1+ coscr))
v, =Vsind=-
2 2 2
\/sm a+(1-£-&*(1+ com))
v, =0 (3.7.2) (3.7.b) (3.7.c)

4. Further equations.

The satellite’s gyrotational acceleratiolig Q in the(X’,Y’,Z’) system due to the Earth’s rotation are then given
by:

(a/3a)=(yal- v, va - Ve va e )=(ve s ' 9y ),
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Option 1 : Rotation of coordinate system to polaoinates versus the planet.
AY

What interests us are the values of the tangeatidl the radial accelerations

Lt g al versus the planet, and finally the acceleratiorsd #re perpendicular to the orbital
X’ plane. To see these accelerations, let us malensform in the plane of the satellite’s
o orbit. More precisely a rotation of the system other anglen. The coordinate system
a’ X" Y" Z" is given by a counter-clockwise rotation over dmglea :
a '
C/ ] p- X’ Fig. 3.2. rotation of the coordinate system.
(X",Y",Z)=( X cosa+ Y sinr ,Y cog— X sia 2 42
Or, for the accelerations:
(axay : az") :( a coxx+ @ sir ,a, cog- a s az)
Wherein we find the radial and the tangential azredions (see fig.3.2):
(7.2 &) =(a. 2. 3] >

Option 2 : Rotation of coordinate system to polaom@inates versus the orbital path.

Another interest thing are the values of the tatigeand the radial accelerations to
the orbital path, and finally the accelerations #n@ perpendicular to the orbital plane.
To see these accelerations, let us make a transfothe plane of the satellite’s orbit.
More precisely a rotation of the system over thglam+d (sinced is negative). The
coordinate syster)(* Y Zis given by a counter-clockwise rotation over éinglea :

Fig. 3.3. rotation of the coordinate system.

(X*,V,Z):(—Xsin5+ Y co® - Y sio- X cod 2

(4.4)
Or, for the accelerations:
(ax*,ay*,a;)z(—ax' sind+ a, co® - a siv- g cod az)
Wherein we find the radial and the tangential azredions (see fig.3.2):
(ax,ay,éy)=(ar,q’@) (4.5)

When using the equations (3.7), the equation @ah)be found.

5. Graphical solutions.
The figures 5.1 and 5.2 show the values of thela#ons that satellites undergo by the equatb®)( written in

full by the equation (D.3.a). The tangential accsien ar, along the satellite’s path is zero, as confirnbgdthe
equations in the Appendix D.

In fig. 5.1 we show the radial gyrotational accatEma, , which points to the Earth’s center, for the eslwfi anda
between FrandTt
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Fig.5.1: The radial gyrotational accelerat'mﬁ of satellites about the Earth, in relation to dhnkeital
inclinationi and the orbital positioa of the satellite. We too#/b = 2 The red line are the zero values for
a andi. The values of anda are betweenTtandTt

The values o, are zero for the orbital inclinationghat are multiples oft4. The highest absolute values are found

for inclinationsi between-in these values, especiallydoequal to 0. Fool equal tortor -Tt, there is an attenuation due
to the orbit’'s eccentricity. For circular orbithete is no attenuation.

In fig. 2.2 we show the gyrotational acceleratén scaled at 25%, which is perpendicular to thellitate orbital
plane, for the values dfanda between FandTt
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Fig.2.2: The gyrotational acceleratiaﬁ* , perpendicular to the orbital plane, of satedliédout the Earth, in relation to the
orbital inclinationi and the orbital positioa of the satellite. We tool/b = 2 and we had to scadg to 25% compared
with ar*. The red line are the zero valuesdoandi. The values of anda are betweerrtandTt A side view is also shown.
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The scales of the orbital inclination and the @lbjtosition of the satellite are taken the samebfith graphs. Here as
well, there is an attenuation @t= Tt

The highest values @, are obtained when the orbital inclination isTé2, when the orbit is perpendicular to the
Earth’'s equator. The prograde value is double @ lén absolute value) as the retrograde one tladvidth (action
radius) is also larger. Prograde orbits always simiowards equatorial orbits £ 0) and retrograde orbits first swivel

towardsi = T¥2 , then towards the planet’s equator (0). The retrograde value is smaller due to tliptie shape,
which causes an attenuation. This is caused byclimice of an elliptic orbit whereof the pericentsrsituated
according to fig.1.2.

6. Discussion and conclusions : the swiveling prageof inclined orbits.

We have calculated the satellite accelerations tbu¢he Earth’s rotation. It is found that the valuef ar*
(perpendicular to the orbital path) are zero foraahital inclinationi equal toT7/2 and its multiples. The highest
absolute values are found for an inclinatiaf 174 and 374, for a equal to 0. Foal equal tortthere is an attenuation

due to the orbit’s eccentricity. For circular oghithe valuex atTtequals that oftt = 0 (in absolute values).
With the least satellite’s orbit inclination, awépm the planet’s equator, an important radial sae¢ion occurs

upon the satellites. At= 174 already, the accelerati@y comes to an absolute maximum around the periceniés
explains why significant alterations of the sate#li paths occurred near Saturn.

For specific fly-bys, the double integration a;' and ay' over time gives the satellite’s extra displacenthrd to the

planet’s spin. The energy increase can be found ftas well.

There is no gyrotational acceleration along thelb&'s path, sincey is found to be zero. A vector product indeed
cannot be oriented the same as one of the proctatponents.

The strongest values for the accelera&én(acceleration that is perpendicular to the orljitahe) are obtained for
the inclinationsi that are perpendicular to the planet's equatquiahe, att/2. The orbital positionst where the
highest absolute values are obtained, are zeromExémal absolute values af are significantly larger than those of

ar. Prograde orbits always swivel towards equatarhits and retrograde orbits first swivel towartie poles first,
then towards the planet’s equator.
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Appendix A : Gyrotational field equations written in full.

The values of the velocity are given in (2.1) and the values of the gyrotafibare given in (A.2) below, based
upon the equations (1.3.d) and (1.3.e).

GmR . . . \:
Q.,Q ,Q )]=———(0,0w)— 3w , ,
. ( 0 Q, Z) o [( w) cos sin( cas cbs ,gin ,a@s |$|]1

(QX,Qy,QZ):%[wcow siri(~ 3cos cos-, 3sin( -1 3aos g
or

(Qx,Qy,QZ):(i(r)nr—;zu(—Bco§a sinP+ 3sin@ sin ,2cos s(n-1 3cos i§;)|
(A1)

Then, we can solve the equation (2.2):

. R
Q. :Gm3 20)
5rc

Qy' = —3%)8"1 2r sin
10r°c

. GmRw

Z  Br?

(sini - 3cosr) cos sin

Q cosa Sin cob

(A.2.8) (A.2.b) (A.2.C)

Appendix B : Gyrotational acceleration equations witten in full (Cartesian).

Written in full, the accelerations due to the E&r{jplanet’s) rotation, exerted on a satellite §8el) and (3.2):
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, :_GmRza)\/ GM| 2(1+ & com) 1 (1-£-£*(1+ comr)) cosr siniz
lore® | a (1-¢) \/sin2a+(1—£—£2(1+ cosz;z/))2

,__GmRZa)\/GM 2(1+ ¢ coxr) sin 2 sin 2

-1
20rc® | a (1-¢?) \/sinza+(l—€—52(1+ COW))Z

,_Gm Rza)\/ GM{2(1+gcosa) _lJ (1—8—82(1+ Cosn'))( sin— 3cog)- 3sir
5réc? a (1_‘92) \/sin2a+(1—£—£2(1+ coszvr))2

cosa sin

(B.1.a) (B.1.b) (B.1.c)

Appendix C : Gyrotational acceleration equations witten in full (polar versus the planet).

Written in full, the accelerations due to the Ear{jplanet’s) rotation, exerted to a satellite are:

. _GmRw |GM[ 2(1+scosr) _|sin*a-(1-£-£*(1+ cow)) cos
=a = Tor'c? - (1_ 2) - - - sind cosr
£ \/Sln20'+(1—8—£2(1+ cowr))
~(Te-(w
,,:qzigzg)\/ (ZM 2(1Ifc;)sq)_ cosa ( e-&( cosf))2 <ind sinar
( 5) \/sin2a+(1—£—£2(1+ cosr))
., _GmRw |GM[ 2(1+£comr) _|(1-&-¢*(1+ cosr))( sii~ 3cos)- 3shm .
T 122 -1 - cosa sin
re a ( € ) \/sinza+(1—£—£2(1+ co:‘a))

(C.1.a) (C.1.b) (C.1.0)

Appendix D : Gyrotational acceleration equations witten in full (polar versus the orbit).

Written in full, the accelerations due to the Ear{planet’s) rotation, exerted to a satellite are:

. _._ GmRw | GM[ 2(1+¢ coxr)
a’ =g =-

10172 3 (1—52) —1} sind cosr

3, =3=0

' GmR?a)\/ GM[2(1+50037) _lJ (1-&£-£2(1+ coma))( sin— 3cos)- 3str
5’ | a (1-&?) \/sin2a+(1—£—£2(1+ cosz:)/))2

(D.1.a) (D.1.b) (D.1.c)

cosa sin
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