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Abstract 
 

Following to the two former papers “The Gyro-Gravitational Spin Vector Torque Dynamics of Main Belt Asteroids 
in relationship with their Tilt and their Orbital Inclination” and “Cyclic Tilt Spin Vector Variations of Main Belt 
Asteroids due to the Solar Gyro-Gravitation”, wherein we theoretically studied the tilt motions and variations of 
spinning asteroids, we continue the analysis with the study of the orbit anomalies of satellites. The equations for the fly-
by of satellites near the Earth, or near planets in general are deduced. 
 
Keywords:  Fly-by – satellite – planet – gravitation – gyrotation – prograde – retrograde – orbit. 
Method:  Analytical. 
 
 
 
1. Basic equations of the former papers. 
 

In the former paper “The Gyro-Gravitational Spin Vector Torque Dynamics of Main Belt Asteroids in relationship 
with their Tilt and their Orbital Inclination”, a physical deduction is found for the motion and the variations of the tilt 
of asteroids. This deduction is based upon the Maxwell Analogy for Gravitation. 
As explained, the gravito-magnetic field of the Earth indeed influences the path of satellites because of their velocity, 
by the following equation, which is the analogue Lorentz force for gravity: 
 

F ⇐ m ( g + v × Ω Ω Ω Ω )        (1.1) 

Herein g is the gravity field vector of the Earth, ΩΩΩΩ its gravito-magnetic field vector (also called gyrotation), and m 
and v the mass and the velocity vector of the satellite. As explained the gravito-magnetic field vector is found out of the 
Earth’s data (see eq.(3.8.a) in that paper and eq.(1.2) below). 
The equations are totally valid for a spinning Earth that is surrounded by orbiting satellites. The Earth’s angular 

velocity is ωωωω , its moment of inertia is I. 
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wherein for a sphere :           (1.2.b) 
 
The value of the gyrotation can be found at each place in the 
universe, and is decreasing with the third power of the distance 

r . The factor ω ω ω ω • r  represents the scalar vector-product, and 
this value is zero at the equatorial level.  
  

If we want to understand the accelerations of the satellites 
due to the second field, gyrotation, we need to know the vector 

product v×Ω
�

�

 in the vector equation (1.1) with the help of 
the vector equation (1.2). Therefore, we need some definitions 
of orbit angles, see fig.1.2. 

Fig. 1.1 : A spinning sphere with radius R and 
rotation velocity ωωωω  is generating a rotary gravitation 
field (or “gyrotation” field) ΩΩΩΩ at a distance r from 
the sphere's centre. 

I m R= 2
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Elliptical Fly-By and Expected Gyro-gravitational Orbit Accelerations 
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In order to find the vector product v× Ω , we need to know the angle β  in terms of the inclination i  and the 

position angle α , since the scalar vector-product of (1.2 a) is defined by    cosrω β . 

 

Therefore we notice that (see fig.1.2):  sin cos sinzr r r iγ α= =               (1.3.a) 

 
And since sin cosγ β= , we get :      cos cos siniβ α=      (1.3.b) (1.3.c) 

 

Hence,  ( ) ( ) ( )( )
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            (1.3.d) 

 

wherein    ( ) ( ), , cos cos ,sin ,cos sinx y zr r r r i iα α α=               (1.3.e) 

 
The equations (1.3) constitute the detailed vector formula of the equation (1.2). Remark that ω = ωearth . 

 
 
2. Accelerations due to the Earth’s or planet’s spin. 
 

In this paper, we will make abstraction of the satellite’s elliptic exact orbit shape, but the reader can implement that 
by defining an angle α0 that defines the location of the orbit’s pericenter. Then, by applying the angle α0  in the 
equation (1.3.e), the correct variability of the radius can be expressed. By using the classical velocity equations for 
elliptical orbits, defined by the angles α0 and α , the reader can find any primary velocity of the orbit.  
The analytical equations below are valid for α0 = 0. This means that the orbit’s pericenter coincides with the position of 
α = 0. They allow us to get graphical representations of the satellite accelerations due to the Earth’s gyrotation field.  
 
Rotation of coordinate system to the elliptical plane. 
 

With (1.1), we find the accelerations v×Ω
�

�

 due to gyrotation. 
 
In order to see more easily what really happens with a satellite, let us make a transform in the plane of the satellite’s 
orbit. More precisely a rotation of the system over the orbit inclination i. The coordinate system X’ Y’ Z’ is given by a 
clockwise rotation over the angle i : 

( ) ( ), , cos sin , , sin cosX Y Z X i Z i Y X i Z i′ ′ ′ = + − +       (2.1) 

 
By doing this, we have put the satellite orbit in the X’ Y’ plane, and we can easily find the corresponding gyrotation 

( ) ( ), , cos sin , , sin cosx y z x z y x zi i i i′ ′ ′Ω Ω Ω = Ω + Ω Ω − Ω + Ω    (2.2) 

Equation (2.2) is written in full in Appendix A. 

Fig. 1.2 : Definition of the angles α and i . The orbital 
plane is defined by the orbital inclination i in relation to the 
X axis. The location of the asteroid inside the orbit is 
defined by the angle α . The equipotential line of the 
gyrotation ΩΩΩΩ  through the asteroid has been shown as well. 
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Fig. 3.1 : Definition of the 
angle α for elliptic orbits. 

Below, we will define the equations that cover elliptical orbits and then we find the gyrotational accelerations, which 
are explicitly written down in the Appendix B. 
 
 
3. Elliptical equations. 
 

 In order to adapt the equations for an elliptic path, we apply the following Keplerian equations: 
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         (3.1) (3.2) 

 

wherein a is the ellipse’s major radius and ε is the eccentricity given by 

( )2
1 b a c aε = − = .       (3.3) 

Herein, b is the ellipse’s minor radius, c the coordinate of the focus (the planet)  if the 
center is taken in the middle of the ellipse, and a-c the shortest distance between the 
ellipse and the planet’s center. 
Remark that we have defined the angle α as the angle between the major axis and the 
satellite’s position. 
 
Furthermore, the satellite’s position can be written as (fig.3.1): 

( , , ) ( cos , sin ,0)x y zr r r r r rα α′ ′ ′ ′ ′ ′= =�

    (3.4) 

If we want to find the coordinates of the orbit’s velocity vector in the coordinate system (X’,Y’,Z’), we need the 
slope of the tangent, which is given by the angle δ (see fig.3.1). Therefore we take the basic equation of the ellipse 

whereof the center of the coordinate system coincides with the planet: 
( )2 2
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′ − ′
+ = .    (3.5) 

By differentiating this equation, we come to : 
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From (3.6) follows the following initial orbit velocities: 
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    0zv ′ =

          

(3.7.a) (3.7.b) (3.7.c)

 
 

 
4. Further equations. 
 

The satellite’s gyrotational accelerations v×Ω
�

�

 in the (X’,Y’,Z’) system due to the Earth’s rotation are then given 
by:

 ( ) ( ) ( ), , , , , ,x y z y z z y z x x z x y y x y z x z x y y xa a a v v v v v v v v v v′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′= Ω − Ω Ω − Ω Ω − Ω = Ω − Ω Ω − Ω
  4.1) 
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Option 1 : Rotation of coordinate system to polar coordinates versus the planet. 
 

What interests us are the values of the tangential and the radial accelerations 
versus the planet, and finally the accelerations that are perpendicular to the orbital 
plane. To see these accelerations, let us make a transform in the plane of the satellite’s 
orbit. More precisely a rotation of the system over the angle α. The coordinate system 
X” Y” Z”  is given by a counter-clockwise rotation over the angle α : 

 
 
 

( ) ( ), , cos sin , cos sin ,X Y Z X Y Y X Zα α α α′′ ′′ ′′ ′ ′ ′ ′ ′= + −
                 (4.2) 

Or, for the accelerations: 

( ) ( ), , cos sin , cos sin ,x y z x y y x za a a a a a a aα α α α′′ ′′ ′′ ′ ′ ′ ′ ′= + −
 

Wherein we find the radial and the tangential accelerations (see fig.3.2): 

( ) ( ), , , ,x y z r t za a a a a a′′ ′′ ′′ ′=
       (4.3) 

 
 

Option 2 : Rotation of coordinate system to polar coordinates versus the orbital path. 
 

Another interest thing are the values of the tangential and the radial accelerations to 
the orbital path, and finally the accelerations that are perpendicular to the orbital plane. 
To see these accelerations, let us make a transform in the plane of the satellite’s orbit. 
More precisely a rotation of the system over the angle π+δ (since δ is negative). The 
coordinate system X* Y* Z* is given by a counter-clockwise rotation over the angle α : 
 

 
 

 

( ) ( )* * *, , sin cos , sin cos ,X Y Z X Y Y X Zδ δ δ δ′ ′ ′ ′ ′= − + − −
     (4.4)

 

Or, for the accelerations: 

( ) ( )* * *, , sin cos , sin cos ,x y z x y y x za a a a a a a aδ δ δ δ′ ′ ′ ′ ′= − + − −
 

Wherein we find the radial and the tangential accelerations (see fig.3.2): 

( ) ( )* * * * *, , , ,x y z r t za a a a a a′=
                     (4.5) 

When using the equations (3.7), the equation (4.5) can be found. 
 
 
 
5. Graphical solutions. 
 

The figures 5.1 and 5.2 show the values of the accelerations that satellites undergo by the equation (4.5), written in 
full by the equation (D.3.a). The tangential acceleration at

*, along the satellite’s path is zero, as confirmed by the 
equations in the Appendix D.  
 
In fig. 5.1 we show the radial gyrotational acceleration ar

* , which points to the Earth’s center, for the values of i and α 

between -π and π. 

Fig. 3.2. rotation of the coordinate system. 

Fig. 3.3. rotation of the coordinate system. 
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The values of ar

* are zero for the orbital inclinations i that are multiples of π/4. The highest absolute values are found 
for inclinations i between-in these values, especially for α equal to 0. For α equal to π or -π, there is an attenuation due 
to the orbit’s eccentricity. For circular orbits, there is no attenuation. 
 

In fig. 2.2 we show the gyrotational acceleration az
*, scaled at 25%, which is perpendicular to the satellite’s orbital 

plane, for the values of i and α between -π and π.  
 
 
 
 

 

 
 

Fig.2.2: The gyrotational acceleration az
*
 , perpendicular to the orbital plane, of satellites about the Earth, in relation to the 

orbital inclination i and the orbital position α of the satellite. We took a/b = 2 and we had to scale az
* to 25% compared 

with ar
*
. The red line are the zero values for α and i. The values of i and α are between -π and π. A side view is also shown.  

 

Fig.5.1: The radial gyrotational acceleration ar
*
 of satellites about the Earth, in relation to the orbital 

inclination i and the orbital position α of the satellite. We took a/b = 2. The red line are the zero values for 
α and i. The values of i and α are between -π and π. 
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The scales of the orbital inclination and the orbital position of the satellite are taken the same for both graphs. Here as 
well, there is an attenuation at α = π. 

The highest values of az
* are obtained when the orbital inclination is at π/2, when the orbit is perpendicular to the 

Earth’s equator. The prograde value is double as large (in absolute value) as the retrograde one, and the width (action 
radius) is also larger. Prograde orbits always swivel towards equatorial orbits (i = 0) and retrograde orbits first swivel 
towards i = π/2 , then towards the planet’s equator (i = 0). The retrograde value is smaller due to the elliptic shape, 
which causes an attenuation. This is caused by the choice of an elliptic orbit whereof the pericenter is situated 
according to fig.1.2. 
 
 
 
6. Discussion and conclusions : the swiveling process of inclined orbits.  
 

We have calculated the satellite accelerations due to the Earth’s rotation. It is found that the values of ar
*  

(perpendicular to the orbital path) are zero for an orbital inclination i equal to π/2 and its multiples. The highest 
absolute values are found for an inclination i of  π/4 and 3π/4, for α equal to 0. For α equal to π there is an attenuation 
due to the orbit’s eccentricity. For circular orbits, the value α at π equals that of  α = 0 (in absolute values). 

With the least satellite’s orbit inclination, away from the planet’s equator, an important radial acceleration occurs 
upon the satellites. At i = π/4 already, the acceleration ar

* comes to an absolute maximum around the pericenter. This 
explains why significant alterations of the satellites’ paths occurred near Saturn. 

For specific fly-bys, the double integration of xa ′  and ya ′  over time gives the satellite’s extra displacement due to the 

planet’s spin. The energy increase can be found from it as well. 
There is no gyrotational acceleration along the satellite’s path, since at

* is found to be zero. A vector product indeed 
cannot be oriented the same as one of the product’s components. 

The strongest values for the acceleration az
* (acceleration that is perpendicular to the orbital plane) are obtained for 

the inclinations i that are perpendicular to the planet’s equatorial plane, at π/2. The orbital positions α where the 
highest absolute values are obtained, are zero. The maximal absolute values of az

* are significantly larger than those of 
ar

*. Prograde orbits always swivel towards equatorial orbits and retrograde orbits first swivel towards the poles first, 
then towards the planet’s equator. 
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Appendix A : Gyrotational field equations written in full. 

 
The values of the velocity v are given in (2.1) and the values of the gyrotation Ω are given in (A.2) below, based 

upon the equations (1.3.d) and (1.3.e). 
 

or   
( ) ( ) ( )

2

3 2
, , 0,0, 3 cos sin cos cos ,sin ,cos sin

5x y z

G m R
i i i

r c
ω ω α α α αΩ Ω Ω = −  

 

or 
( ) ( )( )

2

3 2
, , cos sin 3cos cos , 3sin , 1 3cos sin

5x y z

G m R
i i i

r c
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( ) ( )( )
2

2
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, , 3cos sin 2 , 3sin 2 sin ,2cos sin 1 3cos sin
10x y z

G m R
i i i i

r c

ω α α α αΩ Ω Ω = − − −
(A.1) 

Then, we can solve the equation (2.2): 
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3 2
sin 3cos cos sin
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G m R
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3 2
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10y

G m R
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ω α′Ω = −
 

2

3 2
cos sin cos

5z

G m R
i i

r c

ω α′Ω =
           (A.2.a) (A.2.b) (A.2.c) 

 
 
Appendix B : Gyrotational acceleration equations written in full (Cartesian). 

 
Written in full, the accelerations due to the Earth’s (planet’s) rotation, exerted on a satellite are, (3.1) and (3.2): 
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(B.1.a) (B.1.b) (B.1.c) 
 
 
Appendix C : Gyrotational acceleration equations written in full (polar versus the planet). 

 
Written in full, the accelerations due to the Earth’s (planet’s) rotation, exerted to a satellite are: 
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(C.1.a) (C.1.b) (C.1.c) 

 
Appendix D : Gyrotational acceleration equations written in full (polar versus the orbit). 

 
Written in full, the accelerations due to the Earth’s (planet’s) rotation, exerted to a satellite are: 
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(D.1.a) (D.1.b) (D.1.c)  
 


