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proves that the number of elements of certain real sequences is in-
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1 Introduction

In many situations there is interesting questions about the number of ele-
ments of certain real sequences. For example, the twin prime conjecture in
number theory: A twin prime is a prime number that has a prime gap of two,
i.e., there exist n > 0 such that p, and p,,,, are both primes and p,, 1 —p, = 2.
The twin prime conjecture assert that there are infinitely many twin primes.
A proof of this conjecture seems to be out of reach by present methods avail-
able in the current literature. One step to an important progress was made
by Viggo Brun [8] in 1919 where he showed that the sum of the recipro-
cals of the twin primes converges to a real number called Brun’s constant
By = 1.90216054 calculated in 1976 by using the twin primes up to 100
billion. In 2004 Thomas Nicely gave By = 1.9021605825820 4+ 000000001620



based on all twin primes less than 5 x 10'5. Some important progress on small
gaps between primes were established by Goldston, et al. [1-2-3-4-5-6-7].

In [9] Zhang showed that for some integer N < 70 x 10°, there are in-
finitely many pairs of primes that differ by N. The method of Zhang is
a refinement of the work of Goldston, Pintz and Yildirim [4] on the small
gaps between consecutive primes along a stronger version of the Bombieri-
Vinogradov theorem [12-13-14] that is applicable when the moduli are free
from large prime divisors only. Under certain strong assumptions (like the
Elliott—Halberstam conjecture and its generalized form), Terence Tao and
James Maynard and others reduces this bound to 246, then to 12 and 6 [10].

In this note we give sufficient conditions to prove that the number of
elements of certain real sequences is infinite. This note does not claim the
proof of any conjecture. It is just a new idea to see how one can solves
some problems if some conditions are assumed. Our method is based on the
following three steps:

1. The assumption of the Conditions (1)-(9) below about the sequences
(Ur) pen» and (Wn),cq, and the function f,.

2. Proving that under Condition (7), the iterations of fs cannot hit the
fixed point Bs in any finite number of steps.

3. The construction of a strictely increasing and bounded sequence (c,.),,cq,
and showing that this sequence has an infinite number of elements.

2 Number of elements of certain real sequences
Let (ug),cn- be a real sequence verifying the following conditions:

Condition (1) The sequence (uy),cy- is strictely positive, i.e., for all & € N*, we have
ug > 0.

Condition (2) The sequence (uy),y. is strictely increasing, i.e., for all & € N*, we
have u < upiq.

Condition (3) The sequence (uy), - is not arithmetic, i.e., (uy),cp do not verify
ugy1 = ug + 2 for all £ € N*| that is, the difference between the con-
secutive terms is not constant.



Condition (4) The sequence (uy), oy is unbounded, i.e., limy_ 4 ux = +00.

+oo +oo
Condition (5) The series Z i diverges, i.e., Z i = +00.
k=1 k=1

Condition (6)

Condition (7)

The sum of the reciprocals of the terms verifying u, 1 = u, + 2 (pairs
of terms which differ by 2) converges to a finite value Bs, i.e., there
exist a non-empty set 2o C N such that

Z(u—ln+un1+2>_32>o (1)

nefls

In other words, the sum in (1) either has finitely many terms or has
infinitely many terms but is convergent.

There exist a real function fo : Dy, — Dy, where Dy, = R/ {By + 0}
(for some 0 < 6 < 1) is its set of definition such that [0, Bs] C
[0, By 4+ 0) C Dy, with the following properties:

(1) fo(z) is a continuous and differentiable function with continuous
derivative for all z € Dy,.

(2) f2 (x) is a strictely increasing function for all z € Dy, and f5 (x) > 0
for all = € [0, By + 6).

(3) f2(x) is a bijection in every closed interval [0, \] C [0, By + 0) to
itself.

(4) The only fixed point of f; in Dy, is x = Bs.

(5) The interval [0, Bs] is invariant under fs, i.e., f2 ([0, Bs]) C [0, Ba].
(6) The equation fj (z) = 1 has the only real solution z = By in Dy,.
(7) The derivative f} is a strictely increasing (i.e., fi (x) > 0) and
bijective in every closed interval [0, \] C [0, By + ) to itself.

8) For all x € D, we have
( f2
0< fé (x) <1 (2)

i.e., at x = Bs, the derivative f} (z) gets it maximum value (which is
1) inD fa-



Condition (8) There exist a strictely increasing real sequence (wy),cq, C [0, Bs] sat-
isfying

Wna1 = fo (wy) if and only if w, 1 = u, +2 for alln € Qy  (3)

Condition (9) For any finite n € {,, any real solution b of the equation
f2(b) =b=wpi1 —wn (4)
is located in the open interval (0, By + 6) for some 0 < 6 < 1.

Here we keep using the symbol B, for this general case. We restrict our
investigation to the class of real sequences (uy), - verifying Conditions (5)
and (6) in accordance with some known sequences of prime numbers such as
the sequence of twin primes. We will use the following mean values theorem:

Theorem 1 Let f : [a,b] — [a,b] be a continuous function on the closed
interval |a,b], and differentiable on the open interval (a,b), where a < b.
Then there ezists some ¢ € (a,b) such that

=01 9

If f is a strictely increasing function with a strictely increasing derivative
/', then ¢ is included strictely in the open interval (a,b), i.e., ¢ # a and
¢ # b, that is, the cases [’ (a) = W and f’'(b) = % are impossible
since [’ is at least injective. Theorem 1 is used to construct the strictely

increasing and bounded sequence (c,), ., defined by (6) below.

2.1 Number of iterations for the convergence to the
fixed point B; of the function f,

Let fF denote the k-composition of f, with itself, i.e., f& = foo foo...0 fo

(k-times). Denote the only fixed point of fo by By (Condition (7-(4))), and

the initial point of the iteration by zy € [0, Bs]. Let x;, be the value of f¥ at

Zo, i'e'7 T = féﬁ (330) :

Lemma 2 The sequence xpy1 = fo(zr) converges to the fized point By of
the function fs after an infinite number of steps.
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Proof. Restricting our study to the interval [0, By]. We have f5(z) > 0
for all 0 < x < By by Condition (7-(5)). By Condition (7-(3)), the
function f5 : [0, Bs] — [0, By| is injective. If xy = By then we get the fixed
point after 0 iterations. If zy # By, we now have f7(zg) € [0, By]. By
Condition (7-(3)), the function fs is injective from [0, By| to [0, Bs], so if
z € [0, By] then f5(z) = By if and only if 2 = By by Condition (7-(4)). So
in this case we will not hit the fixed point By in any finite number of steps.
This fact can be proven by induction. Indeed, taking xo = f2(zg) # Ba
as the base case and the inductive hypothesis as x, = f¥ (zo) # Ba, where
k > 2. Since k > 2, x, = f¥(xo) € [0,Bs], on which f, is injective.
Using the inductive hypothesis and the injectivity of f; we conclude that
Ter1 = f37 (wo) = fo (¥ (w0)) # f2(B2) = Ba. So zp1 = 5" (w0) # Bo.
By induction zj, = f§ (z0) # By for all k > 2. =

2.2 About the number of elements of (2

Theorem 3 Assuming Conditions (1)-(9), then the number of elements of
Qs is infinite.

Proof. Condition (1) is necessary to garanty that By > 0. Condition (3)
is necessary to avoid contradiction between (5) and (6).

Let a = w, with n > 2 and let b € Dy, such that b > w,, then by the
mean values theorem 1 applied to the function fy there exist ¢, € (wy,b)

el thet ACESACS AL
— fa(wn — Wy

fy(en) = = b_jn = 2b_wn+1 (6)
This is allowed by the existence of the function f; given by Condition
(7) and the existence of (w,),cq, by Condition (8). By construction, the
sequence (wn),cq, 18 an increasing sequence if and only if f; is an increasing
real function by Condition (7-(2)). By Condition (7-(7)) f} is a strictely
increasing bijective function, then the values of ¢, never doubled for all n €
(2 and by this method and Condition (7-(7)) and Condition (7-(8)) we

have constructed a strictely increasing and bounded sequence (c,),cq, C
( wa, By) such that
<3< 05< .. <Cp< .. < By (7)
This means that the application ¥ : Qs — (ws, Bs) defined by
V(n) =cn (8)
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is bijective and strictely increasing. To prove that the number of elements of
the set {25 is infinite we will looking to the points b verifying (6) such that the
corresponding ¢, verify f3 (¢,,) =1 for certain m € 2. We have f} (¢,,) =1
if and only if

Cm = B2 (9)

by Condition (7-(6))). At z = B,, the function f}(x) gets it maximum
value (which is 1) in the interval [0, Bs] by inequality (2). Also, equation
(9) holds true for only one value m € €y. Otherwise, we get ¢, = ¢, = By
with m # ¢. This is a contradiction since ¥ (n) = ¢, is bijective. This value
of m must be the biggest element of €2;. Indeed, we have ¢,, = By, if there
exists ¢ € Q2 : ¢ > m such that f; (c,) = 1, then we must have ¢, = By by
Condition (7-(6)), then we get ¢, = ¢, = B, and this is also a contradiction
since ¥ (n) = ¢, is bijective.

Assuming by contradiction that m is finite. Then by Lemma 2, w,, =
f™(x9) # Ba, that is, w, < By (here o # Bs) by Condition (7-(5)).
Equation (9) and Theorem 1 and Condition (9) implies that By < b < By+6
for some 0 < # < 1. Applying again the mean values theorem 1 to the
function f5 in the interval [Bs , b, then there exist a € (B ,b) such that

) 2O =B (B) () =B,
2 b— By b— By

with f5 () > f} (Bs) = 1. But at z = By, the function f} (x) gets it maximum
value (which is 1) in the interval [0, By] by inequality (2). This implies that
f5(a) = 1 and hence & = By and this is a contradiction since the mean
values theorem 1 says that a € (By ,b) with a # By and « # b for any
strictely increasing function with a strictely increasing derivative. Hence, m
must be inifinite and this is allowed by Condition (4). Finally, the number
of elements of {25 is infinite. m

For the case, where we wante to get u,,1 = u, + d for some d > 0.
We proceed as before and replacing By, (), fo by By, 4, f4 and replacing
Upt1 = Up+2 by Uy g1 = u, +d in all the text and replacing ug1 = up +2 by
U1 = ur +d in Condition (3). The values of d are admissible according to
the set of values of u,. For the case of positive integer sequences (us),cn. C
N*, the difference d must be a positive integer. If we looking now to the set
of all prime numbers denoted by (pj),,, then we must have d > 2 and d
is an even positive integer since all primes > 2 are odd and the difference
between two odd numbers is always even.

Generally, in number theory, the famous Polignac’s conjecture states [11]:

6



Conjecture 4 For any positive even number d, there are infinitely many
prime gaps of size d, i.e., There are infinitely many cases of two consecutive
prime numbers with difference d.

Conjecture 4 is not proven or disproven for a given value of d. For d = 2,
it is the twin prime conjecture discussed in the introduction. The case d = 4
is concerned with the cousin primes (p,,, p, + 4). The case d = 6 is concerned
with the sexy primes (p,, p, + 6), etc...

After writting this note, we are able now to construct the sequence
(Wn)peq, and the function f; as follow:

1 1 1 1
wm X () em (P l)
Z (pj pj+2> ? Pn 24Dy (10)

j€Q2—{n}

and

5 — 2224+ 2B2 — 2By — 2+ 2(By+1—12)\/(z — By)* + 1

fa(2) = B3 (1)

For the general case, we have

1 1 1 1
= 2 (E+pk+d>:Bd_(p_n+d+pn) (12)

JE€Q2—{n}

and

2?4 5de — 24By — 4+ B3 + (dBy — da +2)\/d? (x — By)® +4
d(—2dz + 2dBy + 3)

fa(z) =

(13)
the details will be avalaible soon.
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