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1 Introduction

In many situations there is interesting questions about the number of ele-
ments of certain real sequences. For example, the twin prime conjecture in
number theory: A twin prime is a prime number that has a prime gap of two,
i.e., there exist n > 0 such that pn and pn+1 are both primes and pn+1�pn = 2:
The twin prime conjecture assert that there are in�nitely many twin primes.
A proof of this conjecture seems to be out of reach by present methods avail-
able in the current literature. One step to an important progress was made
by Viggo Brun [8] in 1919 where he showed that the sum of the recipro-
cals of the twin primes converges to a real number called Brun�s constant
B2 = 1:90216054 calculated in 1976 by using the twin primes up to 100
billion. In 2004 Thomas Nicely gave B2 = 1:9021605825820� 000000001620
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based on all twin primes less than 5�1015. Some important progress on small
gaps between primes were established by Goldston, et al. [1-2-3-4-5-6-7].
In [9] Zhang showed that for some integer N < 70 � 106, there are in-

�nitely many pairs of primes that di¤er by N . The method of Zhang is
a re�nement of the work of Goldston, Pintz and Yildirim [4] on the small
gaps between consecutive primes along a stronger version of the Bombieri-
Vinogradov theorem [12-13-14] that is applicable when the moduli are free
from large prime divisors only. Under certain strong assumptions (like the
Elliott�Halberstam conjecture and its generalized form), Terence Tao and
James Maynard and others reduces this bound to 246, then to 12 and 6 [10].
In this note we give su¢ cient conditions to prove that the number of

elements of certain real sequences is in�nite. This note does not claim the
proof of any conjecture. It is just a new idea to see how one can solves
some problems if some conditions are assumed. Our method is based on the
following three steps:

1. The assumption of the Conditions (1)-(9) below about the sequences
(uk)k2N� and (!n)n2
2 and the function f2:

2. Proving that under Condition (7), the iterations of f2 cannot hit the
�xed point B2 in any �nite number of steps.

3. The construction of a strictely increasing and bounded sequence (cn)n2
2
and showing that this sequence has an in�nite number of elements.

2 Number of elements of certain real sequences

Let (uk)k2N� be a real sequence verifying the following conditions:

Condition (1) The sequence (uk)k2N� is strictely positive, i.e., for all k 2 N�, we have
uk > 0:

Condition (2) The sequence (uk)k2N� is strictely increasing, i.e., for all k 2 N�, we
have uk < uk+1:

Condition (3) The sequence (uk)k2N� is not arithmetic, i.e., (uk)k2N� do not verify
uk+1 = uk + 2 for all k 2 N�; that is, the di¤erence between the con-
secutive terms is not constant.
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Condition (4) The sequence (uk)k2N� is unbounded, i.e., limk!+1 uk = +1:

Condition (5) The series
+1X
k=1

1
uk
diverges, i.e.,

+1X
k=1

1
uk
= +1:

Condition (6) The sum of the reciprocals of the terms verifying un+1 = un + 2 (pairs
of terms which di¤er by 2) converges to a �nite value B2, i.e., there
exist a non-empty set 
2 � N such thatX

n2
2

�
1

un
+

1

un + 2

�
= B2 > 0 (1)

In other words, the sum in (1) either has �nitely many terms or has
in�nitely many terms but is convergent.

Condition (7) There exist a real function f2 : Df2 ! Df2 where Df2 = R= fB2 + �g
(for some 0 < � < 1) is its set of de�nition such that [0; B2] �
[0; B2 + �) � Df2 with the following properties:

(1) f2 (x) is a continuous and di¤erentiable function with continuous
derivative for all x 2 Df2.

(2) f2 (x) is a strictely increasing function for all x 2 Df2 and f2 (x) > 0
for all x 2 [0; B2 + �).

(3) f2 (x) is a bijection in every closed interval [0; �] � [0; B2 + �) to
itself.

(4) The only �xed point of f2 in Df2 is x = B2.

(5) The interval [0; B2] is invariant under f2, i.e., f2 ([0; B2]) � [0; B2].
(6) The equation f 02 (x) = 1 has the only real solution x = B2 in Df2.

(7) The derivative f 02 is a strictely increasing (i.e., f
00
2 (x) > 0) and

bijective in every closed interval [0; �] � [0; B2 + �) to itself.

(8) For all x 2 Df2 we have

0 < f 02 (x) � 1 (2)

i.e., at x = B2; the derivative f 02 (x) gets it maximum value (which is
1) in Df2 .

3



Condition (8) There exist a strictely increasing real sequence (!n)n2
2 � [0; B2] sat-
isfying

!n+1 = f2 (!n) if and only if un+1 = un + 2 for all n 2 
2 (3)

Condition (9) For any �nite n 2 
2, any real solution b of the equation

f2 (b)� b = !n+1 � !n (4)

is located in the open interval (0; B2 + �) for some 0 < � < 1:

Here we keep using the symbol B2 for this general case. We restrict our
investigation to the class of real sequences (uk)k2N� verifying Conditions (5)
and (6) in accordance with some known sequences of prime numbers such as
the sequence of twin primes. We will use the following mean values theorem:

Theorem 1 Let f : [a; b] ! [a; b] be a continuous function on the closed
interval [a; b], and di¤erentiable on the open interval (a; b), where a < b.
Then there exists some c 2 (a; b) such that

f 0 (c) =
f (b)� f (a)

b� a
(5)

If f is a strictely increasing function with a strictely increasing derivative
f 0, then c is included strictely in the open interval (a; b) ; i.e., c 6= a and
c 6= b; that is, the cases f 0 (a) = f(b)�f(a)

b�a and f 0 (b) = f(b)�f(a)
b�a are impossible

since f 0 is at least injective. Theorem 1 is used to construct the strictely
increasing and bounded sequence (cn)n2
2 de�ned by (6) below.

2.1 Number of iterations for the convergence to the
�xed point B2 of the function f2

Let fk2 denote the k-composition of f2 with itself, i.e., f
k
2 = f2 � f2 � ::: � f2

(k-times). Denote the only �xed point of f2 by B2 (Condition (7-(4))), and
the initial point of the iteration by x0 2 [0; B2]. Let xk be the value of fk2 at
x0; i.e., xk = fk2 (x0) :

Lemma 2 The sequence xk+1 = f2 (xk) converges to the �xed point B2 of
the function f2 after an in�nite number of steps.
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Proof. Restricting our study to the interval [0; B2]. We have f2 (x) > 0
for all 0 � x � B2 by Condition (7-(5)). By Condition (7-(3)), the
function f2 : [0; B2] ! [0; B2] is injective. If x0 = B2 then we get the �xed
point after 0 iterations. If x0 6= B2; we now have f 22 (x0) 2 [0; B2]. By
Condition (7-(3)), the function f2 is injective from [0; B2] to [0; B2], so if
z 2 [0; B2] then f2 (z) = B2 if and only if z = B2 by Condition (7-(4)). So
in this case we will not hit the �xed point B2 in any �nite number of steps.
This fact can be proven by induction. Indeed, taking x2 = f 22 (x0) 6= B2
as the base case and the inductive hypothesis as xk = fk2 (x0) 6= B2, where
k � 2. Since k � 2, xk = fk2 (x0) 2 [0; B2], on which f2 is injective.
Using the inductive hypothesis and the injectivity of f2 we conclude that
xk+1 = fk+12 (x0) = f2

�
fk2 (x0)

�
6= f2 (B2) = B2. So xk+1 = fk+12 (x0) 6= B2.

By induction xk = fk2 (x0) 6= B2 for all k � 2.

2.2 About the number of elements of 
2
Theorem 3 Assuming Conditions (1)-(9), then the number of elements of

2 is in�nite.

Proof. Condition (1) is necessary to garanty that B2 > 0: Condition (3)
is necessary to avoid contradiction between (5) and (6).
Let a = !n with n � 2 and let b 2 Df2 such that b > !n, then by the

mean values theorem 1 applied to the function f2 there exist cn 2 ( !n; b)
such that

f 02 (cn) =
f2 (b)� f2 (!n)

b� !n
=
f2 (b)� !n+1

b� !n
(6)

This is allowed by the existence of the function f2 given by Condition
(7) and the existence of (!n)n2
2 by Condition (8). By construction, the
sequence (!n)n2
2 is an increasing sequence if and only if f2 is an increasing
real function by Condition (7-(2)). By Condition (7-(7)) f 02 is a strictely
increasing bijective function, then the values of cn never doubled for all n 2

2 and by this method and Condition (7-(7)) and Condition (7-(8)) we
have constructed a strictely increasing and bounded sequence (cn)n2
2 �
( !2; B2) such that

c2 < c3 < c5 < ::: < cn < ::: < B2 (7)

This means that the application 	 : 
2 ! (!2; B2) de�ned by

	(n) = cn (8)
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is bijective and strictely increasing. To prove that the number of elements of
the set 
2 is in�nite we will looking to the points b verifying (6) such that the
corresponding cm verify f 02 (cm) = 1 for certain m 2 
2. We have f 02 (cm) = 1
if and only if

cm = B2 (9)

by Condition (7-(6))). At x = B2; the function f 02 (x) gets it maximum
value (which is 1) in the interval [0; B2] by inequality (2). Also, equation
(9) holds true for only one value m 2 
2. Otherwise, we get cm = cq = B2
with m 6= q: This is a contradiction since 	(n) = cn is bijective. This value
of m must be the biggest element of 
2. Indeed, we have cm = B2, if there
exists q 2 
2 : q > m such that f 02 (cq) = 1; then we must have cq = B2 by
Condition (7-(6)), then we get cm = cq = B2 and this is also a contradiction
since 	(n) = cn is bijective.
Assuming by contradiction that m is �nite. Then by Lemma 2, !m =

fm (x0) 6= B2; that is, !m < B2 (here x0 6= B2) by Condition (7-(5)).
Equation (9) and Theorem 1 andCondition (9) implies that B2 < b < B2+�
for some 0 < � < 1. Applying again the mean values theorem 1 to the
function f2 in the interval [B2 ; b] ; then there exist � 2 (B2 ; b) such that

f 02 (�) =
f2 (b)� f2 (B2)

b�B2
=
f2 (b)�B2
b�B2

with f 02 (�) > f 02 (B2) = 1: But at x = B2; the function f 02 (x) gets it maximum
value (which is 1) in the interval [0; B2] by inequality (2). This implies that
f 02 (�) = 1 and hence � = B2 and this is a contradiction since the mean
values theorem 1 says that � 2 (B2 ; b) with � 6= B2 and � 6= b for any
strictely increasing function with a strictely increasing derivative. Hence, m
must be ini�nite and this is allowed by Condition (4). Finally, the number
of elements of 
2 is in�nite.
For the case, where we wante to get un+1 = un + d for some d > 0:

We proceed as before and replacing B2;
2; f2 by Bd;
d; fd and replacing
un+1 = un+2 by un+1 = un+d in all the text and replacing uk+1 = uk+2 by
uk+1 = uk+d in Condition (3). The values of d are admissible according to
the set of values of un. For the case of positive integer sequences (uk)k2N� �
N�; the di¤erence d must be a positive integer. If we looking now to the set
of all prime numbers denoted by (pk)k�1, then we must have d � 2 and d
is an even positive integer since all primes > 2 are odd and the di¤erence
between two odd numbers is always even.
Generally, in number theory, the famous Polignac�s conjecture states [11]:
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Conjecture 4 For any positive even number d, there are in�nitely many
prime gaps of size d, i.e., There are in�nitely many cases of two consecutive
prime numbers with di¤erence d.

Conjecture 4 is not proven or disproven for a given value of d. For d = 2,
it is the twin prime conjecture discussed in the introduction. The case d = 4
is concerned with the cousin primes (pn; pn + 4). The case d = 6 is concerned
with the sexy primes (pn; pn + 6), etc...
After writting this note, we are able now to construct the sequence

(!n)n2
2 and the function f2 as follow:

!n =
X

j2
2�fng

�
1

pj
+

1

pj + 2

�
= B2 �

�
1

pn
+

1

2 + pn

�
(10)

and

f2 (x) =
5x� 2x2 + 2B2

2 � 2B2 � 2 + 2 (B2 + 1� x)
q
(x�B2)

2 + 1

4 (B2 � x) + 3
(11)

For the general case, we have

 n =
X

j2
2�fng

�
1

pj
+

1

pk + d

�
= Bd �

�
1

pn
+

1

d+ pn

�
(12)

and

fd (x) =
�d2x2 + 5dx� 2dBd � 4 + d2B2

d + (dBd � dx+ 2)
q
d2 (x�Bd)

2 + 4

d (�2dx+ 2dBd + 3)
(13)

the details will be avalaible soon.
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