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Abstract: This paper proposes hybrid vector similarity measures under single valued refined 

neutrosophic sets and proves some of its basic properties. The proposed similarity measure is 

then applied for solving multiple attribute decision making problems. Lastly, a numerical 

example of medical diagnosis is given on the basis of the proposed hybrid similarity 

measures and the results are compared with the results of other existing methods to validate 

the applicability, simplicity and effectiveness of the proposed method.  
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1. Introduction 

  Smarandache [1] originated the theory of neutrosophic sets (NSs) which is characterized 

by a truth membership TA (x), an indeterminacy membership IA (x) and a falsity membership FA 

(x) to cope with indeterminate, incomplete and inconsistent information. However, single valued 

neutrosophoc sets (SVNSs) defined by Wang et al. [2] is useful tool for practical decision 

making purposes. MADM under SVNSs attracted many researchers and many methods have 

been proposed for MADM problems such as TOPSIS [3], grey relational analysis [4, 5, 6, 7], 

outranking approach [8], maximizing deviation method [9], hybrid vector similarity measure 

[10], etc. 
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 Hanafy et al. [11] proposed a method to determine the correlation coefficient of NSs by 

using centroid method. Ye [12] defined correlation of SVNSs, correlation coefficient of SVNSs, 

and weighted correlation coefficient of SVNSs. Then, a multi-criteria decision making method 

(MCDM) was proposed based on weighted correlation coefficient or the weighted cosine 

similarity measure. Ye [13] developed another form of correlation coefficient between SVNSs 

and presented a MADM method.  Broumi and Smarandache [14] proposed a new method called 

extended Hausdroff distance for SVNSs and a new series of similarity measures were developed 

to find the similarity of SVNSs. Majumdar and Samanta [15] introduced the concept of distance 

of two SVNSs and discussed its properties. They also presented some similarity measures 

between SVNSs based on distance, a matching function, membership grades and defined the 

notion of entropy measure for SVNSs. Ye [16] proposed cross entropy of SVNSs and solved a 

MCDM based on the cross entropy of SVNSs. Ye and Zhang [17] formulated three similarity 

measures between SVNSs by utilizing maximum and minimum operators and investigated their 

characteristics. The developed weighted similarity measures were then employed for solving 

MADM problems under single valued neutrosophic setting. Ye [18] suggested three similarity 

measures between simplified NSs as an extension of the Jaccard, Dice and cosine similarity 

measures in vector space for solving MCDM problems. Pramanik et al. [10] investigated a new 

hybrid vector similarity measure under both single valued neutrosophic and interval neutrosophic 

assessments by extending the notion of variation coefficient similarity method [19] with 

neutrosophic information and proved some of its fundamental properties.   

Smarandache [20] generalized the conventional neutrosophic logic and defined the most 

n- symbol or numerical valued refined neutrosophic logic. Each neutrosophic element T, I, F can 

be refined into T 1, T 2, …, T m, and I 1, I 2, …, I p, and F 1, F 2, …, Fq, respectively, where m, p, q 

(1) are integers and m +  p + q = n. Broumi and Smarandache [21] proposed cosine similarity 

measure for refined neutrosophic sets due to cosine similarity measure based Bhattacharya’s 

distance [22] and an  improved cosine similarity measure for SVNSs proposed by Ye [23].   Ye 

and Ye [24] introduced the idea of single valued neutrosophic multi sets (SVNMSs) (refined 

sets) by combining SVNSs along with the theory of multisets [25] and presented several 

operational relations of SVNMSs. Ye and Ye [24] proposed Dice similarity measure and 

weighted Dice similarity measure for SVNMSs and investigated their properties. Chatterjee et al. 
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[26] slightly modified the definition of SVNMSs [24] and incorporated few new set-theoretic 

operators of SVNMSs and their properties. Broumi and Deli [27] defined correlation measure of 

neutrosophic refined sets and applied the proposed model to medical diagnosis and pattern 

recognition problems. Ye et al. [28] further defined generalized distance and its two similarity 

measures between SVNMSs and applied the concept to medical diagnosis problem. Mondal and 

Pramanik [29] proposed neutrosophic refined similarity measure based on cotangent function 

and presented an application to suitable educational stream selection problem. Deli et al. [30] 

studied several operators of neutrosophic refined sets such as union, intersection, convex, 

strongly convex in order to deal with indeterminate and inconsistent information. In their paper, 

Deli et al. [30] also examined several results of neutrosophic refined sets using the proposed 

operators and defined distance measure of neutrosophic refined sets with properties. Karaaslan 

[31] developed three methods based on similarity measure for single valued refined neutrosophic 

sets (SVRNSs) and interval neutrosophic refined sets by extending Jaccard, Dice and Cosine 

similarity measures of SVNSs- and interval neutrosophic sets proposed by Ye [18]. Broumi and 

Smarandache [32] developed a new similarity measure between refined netrosophic sets based 

on extended Housdorff distance of SVNSs and proved some of their basic properties.   Mondal 

and Pramanik [33] discussed refined tangent similarity measure for SVNSs and they applied the 

proposed similarity measure to medical diagnosis problems. Juan-juan and Jian-qiang [34] 

defined several multi-valued neutrosophic aggregation operators and established a MCDM 

method based on the proposed operators. Ye and Fu [35] presented new similarity measure of 

SVNSs through tangent function and a multi- period medical diagnosis method using the 

proposed similarity measure and the weighted aggregation of multi-period information for 

solving multi-period medical diagnosis problems under single valued neutrosophic environment. 

Ye and Smarandache [36] presented a MCDM method with single valued refined neutrosophic 

information by extending the concept of similarity method with single valued neutrosophic 

information of Majumdar and Samanta [15]. 

In this paper, we propose another form of cosine similarity measures under SVRNSs by 

extending the concept given in [37, 38] and prove some of its basic properties. We propose 

hybrid vector similarity measure with single valued refined neutrosophic information by 

extending hybrid vector similarity measure of SVNSs [10] and prove some of its properties. The 
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proposed similarity measure is a hybridization of Dice and cosine similarity measures under 

single valued refined neutrosophic information. Moreover, we establish weighted hybrid vector 

similarity measure under single valued refined neutrosophic environment and prove its basic 

properties.  Now the article is structured in the following way. Section 2 presents some 

mathematical preliminaries which are required for the construction of the paper. In Section 3 

defines hybrid similarity and weighted hybrid similarity measures of SVRNSs and proves some 

of their properties. Section 4 is devoted to develop two algorithms for solving MADM problems 

involving single valued refined neutrosophic information. An illustrative example of medical 

diagnosis is solved to demonstrate the applicability of the proposed procedure in Section 5. 

Conclusions and future scope of research are presented in Section 6. 

  

2. Mathematical preliminaries 

In this Section, we recall some basic definitions concerning neutrosophic sets, single 

valued neutrosophic sets, single valued refined neutrosophic sets. 

2.1 Neutrosophic set [1] 

Let U be a universal space of objects with a generic element of U denoted by z. Then, a 

neutrosophic set P on U is defined as given below. 

P = {z, )(),((z), zFzIT PPP   zU} 

where, )(zTP , )(zIP , )(zFP : U ]-0, 1+[ stand for the degree of membership, the degree of 

indeterminacy, and the degree of falsity-membership respectively of a point zU to the set P 

satisfying the condition -0  )(zTP + )(zIP + )(zFP  3+. 

2.2 Single valued neutrosophic sets [2] 

Consider U be a space of points with a generic element of U denoted by z, then a SVNS Q is 

defined as follows: 



5 

 

5 

 

Q = {z, )(),(),( zFzIzT QQQ   zU} 

where, )(xTQ , )(xIQ , )(xFQ : U  [0, 1] denote the degree of membership, the degree of 

indeterminacy, and the degree of falsity-membership respectively of a point zU to the set Q 

satisfying the condition and 0  )(xTQ + )(xIQ + )(xFQ  3 for each point z U. 

2.3 Single valued neutrosophic refined sets [24] 

A SVNRS R in the universe U = {z1, z2, …, zn} is defined as follows: 

R = { ))(...,),(),(( )),(...,),(),(()),(...,),(),((, 212121 zFzFzFzIzIzIzTzTzTz sRRRsRRRsRRR  zU} 

where )(...,),(),( 21 zTzTzT sRRR :U  [0, 1], )(...,),(),( 21 zIzIzI sRRR : U  [0, 1], 

)(...,),(),( 21 zFzFzF sRRR : U  [0, 1] such that 0  )(zTiR + )(zIiR + )(zFiR  3for i = 1, 2, …, s. 

where, s is said to be the dimension of R. 

Definition 2.1 [24]: Let R1 and R2 be two SVRNSs in U, where 

R1 = { ))(...,),(),(( )),(...,),(),(()),(...,),(),((,
111111111 212121 zFzFzFzIzIzIzTzTzTz sRRRsRRRsRRR

 zU}, 

 

R2 = { ))(...,),(),(( )),(...,),(),(()),(...,),(),((,
222222222 212121 zFzFzFzIzIzIzTzTzTz sRRRsRRRsRRR

 zU}, then 

the relations between R1 and R2 are presented as follows: 

(1). Containment: 

R1  R2, if and only if )(
1

zTiR  )(
2

zTiR , )(
1

zIiR  )(
2

zIiR , )(
1

zFiR  )(
2

zFiR  for i = 1, 2, …, s. 

(2). Equality:  

R1= R2, if and only if )(
1

zTiR = )(
2

zTiR , )(
1

zIiR = )(
2

zIiR , )(
1

zFiR = )(
2

zFiR  for i = 1, 2, …, s. 

(3). Union: 

R1  R2 = { ))()(( )),()(()),()((,
212121

zFzFzIzIzTzTz iRiRiRiRiRiR   zU} for i = 1, 2, …, s. 
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(4). Intersection: 

R1  R2 = { ))()(( )),()(()),()((,
212121

zFzFzIzIzTzTz iRiRiRiRiRiR   zU} for i = 1, 2, …, s. 

3. Hybrid vector similarity measures of SVRNSs  

Definition 3.1 [37]: Let P = {z, )(),(),(P zFzIzT PP  zU} and Q = {z, )(),(I),( zFzzT QQQ  

zU} be two SVNSs (non-refined) in the universe of discourse U. Then, the Dice similarity 

measure of SVNSs is defined as follows. 

Dice (P, Q) = 


n

in 1

1

 2

Q

2

Q

2

Q

2

P

2

P

2

P ))(())(())(())(())(())((

))().()().()().((2

iiiiii

iQiPiQiPiQiP

zFzIzTzFzIzT

zFzFzIzIzTzT




             (1) 

and if wi [0, 1] be the weight of zi for i = 1, 2, …, n such that 


n

i
iw

1
= 1, then the weighted Dice 

similarity measure of SVNSs can be defined as follows. 

Dicew (P, Q) = 


n

i
iw

1  2

Q

2

Q

2

Q

2

P

2

P

2

P ))(())(())(())(())(())((

))().()().()().((2

iiiiii

iQiPiQiPiQiP

zFzIzTzFzIzT

zFzFzIzIzTzT




            (2) 

Definition 3.2 [38]: Let P = {z, )(F),(I),(TP zzz PP  zU} and Q = {z, )(F),(I),(T zzz QQQ  

zU} be two SVNSs (non-refined) in the universe of discourse U = {z1, z2, …, zn}. Then, the 

cosine similarity measure of SVNSs is defined as given below. 

Cos (P, Q) = 


n

in 1

1

 222

Q

222 ))(())(())((.))(())(())((

))().()().()()((

iQiQiiPiPiP

iQiPiQiPiQiP

zFzIzTzFzIzT

zFzFzIzIz.TzT




             (3) 

and if wi [0, 1] be the weight of zi for i = 1, 2, …, n satisfying 


n

i
iw

1
= 1, then the weighted 

cosine similarity measure of SVNSs can be defined as follows. 

Cosw (P, Q) = 


n

i
iw

1  222

Q

222 ))(())(())((.))(())(())((

))().()().()()((

iQiQiiPiPiP

iQiPiQiPiQiP

zFzIzTzFzIzT

zFzFzIzIz.TzT




         (4) 
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Definition 3.3 [10]: Hybrid vector similarity measure of SVNSs 

Consider Q1 = {z, )(),(),(
111

zFzIzT QQQ  zU} and Q2 = {z, )(),(),(
222

zFzIzT QQQ  zU} be 

two SVNSs in U. Then, the hybrid vector similarity measure of Q1 and Q2 is defined as follows: 

Hyb (Q1, Q2) = 
n

1  

 


































n

i
iQiQiQiPiPiP

iQiQiQiQiQiQ

iiiiii

iQiQiQiQiQiQn

i

zFzIzTzFzIzT

zFzFzIzIzTzT

zFzIzTzFzIzT

zFzFzIzIzTzT

1 222222

2

Q

2

Q

2

Q

2

P

2

P

2

P
1

))(())(())((.))(())(())((

))().()().()().((
)1(

))(())(())(())(())(())((

))().()().()().((2

212121

212121





   (5) 

where  [0, 1]. 

Definition 3.4 [10]: Weighted hybrid vector similarity measure of SVNSs 

The weighted hybrid vector similarity measure of Q1 = {z, )(F),(I),(T
111

zzz QQQ  zU} and Q2 

= {z, )(F),(I),(T
222

zzz QQQ  zU} can be defined as follows: 

WHyb (Q1, Q2) = 
 

 


































n

i
iiiiii

iQiQiQiQiQiQ

i

iiiiii

iQiQiQiQiQiQn

i
i

zFzIzTzFzIzT

zFzFzIzIzTzT
w

zFzIzTzFzIzT

zFzFzIzIzTzT
w

1 2

Q

2

Q

2

Q

2

P

2

P

2

P

2

Q

2

Q

2

Q

2

P

2

P

2

P
1

))(())(())((.))(())(())((

))().()().()().((
)1(

))(())(())(())(())(())((

))().()().()().((2

212121

212121





    (6) 

where wi [0, 1] be the weight of zi for i = 1, 2, …, n such that 


n

i
iw

1
= 1, and  [0, 1]. 

Definition 3.5 [24]: Dice similarity measure between two SVNRSs Q1, Q2 is defined as follows. 

DiceSVRNS (Q1, Q2) 

= 


p

jp 1

1

 















 )))(())(())((()))(())(())(((

))().()().()().((21
2j

Q

2j

Q

2j

Q

2j

Q

2j

Q

2j

Q

j

Q

j

Q

j

Q

j

Q

1
222111

212121

iiiiii

i

j

Qi

j

Qiiiin

i zFzIzTzFzIzT

zFzFzIzIzTzT

n
          (7) 

Definition 3.6 [24]: Weighted Dice similarity measure between two SVNRSs Q1, Q2 is presented 

as follows. 
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WDiceSVRNS (Q1, Q2) 

= 


p

jp 1

1

 















 )))(())(())((()))(())(())(((

))().()().()().((2
2j

Q

2j

Q

2j

Q

2j

Q

2j

Q

2j

Q

j

Q

j

Q

j

Q

j

Q

1
222111

212121

iiiiii

i

j

Qi

j

Qiiiin

i
i

zFzIzTzFzIzT

zFzFzIzIzTzT
w         (8) 

Definition 3.7: Cosine similarity measure between two SVNRSs Q1, Q2 can be defined in the 

following way: 

CosSVRNS (Q1, Q2) 

= 


p

jp 1

1

 



















n

i
iiiiii

i

j

Qi

j

Qiiii

zFzIzTzFzIzT

zFzFzIzIzTzT

n 1 2j

Q

2j

Q

2j

Q

2j

Q

2j

Q

2j

Q

j

Q

j

Q

j

Q

j

Q

)))(())(())(().))(())(())(((

))().()().()().((1

222111

212121 .     (9) 

Proposition 3.1 The defined cosine similarity measure CosSVNRS (Q1, Q2) between SVRNSs 

Q1and Q2 satisfies the following properties: 

P1. 0  CosSVRNS (Q1, Q2) 1 

P2. CosSVRNS (Q1, Q2) = 1, if and only if Q1 = Q2  

P3. CosSVRNS (Q1, Q2) = CosSVRNS (Q2, Q1).  

Proof. 

 P1: According to Cauchy-Schwarz inequality: 

)...).(...()......( 22

2

2

1

22

2

2

1

2

2211 nnnn   , where n

n ),...,,( 21   

and n

n ),...,,( 21  , we have 

))().()().()().(( iQiPiQiPiQiP zFzFzIzIzTzT    

2222

P

2

P

2

P ))(())(())((.))(())(())(( iQiQiQiii zFzIzTzFzIzT   
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Therefore, 


n

in 1

1

 222222 ))(())(())((.))(())(())((

))().()().()().((

iQiQiQiPiPiP

iQiPiQiPiQiP

zFzIzTzFzIzT

zFzFzIzIzTzT




1, 

So, CosSVRNS  (Q1, Q2) = 




p

jp 1

1

 



















n

i
i

j

Qi

j

Qi

j

Qi

j

Qi

j

Qi

j

Q

i

j

Qi

j

Qi

j

Qi

j

Qi

j

Qi

j

Q

zFzIzTzF(zzT

zFzFzIzIzTzT

n 1 222222 )))(())(())(().))(())I())(((

))().()().()().((1

222111

212121 1, 

Obviously, CosSVRNS (Q1, Q2) 0, thus 0  CosSVRNS (Q1, Q2) 1 

P2: If Q1 = Q2, then, )()(
21 i

j

Qi

j

Q zTzT  , )()(
21 i

j

Qi

j

Q zIzI  and )()(
21 i

j

Qi

j

Q zFzF  for i = 1, 2, …, n; j = 

1, 2, …, p. 

Therefore, CosSVRNS (Q1, Q1) = 




p

jp 1

1

 



















n

i
i

j

Qi

j

Qi

j

Qi

j

Qi

j

Qi

j

Q

i

j

Qi

j

Qi

j

Qii

j

Qi

j

Q

zFzIzTzFzIzT

zFzFzIzIzTzT

n 1 222222

j

Q

)))(())(())(().))(())(())(((

))().()().()().((1

111111

111111 =1. 

P3: CosSVRNS  (Q1, Q2) = 




p

jp 1

1

 



















n

i
i

j

Qi

j

Qi

j

Qi

j

Qi

j

Qi

j

Q

i

j

Qi

j

Qi

j

Qi

j

Qi

j

Qi

j

Q

zFzIzTzF(zzT

zFzFzIzIzTzT

n 1 222222 )))(())(())(().))(())I())(((

))().()().()().((1

222111

212121 = 




p

jp 1

1

 



















n

i

i

j

Qi

j

Qi

j

Qi

j

Qi

j

Qi

j

Q

i

j

Qi

j

Qi

j

Qi

j

Qi

j

Qi

j

Q

zFzIzTzF(zzT

zFzFzIzIzTzT

n 1 222222 )))(())(())(().))(())I())(((

))().()().()().((1

111222

121212 = 

CosSVRNS  (Q2, Q1). 

Definition 3.8: Weighted cosine similarity measure between SVNRSs Q1, Q2 can be defined as 

follows: 

WCosSVRNS (Q1, Q2) 

= 


p

jp 1

1
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Proposition 3.2 The defined weighted cosine similarity measure WCosSVNRS (Q1, Q2) between 

SVRNSs Q1and Q2 satisfies the following properties:  

P1. 0  WCosSVRNS (Q1, Q2) 1 

P2. WCosSVRNS (Q1, Q2) = 1, if and only if Q1 = Q2  

P3. WCosSVRNS (Q1, Q2) = CosSVRNS (Q2, Q1) 

Proof.  

P1: From Cauchy-Schwarz inequality, we have 

))().()().()().(( iQiPiQiPiQiP zFzFzIzIzTzT    
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1, wi [0, 1] and 
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1
= 1. 
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where wi [0, 1] be the weight of zi for i = 1, 2, …, n such that 


n

i
iw

1
= 1. Obviously, WCosSVRNS 

(Q1, Q2) 0, and therefore 0  WCosSVRNS (Q1, Q2) 1 

P2: If Q1 = Q2, then, )()(
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Q zIzI  and )()(
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Q zFzF  for i = 1, 2, …, n; j = 

1, 2, …, p. 
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= WCosSVRNS  (Q2, Q1). 

Next, we have defined hybrid vector similarity methods between SVRNSs by extending the 

concept of Pramanik et al. [10] as given below. 

Definition 3.9: Hybrid vector similarity measure between SVNRSs Q1, Q2 can be defined as 

follows: 
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

  (11) 

where  [0, 1]. 

Proposition 3.3 The defined single valued refined hybrid vector similarity measure HybSVNRS 

(Q1, Q2) between two SVRNSs Q1and Q2 satisfies the following properties:  

P1. 0  HybSVRNS (Q1, Q2) 1 
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P2. HybSVRNS (Q1, Q2) = 1, if and only if Q1 = Q2.  

P3. HybSVRNS (Q1, Q2) = HybSVRNS (Q2, Q1).  

Proof. 

P1. From Dice and cosine measures of SVRNSs defined in Eq. (7) and Eq. (9), we have 
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Here, ( ) DiceSVRNS (Q1, Q2) + (1- ) CosSVRNS (Q1, Q2)  

= 

( )
n

1

 

















 2222221 ))(())(())(())(())(())((

))().()().()().((2

222111

212121

i

j

Qi

j

Qi

j

Qi

j

Qi

j

Qi

j

Q

i

j

Qi

j

Qi

j

Qi

j

Qi

j

Qi

j

Qn

i zFzIzTzFzIzT

zFzFzIzIzTzT
+      

(1- )
n

1

 



















n

i
i

j

Qi

j

Qi

j

Qi

j

Qi

j

Qi

j

Q

i

j

Qi

j

Qi

j

Qi

j

Qi

j

Qi

j

Q

zFzIzTzFzIzT

zFzFzIzIzTzT

1 222222 ))(())(())((.))(())(())((

))().()().()().((

222111

212121  

  + (1- )  

= 1, for j = 1, 2, …, p. 

Therefore, HybSVRNS (Q1, Q2) 
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1. 

Also, DiceSVRNS (Q1, Q2), CosSVRNS (Q1, Q2) 0, for j = 1, 2, …, p .  

Obviously, HybSVRNS (Q1, Q2) 0. 

 This proves that 0  HybSVNRS (Q1, Q2) 1. 

P2. For any two SVNRSs Q1and Q2, if Q1 = Q2, this implies )(
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                                 =1, for j = 1, 2, …, p. 

 Hence, HybSVRNS (Q1, Q2) =1. 
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= HybSVRNS (Q2, Q1). 
 

Definition 10: Weighted hybrid vector similarity measure between SVRNSs can be defined as 

follows. 
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Here, wi [0, 1] represents the weight of zi for i = 1, 2, …, n such that 


n

i
iw

1
= 1,  

where  [0, 1], and WHybw (Q1, Q2) should satisfy the following properties. 

Proposition 3.4 

P1. 0  WHybw (Q1, Q2) 1. 

P2. WHybw (Q1, Q2) = 1, if and only if Q1 = Q2.  

P3. WHybw (Q1, Q2) = WHybw (Q2, Q1).  

Proof. 

P1. Using Dice and cosine measures of SVRNSs, we have 0DiceSVRNS (Q1, Q2) 1, 0CosSVRNS 

(Q1, Q2) 1. 
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  + (1- ) = 1, for j = 1, 2, …, p. 
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1. 

DiceSVRNS (Q1, Q2), CosSVRNS (Q1, Q2) 0, for j = 1, 2, …, p .  

Obviously, WHybw (Q1, Q2)0, therefore 0  WHybw (Q1, Q2)1. 
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=1, for j = 1, 2, …, p.  

Hence, WHybw (Q1, Q2) =1. 
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4. MADM with single valued refined neutrosophic information based on 

hybrid similarity measure  

Consider P = {P1, P2, …, Pm} (m  2) be a discrete set of m candidates,  C = {C1, C2, …, 

Cn}, (n  2) be the set of attributes of each candidates, and  A = {A1, A2, …, Ak}, (k  2) be the set 

of alternatives of each candidate. The decision maker or expert presents the ranking of 

alternatives with regard to each candidate. The ranking represents the performances of Pi, i = 1, 

2, …, m against the attributes Cj, j = 1, 2, …, n and w = (w1, w2, …, wn)
T be the weight vector of 

the attributes Cj, j = 1, 2, …, n with 0wj1 and 


n
w

1j
j = 1. The relation between candidates and 

attributes, and the relation between attributes and alternatives can be presented as follows (see 

Table 1 and Table 2 respectively).  

 

 



17 

 

17 

 

Table 1. The relation between candidates and pre-defined attributes 
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where t

11β = t

ij

t

ij

t

ij ,, FIT represents single valued neutrosophic numbers (SVNNs), i = 1, 2, …, m; 

j = 1, 2, …, n; t = 1, 2, …, s. 

Table 2. The relation between attributes and alternatives 
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Here, j =  jjj ,, FIT denotes SVNNs, j = 1, 2, …, n;  = 1, 2, …, k. 

We now develop two algorithms for MADM problems based on hybrid similarity 

measure with single valued refined neutrosophic information as given below. 

Algorithm 1 

Step 1. Calculate the single valued refined hybrid similarity measures between Table 1 and 

Table 2 by using Eq. (11). 

Step 2. Rank the alternatives based on the descending order of hybrid similarity measures. The 

biggest value reflects the best alternative. 
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Step 3. Stop. 

Algorithm 2 

Step 1. Compute the single valued refined weighted hybrid similarity measure between Table 1 

and Table 2 by means of Eq. (12). 

Step 2. The alternatives are ranked in descending order of the weighted hybrid similarity 

measures and the bigger value means the better alternative. 

Step 3. Stop. 

5. Application of the proposed method to medical diagnosis problem 

We consider the illustrative example of medical diagnosis with single valued refined 

neutrosophic information studied in [33]. Medical diagnosis has to deal with a large amount of 

uncertainties and huge amount of information available to the medical practitioners using new 

and advanced technologies. The procedure of classifying dissimilar set of symptoms under a 

single name of diseases is not easy [21]. Also, it is possible that every object has different truth, 

indeterminate and false membership functions and the proposed similarity measures among the 

patients versus symptoms and symptoms versus diseases will provide the appropriate medical 

diagnosis. In practical situation, there may occur errors in diagnosis if we consider data from one 

time observation and therefore multi time inspection, by considering the samples of same patient 

at different times will provide best medical diagnosis [39]. 

Consider P = {P1, P2, P3, P4} be the set of four patients, C = {viral fever, malaria, 

typhoid, stomach problem, chest problem} be the set of five diseases, A = {temperature, 

headache, stomach pain, cough, chest pain} be the set of six symptoms. Now our objective is to 

examine the patient at different time intervals and we will obtain different truth, indeterminate 

and false membership functions for every patient. Let three observations are taken in a day: 7 

am, 1 pm and 6 pm (see the Table 3) [33]. 
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Table 3. The relation between patients and symptoms 

 Temperature Headache Stomach  pain Cough Chest pain 

P1 (0.8, 0.1, 0.1) 

(0.6, 0.3, 0.3) 

(0.6, 0.3, 0.1) 

(0.6, 0.1, 0.3) 

(0.5, 0.2, 0.4) 

(0.5, 0.1, 0.2) 

(0.2, 0.8, 0.0) 

(0.3, 0.5, 0.2) 

(0.2, 0.3, 0.4) 

(0.6, 0.1, 0.3) 

(0.4, 0.4, 0.4) 

(0.4, 0.3, 0.3) 

(0.1, 0.6, 0.3) 

(0.3, 0.4, 0.5) 

(0.2, 0.5, 0.4) 

P2 (0.0, 0.8, 0.2) 

(0.2, 0.6, 0.4) 

(0.1, 0.6, 0.4) 

(0.4, 0.4, 0.2) 

(0.5, 0.4, 0.1) 

(0.4, 0.6, 0.3) 

(0.6, 0.1, 0.3) 

(0.4, 0.2, 0.5) 

(0.3, 0.2, 0.4) 

(0.1, 0.7, 0.2) 

(0.2, 0.7, 0.5) 

(0.3, 0.5, 0.4) 

(0.1, 0.8, 0.1) 

(0.3, 0.6, 0.4) 

(0.3, 0.6, 0.3) 

P3 (0.8, 0.1, 0.1) 

(0.6, 0.4, 0.1) 

(0.5, 0.3, 0.3) 

(0.8, 0.1, 0.1) 

(0.6, 0.2, 0.4) 

(0.6, 0.1, 0.3) 

(0.0, 0.6, 0.4) 

(0.2, 0.5, 0.5) 

(0.3, 0.4, 0.6) 

(0.2, 0.7, 0.1) 

(0.2, 0.5, 0.5) 

(0.1, 0.6, 0.3) 

(0.0, 0.5, 0.5) 

(0.2, 0.5, 0.3) 

(0.3, 0.3, 0.4) 

P4 (0.6, 0.1, 0.3) 

(0.4, 0.3, 0.2) 

(0.5, 0.2, 0.3) 

(0.5, 0.4, 0.1) 

(0.4, 0.4, 0.4) 

(0.5, 0.2, 0.4) 

(0.3, 0.4, 0.3) 

(0.2, 0.4, 0.5) 

(0.1, 0.5, 0.4) 

(0.7, 0.2, 0.1) 

(0.5, 0.2, 0.4) 

(0.6, 0.4, 0.1) 

(0.3, 0.4, 0.3) 

(0.4, 0.3, 0.4) 

(0.3, 0.5, 0.5) 

The relation between symptoms and diseases in the form single valued neutrosophic assessments 

is given in the Table 4 below. 

Table 4. The relation between symptoms and diseases 

 Viral fever Malaria Typhoid Stomach problem Chest problem 

Temperature (0.6, 0.3, 0.3) (0.2, 0.5, 0.3) 

 

(0.2, 0.6, 0.4) (0.1, 0.6, 0.6) 

 

(0.1, 0.6, 0.4) 

 

Headache (0.4, 0.5, 0.3) (0.2, 0.6, 0.4) 

 

(0.1, 0.5, 0.4) 

 

(0.2, 0.4, 0.6) 

 

(0.1, 0.6, 0.4) 

 

Stomach  

pain 

(0.1, 0.6, 0.3) (0.0, 0.6, 0.4) 

 

(0.2, 0.5, 0.5) 

 

(0.8, 0.2, 0.2) 

 

(0.1, 0.7, 0.1) 

Cough (0.4, 0.4, 0.4) 

 

(0.4, 0.1, 0.5) 

 

(0.2, 0.5, 0.5) 

 

(0.1, 0.7, 0.4) 

 

(0.4, 0.5, 0.4) 

 

Chest pain (0.1, 0.7, 0.4) 

 

(0.1, 0.6, 0.3) 

 

(0.1, 0.6, 0.4) 

 

(0.1, 0.7, 0.4) 

 

(0.8, 0.2, 0.2) 

 

 

Now by using Eq. (11), Hybrid vector refined similarity measures (HVRSM) by considering = 

0.5 between Relation 1 and Relation 2 are presented as given below (see the Table 5). 

Table 5. HVRSM between Relation 1 and Relation 2 

 Viral fever Malaria Typhoid Stomach problem Chest problem 

P1 0.9033 0.7953 

 

0.7676 0.6809 

 

0.6809 

 

P2 0.8135 0.7981 

 
0.8892 

 

0.8880 

 

0.7446 

 

P3 0.8846 0.7418 

 

0.7959 

 

0.7074 

 

0.6535 

P4 0.9116 

 

0.8231 

 

0.8031 

 

0.6898 

 

0.7526 
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The maximal HVRSM from Table 5 determines the proper medical diagnosis. Therefore, from 

Table 5, we observe that P1, P3, P4 suffer from viral fever, and P2 suffers from typhoid. 

Also, using Eq. (12), weighted hybrid vector refined similarity measures (WHVRSM) with 

known weight information w = (0.3, 0.2, 0.15, 0.2, 0.15) and  = 0.5 between Relation 1 and 

Relation 2 are presented as given below (see the Table 6). 

Table 6. Weighted hybrid vector refined similarity measure (WHVRSM) between Relation 1 and Relation 2 

 Viral fever Malaria Typhoid Stomach problem Chest problem 

P1 0.9078 0.7721 

 

0.7383 0.6533 

 

0.6607 

 

P2 0.7994 0.8165 0.8989 

 

0.8919 

 

0.7909 

 

P3 0.8879 0.7189 

 

0.7664 

 

0.6886 

 

0.6423 

P4 0.9189 

 

0.8030 

 

0.7814 

 

0.6788 

 

0.7326 

 

 

Here, we also see that P1, P3, P4 suffer from viral fever, and P2 suffers from typhoid. 

 By using Eqs. (11) and (12), HVRSMs and WHVRSMs with different values of between 

Relation 1 and Relation 2 are presented in the following Tables 7-14 and which patient suffers 

from which disease is indicated by  mark below the Tables. 

Table 7. HVRSM between Relation 1 and Relation 2 when  = 0.1 

 Viral fever Malaria Typhoid Stomach problem Chest problem 

P1 0.9059 0.7987 

 

0.7706 0.6904 

 

0.6849 

 

P2 0.8156 0.8033 0.8917 

 
0.8931 

 

0.7467 

 

P3 0.8880 0.7434 

 

0.7976 

 

0.7118 

 

0.6562 

P4 0.9157 

 

0.8301 

 

0.8066 

 

0.6979 

 

0.7571 

 

P1  Viral fever, P2  Stomach problem, P3  Viral fever, P4  Viral fever 
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Table 8. HVRSM between Relation 1 and Relation 2 when  = 0.25 

  Viral fever Malaria Typhoid Stomach problem Chest problem 

P1 0.9049 0.7974 

 

0.7695 0.6868 

 

0.6834 

 

P2 0.8148 0.8014 0.8908 

 
0.8912 

 

0.7459 

 

P3 0.8867 0.7428 

 

0.7970 

 

0.7102 

 

0.6552 

P4 0.9142 

 

0.8274 

 

0.8053 

 

0.6949 

 

0.7554 

 

P1  Viral fever, P2  Stomach problem, P3  Viral fever, P4  Viral fever 

Table 9. HVRSM between Relation 1 and Relation 2 when  = 0.75 

  Viral fever Malaria Typhoid Stomach problem Chest problem 

P1 0.9016 0.7931 

 

0.7658 0.6750 

 

0.6784 

 

P2 0.8122 0.7948 0.8876 

 

0.8848 

 

0.7434 

 

P3 0.8825 0.7408 

 

0.7949 

 

0.7047 

 

0.6517 

P4 0.9090 

 

0.8187 

 

0.8009 

 

0.6847 

 

0.7498 

 

P1  Viral fever, P2  Typhoid, P3  Viral fever, P4  Viral fever 

Table 10. HVRSM between Relation 1 and Relation 2 when  = 0.90 

  Viral fever Malaria Typhoid Stomach problem Chest problem 

P1 0.9006 0.7918 

 

0.7647 0.6714 

 

0.6769 

 

P2 0.8114 0.7928 0.8867 

 

0.8829 

 

0.7426 

 

P3 0.8813 0.7401 

 

0.7942 

 

0.7030 

 

0.6507 

P4 0.9075 

 

0.8161 

 

0.7996 

 

0.6816 

 

0.7482 

 

P1  Viral fever, P2  Typhoid, P3  Viral fever, P4  Viral fever 

Table 11. WHVRSM between Relation 1 and Relation 2 when  = 0.1 

 Viral fever Malaria Typhoid Stomach problem Chest problem 

P1 0.9136 0.7756 

 

0.7409 0.6616 

 

0.6641 

 

P2 0.8014 0.8224 0.9012 

 

0.8966 

 

0.7890 

 

P3 0.8907 0.7208 

  

0.7679 

 

0.6926 

 

0.6448 

P4 0.9233 

 

0.8170 

 

0.7852 

 

0.6875 

 

0.7408 

 

P1  Viral fever, P2  Typhoid, P3  Viral fever, P4  Viral fever 
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Table 12. WHVRSM between Relation 1 and Relation 2 when  = 0.25 

 Viral fever Malaria Typhoid Stomach problem Chest problem 

P1 0.9114 0.7743 

 

0.7399 0.6585 

 

0.6628 

 

P2 0.8006 0.8202 0.9003 

 

0.8948 

 

0.7920 

 

P3 0.8397 0.7201 

 

0.7673 

 

0.6911 

 

0.6438 

P4 0.9217 

 

0.8162 

 

0.7838 

 

0.6842 

 

0.7378 

 

P1  Viral fever, P2  Typhoid, P3  Viral fever, P4  Viral fever 

Table 13. WHVRSM between Relation 1 and Relation 2 when  = 0.75 

 Viral fever Malaria Typhoid Stomach problem Chest problem 

P1 0.9041 0.7698 

 

0.7366 0.6482 

 

0.6585 

 

P2 0.7981 0.8128 0.8975 

 

0.8890 

 

0.7897 

 

P3 0.8695 0.7178 

 

0.7655 

 

0.6861 

 

0.6408 

P4 0.9162 

 

0.8138 

 

0.7790 

 

0.6734 

 

0.7274 

 

P1  Viral fever, P2  Typhoid, P3  Viral fever, P4  Viral fever 

 

Table 14. WHVRSM between Relation 1 and Relation 2 when  = 0.90 

 Viral fever Malaria Typhoid Stomach problem Chest problem 

P1 0.9019 0.7685 

 

0.7356 0.6451 

 

0.6572 

 

P2 0.7974 0.8106 0.8967 

 

0.8873 

 

0.7890 

 

P3 0.8785 0.7171 

 

0.7649 

 

0.6846 

 

0.6400 

P4 0.9145 

 

0.8130 

 

0.7775 

 

0.6702 

 

0.7243 

 

P1  Viral fever, P2  Typhoid, P3  Viral fever, P4  Viral fever 

Note 1. By using neutrosophic refined tangent similarity measure, Mondal and Pramanik [33] 

obtained the results as shown in Table 15. 
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Table 15. The tangent refined similarity measure between Relation – 1 and Relation – 2 [32] 

 Viral fever Malaria Typhoid Stomach problem Chest problem 

P1 0.8963 0.8312 

 

0.8237 0.8015 

 

0.7778 

 

P2 0.8404 0.8386 0.8877 

 

0.8768 

 

0.8049 

 

P3 0.8643 0.8091 

 

0.8393 

 

0.7620 

 

0.7540 

P4 0.8893 

 

0.8465 

 

0.8335 

 

0.7565 

 

0.7959 

 

P1  Viral fever, P2  Typhoid, P3  Viral fever, P4  Viral fever 

From the above Table 15, we found that P1, P3, P4 suffer from viral fever, and P2 suffers from 

typhoid. 

5. Conclusion 

We investigate hybrid vector similarity and weighted hybrid vector similarity measures 

with single valued refined neutrosophic assessments and proved some of their basic properties.  

Then, the proposed hybrid similarity measures have been used to solve a medical diagnosis 

problem. We compare the obtained results with different values of the parameter and with the 

results of other existing method in order to verify the effectiveness of the proposed procedure. 

We hope that the proposed hybrid vector similarity measure can be applied to solve decision 

making problems in neutrosophic environment such as fault diagnosis, cluster analysis, data 

mining, investment, etc. 
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