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Abstract

Castillo demonstrates an important case of successful superposition of elliptically-polarised light by
moving to spinor representations of electromagnetic plane waves: when the angle between the two unit
spinors as represented on a Poincare sphere are (as a complex number) either 1, -1, i or -i. This paper
demonstrates that there are additional conditions under which superposition is successful: phase-shifting of
one of the waves by π/4 prior to superposition. Two and three superpositions are shown, and the candidate
con�gurations for each are listed. The result is signi�cant for Particle Physics at least, in that Castillo
and Rubalcava-Garcia's prior work show a correspondance between Jones Calculus and SU(2), and gives a
direct mapping between Jones and Pauli Matrices.

1 Introduction

Let τ = 2π! [7] Superposition of identical frequency elliptically-polarised Jones Vectors may easily be
demonstrated to be the sum of the Jones Vectors, in a non-constructive, non-destructive simple fashion if the
phase di�erence between the two is zero or τ/2. Castillo [5] in equation (34) demonstrates a more general
result that includes a phase di�erential of τ/4 and −τ/4, or where, if the vectors are represented as spinors,
one vector's angle minus the other modulo τ/2 is zero. In these circumstances the vector's magnitude uses
pythagoras in e�ect to calculate the magnitude of the superposition result.

We show in this paper that there are special circumstances (certain very speci�c Jones Vectors) that, if
one of them is �rst phase-shifted by τ/4, will also successfully superimpose and meet Castillo's conditions
outlined in equation (34).

Jones vectors are normally expressed as follows:

Ex̂ = E0x̂e
−i(kz−ωt+ψx̂) (1)

However Castillo and Rubalcava-Garcia's in [4] equation (7) move them to spinors. Here is Castillo's
equation (34):

A2 = A2
1 +A2

2 + 2A1A2 cos
1

2
(Θ) cos

1

2
(X + Φ) (2)

where A is the superposition result Ex̂, A1 and A2 are the two elliptical vectors being superimposed, Θ is
the angle about z between the two vectors (including phase delay), X is the phase of A1 and Φ is likewise the
phase of A2.

First we will show superposition conditions of two elliptically-polarised plane waves, and once that result
is achieved we then demonstrate three.

2 Two superpositions

The key is that we are looking for conditions where either cos(Θ/2) is zero or X + Φ modulu τ is zero. From
intuition and symmetry we suspect that a phase shift of 6/12τ is the key. First however we must derive an
equation similar to 2 except incorporating a phase-shift. From section 3.1 of [4] a rotation of δ is equivalent
to multiplying by e−iδ/2. If we then apply that to A2 the end result is:

A2 = A2
1 +A2

2 + 2A1A2 cos
1

2
(Θ + δ) cos

1

2
(X + Φ + δ/2) (3)

Note that whilst the angle between the two has been increased by a factor of δ, the tangent vectors have
been separated only by a factor half that amount. This is very important as we will see, later.

Two known candidates which have been noted to successfully superimpose are when X = τ/12 and
Φ = 2τ/12. In our �rst attempt, Φ now has been phase-shifted by an additional 3τ/12, and Θ by 6τ/12.

Substituting these into equation 3 we get:

A2 = A2
1 +A2

2 + 2 cos
1

2
(1τ/12 + 6τ/12) cos

1

2
(1τ/12 + 2τ/12 + 3τ/12) (4)

With X + Φ + δ/2 equal to 6/12τ , this satis�es Castillo's conditions because cos(3/12τ) is zero. Thus, we
demonstrate that two monochromatic elliptically-polarised waves of angle 1/12τ and 2/12τ may successfully
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superimpose if the second has its phase advanced in relation to the �rst by exactly 3/12τ , which happens
when the second wave is shifted forward by 6/12τ . There are four other such positions that may easily be
demonstrated to also superimpose by rotating both waves by multiples of 3/12τ . The cases where the �rst
angle is opposite to the second were already demonstrated to superimpose through Castillo's original work:
these are where each wave is a mirror-image along either the real or imaginary axes.

Intuitively we may view this as being a naturally-expected result: �rstly these are two waves being super-
imposed, so having to o�set one of them by 180 degrees should not be too much of a shock. The second part
is that the resultant superposition's vector may be viewed as being the vector between the two end-points of
the contributing vectors, after one of them is rotated by 90 degrees. Thus the superposition is in e�ect the
completion of an equilateral triangle. This is an important insight that becomes relevant for triple superpo-
sition, but also helps explain for example why −2/12τ with 2/12τ is not in the list of candidates from our
independent source.

3 Three superpositions

From an independent source it is suspected that there exist precisely a total of sixteen potential candidate
triple-superpositions (plus mirrors about the complex numberplane) which �t the above derived rules. The
actual number of permutations of 1/12τ subdivisions would seem to make a total of 312 candidates, however
the rules above need to be applied (and satis�ed) a total of four separate and distinct simultaneous times:

• Between waves 1 and 2

• Between waves 2 and 3

• Between waves 3 and 1

• Finally between all three waves

The number of combinations is therefore extremely rapidly narrowed down. The key selection criteria is
that the Jones Vectors must (prior to even attempting to carry out the con�rmation) is to eliminate anything
where the constituent vectors do not sum to one of the four "compass" points in the imaginary plane: 1, -1, i
or -i. or where they sum to one of the other source vectors, thus forming a Group. This criteria alone turns
out to be su�cient to eliminate all but sixteen permutations (sixteen more being mirror-images of the same)
- see Table 1.

It is worthwhile noting that the mirror-images also form a Group, where the overlap between the two
Groups is solely on the major compass points. Also, we may wonder why there are no permutations such as
for example 10/12 2/12 n/12 but from the above 2-superposition section we can conclude that the reason why
there are no 10/12 2/12 permutations is because the distance between the end-points of 10/12 and 2/12 do not
make a unit vector. Put another way: only those candidates which somehow involve an equilateral triangle
are possible.

So after successful use of 6/12τ we might guess that with three waves to superimose, a phase o�set of 8/12τ
would work. Looking at the �rst entry in the table, we choose to leave the �rst entry where it is, phase-o�set
the second by 8/12τ and phase-o�set the third by −8/12τ .

Taking the �rst and second wave, we set X = 1/12τ , Φ = 8/12τ (to be phase-shifted by 4/12τ). Θ
which was formerly 7/12τ (the di�erence between X and Φ) is phase-shifted by 8τ/12. Substituting these into
equation 3 we get:

A2 = A2
1 +A2

2 + 2 cos
1

2
(7τ/12 + 8τ/12) cos

1

2
(1τ/12 + 8τ/12 + 4τ/12) (5)

Surprisingly, this doesn't work. Instead, we try 6/12τ for the second wave. Taking the �rst and second
wave, we set X = 1/12τ , Φ = 8/12τ (to be phase-shifted by −3/12τ). Θ which was formerly 7/12τ (the
di�erence between X and Φ) is phase-shifted by −6τ/12. Substituting these into equation 3 we get:

A2 = A2
1 +A2

2 + 2 cos
1

2
(7τ/12 − 6τ/12) cos

1

2
(1τ/12 + 8τ/12 − 3τ/12) (6)

Now we have the second cosine equal to zero. Let us now try wave 2 and 3. Let X = 8/12τ (to be
phase-shifted by −3/12τ), Φ = 1/12τ (to be phase-shifted by −3/12τ). Θ which was formerly −7/12τ (the
di�erence between X and Φ) is phase-shifted by −6τ/12 for X but an additional −6τ/12 for Φ (which cancel
modulo τ). Substituting these into equation 3 we get:
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A2 = A2
1 +A2

2 + 2 cos
1

2
(−7τ/12) cos

1

2
(8τ/12 + 1τ/12 − 3τ/12 − 3τ/12) (7)

Surprisingly this doesn't work. Instead, let's try −6/12τ for wave 3, leaving wave 2 o�set by −6/12τ .
Let X = 8/12τ (to be phase-shifted by −3/12τ), Φ = 1/12τ (to be phase-shifted by −3/12τ). Θ which was
formerly −7/12τ (the di�erence between X and Φ) is phase-shifted by −6τ/12 for X but an additional −6τ/12
for Φ. Substituting these into equation 3 we get:

A2 = A2
1 +A2

2 + 2 cos
1

2
(−7τ/12 − 6/12τ − 66/12τ) cos

1

2
(8τ/12 + 1τ/12 − 3τ/12 − 3τ/12) (8)

Fascinating. It would seem that a phase retardation of 180 degrees has to be applied to both waves,
resulting in both X and Φ being retarded by 90. Let us last check wave 3 and 1.

Let X = 1/12τ (to be phase-shifted by −3/12τ), Φ = 1/12τ . Θ which was formerly 0/12τ (the di�erence
between X and Φ) is phase-shifted by −6τ/12. Substituting these into equation 3 we get:

A2 = A2
1 +A2

2 + 2 cos
1

2
(−6/12τ) cos

1

2
(1τ/12 + 1τ/12 − 3τ/12) (9)

Here it is the �rst cosine that is zero, instead of the second, due to them being identical but one rotated
by 180 degrees. Thus we have shown that three pairs of waves individually superimpose with each other. The
triple superposition is beyond the author's current ability to assess, attempts leading to incorrect answers.
Logically however it is reasonable to expect that if 1 superimposes with 2, 2 superimposes with 3 and 3
superimposes with 1, then 1, 2 and 3 also superimpose. It would be nice to have con�rmation of that, because
�nding out the sum of the three Jones Vectors is in itself an important mathematical result. It would also
be nice to generalise the above: we expect the result to be that the required phase o�sets is identical for all
sixteen (thirty two) waves.

4 Discussion

The author was genuinely anticipating to be demonstrating that the required phase o�sets were to be 8/12τ
so as to create equilateral triangles, because it was believed that the rotations would additionally o�set each
wave so that they would �t together at 60 degrees, neatly. However, from the independent source which is an
extension of a well-known particle physics theory, the result that the phase o�sets are 6/12τ thus rotating the
vector's angles by half that amount, is also an expected result, just in a di�erent area of the theory.

It does however make much more sense for the phase o�sets to result in the superpositions being orthogonal,
as that would mean that each wave's real and imaginary parts would not interfere with each other at any
time, thus creating the very conditions necessary for non-constructive, non-destructive superposition outlined
in Castillo's paper [4].

We note also that braiding order is important and has been demonstrated to be preserved [2]. In the
light of the above superposition result, preservation of braiding order begins to make sense. Also we note
Bekenstein and Kaminer et al's e�orts to superimpose gaussian beams to as to remain self-phase-coherent [3].
We suspect that here, again, the phase-coherent solutions that they found would �t the superposition criteria
noted here. Further we note that Tanas et al's Equation (4.58) is remarkably similar to Castillo's equation
(7), and therefore surmise that the analytical solutions described in this paper are those to which Tanas et al
are referring.

Lastly in summing up from the extension to the well-known particle physics model that inspired this inves-
tigation, we note that if Bekenstein and Kaminer's work results in a circular loop (which in other theoretical
work they successfully show), or if we may assume a Friedmann-Robertson-Walker spacetime of size identical to
the wavelength of the waves being superimposed, that whilst from the perspective of the elliptically-polarised
plane waves they would appear to be travelling on a straight line in cartesian coordinates, the fact that such
waves would in e�ect be in a curved, looped universe of exact circumference to �t their exact wavelength, we
literally have de�ned the exact conditions for elliptically-polarised photons to be the constituents of a particle.
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5 Appendix

Table 1: Permutations of triple phase superpositions under investigation.

Mirror-images (inversion of imaginary part) left out for simplicity.

1/12 8/12 1/12 re: 1 im: 0

7/12 4/12 7/12 re: -1 im: 0

8/12 1/12 8/12 re: 0 im: -1

4/12 7/12 4/12 re: 0 im: 1

1/12 8/12 3/12 re:-1/3 im:-2/3

7/12 4/12 9/12 re: 1/3 im: 2/3

8/12 1/12 6/12 re:-1/3 im:-2/3

4/12 7/12 0/12 re: 1/3 im: 2/3

1/12 3/12 9/12 re: 2/3 im: 1/3

7/12 9/12 3/12 re:-2/3 im:-1/3

8/12 1/12 0/12 re:-2/3 im:-1/3

4/12 7/12 6/12 re: 2/3 im: 1/3

0/12 6/12 0/12 re: -1 im: 0

6/12 0/12 6/12 re: 1 im: 0

3/12 9/12 3/12 re: 0 im: 1

9/12 3/12 9/12 re: 0 im: -1

Table 2: Permutations of dual phase superpositions under investigation.

Mirror-images (inversion of imaginary part) left out for simplicity.

1/12 2/12 re: 1 im: 1

7/12 8/12 re: -1 im: -1

1/12 7/12 re: 0 im: 0

2/12 8/12 re: 0 im: 0
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