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Abstract

As a step toward understanding why the Earth’s atmosphere “ro-

tates” with the Earth, we use Geometric (Clifford) Algebra to investigate

the trajectory of a single molecule that desorbs vertically upward from

the Equator, then falls back to Earth without colliding with any other

molecules. Sample calculations are presented for a molecule whose verti-

cal velocity is equal to the surface velocity of the Earth at the Equator

(463 m/s) and for one with a vertical velocity three times as high. The

latter velocity is sufficient for the molecule to reach the Kármán Line

(100,000 m). We find that both molecules fall to Earth behind the point

from which they desorbed: by 0.25 degrees of latitude for the higher

vertical velocity, but by only 0.001 degrees for the lower. An interac-

tive GeoGebra worksheet based upon this document can be accessed at

https://www.geogebra.org/m/tvw9UzhC

1 Introduction

A question sometimes asked in on-line science forums is,

The atmosphere must ‘spin’ with the rotating Earth, because if

the atmosphere didn’t, then people living at the Equator would

experience winds with a velocity of approximately 1600 km/hr.

But how can the atmosphere ‘spin’ ?”

An important part of the answer to that question is that what we refer

to as “the atmosphere” is a vast number of individual molecules. Those

molecules interact weakly with each other, forming what is essentially an

ideal gas. However, each is attracted gravitationally to the Earth.
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Why, then, don’t those molecules fall to the Earth, then bind to each

other and to molecules that make up rocks and soil, remaining there

forever? On a very cold planet, that is exactly what would happen. But

the surface temperature of the Earth is high enough to give the molecules

sufficient energy to desorb back into the atmosphere occasionally.

As an example, think of the molecules in a drop of water. Each has a

certain thermal energy, which causes it to vibrate back and forth within

the drop. However, not all have the same energy: the molecules’ energy

is Maxwell-Boltzman distributed. At any time, some of the molecules

vibrate vigorously enough to break free of the drop, thereby becoming

part of what we call the “atmosphere”.

What happens after a molecule desorbs into the atmosphere? Most

likely, it will collide with other air molecules within 60 nm of the spot

from which it desorbed [1] . Of course, each of those other molecules is

also attracted gravitationally to the Earth, and would soon have fallen

to the surface were it not for the collisions. Each may do so anyway.

Thus the details of molecules’ movements within the atmosphere become

complicated.

But do we need to know those details in order to know how the

atmosphere “spins”? As a step toward answering that question, this

document identifies and studies the trajectory of a single molecule that

desorbs from the surface of the Earth at the Equator. To identify that

trajectory, we will use Geometric (Clifford) Algebra, following the method

presented by Hestenes in New Foundations for Classical Mechanics ([2]).

2 Our Model

A molecule of mass m desorbs from the Earth‘s surface at the Equator,

with a velocity whose tangential component is equal (in direction as well

as magnitude) to the that of the surface, and whose radial component

is some multiple γ of the tangential component (Fig. 1). Note that the

molecule —to an observer standing alongside the point from which it

desorbed —would appear to fly “straight up”.

3 Background

The trajectory of an object launched from the surface of the Earth is

closely approximated by a parabola, but is actually an ellipse ([3], [4]). In

this section, we’ll discuss how to use Geometric Algebra to identify that

trajectory.

3.1 Orbital Mechanics

The key concept in orbital mechanics is that during any given orbit, two

quantities are constant (i.e., they do not vary with time):

• The angular momentum (L). As formulated by [2] in Equation (1.2)

on p. 196,

L = mr ∧ v, (1)
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Figure 1: Our model: A molecule of mass m desorbs from the Equator with a

tangential velocity equal to that of the Earth’s surface at the point of desorption,

and with a radial component equal to some scalar multiple γ of the tangential

velocity. (See text for additional details.)

A satellite’s primary is the body

around which the satellite

revolves.

where m is the satellite’s mass; r is its position with respect to a

fixed point referred to as the center of force, and v is its velocity

with respect to the center of force. When the mass of the satellite

is negligible compared to that of the primary (as is the case in a

molecule orbiting the Earth), the center of force can be taken as the

primary’s barycenter. Note that L is a bivector.

• The eccentricity vector (ε). The eccentricity vector is dimensionless,

and is related to other quantities by [2]’s Equation (3.3), page 205:

Lv =k (r̂ + ε) . (2)

where k = GmM , with G being the gravitational constant (6.67408×
10−11m3kg−1s−2 = 6.67408 × 10−11Nm2kg−2); m being the satel-

lite’s mass; and M being the primary’s mass.

We should take a moment to ensure that we understand the significance

of the foregoing. Firstly, if m does not vary with time, then neither does

the product mr ∧ v (which is L) . Therefore, if we know the value of

mr∧v for any point in an object’s trajectory, then we know it for all times

in that trajectory. Similarly, if we know the value of LV

k
− r̂ (= ε) at any

point in the orbit, then we know it for all points in the orbit. Therefore,

in the situation that we are modeling we can calculate L and ε from the

molecule’s initial position and velocity.

From Equations (1) and (2), we can deduce that the trajectory of the

orbiting body is a conic curve, one of whose foci is the primary’s barycenter.

The eccentricity (ε) of that curve is a scalar constant, and is related to

other quantities involved in the orbit by the following non-numbered

equation presented on p. 206 of [2]:

k2
(
ε2 − 1

)
=L2

(
v2 − 2k

mr

)
. (3)
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Here, again, we have a result whose significance we should be sure to

understand before proceeding: we will be able to calculate ε knowing

‖v‖ and ‖r‖ at any instant in the orbit, including at the instant of our

molecule’s desorption.

In the situation that we are modeling, we will be interested only in

cases where the desorbed molecule falls back to Earth rather than escaping

from the atmosphere entirely. For such cases, the value of ε is less than 1,

and the trajectory is an ellipse. Therefore, our next subject will be the

analytical geometry of that ellipse.

3.2 Analytical Geometry of the Elliptical Orbit

Much can be said about this beautiful subject, but the facts of immediate

interest to us are (1) the lengths of the ellipse’s major and minor axes;

and (2) the location of the ellipse’s center with respect to the center of the

Earth. We’ll start from Fig. 2 and the following non-numbered equation

that is found at the bottom of page 206 of [2]:

k [ε · r + r] =
L2

m
. (4)

Figure 2: Our model: An elliptical orbit with the Earth’s center at focus F,

showing dimensions discussed and derived in the text.

To find the length of the semi-major axis (a), we consider points A

and D in the orbit. When the satellite is at A, r = -qε̂. Using that value

in Eq. (4),

k [ε · (-qε̂) + q] =
L2

m
;

k [(εε̂) · (-qε̂) + q] =
L2

m
;

k [-εε̂ + q] =
L2

m
;

∴ q =
L2

km (1− ε) . (5)

4



When the satellite is at D, r = (2a− q) ε̂. Using that value in Eq. (4),

and the expression for q that we identified in Eq. (5), we arrive at

a =
L2

km (1− ε) . (6)

We could have obtained Eq. (6) from Eq. (5) more directly by using the

fact that the distance between the center of an ellipse and either of of its

foci is εa. Thus, q = 1 + εa, etc.

Similarly, we could now use known properties of ellipses to find b directly

from a. Instead, we’ll take this opportunity to review the fundamental

properties of a conic curve, as expressed via GA in pp. 90-90 of [2]. We’ll

begin by identifying the distance d, in Fig. 2.

According to the definition of a conic curve, AF = εAZ = ε (q + d). As

we’ve already shown, AF = q =
L2

km (1− ε) . Putting these ideas together,

d =
L2

εkm
. (7)

The definition of a conic curve also leads us to BF = εBW = εBZ.

Therefore, √
b2 + CF 2 = ε (DF + d) and√

b2 + (q − a)2 = ε (q − a+ d) .

Substituting the expressions we’ve obtained for q and d, and solving

for b, we find that

b =
L2

km
√

1− ε2
. (8)

This result, and (6), are consistent with the fact that in an ellipse,

ε =
√

1− (b/a)2.

We’ve now identified the ellipse’s dimensions and ε̂, the direction of

its major axis. Next, we need to find the satellite’s position as a function

of time. That will be our next subject.

3.3 Kepler’s Solution for Elliptical Orbits

We’ll follow Hestenes’s presentation ([2], pp. 216-219) with reference to

Fig. 3. Said figure is a reproduction, given an orientation more suitable

for our task, of [2]’s Fig. 4.1, found on p. 216 of that work.

As noted by [2] in connection with his Eq. 4.3, found on p. 216, Kepler

parameterized the elliptical circle in terms of an angle φ that is defined

with the help of an auxiliary circle that circumscribes the ellipse:

r = a (cosφ− ε) + b sinφ, (9)

where a = aε̂ and b = bε̂i, with a and b as given by Eqs. (6) and (8)

respectively. To determine how r varies with time, we need, first, to

calculate T , the orbit’s period. According to [2]’s Eq. (2.9), on p. 200,

T =
2πmab

L
. (10)
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Figure 3: Kepler’s parameterization of an elliptical orbit in terms of the angle φ.

Using that result, we can relate the angle φ to time via what is known as

Kepler’s equation for planetary motion:

[
2π

T

]
t = φ− ε sinφ. (11)

In that equation, the zero of time is associated with the pericenter.

Having arrived at Eq. (11), Hestenes presents a convenient way of

approximating its solution with good accuracy when ε is small; i.e., when

the orbit is reasonably circular. However, that solution will not work for

the highly elliptical orbits like that of a desorbed molecule ([4]).

Dynamic-geometry programs like

GeoGebra are also useful for

checking the correctness of the

calculated ellipse. For example,

by checking whether the line

that’s tangent to the ellipse at

the desorption point is parallel

to the initial-velocity vector.

How, then, might we solve Eq. (11)? If we were making a dynamic-

geometry construction of the orbit with a program like GeoGebra, we could

find the intersection point of the functions y =

[
2π

T

]
t (which is constant

for given t) and y = x − ε sinx. Another solution method—available to

us because the value of φ will be close to π throughout the trajectory—is

to approximate sinφ with a Taylor expansion about φ = π (Fig. 4 ) . In

that way, we would obtain a cubic equation to solve for φ :

[
2π

T

]
t = φ− ε

[
π − φ+

(φ− π)3

6

]
.

4 Solution: Trajectory of the Desorbed

Molecule

Our solution will use Section 3’s equations in roughly the same order as

that in which they were presented therein.
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Figure 4: Comparison of sinx to its Taylor expansion about x = π.

4.1 Identify Dimensions and Orientation of the

Elliptical Orbit

4.1.1 Calculate the Angular Momentum (L)

In our model, the values of r and v at the instant of desorption are Rr̂0
and γRωr̂0 +Rωr̂0i, respectively. Therefore, from Eq. (1),

Notice that only the tangential

component of the molecule’s

initial velocity affects L.

L = m (Rr̂0) ∧ (γRωr̂0 +Rωr̂0i)

= mR2ωr̂0 ∧ (r̂0i)

= mR2ωi. (12)

4.1.2 The Eccentricity Vector (ε)

From Eq. (2),

Lv =k (r̂ + ε) .

Therefore, using the values of v and r at the instant of desorption,

ε =
Lv0

k
− r̂0

=
mR2ωi

GmM
(γRωr̂0 +Rωr̂0i)− r̂0

=
ω

GM/R2
(γRωir̂0 +Rωir̂0i)− r̂0

=
Rω2

g
(r̂0 − γr̂0i)− r̂0

=

[
Rω2

g
− 1

]
r̂0 −

[
Rω2γ

g

]
r̂0i,

where g (= GM/R2) is the gravitational acceleration at the Earth’s surface.

7



4.1.3 The Eccentricity (ε)

According to Eq. (3),

k2
(
ε2 − 1

)
=L2

(
v2 − 2k

mr

)
.

Solving for ε, and using the values of r and v at the instant of desorption,

ε =

√
L2

k2

[
v2 − 2k

mr

]
+ 1

=

√(
‖L‖
GmM

)2 [
(γRωr̂0 +Rωr̂0i)

2 − 2GmM

mR

]
+ 1

=

√(
mR2ω

GmM

)2 [
(γRωr̂0 +Rωr̂0i)

2 − 2GmM

mR

]
+ 1

=

√(
ω

g

)2 [
(γRωr̂0 +Rωr̂0i)

2 − 2gR
]

+ 1

=

√(
ω

g

)2 [
(Rω)2 (1 + γ2)− 2gR

]
+ 1

=

√(
Rω2

g

)2 [
1 + γ2 − 2g

Rω2

]
+ 1. (13)

4.1.4 The Vectors a and b

Eq. (6) showed us that the length of the semi-major axis is

a =
L2

km (1− ε2)
.

We’ll write
L2

km
as

L2

km
=

(
‖L‖
k

)(
‖L‖
m

)
=

(
mR2ω

GmM

)(
mR2ω

m

)
=
R2ω2

g
,

from which

‖a‖ =
R2ω2

g (1− ε2)
.

If we now substitute the expression for ε from Eq. (3), we find that

‖a‖ =
g

ω2

[
2g

Rω2
− (1 + γ2)

] (14)

Similarly, from Eq. (8),

b =
L2

km
√

1− ε2
.
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Therefore,

‖b‖ =
R2ω2

g
√

1− ε2

=
R√[

2g

Rω2
− (1 + γ2)

] . (15)

Now, we use a = ‖a‖ε̂ and b = ‖b‖ε̂i .

4.2 The Satellite’s Position as a Function of Time

4.2.1 The orbital Period (T)

We begin this subject by determining T , which according to Eq. (10) is

T =
2πmab

L
.

Using our expressions for ‖a‖, ‖b‖, and L (Eqs. (4.1.4), (16), and (12)),

T =

2πm

 g

ω2

[
2g

Rω2
− (1 + γ2)

]

 R√[

2g

Rω2
− (1 + γ2)

]


mR2ω

=
2πg

Rω3

[
2g

Rω2
− (1 + γ2)

]3/2 . (16)

We will also find the following quantity useful:

2π

T
=
Rω3

g

[
2g

Rω2
−
(
1 + γ2)]3/2 . (17)

4.2.2 Value of φ at the Instant of Desorption

One way to think of the time

variable in this problem is to

pretend that the molecule

started from the pericenter at

time t = 0, and desorbed as soon

as it reached the Earth’s surface.

As mentioned in connection with Kepler’s equation for planetary motion

(Eq. (11)), the zero in time for an orbit is associated with the pericenter.

Our molecule does not desorb from that point, so we need to determine

the value of the time (according to the Kepler equation) associated with

the point (we’ll denote it by rd) from which the molecule does desorb.

To do so, we must first determine the value of φ for that point. We’ll

call that value φd (Fig. 5), and identify it by finding the values of cosφd

and sinφd. From Eq. (9),

rd = a (cosφd − ε) + b sinφd.

Because a and b are perpendicular,

rd · a = ‖a‖2 (cosφd − ε) , and

rd · b = ‖b‖2 sinφd,
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Figure 5: The elliptical orbit for our model, showing the angle (φd) associated

with the instant of the molecule’s desorption.

from which

cosφd =
r · a
‖a‖2 + ε, and

sinφd =
r · b
‖b‖2 .

(18)

In the case of a desorbing molecule, we know that φd must be between

0 and 2π radians, so we would not need to know the value of sinφd: the

value and algebraic sign of cosφd suffice to identify φd unambiguously.

4.2.3 The Position of the Molecule in Terms of Time Elapsed

Since Desorption

Although the variable t in the Kepler equation for planetary motion repre-

sents “time since perigee”, a more-convenient variable, for our purposes, is

“time elapsed since desorption”. The two measures of time are related by

time from pericenter to r = (time from pericenter to desorption)

+ (time elapsed since desorption) .

Let’s rewrite that equation, using Kepler’s variable t, and two new variables,

td and te:

Kepler′s “t”︷ ︸︸ ︷
time from pericenter to r =

td︷ ︸︸ ︷
(time from pericenter to desorption)

+ (time elapsed since desorption)︸ ︷︷ ︸
te

.

(19)

10



To calculate td, we solve Kepler’s equation for planetary motion, for

the angle φ = φd:

td =

[
T

2π

]
[φd − ε sinφd] . (20)

Thus, Kepler’s equation

2πt

T
= φ− ε sinφ

becomes

2π

T
(td + te) = φ (te)− ε sinφ (te) ,

and (
2π

T

)
te + φd − ε sinφd = φ (te)− ε sinφ (te) . (21)

5 Sample Calculations

5.1 What do We want to Calculate, and Why?

The purpose of this investigation is to help us understand why the at-

mosphere can “rotate” with the Earth. With that goal in mind, what

calculations might be useful to us? As one example, we might wish to

know where the desorbed molecule lands with respect to its starting point.

Finding that answer will require us to calculate

1. The angle through which the Earth rotates from the time the molecule

desorbs, until it strikes the ground. To calculate that angle, we

will need to know how much time elapses between desorption and

“landing”.

2. The central angle (analogous to β in Fig. 6) that is subtended by

the arc between the molecule’s points of desorption and landing.

We also need to identify the relevant range of γ values. Bearing in

mind, again, that we wish to understand how the atmosphere can rotate,

we probably needn’t consider values of γ that would be sufficient for

molecules to ascend beyond the Kármán line (100 km, [5]). To estimate

the value of γ that would be needed to reach that altitude, we’ll use the

familiar equation vf
2 − v02 = 2as. We want to know the value of v0 for

which vf is zero at 100,000 m. Our value of a is -g (= -9.8m/s2), giving

v0 = 1400m/s.

Calculation of ω: The Earth

rotates 2π radians in 24 hours,

therefore ω = 7.27× 10−5

radians/s.
In comparison, the tangential velocity of the Earth’s surface at the

Equator is Rω. Taking R as 6370 km, and ω as 7.27× 10−5 radians/s, the

tangential velocity is 463 m/s. Therefore, the estimated value of γ needed

to reach the Kármán line is 1400m/s÷ 463m/s = 3.

Curiously, the tangential velocity at the Equator is very nearly equal

to the mean thermal velocity of air (464 m/s) at 20◦C ([6]). Therefore,

we’ll use γ = 1 as our other value of γ.
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Figure 6: Reproduction of Fig. 3.5 from [2], p. 215.

5.2 How to Calculate the Molecule’s Time of Flight

and Angular Displacement

To calculate how much time elapses between desorption and landing (i.e.,

the molecule’s “time of flight”), we consider the complete orbit that the

molecule would make if the Earth weren’t in the way. The time elapsed

between desorption and landing is

Time between

desorption

and landing

= T −


Time from peri-

center to des-

orption point

+

Time from land-

ing point to

pericenter


Because of symmetry, the two terms on the right-hand side of that equation

are equal. The “time from pericenter to desorption point” is the quantity

that we called td in Eq. (20). Therefore,

Time between

desorption

and landing

= T

[
1− φd − ε sinφd

π

]
. (22)

From that result, we can now write

Angle through which

Earth rotates during

molecule´s flight

= ωT

[
1− φd − ε sinφd

π

]
. (23)

We want to compare that angle of rotation to the angle β (Fig. 6),

which we can calculate using one of GA’s most-useful capabilities: rotations

of vectors. By comparing Figs. 5 and 5, we can see that rotating the

vector r̂0 through the angle β/2 aligns it with -ε̂. Using GA, we can write

that fact as

r̂0 exp
i
β

2 = -ε̂.
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Multiplying both sides by r̂0,

See [7] for more information

about rotations, and how to use

them in solving geometry

problems.

r̂0r̂0 exp
i
β

2 = -r̂0ε̂;

exp
i
β

2 = -r̂0ε̂;

cos
β

2
+ i sin

β

2
= -1

ε
{r̂0 · ε + r0 ∧ ε} .

Now, using the expression for ε given in Eq. (13),

r̂0 ∧ (r̂0i) = 〈r̂0 (r̂0i)〉2
= 〈(r̂0r̂0) i〉2
= i.

cos
β

2
+ i sin

β

2
= -1

ε

{
r̂0 · -

[(
Rω2

g
− 1

)
r̂0 −

(
Rω2γ

g

)
r̂0i

]
+r0 ∧ -

[(
Rω2

g
− 1

)
r̂0 −

(
Rω2γ

g

)
r̂0i

]}
=

(
1− Rω2

g

)
+

(
Rω2γ

g

)
i.

Equating the scalar and bivector parts of the two sides of that equation,

cos
β

2
= 1− Rω2

g
, and sin

β

2
=
Rω2γ

g
, from which

tan
β

2
=

γ
g

Rω2
− 1

. (24)

5.3 The Molecule’s Time of Flight and Angular

Displacement for γ = 1 and γ = 3

In Table 1, α is the angle through which the Earth rotates while the

molecule is in flight (i.e., between the molecule’s desorption and landing):

α = Rω(T ime of flight).

A study of Table 1 shows that the molecule does reach the height of

the Kármán Line (100,000 m) for γ = 3. We can also deduce that the

molecule will fall to Earth behind its starting point , because α is larger

than β (even if only slightly, as in the case of γ = 1). We should note that

at temperatures near 20◦C, very few molecules in air have velocities as

high as γ = 3 (1400 m/s) [8].
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Characteristic γ = 1 γ = 3

Initial tangential

velocity (m/s)

463 463

Initial radial veloc-

ity (m/s)

463 1400

Eccentricity (ε) 0.996568 0.996616

‖a‖ (m) 3,195,986 3,240,670

‖b‖ (m) 264,542 266,386

Maximum altitude

(m)

11,000 100,400

φd 175.24◦ 165.67◦

td (s) 852.6 773.8

Time of flight (s) 95.1 290.6

Angle α 0.396◦ 1.211◦

Angle β 0.395◦ 1.186◦

α− β 0.001◦ 0.025◦

Table 1: Characteristics of trajectories for molecules with γ = 1 and γ = 3.
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