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Consider two ensembles of N qubits each: E1 and E2. The ratio N|a1〉/N (N|a2〉/N) is ap-
proximately 1/2 (1/2), where N|a1〉 (N|a2〉) is the total number of qubits in E1 (E2) which are in
the state |a1〉 (|a2〉), a1 = 0, 1 (a2 = +,−). |0〉, |1〉 are eigenkets of σz (Pauli-z matrix), and
|±〉 = (|0〉 ± |1〉)/

√
2. If we cannot address and control each of the N qubits in the ensemble sep-

arately (i.e., no local control, but only global control), like in nuclear magnetic resonance (NMR)
spin ensembles, then both E1 and E2 are said to be maximally mixed, and hence it is not possible to
discriminate between them. This is because, both E1 and E2 give same expectation value of an arbi-
trary observable. As number of measurements increases, variance of sample mean (of measurement
outcomes) decreases, and hence sample mean approaches expectation value of the observable being
measured. We are going to show that, if we have local control (like in experiments with single pho-
tons), then selectively rotating about x-axis (on Bloch sphere) each of the N qubits in the ensemble
by a random angle, reduces variance of sample mean in E1 (this is due to sort of convoluting two
independent probability distributions). As random x-rotations does nothing (up to an insignificant
global phase) to the states |±〉, variance of sample mean remains unaltered in E2. Without random
x-rotations, both E1 and E2 give same variance of sample mean. Hence we can discriminate between
E1 and E2, via variance of sample mean. We also show that, numerical simulation results support
theoretical predictions.

PACS numbers: 03.67.-a, 03.65.Ta, 03.65.Ud, 03.67.Ac
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I. INTRODUCTION

“There are more things in heaven and earth, Hora-
tio, than are dreamt of in your philosophy ”-W Shake-
speare [1]. If we have an ensemble of identical copies
of an arbitrary unknown state of a qubit, then we can
know the unknown state via tomography. Instead con-
sider the two ensembles E1, E2 shown in Fig. (1). In
E1 (E2) the ratio T|a1〉/M (T|a2〉/M) is approximately
1/2 (1/2), where T|a1〉 (T|a2〉) is the total number of
qubits in a given column of E1 (E2) which are in the state
|a1〉 (|a2〉), a1 = 0, 1 (a2 = +,−). |0〉, |1〉 are eigenkets
of σz (Pauli-z matrix) with eigenvalues +1,−1 respec-

tively, and |±〉 = (|0〉 ± |1〉)/
√

2. When we do not have
local control (like in nuclear magnetic resonance (NMR)
spin ensembles), then Ei is said to be maximally mixed,
i = 1, 2. Hence, expectation value of an arbitrary observ-
able is same in both the ensembles E1, E2, and hence we
cannot discriminate between E1 and E2.

However if we have local control (like in experiments
with single photons), even though we obtain same ex-
pectation value of an arbitrary observable in both E1
and E2, we can still make the variance of sample mean
different in E1 and E2 as follows: As far as we know,
everywhere in literature when they talk of probabilities
(and hence expectation value of respective observable),
they implicitly neglect the variance of respective sam-
ple mean of measurement outcomes. This is because, as
number of measurements increases, variance of sample
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FIG. 1. (Color online) Matrix representation implies that we
can address and control each of the N(= M ×M1) qubits in
the ensemble Ei separately, i.e., we have local control, i = 1, 2.
Any qubit in Ei is always in a definite state, i = 1, 2. (θq)x is
rotation about x-axis on Bloch sphere through a random angle
θq = 0, π with probability 1/2, 1/2 respectively. Gaussian is
the probability density function of sample mean of M number
of σz (Pauli-z matrix) measurement outcomes. M1 sample
mean points are used to construct the full Gaussian. Note
that we are going to measure only after applying (θq)xs. Given
one of E1, E2, we need to find out whether the given ensemble
is E1 or E2.

mean decreases, and hence sample mean approaches ex-
pectation value of the observable being measured. In our
discrimination protocol also, variance of sample mean in
both the ensembles E1 and E2 decreases, as number of
projective measurements increases, as required. How-
ever, because of applying random x-rotation ((θq)x) se-
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lectively to each of the qubit states in the ensemble using
local control, variance of sample mean is reduced in the
ensemble E1 (narrow Gaussian in Fig. (1)). This ef-
fect is due to sort of convoluting probability distribution
of sample mean (before applying (θq)xs) and probability
distribution of random x-rotation angle (θq). Applying
(θq)xs is analogous to rotating a nonuniform (in mass
distribution)(≡ (T|0〉 > T|1〉)) disc at high speed. As
random x-rotation does nothing (up to an insignificant
global phase) to the states |±〉, variance of sample mean
remains unaltered in the ensemble E2. Without random
x-rotations, both E1 and E2 give same variance of sam-
ple mean. Hence we can discriminate between the two
ensembles E1 and E2, via variance of sample mean.

In section II we give theoretical details of the discrimi-
nation protocol. In section III we present MATLAB sim-
ulation results, and we conclude in section IV.

II. THEORY

Problem

Note: Whenever we say measurement, we mean projec-
tive measurement unless stated otherwise. There are two
ensembles E1 and E2 of N(= M×M1) qubits each, where
M,M1 are sufficiently large enough to obtain approxi-
mately normally distributed sample mean of M measure-
ment outcomes. Ei is such an ensemble where we have
local control, i = 1, 2. We divide Ei as follows to ob-
tain M1 sample mean points of M measurements each:

Ei =
∑M1

j=1 Eij , i = 1, 2. E1j (E2j) has T|0〉 (T|+〉) number

of |0〉s (|+〉s) and T|1〉 (T|−〉) number of |1〉s (|−〉s) where
T|0〉 + T|1〉 = M (T|+〉 + T|−〉 = M). Value of T|ai〉 varies
with j such that T|ai〉 → ND : M/2,M/4 (T|ai〉 is a Nor-
mally Distributed random variable with mean M/2 and
variance M/4), p|ai〉(= T|ai〉/M) → ND : 1/2, 1/(4M)
where i = 1, 2 and a1 = 0, 1, a2 = +,−. E.g., E1 (E2) can
be prepared by measuring σz (σx (Pauli-x matrix)) selec-
tively on an ensemble of N identical copies of |+〉 (|0〉).
Here ‘Selectively’ is used to stress the fact that we have
local control. We are going to show how to discriminate
between E1 and E2.

Solution

Notation and definition

For notational convenience, almost every where we use
same symbol for both random variable (θq, S1, etc.) and
its value (θq, S1, etc. respectively). Whether we are re-
ferring to random variable or its value is understandable
from the context where it is used.
(1) We selectively rotate jth qubit state (j = 1, 2, ..., N)
about x-axis on Bloch sphere, through an angle θq, q =
1, 2, ... (i.e., we evolve the jth qubit state under the uni-

tary operator (θq)x = exp(−iθqσx/2)), where θq is a
random number drawn from the discrete set {θ1, θ2, ...}
with probability {poθ1 , p

o
θ2
, ...} respectively ({θ1, θ2, ...} →

{poθ1 , p
o
θ2
, ...}),

∑
q p

o
θq

= 1.

(2) If we measure σz selectively on each of the M qubits
in the ensemble Eij , then sample mean Si = (T+

i −
T−i )/M, T+

i + T−i = M where T±i is the total num-
ber of ±1 outcomes, i = 1, 2. Value of Si varies with j.
However, we are going to measure only after selectively
applying (θq)x to each of the M qubits in Eij , i = 1, 2.
Further T+

1 = T|0〉, T
−
1 = T|1〉 (∵ |0〉, |1〉 are eigenkets

of σz, and hence no collapse upon measurement. In
other words, variances (∆σz)

2
|0〉 = (∆σz)

2
|1〉 = 0 where

(∆X)2
|ζ〉 = 〈(〈X〉|ζ〉 − x)2〉 = 〈X2〉|ζ〉 − 〈X〉2|ζ〉 [2]).

(3) Sample mean S′i = (T ′+i − T
′−
i )/M, T ′+i + T ′−i = M

where T ′±i is the total number of ±1 outcomes obtained
by measuring σz selectively on each of the M qubits in
the ensemble E ′ij . E ′ij is got by selectively applying (θq)x
to each of the M qubits in the ensemble Eij , i = 1, 2.
Value of S′i varies with j. But E ′2j = E2j (neglecting
global phase in qubit states). Hence S′2 = S2 + X = S2

where X corresponds to application of (θq)xs.
T+

2 , T
−
2 are also the total number of |0〉s, |1〉s respec-

tively in the ensemble E1j (∵ |+〉 and |−〉 are equivalent
with respect to σz measurement outcomes (Appendix
(B 3)). Hence measuring σz selectively on each of the
M qubits in the ensemble E2j is equivalent to measur-
ing σz selectively on an ensemble of M identical copies
of |+〉. But E1j can also be obtained by measuring σz
selectively on an ensemble of M identical copies of |+〉).
⇒ T±2 is also the total number of ±1 outcomes obtained
by measuring σz selectively on each of the M qubits in
the ensemble E1j . Hence S1 ≡ S2 (S1, S2 are independent
and identically distributed (i.e., they have same mean
and variance) random variables).

According to central limit theorem, in the large M
limit, sample mean Si → ND : 0, 1/M , i = 1, 2 [3], (Ap-
pendix (A 1)). Here mean 〈Si〉 = 〈σz〉|+〉 = 0, and vari-

ance ∆S2
i = (∆σz)

2
|+〉/M = 1/M , because as explained

above, Si corresponds to measuring σz selectively on an
ensemble of M identical copies of |+〉, i = 1, 2. We
obtain one value of Si from Eij . As j = 1, 2, ...,M1

we get M1 sample mean points and hence we can con-
struct the entire normal (Gaussian) probability density
function of Si, i = 1, 2. We are going to show that
for θ1 6= θ2, p

o
θ1
6= 0, poθ2 6= 0, variance of S′1 will be

less than that of S′2. This is because, in this case
S′1 6= S1(≡ S2 = S′2 as shown above). Hence we can
discriminate between E1 and E2.

A. General case

Motivation

Consider the following theorem: If Xi → ND : µi, σ
2
i ,

then Z =
∑Ñ
i=1Xi → ND :

∑Ñ
i=1 µi,

∑Ñ
i=1 σ

2
i where Xis
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are normally distributed independent random variables
[3]. Probability distribution of Z is the convolution of
that of Xis. Note that Z has probability distribution
different from that of Xis. This is the motivation be-
hind introducing a new independent random variable θq
into already present random variable S1 in the ensem-
ble E1j , so that resultant probability distribution might
be different from that of S1. Let Xi be a sample mean:
Xi = (1/n)

∑n
j=1Xij where Xijs are independent ran-

dom variables (Appendix (A 4)). Then, total number of

Xijs increases as Ñ increases. But in our protocol, num-
ber of qubit states on which σz is measured (≡ number
of Xijs) remains unaltered with the introduction of θq.
Application of (θq)xs changes only the probability dis-
tribution of already present random variables (i.e., mea-
suring σz on the qubit states). Also, θq is not normally
distributed in general. Hence we are going to observe a
reduction in variance unlike in the theorem stated above.
We are going to sort of convolute (Eq. (6) resembles
convolution) two independent probability distributions:
S1 → ND : 0, 1/M and {θ1, θ2, ...} → {poθ1 , p

o
θ2
, ...} to

obtain S′1 → ND : 0, (1− (∆ cos θq)
2
poθq

)/M .

Applying (θq)x selectively to each of the M qubits in
the ensemble E2j , introduces an insignificant global phase
(∵ (θq)x|±〉 = exp(∓iθq/2)|±〉), and hence we obtain
sample mean S′2 = S2 → ND : 0, 1/M . Whereas in the
ensemble E1j , applying (θq)x selectively to each of the M
qubits, transforms |0〉, |1〉 to

|θq〉 = (θq)x|0〉 = cos(θq/2)|0〉+ e−iπ/2 sin(θq/2)|1〉,
|θq⊥〉 = (θq)x|1〉 = −i(sin(θq/2)|0〉+ eiπ/2 cos(θq/2)|1〉)

respectively. We will neglect global phases. Loosely
speaking (∵ ρ1j , ρ

′
1j (defined below) represents the states

of ensembles where there is no local control. Hence, rig-
orous method (which is not essential here) is to formulate
the problem in 2N dimensional Hilbert space (Appendix
(C 1))), using local control, applying (θq)x selectively to
each of the M qubits in the ensemble E1j , transforms the
state ρ1j = p+

1 |0〉〈0|+ p−1 |1〉〈1| to

ρ′1j =
∑
q

(pq|θq〉〈θq|+ pq⊥|θq⊥〉〈θq⊥|), (1)

where p±1 = T±1 /M , pq = M ′q(T
+
1 , pθq )/M (pq⊥ =

M ′q⊥(T−1 , pθq )/M), M ′q (M ′q⊥) is the total number of

|θq〉s (|θq⊥〉s).
∑
q(M

′
q + M ′q⊥) = M . Note that prob-

abilities p±1 , pθq , and sample mean S1 are normally dis-
tributed random variables which converge to definite val-
ues only in the limit M → ∞ i.e., S1 → ND : 0, 1/M ,
p±1 → ND : 1/2, 1/(4M) (∵ T±1 → ND : M/2,M/4),
and pθq (= mq/M) → ND : poθq , σ

2
mq/M

2 (∵ mq → ND :

poθqM,σ2
mq ) where mq is the total number of times (θq)x

is applied,
∑
qmq = M , and σ2

mq ∼ M (see Appendix

(B 1) for derivation). Hence we need to take care of the
variance (however small) present in them. First we will

do calculations for given values of pθqs and S1, and later
we will integrate the results obtained over all possible val-
ues of pθqs and S1 after multiplying by the corresponding
weighing factor.

Measuring σz selectively on |θq〉s and |θq⊥〉s is equiv-
alent to tossing differently biased coins. We have
random variable means 〈σz〉|θq〉 = cos2(θq/2) × +1 +

sin2(θq/2) × −1 = cos θq, 〈σz〉|θq⊥〉 = − cos θq and vari-

ances (∆σz)
2
|θq〉 = (∆σz)

2
|θq⊥〉 = sin2 θq. By applying

central limit theorem to independently distributed ran-
dom variables [3], we obtain effective mean of random
variables

µeff =
∑
q

(pq〈σz〉|θq〉 + pq⊥〈σz〉|θq⊥〉) = 〈σz〉ρ′1j

=
∑
q

(pq − pq⊥) cos θq, (2)

(see Appendix (A 2) for derivation of µeff ). Note that

probabilities cos2(θq/2), sin2(θq/2) are fixed, whereas
probabilities pq, pq⊥ varies over M1 ensembles, be-
cause the numbers M ′q,M

′
q⊥ are not fixed. We have

M ′q(T
+
1 , pθq ) = T+

1 pθq = p+
1 mq(∵ pθq = mq/M). Sim-

ilarly M ′q⊥ = T−1 pθq = p−1 mq. ⇒
∑
q(M

′
q + M ′q⊥) =

(T+
1 + T−1 )

∑
q pθq = (p+

1 + p−1 )
∑
qmq = M as required.

Hence we obtain

pq = p+
1 pθq , pq⊥ = p−1 pθq (3)

which are nothing but joint probabilities. This makes
sense in the light of the fact that M ′q(T

+
1 , pθq ) (and hence

pq) depends on two independent random variables T+
1

and θq. Similarly pq⊥ depends on T−1 and θq. Then Eq.
(3) follows from Bayes rule. Substituting pq, pq⊥ into
µeff (Eq. (2)) and simplifying we obtain

µeff = S1〈cos θq〉pθq (4)

where 〈cos θq〉pθq =
∑
q pθq cos θq.

Effective variance of random variables is given by

(∆σz)
2
eff =

∑
q

(pq(∆σz)
2
|θq〉 + pq⊥(∆σz)

2
|θq⊥〉)

=
∑
q

(pq + pq⊥) sin2 θq = 1− 〈cos2 θq〉pθq ,(5)

where 〈cos2 θq〉pθq =
∑
q pθq cos2 θq (see Appendix (A 2)

for derivation of (∆σz)
2
eff ). Note that (∆σz)

2
eff 6=

〈σ2
z〉ρ′1j − 〈σz〉

2
ρ′1j

(see Appendix (A 2) for proof). Then

according to central limit theorem, in the large M limit,
probability distribution of effective sample mean S′1, for
given values of pθqs and S1 (i.e., for given values of mqs

and T+
1 ), tends to normal distribution i.e, S′1 → ND :

µeff , (∆σz)
2
eff/M [3], Appendix (A 2). Now we shall in-

tegrate over all possible values of pθqs and S1 after mul-
tiplying the component probability density function by
corresponding weighing factor (joint probability), to get
the resultant probability density of S′1, as follows:
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f(S′1) =

∫ ∏
i,i 6=l

{dpθi(Nd(pθi) : poθi , σ
2
mi/M

2)}dS1(Nd(S1) : 0, 1/M)

(
Nd(S′1) : S1〈cos θq〉pθq , (1− 〈cos2 θq〉pθq )/M

)
,(6)

where (Nd(x) : µ, σ2) = 1√
2πσ

exp(−(x − µ)2/(2σ2))

(i.e., Normal probability density function with mean µ
and variance σ2), dx(Nd(x) : µ, σ2) is the probability
of obtaining value x of normally distributed random
variable x. In Eq. (6) index i 6= l is because of
the constraint equation pθl = 1 −

∑
j,j 6=l pθj . Using

this constraint equation we should eliminate pθl from
〈cos θq〉pθq and 〈cos2 θq〉pθq , before integrating. In

Eq. (6) we have product of probabilities because pθqs
and S1 are independent random variables, and hence
joint probability P (pθ1 , pθ2 , ..., pθl−1

, pθl+1
, ..., S1) =

P (pθ1)P (pθ2)...P (pθl−1
)P (pθl+1

)...P (S1) =

∏
i,i 6=l{dpθi(Nd(pθi) : poθi , σ

2
mi/M

2)}dS1(Nd(S1) :

0, 1/M). As pθqs and S1 are independent of each other
(i.e., no constraint equations in pθqs and S1 i.e., we
have to integrate over the entire hyper volume spanned
by pθqs and S1), and as we can integrate in any order,
we can simply integrate out S1 from −∞ to ∞ in Eq.
(6). Actually −1 ≤ S1 ≤ 1 but we are integrating
from −∞ to ∞. This is because, in the limit M → ∞,
(Nd(S1) : 0, 1/M) tends to delta function δ(S1 − 0)
(Appendix (A 1)). Hence both integration intervals will
give same result. Advantage of the interval (−∞,∞) is,
we can get rid of error functions (erf(x)). Integrating we
get

f(S′1) =

∫ ∏
i,i6=l

{dpθi(Nd(pθi) : poθi , σ
2
mi/M

2)}(Nd(S′1) : 0, (1− (∆ cos θq)
2
pθq

)/M) (7)

where (∆ cos θq)
2
pθq

= 〈cos2 θq〉pθq − 〈cos θq〉2pθq . S1 was

oscillating symmetrically about zero. Hence independent
of the value of coefficient of S1 (in Eq. (6)), resultant
mean has vanished. It is like 〈CS1〉Ω1

= C〈S1〉Ω1
= 0

where Ω1 = (Nd(S1) : 0, 1/M).
f(S′1) in Eq. (7) is the weighted mean of many Gaus-

sians all having mean zero. Hence center/mean of the
probability density function f(S′1) must also be zero. We
are going to show that f(S′1) is also normally distributed.
For discrimination we should get f(S′1) different from
g(S′2) = (Nd(S′2) : 0, 1/M) (∵ S′2 = S2). Hence dis-
crimination, if possible, can only be through a change
in variance. Mean (effective) is linear in probabilities:
〈X〉 =

∑
i Pixi, whereas variance (effective) is a non-

linear (quadratic) function of probabilities: (∆X)2 =
〈X2〉 − 〈X〉2 =

∑
i Pix

2
i − (

∑
i Pixi)

2. Here we have
treated outcomes xis as constant, and probabilities Pis
as variable (e.g., in measuring σz on |θq〉s, |θq⊥〉s). Hence
a change in mean corresponds to a linear change/effect,
where as a change in variance corresponds to a nonlin-
ear change/effect. This seems to be justifying the section
‘Nonlinear evolution seems to be necessary’ in Appendix
(C 8).

Swaying of center of Gaussians

Another less rigorous way of arriving at the resultant
variance in Eq. (7) i.e., (1− (∆ cos θq)

2
pθq

)/M is the fol-

lowing: When we integrate over S1 in Eq. (6), there
is contribution to resultant variance from following two

factors: (1) Swaying of center of Gaussians due to the
varying mean i.e., µeff = 〈cos θq〉pθqS1. (2) Variance

arising from the measurement of σz on |θq〉s, |θq⊥〉s i.e.,
(∆σz)

2
eff/M (Eq. (5)). In Eq. (6) we are integrat-

ing with respect to S1 for given values of pθqs. Hence
〈cos θq〉pθq in µeff can be treated as a constant. Then

µeff → ND : 0, 〈cos θq〉2pθq /M (using the theorem in

Appendix (B 1)). Hence resultant variance is given by
〈cos θq〉2pθq /M + (∆σz)

2
eff/M = (1− (∆ cos θ)2

pθq
)/M .

Now consider θq = θ0,∀q. Then Eq. (7) reduces
to f(S′1) = (Nd(S′1) : 0, (1 − 0)/M) = g(S′2), hence
no discrimination. When θ0 = 0, f(S′1) = (Nd(S′1) :
0, 1/M) = g(S1), as required. This is expected be-
cause, by rotating all M qubit states by same angle
we are not introducing any new random variable. A
random variable is characterized by having non zero
variance. But here variance of random variable cos θq:
(∆ cos θq)

2
pθq

= 0. Hence no randomness. Hence we can

not change/disturb/distort/deviate the probability dis-
tribution of sample mean (S1) corresponding to the en-
semble E1j . Hence for discrimination, we should take at
least {θ1, θ2} → {poθ1 , p

o
θ2
}, θ1 6= θ2, p

o
θq
6= 0,∀q.

B. Specific case

Let us consider the simplest possible case: {θ1, θ2} →
{poθ1 , p

o
θ2
}. pθqs are constrained by pθ1 + pθ2 = 1. Let

l = 2 in Eq. (7). Eliminating pθ2 from Eq. (7) we obtain
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f(S′1) =

∫
dpθ1(Nd(pθ1) : poθ1 , σ

2
m1
/M2)(Nd(S′1) : 0, (1− pθ1(1− pθ1)(cos θ1 − cos θ2)2)/M). (8)

Direct evaluation of integral in Eq. (8) is difficult. Note
that f(S′1) in Eq. (8) is the weighted mean of many
Gaussians all having mean zero. Hence there is no sway-

ing of center of Gaussians unlike in Eq. (6). Also as M
is large, it is justifiable to replace the weighing Gaussian
with delta function (Appendix (A 1)) as follows

f(S′1) u
∫ poθ1

+ε

poθ1
−ε

dpθ1δ(pθ1 − poθ1)(Nd(S′1) : 0, (1− pθ1(1− pθ1)(cos θ1 − cos θ2)2)/M)

= (Nd(S′1) : 0, (1− poθ1(1− poθ1)(cos θ1 − cos θ2)2)/M) = (Nd(S′1) : 0, ((∆σz)
2
|+〉 − (∆ cos θq)

2
poθq

)/M), (9)

where ε > 0. Note that this method does not work in Eq.
(6), as there is swaying of center of Gaussians. In Eq. (6)
if we replace the weighing Gaussian (Nd(S1) : 0, 1/M)
with δ(S1 − 0), then we will be neglecting swaying of
center of Gaussians in (Nd(S′1) : S1...). This results in
f(S′1) = (Nd(S′1) : 0, sin2 0/M) for θq = 0,∀q, which is
not correct. Hence swaying of center of Gaussians af-

fects/contributes to the resultant/net variance.
We may indirectly evaluate the integral in Eq. (8) as

follows: As the weighing function is normally distributed,
it is justifiable to assume that f(S′1) will also be normally
distributed. As there is no swaying of center of Gaus-
sians, contribution to the net/resultant variance comes
only from (1 − pθ1(1 − pθ1)(cos θ1 − cos θ2)2)/M . Hence
resultant variance might be the following

∆S′21 =

∫ ∞
−∞

dpθ1(Nd(pθ1) : poθ1 , σ
2
m1
/M2)(1− pθ1(1− pθ1)(cos θ1 − cos θ2)2)/M

= (1− (poθ1(1− poθ1)− σ2
m1
/M2)(cos θ1 − cos θ2)2)/M. (10)

Hence f(S′1) = (Nd(S′1) : 0,∆S′21 ). In the large M limit,
we can neglect σ2

m1
/M2 compared to poθ1(1−poθ1), and we

recover variance in Eq. (9) as required. In Eq. (10) poθ1−
ε < pθ1 < poθ1 +ε, ε > 0. But we are integrating from −∞
to ∞. This is because, in the limit M → ∞, (Nd(pθ1) :
poθ1 , σ

2
m1
/M2) tends to delta function δ(pθ1 −poθ1). Hence

both integration intervals will give same result. We prefer
(−∞,∞) to get rid of erf(x).

Summary: Ei → apply (θq)x selectively to each of the
N(= M ×M1) qubits in the ensemble Ei → do selective
σz measurement → we get variance of sample mean of
measurement outcomes: (1 − (∆ cos θq)

2
poθq

)/M if i = 1,

1/M if i = 2.

Discrimination via comparison

As ∆S′21 < ∆S′22 (= 1/M ∵ S′2 = S2), we can dis-
criminate between the two ensembles E1 and E2. How-
ever in the large M limit, both ∆S′21 and ∆S′22 be-
comes smaller. Hence it is easier to discriminate via
their ratio i.e., limM→∞∆S′21 /∆S

′2
2 u limM→∞[(1 −

(∆ cos θq)
2
poθq

)/M ]/[1/M ] = 1− (∆ cos θq)
2
poθq

, rather than

via ∆S′2i alone, i = 1 or 2. This is possible in a spe-
cial case: {θ1(= 0), θ2(= π)} → {po0, poπ}. In this case
we can obtain both ∆S′21 and ∆S′22 from the given en-
semble Ei, i = 1 or 2. If the given ensemble is E1, then
∆S′22 (= ∆S2

1 ∵ S′2 = S2 ≡ S1) and g(S′2)(= g(S1)) cor-
responds to E1 which is the ensemble before applying
(θq)xs. If the given ensemble is E2, then ∆S′21 and f(S′1)
corresponds to a virtual ensemble before applying (θq)xs
(Appendix (B 2)). Hence we can also discriminate by
comparing f(S′1) and g(S1)(= g(S2) = g(S′2)).

Also, as ∆S′21 < ∆S′22 we can say that f(S′1) has more
affinity/tendency/inclination towards mean zero of Gaus-
sian, than g(S′2) has.

Intuitively, introduction of a new random variable θq
should increase the randomness and hence variance. We
will try to explain this counter intuitive phenomenon in
the following two sections and in Appendix (B 6).

Nonlinearity in action

We will show how nonlinearity is reducing the variance.
Consider ∆S′21 u (1 − (∆ cos θq)

2
poθq

)/M = (〈cos θq〉2poθq +
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〈sin2 θq〉poθq )/M (Eq. (9)). Let {θ1(= 0), θ2(= π/2)} →
{po0, poπ/2}. ⇒ ∆S′21 u [(po0 cos 0 + poπ/2 cos(π/2))2 +

po0 sin2 0 + poπ/2 sin2(π/2)]/M = (po0
2 + poπ/2)/M < 1/M .

It is counter intuitive, because intuitively if we rotate
Ñ states on z-axis (on Bloch sphere) on to y-axis, it is

as if we have measured σz on M − Ñ number of |+〉s
(∵ E1j can be obtained by measuring σz selectively on

an ensemble of M identical copies of |+〉) and Ñ more

are to be measured. Hence after measuring Ñ more, we
should get back variance 1/M . A closer look shows that,

when we are measuring σz first on M−Ñ number of |+〉s
and then on Ñ more, there is only one random variable
i.e., σz. Hence we are neglecting the way we brought
Ñ states on z-axis onto y-axis i.e., via random rotations
about x-axis by angle θqs. This new random variable is
reducing the variance. More rigorous explanation is the
following: Probabilities (corresponding to the new ran-
dom variable θq) get squared (nonlinear operation) when
they enter through 〈cos θq〉2poθq , and hence we call this

nonlinear channel. This channel corresponds to sway-
ing of center of Gaussians. Where as when probabilities
enter through 〈sin2 θq〉poθq they come out as such (linear

operation). Hence we call this linear channel. This cor-
responds to measurement of σz on |θq〉s, |θq⊥〉s (see the
section ‘Swaying of center of Gaussians’ (II A) above).
Hence there is reduction in variance. For more details
see Appendix (B 9).

Now we can justify the result obtained in Eq. (9) as
follows: In Eq. (8) there is no swaying of center of Gaus-
sians. Hence pθqs are contributing to resultant variance
only via linear channel unlike in Eq. (6) where they were
contributing via both linear and nonlinear channels. As
the channel is linear, in the large M limit, we can simply
replace pθq with poθq .

Smoothing out non uniformities

Let {θ1(= 0), θ2(= π)} → {poθ1(= 1/2), poθ2(= 1/2)}.
⇒ ∆S′21 u [(1/2×1+1/2×−1)2+1/2×0+1/2×0]/M = 0.
This is saying that in the large M limit, random flippings
removes/smooths out the population difference T+

1 −T
−
1

(nonuniformity). Situation here is analogous to the fol-
lowing example: If we rotate a nonuniform (in mass dis-
tribution) disc (≡ (T ′+1 > T ′−1 )) at high speed (≡ ran-
dom flippings), it starts behaving as if it were uniform
(≡ (T ′+1 u T ′−1 )). For more details see Appendix (B 10).

For explanation using central limit theorem and Shan-
non entropy, see sections (B 4) and (B 5) respectively in
Appendix.

III. MATLAB SIMULATION RESULTS

A. Reduction in variance

MATLAB generates standard uniformly distributed
Pseudo Random Numbers (PRN) drawn from the open
interval (0, 1). Hence we can simulate measuring σz on
the state |χ〉 = cos(θ/2)|0〉 + eiφ sin(θ/2)|1〉 as follows:
if we get a PRN in the interval (0, cos2(θ/2)), then it is
equivalent to getting outcome +1. Else it is equivalent to
getting outcome −1. We simulated the case considered
in the section ‘Smoothing out non uniformities’ (II B) for
various values of M,M1. Application of (θq)xs was sim-
ulated as described in Appendix (B 1). Here we discrim-
inate by comparing f(S′1) with g(S1)(= g(S2) = g(S′2))
(see the section ‘Discrimination via comparison’ (II B)
for more details). Results are plotted in Fig.s (2, 3, 4,
6(c)). There is clear reduction in variance as predicted
by theory. g(S1) is much closer to corresponding theo-
retical curve, but f(S′1) is not so close to corresponding
theoretically predicted curve. Reasons for this lower re-
duction in variance than theoretically predicted might
be the following: (1) Theoretical predictions are in the
large M,M1 limit, where as simulation results are for
M = 102, 107, ...,M1 = 2000, 104, .... Reasons given in
the section ‘How hard it might be to reduce the vari-
ance?’ in Appendix (B 7) also applies here. (2) Theoret-
ical calculations may not be exact/precise. E.g., we have
not evaluated the integral in Eq. (8) exactly. (3) PRNs
depends on generator.

B. To look for reduction in population difference

Instead of directly looking for reduction in variance,
we can also look for total amount of reduction in pop-
ulation difference, as it is possible to obtain both f(S′1)
and g(S1)(= g(S2) = g(S′2)) from the given ensemble

Ei, i = 1 or 2 (II B). Let S′1 = ∆S′1S̃
′
1 where S̃′1 → ND :

0,∆S̃′21 . ⇒ S′1 → ND : 0,∆S′21 ∆S̃′21 (using theorem
in Appendix (B 1)). But we have S′1 → ND : 0,∆S′21 .

⇒ ∆S̃′21 = 1. Also S′1 = (T ′+1 − T
′−
1 )/M . Substituting

θ1 = 0, θ2 = π, po0 = poπ = 1/2, σ2
m1

= M/4 in Eq. (10)

we obtain ∆S′1 = 1/M . ⇒ (T ′+1 − T ′−1 ) = S̃′1. Simi-

larly we obtain S1 = (T+
1 − T−1 )/M = S̃1/

√
M where

S̃1 → ND : 0, 1. ⇒ (T+
1 − T

−
1 ) =

√
MS̃1. Now consider

h(r) =

r∑
i=1

(|T ′+1i − T
′−
1i | − |T

+
1i − T

−
1i |)

= (〈|S̃′1|〉r −
√
M〈|S̃1|〉r)r, (11)

where r = 1, 2, ...,M1, 〈|S̃′1|〉r = (1/r)
∑r
i=1 |S̃′1i|,

〈|S̃1|〉r = (1/r)
∑r
i=1 |S̃1i|. Note that even though both

S̃1 and S̃′1 are identically distributed, they are inde-

pendent. Therefore 〈|S̃′1|〉r 6= 〈|S̃1|〉r in general. For

r > ro, ro ∼ 100, we can neglect 〈|S̃′1|〉r compared to
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FIG. 2. (Color online) CombRecursive is the PRN generator.
‘Seed’ is the PRN generator’s seed value. We used differ-
ent seed for each of the M1 number of sample mean points.
Red curve with dot marker is g(S1)(= g(S′2) = g(S2)), and
blue curve with no marker is f(S′1). (a) Ag (= Area under one

standard deviation of g(S1) (i.e., from S1 = −∆S1 = −1/
√
M

to S1 = ∆S1)) is 0.6795 (theoretical prediction in the large
M,M1 limit is 0.6826895). Af (= Area under f(S′1) corre-
sponding to one standard deviation of g(S1)) is 0.7445 (as pre-
dicted by our protocol in the large M,M1 limit is u 1). Hence
there is clear reduction in variance i.e., ∆S′21 < ∆S2

1(= ∆S′22 ).
As it is evident from the figure, there is slight offset in the
centres of two curves (this may be due to small M1). If we
align them, we get A′g (= aligned area under one standard de-
viation of g(S1)) to be 0.6795, and A′f (= aligned area under
f(S′1) corresponding to one standard deviation of g(S1)) to be
0.785. (b) Ag = 0.6787, Af = 0.739, A′g = 0.6793, A′f = 0.777.
(c) Ag = 0.685, Af = 0.7492, A′g = 0.6828, A′f = 0.7855. (d)
Ag = 0.6811, Af = 0.7442, A′g = 0.6811, A′f = 0.7824.
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Ag = 0.683967, Af = 0.77997, A′g = 0.683286, A′f = 0.780642.

√
M〈|S̃1|〉r as M � 1. Hence h(r) u −

√
M〈|S̃1|〉rr.

〈|S̃1|〉r is also a random variable with certain mean and

a small variance. We can replace 〈|S̃1|〉r with a further

averaged value C = 〈〈|S̃1|〉r〉. Then h(r) u −
√
MCr,

which is a straight line with negative slope. Hence h(r)
diverges to −∞ as r → ∞. Now consider the area un-
der the curve h(r), A(r) =

∑r
x=1 h(x)δx u −

√
MCr(r+
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FIG. 4. (Color online) True random number generator [4]
was interfaced with MATLAB. Dj is the difference in area
under the Gaussians ×105 i.e., Dj = (

∑aj
S′1=−aj

f(S′1) −∑aj
S1=−aj g(S1))δS × 105 where δS is the smallest element

(step size) on x-axis (sample mean) considered for plot-
ting, and aj = j × δS, j = 1, 2, .... In the summation,
S′1, S1 increases in steps of δS. Following values indicate
respective

∑
j Dj (=area under respective curve divided by

δS): a1=1800, a2=12550, a3=-7150, a4=-1200, a5=4550,
a6=-11900, a7=650, a8=-12150, a9=-17200, a10=11550,
a11=21300, a12=20624T (‘T’ stands for approximate the-
oretical prediction, and it has been scaled down by a fac-
tor of 10 (approximately) i.e., theoretical curve corresponds
to (Dj)theory/10. Also the theoretical curve corresponds
to f(S′1) = Nd(S′1) : 0,∆S′21 where ∆S′21 was taken to be
(0.12/M) instead of ∆S′21 u (1 − (∆ cos θq)

2
po
θq

)/M = 0/M .

This is for the sake of better comparison of simulation re-
sults with theoretical prediction, as simulation was done with
small values of M,M1). b1=15950, b2=2400, b3=16300,
b4=1900, b5=7250, b6=9000, b7=5100, b8=19150, b9=-
4950, b10=-3900, b11=20624T. c1=14225, c2=-32050, c3=-
4725, c4=29450, c5=51683T. In the following (hj,fj,dj) rep-
resents the values of (M,M1,

∑
kDk) respectively: h1=6e2,

f1=3e3, d1=27667. h2=1e3, f2=4e3, d2=-3425. h3=2e2,
f3=45e2, d3=-5378. h4=6e2, f4=3e3, d4=34562T.

1)/2, where step size δx = 1, r = 1, 2, ...,M1. A(r) is a
downward opening parabola. Hence area under h(r) also
diverges. Corresponding MATLAB simulation results are
plotted in Fig.s (5, 6, 7).

IV. CONCLUSION

We showed that, if we have local control, we can dis-
criminate between two ensembles, which otherwise (i.e.,
without local control) cannot be discriminated, as both
are maximally mixed. However the origin of nonlinear
effect (reduction in variance) which leads to discrimina-
tion is not clear. It is interesting to explore whether it is
genuine nonlinear effect perhaps due to projective mea-
surement (Appendix (C 8)) or it is just a consequence of
statistical data analysis technique.
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Appendix A: Central limit theorem

1. Independent and identically distributed (iid)
random variables

Let X be a normal random variable. Then, probabil-
ity density of X is given by: f(x) = 1√

2πσ
exp(−(x −

µ)2/(2σ2)). Probability of getting a value between x and

x + dx is given by f(x)dx. ⇒ 〈X〉 =
∞∫
−∞

xf(x)dx = µ,

and variance 〈X2〉 − 〈X〉2 = σ2 [3]. One can verify that
∞∫
−∞

f(x)dx = 1. lim
σ→0

f(x) = 0 for x 6= µ, lim
σ→0

f(x) = ∞

for x = µ. Therefore f(x) behaves like a delta function in
the limit σ → 0. One can show that, if X → ND : µ, σ2,
then Y = aX + b → ND : aµ + b, a2σ2. Let aµ + b =
0, a2σ2 = 1. ⇒ Y = (X − µ)/σ and it is known as
standard or unit normal random variable [3]. Consider

I =
∞∫
−∞

f(x)dx. Put (x − µ)/σ = y. ⇒ I =
∞∫
−∞

g(y)dy

where g(y) = (2π)−1/2e−y
2/2 is the probability density

of Y . Note that, even in the limit σ → 0, g(y) does not
behave like delta function. This is because, in the limit
σ → 0, it is like mapping an infinite plane (f(x)) on to
Riemann sphere (g(y)).

Consider independent and identically distributed ran-
dom variables X1, X2, ..., Xn having mean 〈Xi〉 = µ,∀i

and variance ∆X2
i = 〈X2

i 〉 − 〈Xi〉2 = σ2,∀i. Sample
mean is defined as S = (1/n)

∑n
i=1Xi. S has mean

〈S〉 = µ, and variance ∆S2 = σ2/n [3]. Note that even
though all Xis have same mean and variance, we cannot
take Xi = X ′,∀i, because they are independent events,
and their outcome is random.

Let

J =
1√

2π∆S

c∫
−∞

dS exp

(
−1

2∆S2
(S − µ)2

)

=
1√
2π

b∫
−∞

dy e−y
2/2 = Ω(b),where −∞ < c, b <∞.

According to central limit theorem, probability distribu-
tion:

P{ 1

∆S
(S − µ) ≤ b} → Ω(b), as n→∞, (A1)

i.e., in the limit n → ∞, probability distribution of ran-
dom variable S tends to normal (Gaussian) distribution
with mean µ and variance σ2/n [3]. Then using Eq. (A1)
we obtain

P{−ε ≤ (S − µ) ≤ ε} = P{ −ε
∆S
≤ 1

∆S
(S − µ) ≤ ε

∆S
}

u Ω(
ε
√
n

σ
)− Ω(

−ε
√
n

σ
) =

1

2
(erf(

ε
√
n√

2σ
)− erf(

−ε
√
n√

2σ
))

= 2Ω(
ε
√
n

σ
)− 1,

where erf(x) = (2/
√
π)
∫ x

0
dt e−t

2

. Approximation in the
second line is based on the assumption that n is large.
How large n should be for this to be a good approxima-
tion depends on probability distribution of Xi.

2. Independently distributed (id) random variables

Consider n biased coins out of which n1 have mean µ′1
and variance σ′21 , n2 have mean µ′2 and variance σ′22 ,...,
nr have mean µ′r and variance σ′2r where

∑r
j=1 nj = n.

In other words, we have n independent random vari-
ables Xi, i = 1, 2, ..., n. Xi has mean µi and variance
σ2
i , i = 1, 2, ..., n. µi = µ′1, σ

2
i = σ′21 for i = 1, 2, ..., n1,

µi = µ′2, σ
2
i = σ′22 for i = n1 + 1, n1 + 2, ..., n1 + n2,...,

µi = µ′r, σ
2
i = σ′2r for i = (n1 +n2 + ...+nr−1 + 1), (n1 +

n2 + ...+ nr−1 + 2), ..., (n1 + n2 + ...+ nr−1 + nr).
If Xis are uniformly bounded (see [3] p399) and

https://comscire.com/product/pcqng/
http://dx.doi.org/10.1103/PhysRevLett.76.2832
http://dx.doi.org/10.1103/PhysRevLett.76.2832
http://dx.doi.org/10.1017/CBO9780511976667
http://dx.doi.org/10.1017/CBO9780511976667
http://dx.doi.org/10.1002/andp.200610207
http://dx.doi.org/10.1017/CBO9780511814990
http://www.sciencedirect.com/science/article/pii/037596019390724E
http://www.sciencedirect.com/science/article/pii/037596019390724E
http://dx.doi.org/10.1103/PhysRevA.47.4616
http://dx.doi.org/10.1103/PhysRevA.47.4616
http://dx.doi.org/10.1103/PhysRevA.59.2590
http://dx.doi.org/10.1103/PhysRevA.59.2590
http://dx.doi.org/10.1038/299802a0
http://dx.doi.org/10.1038/299802a0


10∑∞
i=1 σ

2
i =∞ then,

P{n×
(1/n)

∑n
i=1Xi −

∑r
j=1(nj/n)µ′j√∑r

j=1 njσ
′2
j

≤ b}

= P{
S −

∑r
j=1 pjµ

′
j√

(1/n)
∑r
j=1 pjσ

′2
j

≤ b}

= P{
S − µ′eff√
(∆X ′)2

eff/n
≤ b} → Ω(b), as n→∞ (A2)

for given values of njs (and hence pjs), j = 1, 2, ..., r [3].
Further if njs are varying (e.g., if nj is got by throw-
ing n times, a r faced biased dice such that probabil-
ity of getting its jth face is poj . pj → ND : poj , σ

2
nj/n

2,

σ2
nj ∼ n), then it should be taken into account by in-

tegrating over all possible values of njs (or pjs), after
multiplying Nd(S) : µ′eff , (∆X

′)2
eff/n by correspond-

ing weighing factors/weights, to get the final effective
probability density function of sample mean. When
µ′j = µ, σ′2j = σ2,∀j i.e., all n coins have same proba-
bility distribution, then Eq. (A2) reduces to Eq. (A1) as
required.

No effective single coin: Let Xi be a coin with proba-
bility pHi of getting head and probability pTi(= 1− pHi)
of getting tail, i = 1, 2, ..., n. Let us assign value +1
to head and value −1 to tail. Then we get σ′2j =

1 − µ′2j (∵ σ2
i = 〈X2

i 〉 − 〈Xi〉2 = 1 − µ2
i ). Using

µi = pHi − pTi , we can rewrite µ′eff =
∑r
j=1 pjµ

′
j =

p+
eff − p

−
eff = 〈Xeff 〉 for given values of pjs. Now con-

sider (∆X ′)2
eff =

∑r
j=1 pjσ

′2
j =

∑r
j=1 pj(1 − µ′2j ) =

1 −
∑r
j=1 pjµ

′2
j 6= 1 − (

∑r
j=1 pjµ

′
j)

2 = 1 − 〈Xeff 〉2 =

〈X2
eff 〉 − 〈Xeff 〉2 = ∆X2

eff . It is true for any given set

of values of pjs including pj = nj/n = 1/n,∀j i.e., r = n,
and pj = nj/n = (n/c)/n = 1/c,∀j where c is an inte-
ger. ⇒ r = c. Hence concept of single effective coin is
not correct with respect to effective variance unless r = 1.
This is because when we are tossing r different types of
independent coins, we are sort of convoluting r different
probability distributions, which is absent in the case of
tossing only one type of effective coin (Xeff ). Hence the
two situations are different.

No effective state: Let Xi = σz measured on the state
|Pi〉 =

√
Pi|0〉 +

√
1− Pi|1〉, i = 1, 2, ..., n. Pi = P ′1 for

i = 1, 2, ..., n1, Pi = P ′2 for i = n1+1, n1+2, ..., n1+n2,...,
Pi = P ′r for i = (n1 + n2 + ... + nr−1 + 1), (n1 +
n2 + ... + nr−1 + 2), ..., (n1 + n2 + ... + nr−1 + nr).
Then we get σ′2j = 1 − µ′2j (∵ σ2

i = 〈X2
i 〉 − 〈Xi〉2 =

1 − µ2
i ). We can rewrite µ′eff =

∑r
j=1 pj(2P

′
j − 1) =∑r

j=1 pjTr(σzρ
′
j) = Tr(σzρ

′
eff ) = 〈σz〉ρ′eff for given val-

ues of pjs, where ρ′eff =
∑r
j=1 pjρ

′
j , ρ
′
j = |P ′j〉〈P ′j |. Now

consider (∆X ′)2
eff =

∑r
j=1 pjσ

′2
j =

∑r
j=1 pj(1 − µ′2j ) =

1 −
∑r
j=1 pjµ

′2
j 6= 1 − (

∑r
j=1 pjµ

′
j)

2 = 1 − 〈σz〉2ρ′eff =

〈σ2
z〉ρ′eff −〈σz〉

2
ρ′eff

. Hence concept of effective state ρ′eff

is not correct with respect to effective variance unless
r = 1. For further justification see Appendix (A 3).

Also note that, even though jth type of coin is thrown
only nj(≤ n) times, j = 1, 2, ..., r, variance of effec-
tive/resultant sample mean is calculated considering all
n measurements together i.e., ∆S2

eff = (∆X ′)2
eff/n =∑r

j=1 pj(σ
′2
j /n). But ∆S2

eff 6=
∑r
j=1 pj(σ

′2
j /nj) ∵ it

gives inconsistent result as follows: Assume ∆S2
eff =∑r

j=1 pj(σ
′2
j /nj). Then for µ′j = µ, σ′2j = σ2,∀j we get

∆S2
eff = σ2

∑r
j=1 pj/nj = rσ2/n 6= σ2/n unless r = 1.

3. Justifying the formula (∆X ′)2eff =
∑
j pjσ

′2
j

derived using central limit theorem, in section (A 2)

Consider ρ = p0|0〉〈0| + p1|1〉〈1| where p0 =
T+/M, p1 = T−/M, T+ + T− = M,M →∞ or large. Let
T± be fixed i.e., value of T± will not vary over, say, M1

repetitions of the experiment. Consider measuring σz.
σz has no variance with respect to |0〉 and |1〉 as both
are its eigenkets. Hence σz must have zero variance even
with respect to ρ, a statistical/classical mixture of |0〉
and |1〉 (i.e., has no superposition/coherence/off diagonal
terms). In other words, effective/resultant variance of σz
measurement on ρ must also be zero. This is because in ρ
we have exactly T+ number of |0〉s and exactly T− num-
ber of |1〉s. Hence however many times (say, M1 times)
we repeat σz measurement on identically prepared states
ρ, we always get exactly T+ number of +1 outcomes and
T− number of −1 outcomes. Hence no variance. Hence
sample mean S = (T+−T−)/M = p0−p1 and S has zero
variance.

Now consider 〈σz〉|0〉 = 1, 〈σz〉|1〉 = −1. ⇒ µeff =

p0〈σz〉|0〉 + p1〈σz〉|1〉 = p0 − p1 = 〈σz〉ρ. (∆σz)
2
|0〉 =

〈σ2
z〉|0〉 − 〈σz〉2|0〉 = 0, (∆σz)

2
|1〉 = 〈σ2

z〉|1〉 − 〈σz〉2|1〉 = 0.

Let us define (∆σz)
2
eff = p0(∆σz)

2
|0〉 + p1(∆σz)

2
|1〉. Sub-

stituting previous results we obtain (∆σz)
2
eff = 0. Hence

sample mean S = (T+ − T−)/M = p0 − p1 = µeff , and
S has variance ∆S2 = (∆σz)

2
eff/M = 0 as required.

Instead let us define (∆σz)
2
eff = 〈σ2

z〉ρ − 〈σz〉2ρ. Then

substituting from above we obtain (∆σz)
2
eff = 1 −

(p0 − p1)2 = 1 − µ2
eff . Then sample mean S has vari-

ance ∆S2 = (∆σz)
2
eff/M = (1 − (p0 − p1)2)/M 6= 0

in general. Hence this definition of effective variance
is not correct. Moreover it predicts that S → ND :
p0 − p1, (1 − (p0 − p1)2)/M . But from Eq. (A2) it is
evident that, as the condition

∑∞
i=1 σ

2
i =∞ is not satis-

fied (actually
∑∞
i=1 σ

2
i = 0 as (∆σz)

2
|0〉 = (∆σz)

2
|0〉 = 0),

S cannot be normally distributed. This definition con-
tains correlation term p0p1〈σz〉|0〉〈σz〉|1〉. But measure-
ment of σz on |0〉 and |1〉 are uncorrelated. Here no
convolution (sort of) of two independent probability dis-
tributions unlike in previous case. Here two independent
events i.e., measuring σz on |0〉 and measuring σz on |1〉,
has been coalesced into one single event i.e., measuring
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σz on
√
p0|0〉+

√
p1|1〉 (see below).

This also seems to show the linear nature of mean
(hence µeff = 〈σz〉ρ) and nonlinear nature of variance
(hence (∆σz)

2
eff 6= 〈σ2

z〉ρ − 〈σz〉2ρ).
However if we measure σz on |ψ〉 =

√
p0|0〉 +

√
p1|1〉,

then 〈σz〉|ψ〉 = p0−p1 and (∆σz)
2
|ψ〉 = 〈σ2

z〉|ψ〉−〈σz〉2|ψ〉 =

1− (p0−p1)2. Here sample mean, S(= (T ′+−T ′−)/M)→
ND : p0 − p1, (1 − (p0 − p1)2)/M in the limit M → ∞,
where T ′± is the total number of ±1 outcomes.

4. Independent normally distributed random
variables

If Xi → ND : µi, σ
2
i then Z =

∑Ñ
i=1Xi →

ND :
∑Ñ
i=1 µi,

∑Ñ
i=1 σ

2
i where Xis are normally dis-

tributed independent random variables [3]. This result is
based on the following convolution relation: fX+Y (a) =∫∞
−∞ fX(a−y)fY (y)dy where fX , fY , fX+Y are probabil-

ity density functions of X,Y,X + Y respectively [3]. Let

Ñ = 2, Xi = (1/n)
∑n
j=1Xij where Xij is an indepen-

dent random variable with mean µij and variance σ2
ij ,

i = 1, 2. Then using central limit theorem (Eq. (A2)) we
get Xi → ND : µi, σ

2
i where µi =

∑n
j=1(1/n)µij , σ

2
i =

(1/n)
∑n
j=1(1/n)σ2

ij in the limit n → ∞, i = 1, 2. Then

Z = X1 +X2 = (1/n)(
∑n
j=1X1j +

∑n
j=1X2j).

Appendix B: Ensemble (with local control) picture

1. Distribution of T±1 , p
±
1 , and pθq

We have S1 → ND : 0, 1/M where S1 = (T+
1 −

T−1 )/M, T+
1 +T−1 = M . ⇒ T±1 = M(1±S1)/2. Theorem:

If X → ND : µ, σ2 then Y (= aX+b)→ ND : aµ+b, a2σ2

[3]. Using this we obtain T±1 → ND : M/2,M/4. We
have defined p±1 = T±1 /M . Again using the above theo-
rem we obtain p±1 → ND : 1/2, 1/(4M).

Let {θ1, θ2} → {poθ1 , p
o
θ2
}. It is equivalent to measuring

σz on |ζ〉 =
√
poθ1 |0〉+

√
poθ2 |1〉, and if the outcome is +1

apply θ1, else apply θ2. Then sample mean S(= (m1 −
m2)/M) → ND : 2poθ1 − 1, (∆σz)

2
|ζ〉/M where m1(m2)

is the number of +1(−1) outcomes. (∆σz)
2
|ζ〉 = 1 −

〈σz〉2|ζ〉,m1 +m2 = M . ⇒ mj(= M(1 + (−1)j+1S)/2)→
ND : poθjM,σ2

mj where σ2
mj = (∆σz)

2
|ζ〉M/4, j = 1, 2.

⇒ pθj (= mj/M) → ND : poθj , σ
2
mj/M

2 (using the the-

orem stated above). We assume that this is true even
when j > 2, where σ2

mj ∼M . But this assumption is not
important, because j = 2 is necessary and sufficient for
our protocol.

2. Knowing the state of each of the N qubits in the
ensemble E1 exactly

Let {θ1(= 0), θ2(= π)} → {po0, poπ}. Then if the given
ensemble is E1, then no collapse of the qubit state upon
measuring σz after applying (θq)xs. Sequence of (θq)xs
(say, function F ) maps E1 to E ′1 (i.e., E ′1 = F (E1)) where
E ′i is the ensemble got by applying (θq)x selectively to
each of the N qubits in the ensemble Ei, i = 1, 2. As we
have local control, we can know the state of each of the
N qubits in the ensemble E ′1 exactly, by σz measurement.
Then working backward using the sequence of (θq)xs (i.e.,
inverse mapping, E1 = F−1(E ′1)), we can know exactly
what was the state of each of the N qubits in the given
ensemble E1. Note that if the given ensemble is E2, then
we cannot know the state of each of the N qubits, as
there will be collapse upon σz measurement. We can
know only that the given ensemble was E2.

If the given ensemble is E1, then sample mean S1 →
ND : 0, 1/M corresponds to before applying (θq)xs, where
as the sample mean S′1 → ND : 0, (1 − 4po0(1 − po0))/M
(for {θ1(= 0), θ2(= π)} → {po0, poπ}) corresponds to af-
ter applying (θq)xs. However, if the given ensemble is
E2, then sample mean S′2 → ND : 0, 1/M corresponds
to after applying (θq)xs (note that in the previous case
this probability distribution was present before applying
(θq)xs). From the ensemble (E ′′2 ) got by measuring σz
selectively on each of the N qubits in the ensemble E ′2, if
we work backward via the sequence of (θq)xs that we had
applied (i.e., the mapping E ′′′2 = F (E ′′2 )), we obtain a vir-
tual ensemble (E ′′′2 ) which corresponds to sample mean
→ ND : 0, (1− 4po0(1− po0))/M .

3. Equivalence of states |+〉 and |−〉 with respect to
σz measurement

Consider an ensemble in the state

ρ = p+|+〉〈+|+ p−|−〉〈−|. (B1)

Let p± = limM→∞ T±/M where T+ + T− = M . Then,
µeff = p+〈σz〉|+〉 + p−〈σz〉|−〉 = 0 = 〈σz〉ρ, and

hence independent of p+, p−. (∆σz)
2
eff = p+(∆σz)

2
|+〉 +

p−(∆σz)
2
|−〉 = 1(∵ (∆σz)

2
|+〉 = (∆σz)

2
|−〉 = 1), again in-

dependent of p+, p−. ⇒ variance of effective sample mean
∆S2

eff = (∆σz)
2
eff/M = 1/M . Hence all the results are

same as measuring σz on M number of |+〉s or |−〉s.
Hence the states |+〉 and |−〉 are equivalent as far as σz
measurement outcomes are concerned. In other words,
probabilities of getting outcomes +1,−1 upon measur-
ing σz, is same in both the states: |+〉, |−〉. Hence the
two states are equivalent with respect to σz measurement
outcomes.
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4. Explanation using central limit theorem

We can explain reduction in population difference (and
hence variance) via central limit theorem as follows: Let
{θ1(= 0), θ2(= π)} → {po0(= 1/2), poπ(= 1/2)}. Consider
the case where T+

1 = M . Then it is obvious that getting
T ′+1 � T ′−1 or T ′+1 � T ′−1 is very unlikely, where as get-
ting T ′+1 u T ′−1 is very likely. Consider the case where
T ′+1 = M . There is only one sequence of (θq)xs which can
give this i.e., all θqs being 0 radians. But there are very
large number of sequences of (θq)xs which do not give
T ′+1 = M . Hence according to central limit theorem,
probability of getting T ′+1 = M tends to zero in the large
M limit. This extreme case clearly explains how and why
there is reduction in population difference (and hence
variance of sample mean) (i.e., |T ′+1 −T

′−
1 | � |T

+
1 −T

−
1 |)

upon applying (θq)xs. Similar thing happens even when
T+

1 � T−1 or T+
1 � T−1 , and it is also obvious. What

is not obvious is the prediction that similar thing hap-
pens even when T+

1 > T−1 or T+
1 < T−1 . This may be

explained as follows: The result below Eq. (5) is due
to central limit theorem. Hence the results in Eq.s (8-
10) (with {θ1(= 0), θ2(= π)} → {po0(= 1/2), poπ(= 1/2)})
are also a consequence of central limit theorem. Hence
in the spirit of central limit theorem we can say that,
total number of possible sequences of (θq)xs which trans-

forms |T+
1 − T

−
1 |(=

√
M |S̃1|) to |T ′+1 − T

′−
1 |(= |S̃′1|), is

much greater than sum of other possible sequences which
do not do this transformation i.e., probability of this
transformation tends to one in the large M limit, where
|S̃1|, |S̃′1| varies between 0 and 10 (approximately) (see
section (III B)).

5. Explanation using Shannon entropy

We can also explain the phenomenon of reduction in
population difference (and hence variance) in terms of en-
tropy as follows: As the population difference |T+

1 − T
−
1 |

increases towards M , the sequence of |0〉s, |1〉s (in the en-
semble E1j) becomes more and more ordered and hence
entropy decreases. More rigorously consider Shannon en-
tropy H = −

∑2
i=1 Pi log2 Pi,

∑
i Pi = 1, where P1 is

the probability of occurrence of |0〉, and P2 that of |1〉
[5]. Then, |T+

1 − T−1 | = M corresponds to P1 = 1 or
P2 = 1 where P1 = T+

1 /M,P2 = T−1 /M . ⇒ H = 0 i.e.,
minimum entropy configuration. When we introduce a
new random variable θq such that {θ1(= 0), θ2(= π)} →
{po0(= 1/2), poπ(= 1/2)} via the application of (θq)xs,
naturally it will try to make the sequence of |0〉s, |1〉s
disordered, which is typical of any random operation.
This corresponds to increasing entropy. In other words,
|T ′+1 − T ′−1 | = 0 corresponds to P1 = P2 = 1/2 where
P1 = T ′+1 /M,P2 = T ′−1 /M . ⇒ H = 1 i.e., maximum en-
tropy configuration. Hence application of (θq)xs increases
disorder (entropy) and hence reduces the population dif-
ference |T+

1 − T
−
1 | towards zero. Hence |T ′+1 − T

′−
1 | u 0

in the large M limit.

6. Why the reduction in variance?

Variance of random variable σz is (∆σz)
2
|ψ〉 ≤ 1. For

given M , sample mean has variance (∆σz)
2
|ψ〉/M ≤ 1/M .

Hence the ensemble E1, already corresponds to maximum
possible variance (∵ S1 → ND : 0, 1/M). Hence, intro-
duction of a new random variable θq [which does not
increase the number of qubit states (= M × M1)(see
the section ‘Motivation’ (II A))] can only decrease the
variance. Not rigorously we can write Y = S1 + cos θq
where S1 → ND : 0, 1/M = ND : 0, (∆σz)

2
|+〉/M ,

and {θ1, θ2, ...} → {poθ1 , p
o
θ2
, ...}. New random variable

cos θq has variance (∆ cos θq)
2
poθq

. Then Y → ND :

0, ((∆σz)
2
|+〉 − (∆ cos θq)

2
poθq

)/M . Variance here seems to

have pseudo-Riemannian metric signature (+,−).

7. How hard it might be to reduce the variance?

If the given ensemble is E2, then even if M,M1 are
not very large, we obtain sample mean S′2 which is at
least approximately normally distributed with mean 0
and variance 1/M . This is because it is simple i.e., it is
not a complicated weighted mean of very large number
of Gaussians, whose resultant is ND : 0, 1/M . But f(S′1)
in Eq. (6) is a complicated weighted mean of very large
number of Gaussians. There seems to be no simple way
of obtaining f(S′1) u Nd(S′1) : 0, (1 − (∆ cos θq)

2
poθq

)/M .

This may be shown as follows: We have 〈σz〉|δ〉 = cos δ,

(∆σz)
2
|δ〉 = sin2 δ where |δ〉 = cos(δ/2)|0〉+sin(δ/2)|1〉. In

the large M limit, sample mean → ND : cos δ, sin2 δ/M .
Let ND : cos δ, sin2 δ/M = ND : 0, (1− (∆ cos θq)

2
poθq

)/M .

⇒ δ = π/2. But sin2(π/2) 6= 1− (∆ cos θq)
2
poθq

in general.

This is also justified by the fact that there is no effective
state with respect to effective variance (Appendix (A 2)).
Hence it seems ND : 0, (1− (∆ cos θq)

2
poθq

)/M can be got

only as the resultant of complicated weighted mean of a
large number of different Gaussians as given in Eq. (6).
Even to realize one of the component Gaussians in Eq.
(6) (e.g., Nd(S′1) : S1〈cos θq〉pθq , (1− 〈cos2 θq〉pθq )/M for

given values of S1, pθqs and θqs) we require large set of M
measurements each. Hence to obtain the resultant prob-
ability density f(S′1) u Nd(S′1) : 0, (1−(∆ cos θq)

2
poθq

)/M ,

it seems, M1 should be really large. As we are working
with perfect Gaussians, we have implicitly assumed that
M is very large. When M,M1 are small, we may get
f(S′1) u g(S′2)(= ND : 0, 1/M), and hence no discrim-
ination. Only when M,M1 are really large, we obtain
f(S′1) u Nd(S′1) : 0, (1− (∆ cos θq)

2
poθq

)/M .

We are trying to distort/change/deviate from ND :
0, 1/M . At low M,M1 the deviation/distortion is not
large enough to give rise to observable effect in the form
of reduction in variance below 1/M . Only as M,M1

increases, deviations accumulate drop by drop and re-
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sults in appreciable reduction in variance. Reduction in
variance is the resultant of many operations viz., appli-
cation of (θq)xs, measurement of σz on different states:
|θq〉s, |θq⊥〉s.

8. We cannot directly convolute probability
distribution of S1 (i.e., ND : 0, 1/M) with that of θq

(i.e., pθq)

Reasons are the following: (1) Effective/resultant ran-
dom variable, S′1, is not a simple straight forward func-
tion of S1 and θq i.e., no simple straight forward relation
connecting them, even though S1 and θq are indepen-
dent. (2) Both S′1 and S1 correspond to M number of
qubit states (≡ Xijs in Appendix (A 4)), which is unlike
in Appendix (A 4). (3) S1 is continuous where as θq is
discrete.

9. Nonlinearity in action

(Continued from the main text (II B)) Asymmetry
(nonlinear and linear) in the two channels might be due
to the following reason: It seems it is more difficult to
change the variance via swaying of center (it requires un-
dulating the entire Gaussian), than via throwing out/in
a few sample mean points symmetrically about the cen-
ter, with center fixed. In the ensemble E1j approxi-
mately Mpoπ/2 of the states were rotated on to y-axis.

Hence there is reduction in swaying of center of Gaus-
sians which in turn reduces resultant/net variance as
cos(π/2) = 0. When we measure σz on the states on
y-axis there is positive contribution to the resultant vari-
ance as sin(π/2) = 1. Similarly the states on z-axis will
contribute positively to net/resultant variance via sway-
ing of center of Gaussian, as cos 0 = 1. But measurement
of σz on the states on z-axis does not contribute to resul-
tant variance, as sin 0 = 0. Because of nonlinear nature
(with respect to variance) of swaying of center of Gaus-
sian, sum of contributions to variance from nonlinear and
linear channels fails to reach back to 1/M .

10. Smoothing out nonuniformities

(Continued from main text (II B)) We saw that in the
large M limit, random flippings removes/smooths out the
population difference T+

1 − T
−
1 (nonuniformity). Situa-

tion here is analogous to the following example: Consider
a small metallic sphere of massm tied to a string of length
L. At time t = 0 it is on z-axis pivoted at the origin. Its
center of mass (COM) lies at z = L(≡ (T+

1 −T
−
1 )). Now

rotate the sphere about x-axis at high speed (≡ random
flipping i.e., applying (θq)xs). Its dynamic COM lies at
(
∑
imi~r(ti))/

∑
imi = 〈~r(t)〉δt = 0(≡ (T ′+1 − T

′−
1 u 0))

where ~r(ti) is the position vector at time ti, and δt
is a small time interval. Note that we cannot make

T ′+1 − T ′−1 = 0 always, because as evident from Eq.
(10), even when {θ1(= 0), θ2(= π)} → {po0(= 1/2), poπ(=
1/2)}, and even in the large M limit, variance is non zero
(however small). This will cause T ′+1 6= T ′−1 . The anal-
ogy used here is just for illustration.
Similarly if we spin a nonuniform (in mass distribution)
disc at high speed, it starts behaving as if it were uniform.
Fast spinning smooths out nonuniformities in mass dis-
tribution. Even if the angular speed varies slightly over
time (≡ variance σ2

m1/M
2 of poθ1), still nonuniformities

will be smoothed out.
Consider a diesel engine generator’s fly wheel whose
COM is slightly offset from its axis of rotation (due to
some manufacturing defect or something else). Then one
can observe decrease in vibrations with the increase in ro-
tational speed of the fly wheel (∵ dynamic COM shifts to-
wards the axis of rotation as rotational speed increases).
This effect is also observable in vehicles. Situation here
is analogous to this.
When T+

1 > T−1 more number of |0〉s will be rotated by
θ2(= π) than |1〉s, there by equalizing the population dif-
ference. When T−1 > T+

1 its the other way round, there
by equalizing the population difference again.

11. Rate of change of variance

We can also study the rate at which variance changes
with increasing M . Let Rvar = |d(variance)/dM |.
Hence Rvar(S

′
1) u |d((1 − (∆ cos θq)

2
poθq

)/M)/dM | =

| − (1 − (∆ cos θq)
2
poθq

)/M2| (using Eq.(9)), where as

Rvar(S1) = |d(1/M)/dM | = | − 1/M2|. Negative sign
indicates that variance decreases with increasing M .
Clearly Rvar(S1) > Rvar(S

′
1). Hence variance of S1 de-

creases faster than that of S′1 with increasing M in the
large M limit. Using this also we can discriminate.

12. Rate of change of sample mean

Following may not be observable at small M for the
reason mentioned in Appendix (B 7). Consider |S′1| =

|S̃′1/M | ∼ 1/M (using section (III B)). ⇒ d(|S′1|)/dM ∼
−1/M2. Similarly |S1| = |S̃1/

√
M | ∼ 1/

√
M (using sec-

tion (III B)). ⇒ d(|S1|)/dM ∼ −1/(2M3/2). Taking the
absolute values, we see that, |S1| decreases at a faster
rate than |S′1| for a small increase in M . Using this also
we can discriminate.

13. Order of integration does not matter

In Eq. (6) even if we had integrated first with respect
to pθqs, there would have been oscillations symmetrically
about a given S1. Next when we integrate with respect
to S1, all the previous oscillations will oscillate symmet-
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rically about zero. Hence resultant mean vanishes as in
Eq. (7).

Appendix C: Single copy picture

1. As a nonorthogonal state discrimination
problem

Linear and unitary nature of quantum mechanics for-
bids cloning an unknown state chosen from a set of
nonorthogonal states [6]. Hence, given a single copy of
a pure state chosen from a set of nonorthogonal states,
we cannot both exactly and with probability tending to
one (deterministically) know the given state (unknown
state). However, exact but probabilistic nonorthogo-
nal state discrimination is possible. E.g., given a sin-
gle copy of |0〉 or (|0〉 + |1〉)/

√
2, we can know the

unknown state exactly but only probabilistically us-
ing POVM measurement [7]. Natural next question
to ask is the following: Is deterministic but inexact
nonorthogonal state discrimination possible? To an-
swer this question, we consider the following problem:
There are two sets: F1 = {|0〉⊗N , |0〉⊗N−1|1〉, ..., |1〉⊗N},
and F2 = {|+〉⊗N , |+〉⊗N−1|−〉, ..., |−〉⊗N}. Fi is a
complete set of orthonormal basis states in 2N di-
mensional (2N -D) Hilbert space, i = 1, 2. E.g., for
N = 2, F1 = {|0〉|0〉, |0〉|1〉, |1〉|0〉, |1〉|1〉}, and F2 =
{|+〉|+〉, |+〉|−〉, |−〉|+〉, |−〉|−〉}. Let |φij〉 ∈ Fi, i = 1, 2,
j = 1, 2, ..., 2N . Even though |〈φ1j |φ2k〉| tends to zero in
the limit N → ∞, |φ1j〉 can never become perfectly or-
thogonal to |φ2k〉, because the set Fi is already complete,
i = 1, 2. Hence F1 and F2 together constitute a set of
nontrivial nonorthogonal states (Appendix (C 2)). Alice
gives Bob, a single copy of |φij〉 chosen with probability
1/2N (i.e., all the states are equally likely to be chosen)
from Fi, i = 1 or 2. Hence |φ1j〉 (|φ2j〉) is nothing but
the renormalized post measurement state of measuring
σz (σx) selectively (i.e., locally) on each of the N qubits

in the state |+〉⊗N (|0〉⊗N ), |0〉 = (|+〉+ |−〉)/
√

2. Alice
tells Bob the way she chose the state from one of F1,F2,
but she do not tell him exactly from which set she chose
the state. Hence Bob is aware of F1,F2, and Alice’s
state choosing procedure. Bob has a single copy of the
unknown state |φij〉, i = 1 or 2. We are going to show
that, in the limit N →∞, even though Bob cannot know
the unknown state exactly, still he can know determinis-
tically whether it was chosen from F1 or F2 (and hence
it is deterministic but inexact nonorthogonal state dis-
crimination). This requires selective random x-rotations
(unitary evolutions) and projective measurements. Vari-
ance of sample mean of σz measurement outcomes is re-
duced if the unknown state belongs to F1, else variance
remains unaltered.

The protocol that we are going to describe is feasible,
because there is no necessity of interacting one qubit with
the other. Purpose of working in 2N -D Hilbert space is
to gain addressability and control over each of the N

qubits (which is not possible with nonselective ensemble
measurement (Appendix (C 5, C 10))), so that we can se-
lectively apply random x-rotation to each of the N qubits
in the unknown state. Another purpose is to get exact ex-
pression for variance of sample mean. Let N = M ×M1,
M,M1 → ∞, so that Bob can obtain M1 sample mean
points where each point corresponds toM measurements.
Note that it is sufficient if M,M1 are large enough to ob-
tain approximately normally distributed sample mean.
Hence we rewrite

|φij〉 = |ψij1〉|ψij2〉...|ψijM1〉, i = 1, 2, j = 1, 2, ..., 2N ,

(C1)

where |ψijk〉 is a M qubit state, k = 1, 2, ...,M1. Hence
|ψ1jk〉 (|ψ2jk〉) is nothing but the renormalized post mea-
surement state of measuring σz (σx) selectively on each
of the M qubits in the state |+〉⊗M (|0〉⊗M ). In the en-
semble (with local control) picture just replace Ei with
|φij〉, and Eik with |ψijk〉, i = 1, 2, j = 1, 2, ..., 2N , k =
1, 2, ...,M1. Then we get all the calculations in single
copy picture i.e., as a nonorthogonal state discrimination
problem.

2. Nontrivial nonorthogonal states

Consider the set {|0〉, |w〉} where |w〉 = cos((π −
ε)/2)|0〉 + sin((π − ε)/2)|1〉, ε → 0. 〈0|w〉 = cos((π −
ε)/2). We call this a set of trivial nonorthogonal
states, because by measuring σz, we can discriminate be-
tween them deterministically. Instead consider the set
F = {|φ11〉, |φ12〉, ..., |φ12N 〉, |φ21〉, |φ22〉, ..., |φ22N 〉}. Al-
ice gives Bob, a single copy of |φij〉 chosen with proba-

bility 1/2N from Fi, i = 1 or 2. |〈φ1j |φ2k〉| = 1/2N/2.
Then, even in the limit N →∞, by direct measurement
of whatever observable (e.g., an observable whose nonde-
generate eigenkets are |φ1j〉s), Bob cannot say determin-
istically, whether the given state was chosen from F1 or
F2. This is because |φ2k〉 is a state of equal superposition
of all the states in F1. Hence we call F a set of nontrivial
nonorthogonal states.

3. Density matrix formulation

In density matrix formulation, Bob’s unknown state is
given by:

ρi =

2N∑
j=1

1

2N
|φij〉〈φij | =

12N

2N
, i = 1 or 2 (C2)

where 1n is n×n identity matrix. Note that ρi represents
the state of a single copy of one of |φij〉s, j = 1, 2, ..., 2N ,
which Bob has got, taking into consideration the proba-
bility (1/2N ) with which he obtains it. But ρi does not
represent the state of an ensemble with no local control.
ρi represents the state of an ensemble with local control.
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Mixedness of ρi represents Bob’s ignorance about the sin-
gle copy of the state he has got. Hence it can be purified
by selective projective measurement unlike in nonselec-
tive ensemble measurement (see Appendix (C 4) for more
details).

Hence the fact that both ρ1 and ρ2 are maximally
mixed does not imply that it is not possible to discrimi-
nate between them. It just says that, the amount of igno-
rance is same in both cases. |φ1j〉 is a random sequence of
|0〉s and |1〉s, where as |φ2j〉 is a random sequence of |+〉s
and |−〉s. Purification of ρi by selective projective mea-
surement implies gain of knowledge about the unknown
state. Consider the single copy of one of |φ1j〉s which Bob
has got i.e., ρ1. Bob applies (θq)x and then measures σz
selectively on each of the N qubits in the unknown state
|φ1j〉. By this ρ1 is projected onto a pure state, because
post measurement state is completely known to Bob. In
a special case ({θ1(= 0), θ2(= π)} → {p0, pπ}) he can
even know the exact state given to him by Alice (see Ap-
pendix (B 2)). Hence maximally mixed state, ρ1, has been
transformed into a pure state via selective projective mea-
surement (same thing happens with ρ2 as well, but here
Bob cannot know the exact state given to him by Alice).
Hence projection is nonunitary as no unitary operation
can purify. Note that, as ρi, i = 1 or 2, represents the
state of a single copy, we should not sum over all possible
outcomes in finding the post σz measurements state (see
Appendix (C 4, C 5) for justification). We showed that
application of (θq)xs reduces variance of sample mean of
σz measurement outcomes, only if the unknown state is
|φ1j〉 i.e., we got ∆S′21 < ∆S′22 . Hence Bob was able to
discriminate between ρ1 and ρ2 after purification by σz
measurement. It is shown in [8] that, one can also dis-
criminate between states similar to ρ1 and ρ2 using deter-
ministic nonlinear evolution (but there density matrices
represent the states of ensembles with no local control).

4. Mixed state of a closed single quantum system
can be purified by projective measurement

Consider the following game: Alice projectively mea-
sures σz on a single copy of |+〉, and gives the post mea-
surement state to Bob. She tells Bob that she has mea-
sured σz on a single copy of |+〉, but she do not tell
him, her measurement outcome. Now Bob should find
out what was her outcome and hence the state given to
him. For Bob, state of the single qubit given to him is
the following: ρB = 1

2 |0〉〈0| +
1
2 |1〉〈1| = 1/2. Mixedness

is a measure of his ignorance about the state. No uni-
tary operation can purify it because UρBU

† = 1/2. Now
Bob projectively measures σz. Of course there is no col-
lapse upon measurement, as his pre-measurement state
was an eigenstate of σz. If he gets +1 outcome then he
comes to know that Alice had got outcome +1 and the
state given to him was |0〉. In density matrix language,
ρB → ρ0

B/Tr(ρ
0
B) = |0〉〈0| where ρ0

B = |0〉〈0|ρB |0〉〈0|,
which is renormalised pure state. |0〉〈0| is linear but

nonunitary operator which does projection. Note that
before Bob measuring σz, the state of the single qubit to
him was maximally mixed, which represents his complete
ignorance about the state. But after measurement, the
state became pure, which indicates his gain of knowledge
about the state. Similarly, if he gets the outcome −1, he
comes to know that the state given to him was |1〉 i.e.,
ρB → ρ1

B/Tr(ρ
1
B) = |1〉〈1| where ρ1

B = |1〉〈1|ρB |1〉〈1|.
For Bob post measurement state is not the following:

ρfB = ρ0
B + ρ1

B = 1/2, because he is no more ignorant of

the state. Hence ρfB corresponds to nonselective ensem-
ble measurement but not to a single copy measurement.
Hence in case of single copy measurement we should not
sum over all possibilities (also see the section ‘Single copy
verses nonselective ensemble measurement’ in Appendix
(C 5)). This is nothing but orthogonal state discrimina-
tion.

However if Bob measures A = a0Π0 + a1Π1,Π0 =
|0〉〈0|,Π1 = |1〉〈1|, nonselectively on an ensemble of
qubits initialised in the state ρin = 12/2, then post mea-
surement state of the full ensemble is given by ρf =∑
i ΠiρinΠi = 12/2. Note that it is true even if one of ais

is zero. Hence even if we measure an arbitrary observ-
able, post measurement state remains maximally mixed.
Hence measurement can not purify the state unlike in
single copy measurement.

5. Single copy versus nonselective ensemble
measurement

Consider a single copy of the state |m〉 = cos(θ/2)|0〉+
eiφ sin(θ/2)|1〉. If we measure σz and obtain the out-
come +1, then the normalized state immediately after
measurement is given by Π0|m〉/

√
〈m|Π0|m〉 = |0〉 where

Π0 = |0〉〈0| [2]. In density matrix formulation it is given
by Π0ρmΠ0/Tr(Π0ρmΠ0) = |0〉〈0|, a pure state, where
ρm = |m〉〈m|. Similarly if the outcome is −1, post mea-
surement state turns out to be |1〉.

Now consider an ensemble of identical copies of |m〉. If
we measure σz nonselectively (i.e., nonselective ensemble
measurement like in NMR spin ensembles, where we can-
not address and control each and every qubit in the en-
semble separately (i.e., no local control), but we can only
address and control them as a whole (i.e., only global
control) i.e., same radio frequency (rf) pulse is applied
to all of them. Also qubits are continuously interacting
with environment), then the post measurement unnor-
malized state of the subensemble corresponding to +1
outcome is given by ρ0 = Π0ρmΠ0 = cos2(θ/2)|0〉〈0|.
State of the sub ensemble corresponding to −1 out-
come is given by ρ1 = Π1ρmΠ1 = sin2(θ/2)|1〉〈1| where
Π1 = |1〉〈1|. Normalised state of the full ensemble is
given by ρf = ρ0 + ρ1 = cos2(θ/2)|0〉〈0|+ sin2(θ/2)|1〉〈1|
which is mixed [9].
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6. A linear operator can clone at the most two
nonorthogonal states in 2-D Hilbert space

Consider a linear operator L such that L|0〉|0〉 = |0〉|0〉
and L|1〉|0〉 = |1〉|1〉. Assume L(α|0〉+β|1〉)|0〉 = (α|0〉+
β|1〉)(α|0〉 + β|1〉). Substituting the above transforma-
tions we obtain the following solutions: α = 1, β = 0 or
α = 0, β = 1 or α = 0, β = 0.

Now instead consider the following transformations:
L|0〉|0〉 = |0〉|0〉, L|+〉|0〉 = |+〉|+〉. Then we obtain
the following constraint equations: L00,00 = 1, L00,10 =

1/
√

2 − 1, L10,00 + L10,10 = 1/
√

2, L01,00 + L01,10 =

1/
√

2, L11,00 + L11,10 = 1/
√

2 where L00,10 = 〈00|L|10〉
etc. It has infinitely many solutions. This and previous
results together imply that L can at the most clone two
nonorthogonal states. We assume that a similar result
holds even for N qubit state i.e., a linear operator can at
the most clone 2N nonorthogonal states.

7. A linear operator in 2-D Hilbert space can map
at the most two nonorthogonal states into

orthogonal states

Consider the following transformation: L|0〉 =

|0〉, L|+〉 = |1〉. ⇒ L11 = 1, L12 = −1, L21 = 0, L22 =
√

2
where Lijs are matrix elements of L. ⇒ L|1〉 = −|0〉 +√

2|1〉 6= |0〉 and L|−〉 =
√

2|0〉 − |1〉 6= |1〉. Hence L can
map at the most two nonorthogonal states into orthogo-
nal states. Hence we require nonlinear evolution to map
|0〉, |1〉 to |0〉, and |+〉, |−〉 to |1〉. This corresponds to
deterministic but inexact discrimination (because, after
mapping if we measure σz, and if we get +1 outcome,
then we come to know only that the given state was |0〉
or |1〉. Similar thing with −1 outcome). Hence determin-
istic inexact discrimination also seems to be demanding
nonlinear evolution. Of course there may be ways other
than the mapping technique that we are using here, which
can do deterministic inexact discrimination with linear
evolution and measurement. We assume that a similar
result holds even in 2N -D Hilbert space i.e., a linear op-
erator in 2N -D Hilbert space can at the most map 2N

nonorthogonal states into orthogonal states. This is also
justified by the fact that, maximum possible number of
mutually orthogonal states in 2N -D Hilbert space is 2N .
Hence a map similar to that described in 2-D Hilbert
space may require nonlinear evolution.

8. Nonlinear evolution seems to be necessary

|〈φ1j |φ2k〉| = 1/2N/2 → 0 (but never becomes ex-
actly equal to zero) in the limit N → ∞. However,
|φ1j〉 cannot be orthogonal to |φ2k〉, because Fi is al-
ready complete, i = 1, 2. A linear operator can clone at
the most 2N nonorthogonal states in 2N -D Hilbert space
(Appendix (C 6)). Hence we can discriminate between

them exactly and deterministically, via tomography. An-
other method is the following: In 2N -D Hilbert space, a
linear operator can at the most map 2N nonorthogonal
states into orthogonal states (Appendix (C 7)). Then,
by projectively measuring an observable whose eigen-
kets (with nondegenerate eigenvalue) are these orthog-
onal states, we can discriminate between 2N number of
nonorthogonal states, both exactly and deterministically.
However here we have 2N (|φ1j〉s) + 2N (|φ2j〉s) number
of nonorthogonal states. Hence |φ1j〉s and |φ2j〉s to-
gether constitute a set of 2N+1 number of nonorthogo-
nal states. Even if we discard those states among |φ1j〉s
and |φ2j〉s, probability of getting which tends to zero in
the limit of N → ∞, still one can easily show that the
set of nonorthogonal states will have much more than
2N number of states. In this case, as shown in Ap-
pendix (C 7), even deterministic but inexact discrimi-
nation between |φ1j〉s and |φ2j〉s may require nonlinear
evolution. If it is true, then our protocol establishes
that projective measurement is a genuine probabilistic
nonlinear evolution, as we are able to say whether the
unknown state |φij〉, i = 1 or 2, belongs to F1 or F2,
using projective measurement. Also it makes sense to
say that, nonlinear effect (reduction in variance) could
be a consequence of some nonlinear evolution. Hence
projective measurement might be nonlinear. Discrimina-
tion is inexact because, if the unknown state is |φ1j〉, and
{θ1(= 0), θ2(= π)} → {po0, poπ}, then we can exactly know
the unknown state (Appendix (B 2)). However if the un-
known state is |φ2j〉, then for arbitrary (θq)xs, we can
know only that the unknown state belongs to F2. How-
ever if projective measurement is also linear and unitary
evolution (many worlds interpretation [10, 11]), then the
above argument, which shows that nonlinear evolution
might be necessary for discrimination, is not the most
general, because our protocol shows that discrimination
is possible via random unitary evolutions and projective
measurements.

Following are the likely sources of nonunitary, nonlin-
ear evolution in our protocol: (1) Nonunitary, nonlinear
effects are already present in the unknown state |φ1j〉, in
the form of variance of S1. This came via the collapse (a
nonunitary, nonlinear evolution [8]) that occurred dur-
ing Alice measuring σz. Through selective random rota-
tions about x-axis on Bloch sphere, we are reducing this
variance (a nonlinear change, as variance is a quadratic
function) in case of unknown state |φ1j〉. (2) Selectively
applying (θq)x and then measuring σz on each of the N
qubits, projects ρi (Eq. (C2)) onto a pure state, which
is a nonunitary transformation.

9. Is not 2M -D Hilbert space sufficient?

Random rotations about x-axis on Bloch sphere ap-
plied selectively to each of the M qubits in the unknown
state |ψijk〉 varies over M1 sets (i.e., k = 1, 2, ...,M1).
Hence, random rotation operator Ul = Uθc1l ⊗ Uθc2l ⊗
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...⊗UθcMl where Uθcnl = exp(−iθcnlσx/2) = (θq)x, cnl =

1, 2, ..., and n = 1, 2, ...,M , applied to rth set is in general
different from that applied to tth set, r, t = 1, 2, ...,M1.
Even in the simplest case i.e., cnl = 1, 2, we have 2M dif-
ferent Uls possible. Hence it is not like applying same rf
field to all the qubits in an NMR spin ensemble. Here we
require addressability and control over each of the MM1

number of qubits. Hence Bob must work in 2MM1 -D
Hilbert space.

10. What it is not

Alice is not measuring σz nonselectively on an ensem-
ble of identical copies of |+〉s. Similarly she is also not
measuring σz nonselectively on an ensemble of identical
copies of |0〉s. If she does nonselective ensemble measure-
ment, then Bob obtains ρ1 = |0〉〈0|/2+|1〉〈1|/2 = 12/2 in
the former case, and ρ2 = |+〉〈+|/2 + |−〉〈−|/2 = 12/2
in the latter case, instead of that given in Eq. (C2).
Then, ρi cannot be purified by subsequent σz measure-
ment, i = 1, 2. Also Bob cannot apply random rotations
about x-axis on Bloch sphere ((θq)x) selectively to each
of the qubits in the ensemble. Hence variance cannot be
reduced. Hence discrimination not possible.

11. Power of single quantum system

To build a portable quantum computer we need to ma-
nipulate single quantum system. NMR being an ensem-

ble with no local control, is considered only as a test
bed for quantum information protocols, but not a can-
didate for ultimate quantum computer. Hence, NV cen-
ter, SQUID, trapped ion, cold atoms, where we can ma-
nipulate single quantum systems, are considered as ul-
timate candidates to build a quantum computer. Sim-
ilarly, in our protocol, Bob is able to discriminate be-
cause he works with a single quantum system in the state
|φij〉, i = 1 or 2.

12. Making sense of probability amplitudes of a
single quantum system

Given a single copy of one of the following two states:
|m〉 = cos(θ/2)|0〉+ eiφ sin(θ/2)|1〉, |m⊥〉 = sin(θ/2)|0〉+
ei(φ+π) cos(θ/2)|1〉, where θ, φ (but not the state) is
known a priori, it is possible to measure probability am-
plitudes via protective measurement [12–14]. This shows
that probability amplitude (and hence expectation value
of an arbitrary observable) is also a property of a sin-
gle quantum system, but not just of an ensemble. We
cannot do it for arbitrary unknown θ, φ, as we do not
have control/access to nonlinear evolution i.e., because
of no-cloning theorem [15], [6].
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