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Abstract

I study the properties of a preon model for the substructure of the the standard
model quarks and leptons. The goal is to establish both local and global group
representations for the particles of the model. Knot theory algebra SLq(2) is
shown to be applicable to the model. Teleparallel gravity is discussed with an
interesting result to hadronic physics. A tentative glimpse on quantum gravity
is indicated.
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1 Introduction

The purpose of this brief note is to study a spin 1/2 preon model in order to
give group theoretic structure to it. The model should ful�ll three requirements:
(i) suggest the basis for the standard model (SM) local gauge group structure
SU(3) × SU2) × U(1), (ii) provide a single global group structure for preons,
quarks and lepton, and (iii) prepare a basis for introducing gravity into the
model, with an applicable form of general relativity (GR). At �rst sight it seems
di�cult to achieve all the above goals, in particular, gravity has received until
now very little attention in particle physics.

The preon model of this author [1, 2] has intuitive appeal since it suggests the
gauge group structures SU(2) and SU(3) for the weak and strong interactions,
respectively. Support for point (ii) above has been presented by Finkelstein
[4, 5] using the global knot algebra SLq(2). Thirdly, it has been long known
that a Dirac �eld coupled to Einstein-Hilbert or other gravity may yield inter-
esting results for both particles and spacetime [3]. In continuation to [3] I here
discuss �rst a case in teleparallel gravity (TG) and then Weyl quantum gravity.1

An interesting number is derived in the latter framework for the �quantum of
matter�, which is what is hoped for hadronic physics.

The organization of this note is the following. The preon model described
in section 2. The group SLq(2) is discussed in section 3. Teleparallel gravity is
discussed in section 4, and Weyl quantum gravity in section 5. Sections 4 and
5 are of explorative nature. Finally, conclusion are made in section 6.

2 Preon Model

Requiring charge quantization {0, 1/3, 2/3, 1} and fermionic permutation an-
tisymmetry for same charge preons, I have de�ned four bound states of three

1A brief summary of cyclic conformal cosmology based on Higgs quartic coupling behavior and
the Weyl tensor is given in [3].
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light preons which form the �rst generation quarks and leptons [1, 2]

uk = εijkm
+
i m

+
j m

0

d̄k = εijkm
+m0

im
0
j

e = εijkm
−
i m
−
j m
−
k

ν̄ = εijkm̄
0
i m̄

0
jm̄

0
k

(2.1)

A useful feature in (2.1) with two same charge preons is that the construc-
tion provides a three-valued index for quark SU(3) color, as it was originally
discovered [7], the corresponding gauge bosons being in the adjoint representa-
tion. The weak SU(2) left handed doublets can be read from the �rst two and
last two lines in (2.1). The standard model gauge structure SU(N), N = 1, 2 is
emergent in this sense from the present preon model. In the same way quark-
lepton transitions between lines 1↔3 and 2↔4 in (2.1) are possible.

The preon and SM fermion group structure is better illuminated using the
representations of the SLq(2) group in the next section 3.

The above gauge picture is supposed to hold in the present scheme up to the
energy of about 1016 GeV. The electroweak interaction has the spontaneously
broken symmetry phase below an energy of the order of 100 GeV and symmet-
ric phase above it. The electromagnetic and weak forces take separate ways at
higher energies (100 GeV� E � 1016 GeV), the latter restores its symmetry but
melts away due to ionization of quarks and leptons into preons. The electromag-
netic interaction, in turn, stays strong towards Planck scale, MPl ∼ 1.22× 1019

GeV. Likewise, the quark color and leptoquark interactions su�er the same des-
tiny as the weak force. One is left with the electromagnetic and gravitational
forces only at Planck scale.

The proton, neutron, electron and ν can be constructed of 12 preons and 12
anti-preons. The construction (2.1) is matter-antimatter symmetric on preon
level, which is desirable for early cosmology. The model makes it possible to
create from vacuum a universe with only matter: combine e.g. six m+, six
m0 and their antiparticles to make the basic β-decay particles. Corresponding
antiparticles may occur equally well.

The baryon number (B) is not conserved in this model: a proton may decay
at Planck scale temperature by a preon rearrangement process into a positron
and a pion. This is expected to be independent of the details of the preon
interaction. Baryon number minus lepton number (B-L) is conserved.

I have at the moment no detailed form for a preon-preon interaction. Its
details are not expected to be of primary importance. I suppose this attractive,
non-con�ning interaction is strong enough to keep together the charged preons
but weak enough to liberate the preons at high temperature or after very long
time period. This interaction gives a small mass to quarks and leptons. On
the other hand, it has been suggested [4] that preons may not appear as de-
tector observable asymptotic free particles, i.e. have any independent degree
of freedom, but are concentrations of energy-momentum at the crossings of a
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�ux tube. This property would contradict the ionization of preon bound states
assumed above.

One may now propose that, as far as there is an ultimate uni�ed �eld theory
within the standard model, it is a preon theory with only gravitational and
electromagnetic interactions.

In the early universe, the strong and weak forces are generated only after
massless preons combine into quarks and leptons at lower temperature. These
two forces function only with short range within nuclei making atoms, molecules
and chemistry possible. In a contracting phase of the universe the same pro-
cesses take place in the reverse order.

3 Knot Theory: Preons, Quarks and Leptons

Early work on knots in physics goes back in time to 19th and 18th century
[8, 9]. More recently Finkelstein has proposed a model based on the group
SLq(2) [4, 5]. The standard model �eld operators ψ(x) are complemented in
his model by knot factors D as follows [6]

ψ(x)→ ψ̂(x)Dj
mm′ (3.1)

where Dj
mm′ is a 2j+1 dimensional representation of the SLq(2) algebra (ψ̂(x)

also has the (j,m, m') indices, see [5]).
The oriented 2-dimensional projection of a 3-dimensional knot can be as-

signed three coordinates (N,w, r) where N is the number of crossings, w is the
writhe and r the rotation. One can transform to new coordinates (j,m,m′).
These indices label the irreducible representations of Dj

mm′ of the symmetry
algebra of the knot, SLq(2) by setting

j = N/2, m = w/2, m′ = (r + o)/2 (3.2)

This linear transformations makes half-integer representations possible. The
knot constraints require w and r to be of opposite parity, therefore o is an odd

integer. The knot (N,w, r) may be labeled by D
N/2
w/2,(r+o)/2(a, b, c, d). Therefore,

to the (N,w, r) knot the following expression of the algebra is associated

Dj
mm′(a.b, c, d) =

∑
δ(na+nb,n+)
δ(nc+nd,n−)

Ajmm′(q, na, nc)δ(na + nb, n
′
+)anabnbcncdnd (3.3)

where (j,m,m′) is given by (3.2), n± = j±m, n
′
± = j±m′ and Ajmm′(q, na, nc)

is given by

Ajmm′(q, na, nc) =

[
〈n′+〉1〈n

′
−〉1

〈n+〉1〈n−〉1

]1/2 〈n+〉1!
〈na〉1!〈nb〉1!

〈n−〉1!
〈nc〉1!〈nd〉1!

(3.4)

where n+ = na + nb, n− = nc + nd, 〈n〉q = qn−1

q−1 and 〈〉1 = 〈〉q1 .
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One assigns physical meaning to the Dj
mm′ in (3.3) by interpreting the a, b,

c, and d as creation operators for spin 1/2 preons. These are the four elements

of the fundamental j = 1/2 representation D
1/2
mm′ as indicated in table 1.

m m' preon

1/2 1/2 a

1/2 -1/2 b

-1/2 1/2 c

-1/2 -1/2 d

Table 1.
The D1/2 representation of the four preons.

For notational clarity, I use in the tables 1. and 2. the preon names of [4]. The
preon dictionary from the notation of [1] is the following:

m+ 7→ a, m0 7→ c

m− 7→ d, m̄0 7→ b
(3.5)

The standard model particles are the following D
3/2
mm′ representations

m m' particle preons

3/2 3/2 electron aaa

3/2 3/2 neutrino ccc

3/2 -1/2 d-quark abb

-3/2 -1/2 u-quark cdd

Table 2.
The D3/2 representation of the standard model particles and their preon

content.

All details of the SLq(2) extended standard model are discussed in [6], in-
cluding the gauge and Higgs bosons and a candidate for dark matter. I do
not, however, see much advantage for introducing composite gauge bosons in
the model (gauge invariance is a local property). Introduction of color is done
slightly di�erently in [6]. In the early universe developments there is similar-
ity between the knot and the present preon model. Therefore, apart from the
di�erences in interpretation, the model of [1] and the knot algebra of [6] are
equivalent in the fermion sector.

In summary, knots having odd number of crossings are fermions and knots
with even number of crossings are correspondingly bosons. The leptons and
quarks are the simplest quantum knots, the quantum trefoils with three cross-
ings and j = 3/2. At each crossing there is a preon. The free preons are twisted
loops with one crossing and j = 1/2. The j = 0 states are simple loops with
zero crossings.
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4 Teleparallel Gravity

The previous section 3 was largely about internal quantum numbers and their
origin in SLq(2). In this section I take a quick look `outside' in spacetime
and try to understand what kind of consequences gravity might o�er for model
building.

In [3] I paid some attention to an extension of general relativity, the Einstein-
Cartan, or Einstein-Cartan-Kibble-Sciama (ECKS), theory of gravity. There
curvature and torsion represented di�erent degrees of freedom in spacetime.
Curvature is caused by energy-momentum and torsion is due to spin. Another
form of gravity is teleparallel gravity. It is equivalent to general relativity. It
is a gauge theory of the Poincaré translation group with a force law. This
gauge group is Abelian, like in electromagnetism. On parallelizable manifolds a
vector �eld can be de�ned everywhere. Lie groups are parallelizable manifolds.
The curvature is zero in TG, while the torsion is zero in GR. Torsion is an
alternative to curvature and they are related to the same degrees of freedom of
gravity. Curvature and torsion are, strictly speaking, properties of connections,
not of spacetime.

General relativity is not unique, therefore theoretical reasons and Occam's
razor will be used: an interesting result for a quantum of matter is derived
[10] from teleparallel gravity, which originates from Einstein's attempt to unify
gravity and electromagnetism [11]. For an introduction to TG see [12].

The geometrical basic concept of TG is the tangent bundle. In a general Rie-
mannian spacetimeR, at each point p with coordinates xµ, there is a Minkowski
tangent space M = TpR, the �ber, on which the local gauge transformation of
the TxµR coordinates xa takes place

x′a = xa + εa(xµ) (4.1)

where εa are the transformation parameters. As usual, µ is a spacetime index
and a a �ber frame index.

The dynamics of the theory is based on vierbeins (tetrads) eaµ, not on the
metric tensor gµν . The relevant geometry is Weitzenböck geometry [13]. The
Cartan connection has a key role

Γµλν = eaµ∂λeaν (4.2)

The torsion associated with this connection is

Tµλν = e µ
a (∂λe

a
ν − ∂νeaλ) = e µ

a T
a
λν (4.3)

where T aλν = ∂λe
a
ν − ∂νeaλ.

The Christo�el symbols 0Γµνλ yield a zero torsion because of its symmetry
properties. The Cartan connection and Christo�el symbols are related by the
equation

Γµλν =0 Γµλν +Kµλν (4.4)
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where

Kµλν =
1

2

(
Tλµν + Tνλµ + Tµλν

)
(4.5)

is the contortion tensor. The Weitzenböck geometry, with vanishing curvature,
and the Riemannian geometry, with vanishing torsion, are related by (4.4), from
which follows

eR(e) ≡ −e
(1

4
T abcTabc +

1

2
T abcTbac − T aTa

)
+ 2∂µ(eTµ) (4.6)

where e = det(e µ
a ), R(e) is the scalar curvature and Ta = T bba. Consequently,

the Lagrangian density for TG is chosen as follows

L = −ke
(1

4
T abcTabc +

1

2
T abcTbac − T aTa

)
− LM (4.7)

where k = 1/16π (c = G = 1) and LM is the matter Lagrangian.
In (4.6) the geometrical part is the same as in Einstein-Hilbert gravity, so

both have the same dynamical properties. In TG it is possible to de�ne an
energy-momentum tensor. Equation (4.7) can be rewritten as follows

L = −keΣabcTabc − LM (4.8)

where

Σabc =
1

4

(
T abc + T bac − T cab

)
+

1

2

(
ηacT b − ηabT c

)
(4.9)

The �eld equations are derived from (4.8) by varying with respect to eaµ

and they are

eaλebµ∂ν

(
eΣbλν

)
− e
(

Σbν
aTbνµ −

1

4
eaµTbcdΣ

bcd
)

=
1

4k
eTaµ (4.10)

This can be written in a more compact form

∂ν

(
eΣaλν

)
=

1

4k
eeaµ

(
tλµ + T λµ

)
(4.11)

where T λµ = e λ
a T

aµ and

tλµ = k
(

4ΣbcλT µ
bc − g

λµΣbcdTbcd

)
(4.12)

From the antisymmetry property Σaµν = −Σaνµ it follows

∂λ

[
eeaµ(tλµ + T λµ)

]
= 0 (4.13)

which is a local equilibrium equation. It gives rise to a continuity equation

d

dt

∫
V
d3x eeaµ(t0µ + T 0µ) = −

∮
S
dSj

[
eeaµ(tjµ + T jµ

]
(4.14)

Therefore, tλµ can be identi�ed as the gravitational energy-momentum tensor.
The total energy-momentum vector can be de�ned as

P a =

∫
V
d3x eeaµ(t0µ + T 0µ) (4.15)

where V is the volume of the 3D space.
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5 Weyl Quantum Gravity

In [10] quantization of gravity is done in a stationary spacetime

ds2 = g00dt
2 + g11dr

2 + g22dθ
2 + g33dφ

2 (5.1)

The components of gµν are functions of r and θ only. The value of g00 < 0 gives
the correct limit for Minkowski spacetime.

For (5.1) there are an in�nite number of vierbeins obeying the relation gµν =
eaµeaν . To avoid this problem the vierbein �eld is interpreted as a reference
frame adapted by an observer in spacetime. Therefore this choice is made

ea µ =


√
−g00 0 0 0
0

√
g11 sin θ cosφ

√
g22 cos θ cosφ −√g33 sinφ

0
√
g11 sin θ sinφ

√
g22 cos θ sinφ

√
g33 cosφ

0
√
g11 cos θ −√g22 sin θ 0

 (5.2)

adapted for a stationary observer. To obtain the gravitational energy one needs
�rst the Σ(0)0i components which read (here (0) refers to a = 0)

4eΣ(0)01 = 2 (
√
g33 +

√
g22 sin θ)− 1

√
g11

[√
g33
g22

(
∂g22
∂r

)
+

√
g22
g33

(
∂g33
∂r

)]
4eΣ(0)02 =2

√
g11 cos θ − 1

√
g22

[√
g11
g33

(
∂g33
∂θ

)
+

√
g33
g11

(
∂g11
∂θ

)]
eΣ(0)03 = 0

(5.3)

The authors restrict the attention to Schwarzschild spacetime for which
g00 = (1 − 2M/r) = g−111 where M is the black hole mass. Now the only
non-zero Σ(0)0i component reads

4eΣ(0)0i = 4rsinθ
[
1−

√
(1− 2M/r)

]
(5.4)

Recalling E ≡ P (0) one gets

E = 4k

∫
d3x ∂i(eΣ

(0)01) =

∫
d3xH (5.5)

Therefore H = 4k∂i(eΣ
(0)01) which for Schwarzschild case yields

H = 4ksinθ
[
1− 1−M/r√

1− 2M/r

]
(5.6)

which is the classical gravitational Hamiltonian density.
Weyl's prescription for quantizing a gravitational �eld is this

θ 7→ θ̂, r 7→ r̂ (5.7)
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where θ̂ = iα∂r, r̂ = r and α is a constant with dimension of distance. The
commutator of these operators is

[θ̂, r̂] = iα (5.8)

from (4.3). The constant α is very small, α � 1 because non-commutativity
of r and θ is not observed. Therefore sin(iα∂r) ≈ iα∂r. Thus the Hamiltonian
H 7→ Ĥ given by

Ĥ = 4ikα

{[
1− 1−M/r√

1− 2M/r

]
∂r +

M/2r2

(1− 2M/r)3/2

}
(5.9)

This operator is anti-hermitian and has therefore real eigenvalues from an equa-
tion of the form Ĥψ = εψ which is

∂rψ + g(r)ψ = 0 (5.10)

where

g(r) =

[
1− 1−M/r√

1− 2M/r

]−1[
iε

4kα
+

M/2r2

(1− 2M/r)3/2

]
(5.11)

The Hamiltonian density is dimensionless and therefore the eigenvalue ε = E/M
is dimensionless with E being the observable of the �eld. The solution of (5.10)
is

ψ = ψ0 exp
(
−
∫
g(r)dr

)
(5.12)

which becomes in the limit M � r

ψ = ψ0 exp
( −iεr2

8kαM

)
(5.13)

Finally, the boundary condition at the singular points r = 0 and r = 2M ,
namely ψ(0) = ψ(2M), is required. For Schwarzschild spacetime E = M which
leads to ε = 1. The gravitational energy of TG is a classical observable, as is the
eigenvalue of the above quantum equation. The calculation leads to the result

M = nm0 (5.14)

where n = 1, 2, 3, ..., N is an integer, to give the right mass M , with k = 1/16π
and m0 = α/4. In SI units m0 = αc2/4G. This is the quantum of matter [10].
Numerically it is of the order of 0.1 GeV.

Finally, I mention a calculation supporting torsion in general together with
SM quarks. In [17] the cosmological constant it is calculated using a four-fermion
interaction in a massive Dirac �eld in a torsional model of gravity

LS = 3/2 πGe~2(ψ̄γiγ5ψ)(ψ̄γiγ
5ψ) (5.15)

using this four-fermion interaction an estimate for the cosmological constant is
obtained

Λ =
3

16M4
Pl

(ψ̄γiγ
5ψ)(ψ̄γiγ5ψ) (5.16)
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This Λ, induced by torsion, depends on spinor �elds and is not constant in time.
If the spinor �elds can form a condensate the vacuum expectation value of Λ
behaves like a cosmological constant. Quark �elds in quantum chromodynamics
form a condensate with a vacuum expectation value 〈0|ψ̄ψ|0〉 ≈ −(230 MeV)3.
This energy scale is only about eight times larger than the observed Λ value.

6 Conclusions

Spin 1/2 and charge {0, 1/3} preon models have a sound group theoretical
basis. It is hoped that the preon scheme [1] would provide a way towards a
better understanding of the roles of all interactions. For that goal the weak
and strong interactions are treated in this scenario unconventionally. They are
emergent from the very basic fermion structure of the model (2.1). Gravity and
electromagnetism are the `original' interactions in big bang of cyclic cosmology.

Finkelstein proved the knotted preon model agrees with the Harari-Shupe
(H-S) rishon model [14, 15]. As shown above, it also agrees with the the present
preon model,2 but the H-S model is quite di�erent from the present model of
section 2. For one, I do not think hypercolor is realistic for preon interactions.

On classical level there are alternatives to Einstein-Hilbert gravity like con-
formal, Einstein-Cartan and teleparallel gravity, the �rst two alternatives brie�y
discussed in [3]. The teleparallel theory has been considered as a gauge the-
ory of the Poincaré translation group [12]. However, at short distances the
generators of in�nitesimal translations may not commute any more [16]. But
notwithstanding, I gave an example of a teleparallel calculation, which ended up
with an intriguing numerical value for a gravitational quantum of mass (5.14):
m0 ∼ mpion. This is interesting for hadronic physics and the cosmological
constant as well. I wish to return to this question later.

If there are spin 3/2 three preon states a McDowell-Mansouri [18] type of
gravity may be expected. A spin 3/2 particle, beyond the SM, is predicted in
any three preon model of spin 1/2 preons.

More work is needed to clarify and gain consensus in the questions of grav-
ity, quantum version with fermions in particular, and possible uni�cation with
electromagnetism.

2A historical remark: The present model was originally conceived at SLAC, during the week of
the ψ discovery in November 1974, assuming the c-quark to be a gravitationally excited u-quark of
spin 1/2 and charge {0, 1/3} heavy constituents. This idea was not favored by the local theorists,
and later by others, and was not therefore developed to be published until much later. I have an early
negligent preprint on structured quarks (qqq̄), HU-TFT 12-74 (1974). Harari's paper was received
in April 1979, Shupe's in May 1979 by Physics Letters. My paper was received by Physica Scripta
in January 1980 - after being �rst rejected by some other journals.
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