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The role of the anomalous moment in the geometric Clifford algebra of proton topological mass
generation suggests that the anomaly is not an intrinsic property of the free space proton, but rather
a topological effect of applying the electromagnetic bias field required to define the eigenstates probed
by the magnetic moment measurement. Quantum interpretations strive to explain emergence of the
world we observe from formal quantum theory. This variant on the canonical measurement problem
is examined in the larger context of quantum interpretations.

INTRODUCTION

The mystery of the wavefunction, inferred from mea-
surement but not observable, is front and center in quan-
tum interpretations, in our efforts to understand quan-
tum mechanics as something more than abstract math-
ematical formalism. Contentions emerge as manifesta-
tions of the measurement problem.

“The measurement problem in quantum mechanics is
the problem of how (or whether) wavefunction collapse
occurs. The inability to observe this process directly has
given rise to many different interpretations of quantum
mechanics, and poses a key set of questions that each
interpretation must answer.”[1]

FIG. 1. A symptom of the measurement problem

At root the confusion arises from point particles.
Points cannot collapse. One cannot understand wave-
function decoherence without self-coherence[2–5]. A sin-
gle point particle has nothing to cohere with.

There arise two questions. How might one visualize a
self-coherent geometric structure for the electron? What
fields might one take to make manifest the geometric and
topological properties of such a structure?

For the first we have Clifford algebra of the Pauli-
Schrodinger and Dirac equations. In particular we have
the geometric interpretation of that algebra, the back-
ground independent algebra of interactions of geometric
primitives of physical space[6].

For the second we take the simplest possible option,
and assign these geometric primitives the attributes of
quantized electric and magnetic fields[7].

From these two constructs, geometry and fields, one
can define a vacuum impedance structure[8, 9], relate
excitations of that structure to observables of particle
physics, define a proton wavefunction, and perhaps gain
some understanding of origins of both the proton Bohr
magneton and the anomalous magnetic moment[10].

GEOMETRIC CLIFFORD ALGEBRA

For geometry the wavefunction presented here adopts
the minimally complete 3D Pauli algebra of physical
space - one scalar, three vectors, three bivector pseu-
dovectors, and one trivector pseudoscalar - point, line,
plane, and volume elements of Euclid, with the additional
attribute of being orientable[6]. For fields it endows them
with quantized electric and magnetic fields[7].

While this wavefunction can be easily intuitively vi-
sualized, it is not an observable[11, 12]. Observables are
interactions, represented in geometric algebra by geomet-
ric products of wavefunctions. These products generate
a 4D Dirac algebra of flat Minkowski spacetime[6]. Time
(relative phase) emerges from the interactions.

Topological symmetry breaking is implicit in geometric
algebra. Given two vectors a and b, the geometric prod-
uct ab mixes products of different dimension, or grade.
In the product ab = a · b + a ∧ b, two 1D vectors have
been transformed into a point scalar and a 2D bivector.

“The problem is that even though we can transform
the line continuously into a point, we cannot undo this
transformation and have a function from the point back
onto the line...”[13].

Interactions of wavefunctions are represented by the
geometric product. They break topological symmetry
due to this property of grade increasing operations. With
a little help from the topological duality between electric
and magnetic charge[14–16], the remarkable power of ge-
ometric interpretation becomes evident in defining both
vacuum and proton wavefunctions.
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WAVEFUNCTION AND S-MATRIX

FIG. 2. Inversion of fundamental lengths by magnetic charge

The relativistic photon is our fiducial in measurements
of geometry. Topological duality arises from the differ-
ence in coupling to the photon of magnetic and electric
charge. If we take magnetic charge g to be defined by the
Dirac relation eg = ~ and the electromagnetic coupling
constant to be α = e2/4πε0~c, then e is proportional to√
α whereas g varies as 1/

√
α. The characteristic coher-

ence lengths of figure 2, precisely spaced in powers of
α, are inverted for magnetic charge[17]. The Compton
wavelength λ = h/mc is independent of charge.

Magnetic charge g is ‘dark’, cannot couple to the pho-
ton, not despite its great strength, but rather because of
it. The α-spaced lengths of figure 2 correspond to spe-
cific physical mechanisms of photon absorption and emis-
sion. Bohr radius cannot be inside Compton wavelength
in the basic photon-charge coupling of QED, Rydberg
cannot be inside Bohr,... Specific physical mechanisms
of photon emission and absorption no longer work.

FIG. 3. The S-matrix: At top and left, a minimally complete Pauli algebra of 3D space is comprised of one scalar, three each
vectors and bivectors, and one trivector. Attributing electric and magnetic fields to these fundamental geometric objects (FGOs)
yields the wavefunction model [7]. In the manner of the Dirac equation, taking those at the top to be the electron wavefunction
suggests those at the left correspond to the positron. Their geometric product generates the background independent 4D Dirac
algebra of flat Minkowski spacetime, arranged in odd transition modes (yellow) and even eigenmodes (blue) by geometric grade.
Time (relative phase) emerges from the interactions. Modes of the stable proton are highlighted in green[10]. Modes
indicated by symbols (square, circle, diamond, triangle) are plotted in figure 4.
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FIG. 4. Correlation between coherence lengths (light cone boundary) of the unstable particle spectrum[18–20] and nodes of
the energy/scale dependent impedance network of a subset of the modes of figure 3[21]. Impedances are matched at the nodes,
permitting the transfer of energy between modes essential for particle decay. Precise calculation of π0, η, and η′ branching
ratios shown at the upper left and resolution of the chiral anomaly follow from impedance matching considerations [22].

If one takes the Compton wavelength of figure 2 to be
that of the electron, then nodes of the impedance network
of a subset of the mode structure shown in figure 3 are
correlated with unstable particle lifetimes as shown in
figure 4[21].

The speed of light (or vacuum impedance) can be cal-
culated from excitation of virtual electron-positron pairs
by the photon[8, 9], from the scalar mode shown at the
upper left of figure 3. One might consider the possibility
that a more detailed understanding results from taking
the complete impedance network of the mode structure
of figure 3 to comprise a model of the vacuum impedance,
an impedance representation of the S-matrix [10].

The extraordinary fit between the impedance network
of figure 4 and the particle spectrum lifetimes follows
from the fact that the electron is the lightest charged
particle, by far the most easily excited by the photon, and
the virtual electron-positron pair the natural candidate
for lowest order coupling to the ‘vacuum impedance’.

PROTON STRUCTURE AND SPIN

Distinguishing dark and visible modes plays an essen-
tial role in sorting out proton structure. The predom-
inance of unobserved dark modes (containing magnetic
charge, electric flux quantum and/or electric dipole) in
figure 3 provides the needed filter, given the assumption
that unstable particles contain at least one dark mode to
drive decoherence.

Dark fundamental geometric objects (FGOs) couple
differently to the vacuum impedance and therefore ex-
perience different phase shifts. Modes containing one
or more dark FGOs decohere from differential phase
shifts[2–5]. To identify the mode structure of the pro-
ton we need only consider modes comprised exclusively
of visible FGOs, a tremendous simplification. Restricting
attention to these modes, highlighted in green in figure 3,
gives us both transition modes (yellow background) and
eigenmodes (blue background) of the proton.
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proton eigenmodes - the Bohr magneton

As shown in figure 5, eigenmode FGOs of figure 3 en-
tering the geometric products number three scalars, two
vectors, and three bivectors. Those emerging from the
geometric products number three scalars, two bivectors,
and one quadvector - an even subalgebra of the Dirac al-
gebra, itself again a Pauli algebra, a wavefunction. Elec-
tric charge is conserved in the interaction.

FIG. 5. Eigenmodes of figure 3 having only visible Pauli FGOs
entering the geometric products, showing emerging grades
and corresponding electromagnetic FGOs of the model, which
again comprise a Pauli wave function.

The connection of the three emergent scalars with
three quarks seems obvious. The only scalar in our wave-
function model is electric charge. Given that the top and
left Pauli algebras of figure 3 correspond to electron and
positron wavefunctions, then all three scalars follow from
three particle-antiparticle geometric products (ee, φBφB ,
and µBµB), one for each of the three grades entering the
products. All are found on the diagonal of figure 3. Also
prominent on the diagonal is the Coulomb mode gg of
magnetic charge, part of the mode structure of the su-
perheavies (top, Higgs, Z, W,...).

The two bivectors µB emerging from geometric prod-
ucts φBφB and µBe might be identified with Yang-Mills
axial vectors. With relevance to the proton spin contro-
versy [23–26], the 938 MeV rest mass of the emergent
µBµB mode corresponds to stored electromagnetic field
energy not of the measured moment, but rather the spin
1/2 proton Bohr magneton, suggesting the anomaly is
not a property of the proton near field [10].

The grade-4 quadvector I = γ0γ1γ2γ3 defines space-
time orientation as manifested in the phases, with γ0 the
sign of time orientation. The γµ are orthogonal basis vec-
tors in the geometric Dirac algebra of flat 4D Minkowski
spacetime, not matrices in ‘isospace’[27].

proton transition modes - the anomaly

The FGOs entering the geometric products to gener-
ate the transition modes of figure 3 are shown in figure 6,
as well as grades of the FGOs emerging from the prod-
ucts and their corresponding identities in the impedance
representation[10].

In figure 6 the Chern-Simons term φBe is the quantum
Hall impedance of the charge ‘orbiting’ in the field of the
flux quantum, driven by the impinging photon. The two
spin zero (vectors have no spin) flux quanta φB are indis-
tinguishable bosons, can be taken to couple the bivector
(GA equivalent of a Yang-Mills axial vector) Bohr mag-
neton µB to the charge scalar e.

FIG. 6. Transition modes of figure 3 having only ‘visible’
FGOs entering the geometric products, showing the grades of
emerging FGOs and corresponding electromagnetic FGOs.

FGOs entering transition mode products include one
scalar, two vectors, and one bivector. These comprise
a minimally complete 2D geometric algebra. Their geo-
metric products yield two vector flux quanta φB and the
pseudoscalar magnetic charge g. With the pseudoscalar
we’ve gained a dimension. Via the interactions we have
the 2+1 dimensions of topological mass generation[28].

At the scale of the .511 MeV Compton wavelength
there exist modes of the vacuum impedance model shifted
in energy by powers of α, a consequence of the impedance
nodes being arranged in such powers. Scalar Lorentz cou-
pling of emergent magnetic charge g to flux quantum φB
(rightmost column of figure 6) yields a route to the 70
MeV mass quantum and the muon mass[29].

In accord with that calculation, if one takes µB enter-
ing the interaction (leftmost column of figure 6) to be not
the electron Bohr magneton but rather that of the muon
and φB to be similarly confined to the muon Compton
wavelength, then the energy of the bivector magneton in
the field of the vector flux quantum, the energy of the
φBµB transition mode, is the muon mass.

Most remarkably, the anomalous magnetic moment of
the proton is impedance matched to the Coulomb modes
of the proton shown in figure 5 and both the Chern-
Simons impedance of topological mass generation and
the dipole impedance of a photon whose energy is the
rest mass of the muon. With sufficient photon energy,
the muon radiates the proton mass, the point being that
the anomaly appears to be in the far-field of the proton,
a property of the muon. and the spin 1/2 nuclear Bohr
magneton a near-field property. At low energy the proton
appears with the anomaly. At high energy the direct
interaction is with the nuclear Bohr magneton[10].

The muon, the next lightest elementary particle, ap-
pears to provide both the proton anomalous moment and
a route to topological mass generation of the nucleons,
this with no further input by hand to the five fundamen-
tal constances of the model[7].
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FIG. 7. Comparison of Interpretations. The Index parameter quantifies strength of agreement between a given interpretation
and the rest of the table. Values are calculated by adding a point for entries that agree with a given interpretation, subtracting
for entries that disagree, and giving half values for agnostics. Appearance over the course of nearly a century of growing
numbers of interpretations and contentions demonstrates lack of proper physical understanding of fundamental phenomena[11].

QUANTUM INTERPRETATIONS

Interpretations of the formalism and phenomenology of
quantum mechanics address distinctions between knowl-
edge and reality, between epistemic and ontic, between
how we know and what we know. It’s a pursuit that
straddles the boundary between philosophy and physics.
There are many areas of contention. Figure 7 shows a
sample of contentions and interpretations[11].

In each of these areas quantum interpretations seek to
address the same basic question - how to understand the
measurement problem?[30, 31] How does one get rid of
the shifty split[32] of the quantum jump[33], develop a
smooth and continuous real-space visualization of state
reduction dynamics?[5] What governs the flow of energy
and information in wavefunction collapse?

The point here is that, unlike other interpretations, the
present approach has a working electromagnetic geomet-
ric model. The wavefunction can be visualized in our 3D
physical space. It is this that may permit resolution of
the contentions of quantum interpretations.

Reality and Observability of the Wavefunction

The wavefunction is comprised of fundamental geo-
metric objects of geometric algebra, the eight component
Pauli algebra of 3D space. The wavefunction is not ob-

servable. Wavefunction interactions generate the observ-
able S-matrix of the elementary particle spectrum[10, 34–
38]. By conservation of energy, the reality of observable
interactions would seem to require that the things that
interact, the wavefunctions, are real.

Reality and Observability of Wavefunction Collapse

Collapse of the wavefunction follows from
decoherence[2–4], from differential phase shifts be-
tween the coupled modes of a given quantum system.
The phase shifts are generated by interaction impedances
of wave functions[5]. What emerges from collapses are
observables. The reality of observables would seem to
require that the collapse is real, however the smooth and
continuous dynamics of wavefunction collapse are not
observable, only the end result.

Determinism and Probabilistic
Wave Function Collapse

“... the Schrodinger wave equation determines the
wavefunction at any later time. If observers and their
measuring apparatus are themselves described by a de-
terministic wave function, why can we not predict precise
results for measurements, but only probabilities?”[2]
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The probabilistic character of quantum mechanics fol-
lows from the fact that phase is not a single measurement
observable. The measurement extracts the amplitude.
The internal phase information of the coherent quantum
state is lost as the wave function decoheres. To be deter-
ministic would require phase to be a single measurement
observable, a global symmetry rather than local.

Ensemble probabilities are determined by the
impedance matches[22]. This unobservable determinism,
as required by gauge invariance, removes some of the
mystery from ‘probabilistic’ behavior.

Superposition of Quantum States

Investigating the meaning of the newly discovered
quantum states of Heisenberg and Schrodinger, Dirac led
the way in introducing Hilbert state space to the theory.
He defines states as “...the collection of all possible mea-
surement outcomes.” [39] According to Dirac,

“The superposition that occurs in quantum mechanics
is of an essentially different nature from any occurring
in the classical theory” (italics in original) [40].

What distinguishes quantum superposition from clas-
sical is linear superposition of states, of wavefunctions, as
opposed to superposition of fields. The wavefunction is
comprised of coupled electromagnetic modes, their fields
sharing the same energy at different times. The state into
which they collapse is determined by time/phase shifts of
impedances they see.

Entanglement

“Entanglement is simply Schrodinger’s name for super-
position in a multiparticle system.” [41] For a system of
wavefunctions to be entangled means they are quantum
phase coherent, that the entangled wavefunctions share
that unobservable property.

non-Locality

The scale invariant impedances (photon far-field, quan-
tum Hall/vector Lorentz, centrifugal, chiral, Coriolis,
three body,...) are non-local. With the exception of the
massless photon, which has both scale invariant far-field
and scale dependent near-field impedances, the invariant
impedances cannot do work, cannot transmit energy or
information. The resulting motions are perpendicular to
the applied forces. They only communicate phase, not
a single measurement observable. They are the channels
linking the entangled eigenstates of non-local state re-
duction. They cannot be shielded[42, 43]. The invariant
impedances are topological. The associated potentials
are inverse square.

Hidden Variables

Early in development of quantum theory, probabilistic
character prompted Born[44, 45] to comment “...anybody
dissatisfied with these ideas may feel free to assume that
there are additional parameters not yet introduced into
the theory which determine the individual event.”

If one takes the ‘hidden’ variables to be quantum
phases (not observable!), it follows that the “...additional
parameters not yet introduced into the theory...” are
phase shifters, the quantum impedances.

Observer Role

Both geometric algebra and quantized impedances are
background independent. The one is ‘first person’, the
other two body[46]. Neither has independent observers.

In the present work the two bodies are taken to be two
interacting wavefunctions, and wavefunctions to be not
observable. If it makes sense to talk of an observer role,
then the observer must be either or both of the two wave-
functions. Which is to say the observer is a wavefunction.
Which is to say observers are not observable.

This paradox suggests that it makes no sense to talk of
an observer in the quantum mechanics of single measure-
ments, that it is an emergent concept having no place in
the conceptual foundations of the present approach.

SUMMARY AND CONCLUSION

While the readily visualized wavefunction presented
here might lead one to suggest that present contentions
of quantum interpretations will eventually be fully re-
solved, perhaps more consequential for interpretations is
the blurring of identity that follows from the highly in-
terconnected character of the vacuum impedance network
that controls the flow of energy. The apparent delocaliza-
tion of the proton anomalous moment and its relocation
in the muon provides a possible example.
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