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Quantum Waves in Nature, a New Interpretation of Quantum Mechanics 

Author:  John R. Carlson 

Abstract 

We propose a new interpretation of quantum mechanics to address challenges of the Copenhagen 
Interpretation and to explain observations from certain double-slit experiments.  We explore some 
characteristics of quantum mechanics and analyze a quantum mechanical model which leads us to the 
assumptions for our new interpretation.  We show how quantized waves, like those in Schrödinger’s 
wave equation, might exist in nature and explain the fundamentals of quantum-scale processes 
including:  the above-mentioned double-slit experiments, wave function collapse, quantum 
entanglement and quantum tunneling.  We classify our interpretation based on commonly used criteria.  
Finally, we consider some future theoretical points and list some experimental questions.  Our new 
interpretation has the potential to facilitate new theory and experiments leading to a better 
understanding of fundamental processes in nature and possibly new applications for quantum theory. 
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1) Motivation 

This paper originated from an attempt to explain interference patterns which accumulate over time in 
double-slit experiments when particles are sent through such an experiment one-at-a-time.  This has 
been observed for photons1, electrons2 and other particles3.  The implication is that each particle 
interferes with itself to produce an interference pattern.  This implication challenges one to find an 
explanation for how this might occur in nature. 

There are at least a dozen interpretations of quantum mechanics.  Cramer4 describes how the 
Copenhagen Interpretation was formed in the 1920’s and how it became5 a “‘don’t ask; don’t tell’ 
approach to the quantum formalism that fulfilled the needs of those who wanted to calculate and make 
predictions, but frustrated those who wanted to understand what went on behind the scenes.”  
Regarding the Copenhagen Interpretation, Griffiths6 states, “Among physicists it has always been the 
most widely accepted position.”  That interpretation proposes that the quantum wave function exists 
“in the observer’s mind”.  It is not credible that a particle in nature would consult a quantum wave 
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function in some observer’s mind to know where to go when creating an interference pattern.  Other 
interpretations present similar difficulties.  This prompted us to seek a new interpretation which would 
be accessible to nature and would be able to explain the experimental results from the double-slit 
experiments mentioned above. 

2) Characteristics of Quantum Mechanics 

Quantum mechanics is based on Schrödinger’s equation7: 

݅ħ
ߖ߲

ݐ߲
=  − 

ħ2

2 ݉
 
ߖ2߲

2ݔ߲
+  Griffith′s equation [1.1]                       ߖܸ

Where i is the square root of -1, ħ is Plank’s constant divided by 2π, t is time, ߖ is the complex wave 
function, m is mass, and V is an external energy potential possibly varying with space and time.  Time, 
space and ħ are real numbers.  Consider the following characteristics of Quantum Mechanics (QM): 

Characteristic Illustrative Examples 
A. QM is accurate. Predictions match experiments to better than 1 part per million8. 
B. QM is not symmetric with 
respect to space and time. 

Each term in Schrödinger’s equation represents energy.  On the left 
side, డఅ

డ௧
  shows how energy is distributed through time.  On the 

right side, డ
మఅ

డ௫మ  shows how energy is distributed through space.  The 
wave function Ψ can also describe how an external potential 
energy V, is distributed in space and time. 

C. QM can model mass as well 
as energy. 

Although Schrödinger’s equation models energy, mass and energy 
are equivalent.  Feynman states9, “An electron and a positron come 
together at rest, each with a rest mass m0.  When they come 
together they disintegrate and two gamma rays emerge, each with 
the measured energy of m0c2.  This experiment furnishes a direct 
determination of the energy associated with the existence of the 
rest mass of a particle.” 

D. QM can model position and 
momentum, and therefore all 
classical dynamical variables 

Griffiths10, provides quantum mechanical operators for position and 
momentum: 

〈ݔ〉 =  න  Griffithᇱs equation (1.34)   ݔ݀ߖ(ݔ)∗ߖ

〈݌〉 =  න ∗ߖ ൬
ħ
݅

߲
ݔ߲

൰  {Griffithᇱs equation (1.35    ݔ݀ ߖ

He then states. “The fact is, all classical dynamical variables can be 
expressed in terms of position and momentum.” 

E. QM accounts for 
interference of amplitudes 
representing both Bose and 
Fermi particles. 

Per Feynman11, regarding a collision of identical particles “Bose 
particles are the photon, the mesons and the graviton.  The Fermi 
particles are the electron, the muon, the neutrinos, the nucleons, 
and the baryons.  We have then, that the amplitude for the 
scattering of identical particles is: 
Bose particles: 

(ݐܿ݁ݎ݅݀ ݁݀ݑݐ݈݅݌݉ܣ)  (ℎܽ݊݃݁݀ܿݔ݁ ݁݀ݑݐ݈݅݌݉ܣ) +
Fermi particles: 

(ݐܿ݁ݎ݅݀ ݁݀ݑݐ݈݅݌݉ܣ)  "(ℎܽ݊݃݁݀ܿݔ݁ ݁݀ݑݐ݈݅݌݉ܣ) −
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F. QM can model particles12 or 
waves13 in space and time and 
can handle models with sums 
over a possibly infinite number 
of discrete variables … 

Example of Infinite Sums of discrete variables. 
Griffith considers the case14 in which (lower case) ψ is a function of 
x alone and (lower case) ߮ is a function of t alone.  This means that 
by separation of variables, Schrödinger’s equation can be split into 
two separate parts and rewritten as: 

݅ ħ 
1

߮
 
݀߮
ݐ݀

=  − 
ħଶ

2݉
 
1
ψ

 
݀ଶψ
ଶݔ݀ + ܸ  Griffithᇱs equation [2.3] 

The right side represents how energy is distributed through space.  
The left side represents how the energy is distributed through time.  
Griffiths shows how the right side can be solved exactly, and then 
how the contribution from the left side can be included to form a 
complete exact solution to his equation [2.3]: 

,ݔ)߰ (ݐ =  ෍ ܿ௡߰௡(ݔ)
ஶ

௡ୀଵ

݁ି௜ா೙௧/ħ

=  ෍ ܿ௡ݔ)ߖ, (ݐ
ஶ

௡ୀଵ

 Griffithᇱs equation [2.17]  

Where ߰௡(ݔ,  are the wave functions of time independent (ݐ
solutions for the various energy levels, x is space, t is time, ħ is 
Plank’s constant divided by 2ߨ, i is the square root of -1 and Ψ(x, t) 
is the complete wave function over all space and time.  The 
functions cn represent a set of orthogonal base states for the 
system being modeled. 

F. (Continued) 
 
or an integral over an infinite 
set of continuous functions. 

Example of Infinite Integrals of continuous functions. 
Considering the Free Particle15 Griffiths starts with the time-
independent Schrödinger equation: 

− 
ħଶ

2݉
 
݀ଶݕ
ଶݔ݀ =  Griffithᇱs equation [2.90]  ߰ ܧ

   ݎ݋
݀ଶݕ
ଶݔ݀ = −݇ଶ߰  ݓℎ݁݁ݎ ݇ ≡  

ܧ ݉ 2√
ħ

 

His solution is an integral over an infinite number of energies: 

,ݔ)߰ (ݐ =
1

ߨ2
 න ݁(݇)ߔ

൬௜௞௫ିħ݇2

ଶ௠൰௧
ାஶ

ିஶ
݀݇ Griffithᇱs equation [2.100] 

where ߰(ݔ,  is the wave function of space x and time t, ħ is (ݐ
Plank’s constant divided by 2ߨ, m is mass, E is energy and i is the 
square root of -1.  Just below equation [2.100] Griffith states, “(The 
factor 1/2ߨ is factored out for convenience; what plays the role of 
the coefficient cn in Equation [2.17] is the combination 
൫1 ⁄ߨ2√ ൯ ߔ(݇) ݀݇. Now this wave function can be normalized (for 
appropriate φ(k)).  But it necessarily carries a range of k’s and 
hence a range of energies and speeds.  We call it a wave packet. 

G. QM is dependent upon the 
existence of an infinite 
dimensional Hilbert space. 

As clearly described by Griffiths16, “The collections of all functions 
of x constitutes a vector space, but for our purposes it is much too 
large.  To represent a physical state, the wave function ߰ must be 
normalized: 

න|߰|ଶ ݔ݀  = 1 
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The set of square-integrable functions, on a specified interval, 

න ݐℎܽݐ ℎܿݑݏ  (ݔ)݂ ଶ|(ݔ)݂|
௕

௔
>  ݔ݀   ∞  

constitutes a (much smaller) vector space.  Mathematicians call it 
L2(a, b); physicists call it Hilbert space.  In quantum mechanics, 
then, Wave functions live in Hilbert space.” 

H. QM is dependent upon the 
use of complex variables. 

Per Feynman17, a complex number c is of the form c = a + i b where 
a and b are real numbers and i is defined by:  ݅ ≡  √−1.  Unlike the 
real number system, the complex number system is complete in the 
sense that for any combination of arithmetical operations (addition, 
subtraction, multiplication, division, raising to powers and taking 
roots) applied to a complex number of the form a + i b, results in 
another complex number of the same form. 

I. All observables predicted by 
QM are real numbers. 

As clearly described by Griffiths18,  “The expectation value of an 
observable Q(x, p) can be expressed very neatly in inner-product 
notation: 

〈ܳ〉 = න ߰∗ ෠ܳ߰ ݀ݔ

= ൻ߰ห ෠ܳ߰ൿ Griffithᇱs eqation [3.13] 
Now the outcome of a measurement has got to be real, and so a 
fortiori, is the average of many measurements: 

|ܳ| =  |ܳ|∗                    Griffithᇱs eqation [3.14] 
But the complex conjugate of an inner product reverses the order, 
so 

ൻ߰หܳ ෡ ߰ൿ =  ൻ ෠ܳ߰ห߰ൿ           Griffithᇱs eqation [3.15] 
Thus, operators representing observables have the very special 
property that 

ൻ݂ห ෠݂ܳൿ =  ൻ ෠݂ܳห݂ൿ  ݂(ݔ)݂ ݈݈ܽ ݎ݋   Griffithᇱs eqation [3.16] 
We call such operators hermitian.” 

3) A Quantum Mechanical Example 

Let’s examine a simple two-state quantum example to illustrate how energy changes through time in 
quantum systems.  Consider the quantum example from Feynman’s Volume III, Section 8-6 The 
Ammonia Molecule.19  He describes it as follows: 

The ammonia molecule has one nitrogen atom and three hydrogen atoms located in a plane 
below the nitrogen so that the first molecule has the form of a pyramid, as drawn in Fig. 8-1(a).  
Now this molecule, like any other, has an infinite number of states.  It can spin around any 
possible axis; it can be moving in any direction; it can be vibrating inside, and so on, and so on.  
It is therefore, not a two-state system at all.  But we want to make an approximation that all 
other states remain fixed, because they don’t enter into what we are concerned with at the 
moment.  We will consider only that the molecule is spinning around in its axis of symmetry (as 
shown in the figure), that it has zero translational momentum, and that it is vibrating as little as 
possible.  That specifies all conditions except one: there are still the two possible positions for 
the nitrogen atom – the nitrogen may be on one side of the plane of hydrogen atoms or on the 
other, as shown in Fig. 8-1(a) and (b).  We will discuss the molecule as though it were a two-
state system. 
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Feynman then develops a pair of quantum wave equations to describe the time-evolution of the two 
possible energy states.  In the process of his derivation, he discovers that there must be two energy 
levels involved which he calls, E0 and A.  The equations for C1(t) and C2(t) are the wave equations for 
states C1 for state |1> when the nitrogen atom is “up” and C2 for state |2> when the nitrogen atom is 
“down”.  They show for each state how the energy changes with time: 

(ݐ)ଵܥ =  
ܽ
2

 ݁ି(௜ ħ⁄ )(ாబି஺)௧ +  
ܾ
2

 ݁ି(௜ ħ⁄ )(ாబା஺)௧    Feynmanᇱs equation (8.50) 

(ݐ)ଶܥ =  
ܽ
2

 ݁ି(௜ ħ⁄ )(ாబି஺)௧ −  
ܾ
2

 ݁ି(௜ ħ⁄ )(ாబା஺)௧    Feynmanᇱs equation (8.51) 

He then says, “Suppose that at t=0, we know that a molecule is in the state |1> … What is the probability 
that the molecule will be found in the state |2> at the time t?”  He then derives these two equations: 

(ݐ)ଵܥ = ݁ି(௜ ħ⁄ )ாబ௧ cos(ݐܣ  ħ ⁄ )     Feynmanᇱs Equation (8.52) 

(ݐ)ଶܥ = ݅݁ି(௜ ħ⁄ )ாబ௧ sin(ݐܣ ħ⁄ )     Feynmanᇱs Equation (8.53) 

Where ħ  is Plank’s constant h divided by 2 π, E0 and A are two energy levels, and t is time. 

Feynman then calculates the probability that the molecule can be found in state 2 by taking the absolute 
square of C2 as follows: 

2 ݁ݐܽݐݏ ݊݅ ܾ݁ ݋ݐ ݕݐ݈ܾܾ݅݅ܽ݋ݎܲ = ଶ|(ݐ)ଶܥ| = ݐܣ)ଶ݊݅ݏ  ħ⁄ )        Feynmanᇱs Equation(8.54) 

Similarly, we calculate: 

1 ݁ݐܽݐݏ ݊݅ ܾ݁ ݋ݐ ݕݐ݈ܾܾ݅݅ܽ݋ݎܲ = ଶ|(ݐ)ଵܥ| = ݐܣ)ଶݏ݋ܿ ħ⁄ )            This paparᇱs equation (P)  

Feynman then graphs the probabilities in units of   ħ ⁄ܣ .  See Appendix A – Probability Data at the end of 
this paper to see the data underlying this graph. 

Here is a rough reproduction of Feynman’s Figure 8.2: 
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4) Analysis of the Example 

Please see Appendix B – Derivations to see an expansion from Feynman’s equations (8.52) and (8.53) to 
its component parts, the real and imaginary parts of functions C1(t) and C2(t) as shown in equations (A), 
(B), (C) and (D) below: 

ܴ݁൫ܥଵ(ݐ)൯ =  cos(ܧ଴ݐ ħ⁄ ) ݐ ܣ)ݏ݋ܿ ħ⁄ )              This paparᇱs equation (A) 

((ݐ)ଵܥ)݉ܫ =  − sin൫(ܧ଴ݐ ħ⁄ )൯ cos(ݐ ܣ ħ⁄ )      This paparᇱs equation (B) 

((ݐ)ଶܥ)ܴ݁ =  sin(ܧ଴ݐ ħ⁄ ) sin(ݐ ܣ ħ⁄ )             This paparᇱs equation (C) 

((ݐ)ଶܥ)݉ܫ = cos(ܧ଴ݐ ħ⁄ ) sin(ݐ ܣ ħ⁄ )             This paparᇱs equation (D) 

Note that these are all functions of sin and cos of (energy x time / ħ).  Therefore, we can examine these 
functions in graphs using the same units that Feynman used to graph the probabilities P1(t) and P2(t) 
above.  All the graphs in this paper show time t in units of (ħ / energy). 

Next, we need to consider the relation between the energies E0 and A.  Feynman has said that A is much 
smaller than E0.  Our goal here is not to accurately model the ammonia molecule, but rather is to 
understand the relation of the various components of the functions C1(t) and C2(t) over time. 

Since E0 has more energy than A, the wave function of E0 will cycle faster than that of A.  We want to 
consider a complete cycle of both E0 and A.  It turns out that we can do this if we let A = E0/10.  Doing so 
results in 10 cycles of E0 and one cycle of A.  In our graphs below, we divide the time between 0 and 2π 
into 128 intervals in increments of π/64, therefore the increments of time t = .049, (rounded to 3 
decimal places) in units of ħ/energy.  We include one extra increment at the end to complete the cycles 
and return us to our starting point, so the data table contains 129 values.  The formulas and the first few 
rows of the data table underlying the following graphs are shown in Appendix C – Data Table. 
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Here is Graph 1, the graphs of Cos(E0) and Sin(E0) versus t with 10 complete cycles in units of t= ħ/E0: 

 

 

Here is Graph 2 the graphs of Cos(A) and Sin(A) versus t with one complete cycle of in units of t= ħ/A: 

 

     Time t (0 ≤ t ≤ 6.283 (= 2π))  
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Here is Graph 3, the graph of C1(t) showing its real and imaginary components: 

 

Note that like Feynman’s graph of the probabilities, this graph shows the energy in C1(t) starting at a 
high level for time t=0 and dropping to a low value at time t= π/2 (1.571) and then returning to a hi level 
again at t = π ( 3.142). 

Here is Graph 4, the graph of C2(t) showing its real and imaginary components: 

 

Note that for C2(t) the energy starts out at zero and increases to a large value at t= π/2 (1.571) 

In the above graphs we see that the energy cycles between the two states |1> and |2> with most of the 
energy in state |1> at the beginning when t=0 which makes sense because Feynman assumed the 
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system was in state |1> at time t=0.  We also see that the energy goes into state 2 near times π/2 and 
3π/2, returning to state |1> at times π and 2π. 

Here is Graph 5, the graph of both the components of C1(t) together with P1(t).  This graph clearly shows 
that the probability of finding the molecule in state |1> is greatest when the wave function C1(t) 
contains the most energy. 

 

     Time t (0 ≤ t ≤ 6.283 (= 2π)) 

Here is Graph 6, the corresponding graph for the components of C2(t) and the probability P2(t).  We see 
that the probability of finding the system in state |2> is greatest when the wave function C2(t) contains 
the most energy. 
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At this point we take a closer look at the components of the wave functions C1(t) and C2(t).  In certain 
regions near the highest probability of finding the system in state |2> we see that there are times when 
most of the energy is in the imaginary components of the functions. 

Graph 7 shows details in a region near the highest probability of finding the system in state |2> 

 

     Time t (1.031 ≤ t ≤ 1.914) 
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The same is true for state |1> shown in Graph 8 below: 
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In our example, we see Schrödinger’s equation model the energy of a system based on the Hamiltonian 
matrix.  This leads to a quantum mechanical solution involving the complex functions C1(t) and C2(t) 
representing the evolution in time of the energy associated with the states of the system.  These 
functions cycle the energy back and forth through the real and imaginary components of C1(t) and C2(t) 
and lead to the predicted probabilities P1(t) and P2(t) for finding the system in either state. 

This suggests that when using Schrodinger’s equation, we must use complex numbers with their 
imaginary components to calculate probabilities of finding a system in a given state.  It also suggests that 
if something like Schrödinger’s equation exists in nature, then nature must use complex numbers with 
their imaginary components to do the same. 

We would like to extend the above example just a bit further, based on comments Feynman made in the 
next chapter20.  He refers to his equations 8.50 and 8.51 shown earlier and rewrites them: 

ଵܥ =  
ܽ
2

 ݁ି(௜ ħ⁄ )(ாబି஺)௧ +  
ܾ
2

 ݁ି(௜ ħ⁄ )(ாబା஺)௧    Feynmanᇱs equation (9.2) 

ଶܥ =  
ܽ
2

 ݁ି(௜ ħ⁄ )(ாబି஺)௧ −  
ܾ
2

 ݁ି(௜ ħ⁄ )(ாబା஺)௧    Feynmanᇱs equation (9.3) 

and states: 

“Suppose that the molecule was initially put in a state |ψII > for which the coefficient b was 
equal to zero.  Then at t = 0 the amplitudes to be in the states |1> and |2> are identical. and 
they stay that way for all time.  Their phases both vary with time in the same way – with the 
frequency (E0 - A) / ħ.  Similarly, if we were to put the molecule into a state |ψI > for which a = 0, 
The amplitude C2 is the negative of C1, and this relationship would stay that way forever.  Both 
amplitudes would now vary with time with the frequency (E0 + A) / ħ.  These are the only two 
possibilities of states for which the relation between C1 and C2 is independent of time. 

We have found two special solutions in which the two amplitudes do not vary in magnitude and, 
furthermore, have phases which vary at the same frequencies.  These are stationary states as 
we defined them in Section 7-1, which means that they are states of definite energy.” 

One final point:  These stationary states of definite energy for which the amplitudes do not vary in 
magnitude, and for which the total probability = 1 for all time still cycle energy back and forth between 
the real and imaginary components of the wave function!  Consider the case in which b = 0.  Then the 
wave function for C2 has the exponential time-dependent form: 

ଶܥ =  
ܽ
2

 ݁ି(௜ ħ⁄ )(ாబି஺)௧ 

Disregarding the factor a/2, this function starts at point (1, 0) on the (x, i) plane and traces out a circle in 
the clockwise direction as time t increases.  This function is a function of t, and the energy spends fully 
half of the time mostly in the imaginary components.  Specifically, in the interval (π/4 < t < 3π/4) most of 
the energy of the wave amplitude is in the negative imaginary numbers, and in the interval (5π/4 < t < 
7π/4) most of the energy of the wave amplitude is in the positive imaginary numbers.  The final and 
important point here is that unless specifically blocked somehow, the energy always cycles back and 
forth through the real and imaginary components, whether a system appears to be in motion or not. 
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5) Can Schrödinger’s Wave Equation Exist in Nature? 

Let’s reconsider the above-mentioned characteristics of Quantum Mechanics and see if they support or 
challenge to the notion that some form of Schrödinger’s wave equation might exist in nature: 

Characteristic Illustrative Examples 
A. QM is accurate. This supports the notion (that quantum mechanical formulas and 

methods might exist in nature).  If quantum mechanics and nature 
were using different approaches, it would be difficult to get such 
accurate predictions of actual experimental results. 

B. QM is not symmetric with 
respect to space and time. 

This must be a fundamental characteristic of nature, because of the 
accuracy of QM predictions and so should be acknowledged in any 
interpretation of quantum mechanics. 

C. QM can model mass as well 
as energy. 

This supports the notion since mass and energy are equivalent. 

D. QM can model position and 
momentum, and therefore all 
classical dynamical variables 

This supports the notion because both quantum mechanics and 
nature generalize to the familiar classical mechanical models. 

E. QM accounts for 
interference of amplitudes 
representing both Bose and 
Fermi particles. 

This supports the notion because both of these effects are found in 
nature. 

F. QM can model particles or 
waves in space and time and 
can handle models with sums 
over a possibly infinite number 
of discrete variables or an 
integral over an infinite set of 
continuous functions. 

This requires further elaboration.  See the section below: 
5. c) Particles and Waves. 

G. QM is dependent upon the 
existence of an infinite 
dimensional Hilbert space. 

This requires further elaboration.  See the section below: 
5. a) Hilbert Space. 

H. QM is dependent upon the 
use of complex variables. 

This requires further elaboration.  See the section below: 
5. b) Complex Dimensions and Observables. 

I. All observables predicted by 
QM are real numbers. 

This requires further elaboration.  See the section below: 
5. b) Complex Dimensions and Observables. 

5. a) Hilbert Space 

The use of Hilbert space to normalize a wave function implements conservation of energy.  The total 
probability of finding all of “something” should not change as the thing moves through space and time 
or is looked at from a different point of view.  Hilbert space seems to be a result of the practices of 
changing base states and of allowing the Schrödinger wave functions to be calculated, for example, over 
“all space” or “all time”, and later ensuring that energy is conserved.  The total probability of finding 
something somewhere must add to 1.  We assert that in nature, some amount of mass and energy 
exists.  As it spreads out in space and time, barring interactions that might change its mass or energy, it 
remains “normalized” at each tiny increment and from any point of view because there is only the initial 
amount of mass or energy to begin with, and mass and energy are conserved. 
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5. b) Complex Dimensions and Observables 

Historically we have thought of the world as composed of four real valued dimensions, three for space 
and one for time.  There has been a bias against believing that complex dimensions might exist in 
nature.  This bias may be based on traditional usage of the real number line to describe space and time 
in classical mechanics, thermodynamics and even electromagnetism.  This bias combined with our 
inability to observe complex variables may have resulted in a disinclination to find a way in which 
complex variables, and the complete number system that comes with them, might exist in nature. 

In quantum mechanics, we are unable to directly measure anything about the components of the wave 
function.  Per “Characteristic I” from section 2 above, an observable in quantum mechanics must arise 
from a Hermitian operator in the form of a set of real-valued physical observations. 

Therefore, if complex wave functions exist in nature, their direct observation and measurement must be 
hidden from us.  Let’s assume for the moment that nature uses a complete number system, namely a 
set of space dimensions described by a complex variable of the form c = a + i b, so that each real 
dimension “a” would be paired with an imaginary dimension “b” hidden from our view.  There are at 
least two ways such hidden imaginary dimensions might exist in nature.  A hidden dimension might be: 

1. Curled-up, like a garden hose viewed from a tall building21 
2. In the Bulk22, if we exist on a 4-dimensional brane in a higher dimensional universe 

If either of the above conditions were to exist, then the hidden imaginary dimensions would not be 
observable by us and we would not be able to directly measure anything about them.  They would 
appear to us to be just like the imaginary dimensions of quantum mechanics!  This supports the notion 
that such hidden imaginary dimensions might exist in nature.  We could look to indirect experimental 
evidence to support or challenge this notion and for clues about the characteristics of these dimensions. 

We know about metrics in the real dimensions in nature because we can measure real variables.  We 
know that a single quantum of energy might appear as a wave, spread out over a very broad range of 
real-valued locations relative to its wavelength.  For example, after the wave of an electron has passed 
through a double-slit experiment, it may end up in any of a wide range of physical locations. 

We don’t know anything about the shape or metrics of the hidden imaginary dimensions.  For example, 
such dimensions might be large or compact.  As energy circulates around between the real and 
imaginary dimensions, the wave might be widely dispersed in the real dimensions.  It could be widely 
dispersed or quite compact in the imaginary dimensions. 

If space is complex, is time also?  Per special relativity, time and space are similar.  For example, if an 
observer is at rest with respect to an emission of light, the light cone spreads symmetrically into the 
future and three events, A, B and C separated in space might appear to be simultaneous.  However, to 
an observer moving in one direction, the events might appear to occur in sequence A, then B, then C.  
While to an observer moving in the opposite direction, the events might appear to occur in sequence C, 
then B, then A.  If space and time are even a little bit interchangeable as suggested by special relativity, 
this means that if space is complex, time must also be complex.  There is an obvious conflict between 
the asymmetry of time and space evident in Schrodinger’s wave equation, and the symmetry of time 
and space per special relativity.  This conflict is exacerbated by the notions of space and time suggested 
by general relativity.  We note these issues but do not explore them further in this paper. 
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5. c) Particles and waves 

First, we consider whether the infinite sums and integrals used in quantum mechanics pose a problem 
for the notion that Schrödinger’s wave function might exist in nature. 

In Griffith’s example in Section 2, Characteristic F.1 above the Infinite sum on the right ranges over all 
space and includes the possibly uncountable number of energy levels of a system.  The infinite sum on 
the left ranges over all time, from the infinite past to the infinite future.  If one is solving equations over 
all space and all time, it is perfectly reasonable to assume that infinite sums might be involved and might 
describe the real world within the constraints of the system being modeled.  We do not see a conflict in 
modeling such infinite sums when attempting to describe systems of possibly uncountable particles 
having possibly uncountable energy levels over all space and time. 

In Griffith’s example in Section 2, Characteristic F.2 above, the Infinite integral represents a possibly 
infinitesimal wave packet.  Since a wave packet may have a very short length, it has an indefinite wave 
length and momentum.  The infinite integral is necessary to include all the possible energy levels of the 
components of the packet.  Again, we see no conflict in imagining a wave packet moving through space 
and time in nature. 

Next, we consider some consequences of assuming Schrödinger’s wave equation exists in nature and is 
fundamental to the behavior of physical systems on quantum scales.  We’ve seen examples of 
Schrodinger’s equation modeling both waves and particles.  Fundamentally, though, the equation itself 
is a “wave equation”.  Therefore, in finding a way for that equation to manifest itself in nature, we must 
look to the wave nature of the equation, recognizing that particles can also be modeled using the wave 
functions in that equation.  We should note at this point that although Schrodinger’s equation is a wave 
equation, the energy represented by the wave function is quantized by Plank’s constant h (or ħ = h/2π).  
If Schrödinger’s equation is to be found in nature, then quantized waves must exist in nature as well.  
We don’t see an issue in assuming this, it is merely a description of what nature must be like at very 
small scales. 

If Schrodinger’s equation does exist in nature, then quantized waves form the building blocks in nature 
of all matter and energy.  What we think of as energy is usually represented by wave functions “adding” 
as those of Bose particles do.  What we think of as matter is usually represented by wave functions 
“subtracting” as those of Fermi particles do per Section 2, Characteristic E above. 

Finally, let’s consider the double slit experiments mentioned at the beginning of this paper.    Here is a 
possible explanation of how a “particle” (a photon, electron or atom) might interfere with itself when 
sent one at a time through a double-slit experiment.  Assume the particle’s energy is modeled by 
Schrödinger’s equation and includes both the space- and time-dependent components of the model.  
The particle is then represented by a quantized wave packet as follows: 

1. Different parts of the quantized wave pass through each slit of a double-slit experiment 
2. The energy of the quantized wave cycles between the real and imaginary dimensions 
3. By remaining whole in the imaginary dimensions, the wave retains its quantized nature 
4. The two parts of the wave interact producing interference patterns 
5. The wave and its interference patterns approach the detector 
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This explains how, in this interpretation, a “particle” can go through both slits of a double-slit 
experiment and interfere with itself while remaining quantized. 

Now, consider what happens as the wave approaches the detector: 

1. At some point in time, the particle’s quantized wave begins to interact with the detector 
2. The wave might explore a wide range of possible locations on the detector in the real 

dimensions relative to its wavelength 
3. In each cycle, all the energy of the wave cycles from the real dimensions, through the imaginary 

dimensions and then back into the real dimensions 
4. At some location in the real dimensions the wave finds a suitable landing spot on the detector 

and that spot begins to drain energy from the wave 
5. As the rest of the wave returns to the real dimensions its energy is drained into that spot 
6. This appears to be instantaneous, but instead it requires only one cycle of the wave to complete 

This explains how, in this interpretation, a “particle”, having had its quantized wave split into two 
interfering parts in the real dimensions, and retaining its quantized nature via the imaginary dimensions, 
might find a suitable landing spot on the detector, and in one cycle transfer all its energy to that one 
spot in the real dimensions.  This second process is commonly called “wave function collapse” but a 
better term would be “wave function re-localization” because nothing collapses.  The wave’s energy is 
maintained and the wave merely moves to a different location. 

Since both the above effects can be explained by our new interpretation and both are observed in 
double-slit experiments, we assume that our new interpretation has achieved its goal of providing a 
reasonable mechanism in nature to describe what happens in such experiments. 

6) A New Interpretation of Quantum Mechanics 

This new interpretation is based on the following assumptions: 

 Complex dimensions exist in nature 
 Schrödinger’s equation could exist within a set of complex dimensions in nature 
 Schrödinger’s equation cycles energy between the real and imaginary dimensions 
 Waves of quantized energy are fundamental to quantum scale processes in nature 
 Quantized waves may be compact or may range widely in the real dimensions 
 Quantized waves may be compact or may range widely in the imaginary dimensions 

7) Consequences of our new interpretation 

This interpretation deals with the question of wave-particle duality by asserting that fundamentally and 
at small scales, all matter and all energy are always quantized waves: 

 Fundamentally, the photon is never a particle, it is always a quantized wave 
 Fundamentally, the electron is never a particle, it is always a quantized wave 
 Fundamentally, the molecule is never a particle, it is always a quantized wave 

Having said this, it is sometimes convenient to think of matter and energy as particles just as Feynman 
did in our example from Section 3) above.  At large scales for which systems can be described 
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sufficiently by classical mechanics this is almost always true.  In many cases the use of the idea of a 
“particle” instead of a wave may be both convenient and appropriate. 

A Mechanism for Quantum Entanglement.  Let’s assume that a quantized wave representing an 
“entangled pair of particles” might be located within a small region relative to its wavelength in the 
imaginary dimensions, even though the “entangled pair” might be separated by a large distance in the 
real dimensions.  This would allow our new interpretation to explain quantum entanglement as a local 
phenomenon as follows: 

1. The entangled quantized wave in the imaginary dimensions is local to both of its widely-
separated components in the real dimensions 

2. As the wave cycles energy between the real and imaginary dimensions, the entire energy of the 
wave can easily move to any location in the real dimensions no matter how widely separated 
the two entangled waves (and their “particles”) might be in the real dimensions. 

3. Under these circumstances, the real portions of the two widely separated but entangled 
quantized waves are essentially local to one another since the energy of the entangled wave 
continuously cycles back and forth through its local connection via the imaginary dimensions. 

4. When one part of the entangled wave is “measured” (or re-localized) it necessarily absorbs that 
portion of the entangled wave associated with the “measurement”. 

5. Whatever entangled property is realized in the “measurement” is therefore cut off from the 
entangled wave, leaving the complimentary “un-measured” property with the remainder of the 
previously entangled wave. 

6. As always, the re-localization should occur in one cycle of the wave. 

This might provide a mechanism to explain quantum entanglement. 

A Mechanism for Quantum Tunneling.  Tunneling might also be explained by our new interpretation.  
As we saw in “Section 4)” above, a particle in a “stationary state” of “definite energy” spends half of its 
time with most of its energy in the imaginary dimensions.  Consider two such “particles”: 

1. The quantized wave for one might have its energy completely in the real dimensions at time t 
2. The quantized wave for the other might have its energy completely in the imaginary dimensions 

at the same time t 
3. These two quantized waves could be cycling back and forth in the same place in both 

dimensions, but while the energy of one wave is mostly in the real dimensions, the energy of the 
other could be in the imaginary dimensions, and vice versa. 

This might provide a mechanism to explain how, as Feynman23 put it, “It is possible in quantum 
mechanics to sneak quickly across a region which is illegal energetically.” 
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8) Characteristics of our new interpretation 

Our interpretation of quantum mechanics can be classified as follows: 

Criteria  Comment 
Deterministic? No Quantized waves travel through available paths in the real 

dimensions and select suitable targets at random. 
Wave function exists in nature? Yes Yes.  Nature does not contain particles, but only quantized 

waves representing matter and energy.  Such quantized 
waves exist in nature and cycle energy back and forth 
through the real and imaginary dimensions. 

Unique history? Yes There are no alternate histories. 
Hidden variables Yes Matter and energy are stored in nature as quantized 

complex waves.  The imaginary components of these 
complex waves exist in nature within hidden imaginary 
dimensions.  Time might also have a complex nature and 
therefore might have a hidden imaginary component. 

Collapsing wave function? No Quantized waves in nature never “collapse”, they merely 
“re-locate” by moving matter and energy through the 
hidden imaginary dimensions from one place in the real 
dimensions to another, once a quantized wave finds a 
suitable destination.  This raises the question of what 
makes a “suitable” destination for a quantized wave. 

Observer role? No Observers play no role in this interpretation. 
Local? Yes This interpretation is explicitly local and assumes that 

locality is provided by the existence of hidden imaginary 
dimensions in nature. 

Counterfactual definiteness? Yes It is possible to speak meaningfully about measurements 
that have not been performed. 

Universal wave function exists? Not 
yet 

See comments on this below: 

Does a universal wave function exist in this interpretation?  I think the answer is, “Not yet”.  By this I 
mean that there might be a universal set rules governing how quantized waves interact.  Such rules 
might describe all the known interactions of all known “particles”.  If there such rules exist, we don’t 
know them yet.  We also don’t know what might be going on inside the many black holes believed to be 
widely scattered through our universe.  So, a truly universal wave function could only be known to us 
locally, within our range of possible experimental observation, and even then, only knowable to the 
extent that one can know anything about the complimentary properties that waves possess.  As 
Cramer24 pointed out, a “Gaussian pulse in the electronics lab” is not able to have both a narrow time 
width and a narrow frequency width at the same time.  This places limits on what we might be able to 
know about any given wave.  In this interpretation, quantized waves exist in our universe.  They cycle 
between the real and imaginary dimensions.  They move around in space and time.  Sometimes they 
interact with one another and sometimes they don’t.  We do not yet understand the full details of these 
processes even for known “particles” and their known interactions. 
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9) Future Theory and Experiments 

It seems reasonable to assume that we will never be able to directly observe the features of the 
imaginary dimensions or the exact configuration of the complex quantized waves proposed in our new 
interpretation of quantum mechanics.  The best we can do is to probe the possible features with 
experiments looking for patterns which build up over time due to interference, wave function re-
location, entanglement, tunneling and whatever other measurable features we might manage to 
observe regarding the quantized waves.  We see from the wave functions that energy does spend time 
in the imaginary dimensions.  We know that matter and energy are equivalent.  Therefore, it should be 
possible to transmit matter and energy through the imaginary dimensions if we know how the matter 
and energy in question are encoded into the quantized waves. 

One way to test our new interpretation would be to attempt to fully model at least one type of quantum 
interaction and then experimentally test that model.  For example, a gamma ray (or a pair of gamma 
rays) might produce an electron-positron pair.  This is a reversible reaction because an electron and a 
positron can annihilate producing gamma rays.  We have the following challenges: [1] How does the 
quantized wave of the gamma ray fully encode all its properties including energy, polarization, spin and 
so on.  [2] How do the quantized waves of the electron and positron fully encode all their properties 
including energy, charge, spin and so on.  Is an extra dimension needed to encode the charge?  If there 
must be a charge dimension, is it a complex dimension? [3] How does the first type of quantized wave 
change into the second and vice-versa?  [4] Experiments could be done to test the predictions of such a 
model:  Do relative angles play a role?  What about the phases of the interacting waves?  Does the 
presence of an electric field affect what happens?  Does it matter if there is an atomic nucleus nearby?  
If photons can create an electron-positron pairs and vice-versa, and if electrons can absorb and emit 
photons, then should photons and electrons be expected to behave similarly at low (classical) and high 
(quantum) energies?  Do they behave similarly, or not?  If not, why not? 

Similar questions would apply to the encoding for all the properties of all the known Bose and Fermi 
“particles” and all their known interactions.  One could pick one’s favorite interaction and look for a 
reasonable model and statistical evidence of the encoding of quantized wave characteristics as well as 
evidence for extra dimensions. 

How does a quantized wave maintain its quantum nature when it is spread over large distances in the 
real dimensions?  Is it something about the imaginary dimensions?  It would be interesting to model 
how and why this might happen.  Or is it something about the real dimensions, maybe the structure of 
space-time itself that might explain this?  The concept of strings is interesting, but that raises the 
question, “What are the strings made of?” 

If energy and mass are represented by complex quantized waves, what does that say about imaginary 
components of mass?  Would that have any theoretical implications? 

It would be interesting to model exactly what characteristics make a destination “suitable” for re-
localization of a quantized wave whether considering detection of a photon, electron or molecule and 
then test that model experimentally. 

Is there any way to measure the shape or extent of the imaginary dimensions with interference or 
entanglement experiments? 
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Are there any experiments that could be done to determine if imaginary or hidden dimensions are of 
different sizes or shapes for the various forces:  Electric force and photon, Weak force and W and Z 
bosons, Strong force and gluons?  Can a W or Z particle be made to interfere with itself in a double slit 
experiment?  Can a quark be made to interfere with itself in a double slit experiment? 

Is there an imaginary component of the time dimension?  To test this, one would need speeds 
associated with the effects of special relativity.  How could one indirectly observe an effect associated 
with such an imaginary dimension? 

Regarding Experiments: 

1. We know from Feynman25 that photons on a large scale such as radio waves can be generated by 
using a set of dipole antennas and that by interference of the signals from those antennas, 
electromagnetic waves can be sent in practically any direction.  One might experimentally test the 
hypothesis that a photon behaves the same way on a large scale with dipole antennas as it does 
with photons of a quantum scale such as light or gamma rays.  This may have already been done, 
but if not, it should be.  Is there a transition in behavior when the wavelength of a photon 
approaches quantum scales?  Does the speed of re-localization depend on a wave’s energy as it 
should if it occurs in a single cycle of the wave, or does it depend on other factors such as a distance 
in the real dimensions?  Does re-localization occur for radio waves with long wavelengths?  Can the 
re-localization time be measured for very long radio waves with long cycle times?  The challenge of 
course with photons is that they are so small and one photon has so little energy that it is hard to 
generate or detect just one at a time. 

2. A crystal can be used to cause photon interference.  Is there something similar that could be used to 
create interference patterns with electrons or molecules of various energies? 

3. How widely can two parts of a quantized wave be separated in a double-slit experiment and yet 
have the interfering wave retain its wave nature?  Can an arrangement of slits or gratings allow a 
single quantized wave (photon or electron) to have a 50% probability of going one direction and a 
50% probability of going another direction?  If so, how far apart can they be separated?  Does the 
re-localization time depend upon the separation distance, or only the energy?  Is there a maximum 
separation?  If there is, what happens when the maximum separation is exceeded?  What happens 
for photons?  Electrons?  Molecules?  The same questions could be asked of entanglement 
experiments. 

4. Can matter or energy be transmitted from one place to another by wave function re-localization in 
the context of multiple-slit experiments?  One would need to produce an interfering quantized wave 
that has a high probability of ending up in either of two very different locations.  An electron?  A 
molecule?  Could one put a chain of such experiments in series to transmit matter or energy with a 
set of interference mechanisms, via the imaginary dimensions and spanning an arbitrarily large 
distance in the real dimensions? 

5. Could matter or energy be transmitted from one place to another using entanglement instead of 
interference experiments?  Can a small thing like an electron be entangled with a large thing like a 
molecule?  Can a small molecule be entangled with a larger one?  If so, then by measuring the 
smaller object in one place, could the larger part of the quantized wave be forced to appear 
somewhere else?  Could one put a chain of such experiments in series to transmit matter or energy 
with a set of entanglement mechanisms, via the imaginary dimensions and spanning an arbitrarily 
large distance in the real dimensions? 
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6. Entangled waves and interfering waves can both span large distances in the real dimensions relative 
to their wavelengths.  Are the distances spanned comparable for both processes?  What measurable 
factors are experimentally associated with the distances spanned?  Wavelength?  Energy?  Other? 

7. Does the rate of quantum tunneling depend on the percent of time that energy spends in the real 
dimensions?  What features of the quantized waves representing the molecules or their electrons in 
a “wall” encourage or discourage tunneling through the wall?  Similarly, what features of the 
quantized waves representing the tunneling “particle” will increase or decrease its chances of 
tunneling through a “wall”? 
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Appendix A – Probability Data 

Calculations underlying my reproduction of Feynman’s Figure 8.2, the graph of P1 and P2 versus the 
angle θ representing time t found in section “3) A Quantum Mechanical Example.” 

      t P1 = Cos2(A0 t/ ħ) P2 =Sin2(A0 t/ ħ) 
       0.00                  1.000                0.000  
       0.39                  0.854                0.146  
       0.79                  0.500                0.500  
       1.18                  0.146                0.854  
       1.57                  0.000                1.000  
       1.96                  0.146                0.854  
       2.36                  0.500                0.500  
       2.75                  0.854                0.146  
       3.14                  1.000                0.000  
       3.53                  0.854                0.146  
       3.93                  0.500                0.500  
       4.32                  0.146                0.854  
       4.71                  0.000                1.000  
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Appendix B – Derivations 

 

Derivation of the Real and Imaginary parts of the wave equation C1(t): 

(ݐ)ଵܥ =  ݁ି(௜ ħ)ாబ௧⁄  cos(ݐ ܣ ħ⁄ )     Feynman’s Equation (8.52) 

Replacing “e- i x ” with “cos x   - i sin x” gives: 

(ݐ)ଵܥ =  ൣcos൫(ܧ଴ݐ ħ⁄ )൯ − ݅ sin൫(ܧ଴ݐ ħ⁄ )൯൧ cos(ݐ ܣ ħ⁄ ) 

Rearranging terms: 

(ݐ)ଵܥ =  cos(ܧ଴ݐ ħ⁄ ) cos(ݐ ܣ ħ⁄ ) − ݅ sin(ܧ଴ݐ ħ⁄ ) cos(ݐ ܣ ħ⁄ ) 

Separating the Real from the Imaginary parts: 

ܴ݁൫ܥଵ(ݐ)൯ =  cos(ܧ଴ݐ ħ⁄ ) ݐ ܣ)ݏ݋ܿ ħ⁄ )              This paparᇱs equation (A) 

((ݐ)ଵܥ)݉ܫ =  − sin൫(ܧ଴ݐ ħ⁄ )൯ cos(ݐ ܣ ħ⁄ )        This paparᇱs equation (B) 

 

Derivation of the Real and Imaginary parts of the wave equation C2(t): 

(ݐ)ଶܥ =  ݅݁ି(௜ ħ)ாబ௧⁄  sin(ݐ ܣ ħ⁄ )     Feynman’s Equation (8.53) 

Replacing “e- i x ” with “cos x   - i sin x” gives: 

(ݐ)ଶܥ =  ݅ [cos(ܧ଴ݐ ħ⁄ ) − ݅ sin(ܧ଴ݐ ħ⁄ )] sin(ݐ ܣ ħ⁄ ) 

Rearranging terms: 

(ݐ)ଶܥ =  ݅ cos(ܧ଴ݐ ħ⁄ ) sin(ݐ ܣ ħ⁄ ) − ݅ଶ  sin(ܧ଴ݐ ħ⁄ ) sin(ݐ ܣ ħ⁄ ) 

Rearranging terms and simplifying i2 = -1: 

(ݐ)ଶܥ = + sin(ܧ଴ݐ ħ⁄ ) sin(ݐ ܣ ħ⁄ ) +  ݅ cos(ܧ଴ݐ ħ⁄ ) sin(ݐ ܣ ħ⁄ ) 

Separating the Real from the Imaginary parts: 

((ݐ)ଶܥ)ܴ݁ =  sin(ܧ଴ݐ ħ⁄ ) sin(ݐ ܣ ħ⁄ )           This paparᇱs equation (C) 

((ݐ)ଶܥ)݉ܫ = cos(ܧ଴ݐ ħ⁄ ) sin(ݐ ܣ ħ⁄ )           This paparᇱs equation (D) 
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Appendix C – Data Table 

Here are the formulas in the spreadsheet used to create the data table: 

Column  Formula 

A. Row number, starting with 0 in increments of 1:  [0, 1, 2, 3 …] 
B. Pi = 3.141592654… 
C. Time t = (A x B) / 64 
D. Cos(E0t)/ħ = Cos(C x 10)  [Time is multiplied by 10 because E0 cycles 10 times faster than A] 
E. Sin(E0t)/ħ = Sin(C x 10) 
F. Cos(At)/ħ = Cos(C) 
G. Sin(At)/ħ = Sin(C) 
H. Re(C1(t)) = D x F   [Real part of C1(t)] 
I. Im(C1(t)) = E x F   [Imaginary part of C1(t) 
J. Re(C2(t)) = E x G 
K. Im(C2(t)) = D x G 
L. P1(t) = (H x H) + (I x I)   [Probability that the system is in state  | 1 > ] 
M. P2(t) = (J x J) + (K x K) 

Here are the first few rows of the data table: 

A B C D E F G H I J K L M 

# Pi t Cos E0 SinE0 Cos A Sin A Re(C1) Im(C1) Re(C2) Im(C2) P1 P2 
0 3.14 .000 1.000  0.000  1.000  0.000 1.000  0.000  0.000 0.000  1.000  0.000 
1 3.14 .049 0.882  0.471  0.999  0.049 0.881  (0.471) 0.023 0.043  0.998 0.002 
2 3.14 .098 0.556  0.831  0.995  0.098 0.553  (0.827) 0.081 0.054  0.990 0.010 
3 3.14 .147 0.098  0.995  0.989  0.147 0.097  (0.984) 0.146 0.014  0.978 0.022 
4 3.14 .196 (0.383) 0.924  0.981  0.195 (0.375) (0.906) 0.180 (0.075) 0.962 0.038 
5 3.14 .245 (0.773) 0.634  0.970  0.243 (0.750) (0.615) 0.154 (0.188) 0.941 0.059 
6 3.14 .295 (0.981) 0.195 0.957 0.290 (0.939) (0.187) 0.057 (0.285) 0.916 0.084 
7 3.14 .344 (0.957) (0.290) 0.942 0.337 (0.901) 0.273 (0.098) (0.322) 0.887 0.113 
8 3.14 .393 (0.707) (0.707) 0.924 0.383 (0.653) 0.653 (0.271) (0.271) 0.854 0.146 
9 3.14 .442 (0.290) (0.957) 0.904 0.428 (0.262) 0.865 (0.409) (0.124) 0.817 0.183 

10 3.14 .491 0.195 (0.981) 0.882 0.471 0.172 0.865 (0.462) 0.092 0.778 0.222 
11 3.14 .540 0.634 (0.773) 0.858 0.514 0.544 0.663 (0.397) 0.326 0.736 0.264 
12 3.14 .589 0.924 (0.383) 0.831 0.556 0.768 0.318 (0.213) 0.513 0.691 0.309 
13 3.14 .638 0.995 0.098 0.803 0.596 0.799 (0.079) 0.058 0.593 0.645 0.355 
14 3.14 .687 0.831 0.556 0.773 0.634 0.643 (0.429) 0.352 0.527 0.598 0.402 
15 3.14 .736 0.471 0.882 0.741 0.672 0.349 (0.653) 0.592 0.317 0.549 0.451 
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