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This paper is to address using what a fluctuation of a metric tensor leads to, in pre Planckian 

physics, namely 

2tt

t E
g




   . If so then, we pick the conditions for an equality, with 

a small 
ttg  , to come up with restraints initial temperature, particle count and entropy as 

would be affected by a small nonsingular region of space-time. The resulting density will  

be  of the form   2 4

int~ ( )visc H a
t


 


 with the first term, on the right viscosity, 

of space-time, the 2nd on the right the square of an initial expansion rate, and due to the non 

singular nature of initial space time the fourth power of a scale factor, with 
55~ ~ 10inita a  This leads to an initial graviton production due to a minimum magnetic 

field, as established in our analysis. Which we relate to the inflaton as it initially would be 

configured and evaluated; with    
1

3~ ( ) i n i t i a l c o u n t g r a v i t o nV vo l u me N m


   , 

and with the change in the initial cosmological constant ~initial total space time massM     
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1.   Introduction .  

This article starts with updating what was done in [1,2,3,4] , which is symbolized 

by, if the scale factor is very small,  metric variance [2,3]  
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In [4] this lead to  

                                                     2

~ (1)

tt

tt

t E
g

Unless g O






  
                                       (2) 

We assume  
ttg is a small perturbation and look at 

tt

t E
g




   with  

                        
2

( ) /
( )

time tt initial

tt s initial

t initial g E
g g initial T


 

  
 

           (3) 

The take away from [1,2,3,4] is that we can then initiate looking at what this 

minimum time step pertains to as to the change in Pre-Planckian density which 

we will write up as[5]  

                                             2 4

int~ ( )visc H a
t


 


                                      (4)  

Whereas we will assume that the Hubble parameter, initially will be as given in 

the Pre Planckian era as a constant, and that the scale factor, we will approximate 

via[6]  
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2.   What about adding in the magnetic field contribution ? 

To do this we will be utilizing from [6] the following. 
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The above will be combined with a generalized use of  Eq. (6) to come up with a 

hypothesized initial Pre Planckian energy density we give as  
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And [1,2,3,4]  

                                  (4)

( ) ~volume initial surface area PlanckV V t A r l                (8) 

We will explicitly use comparison of Eq. (7) with Eq. (4) and from there extract 

a role as to the presumed small bubble of space-time viscosity term, vis, which is 

in Eq. (4) and the magnetic field and also look at an emergent expression for the 

inter relationship between the cosmological “constant” , and an overall mass, M, 

which will be used, in conjunction with a presumed magnetic field, for conditions 

to be fulfilled for understanding the emergence of the cosmological “constant”, in 

Pre Planckian Space-time to Planckian space-time. After which in doing so we 

would also try to extract the physics of Space-time in terms of presumed non zero 

entropy, as given by assuming a massive graviton, as given by [7,8,9] 

                                           
1

3~ ( ) initial count gravitonV volume N m


               (9) 

This would be assuming that the V(volume) with subscript 3, is a per unit time 

evaluation if Eq. (8), and also of using Ng’s infinite quantum statistics, as given 

by [10] i.e. the term N, would be nonzero, and this in tandem with an alteration of 

the initial Penrose singularity theorem as brought up in  [11, 12], which would 

also be in tandem with an emergent cosmological constant parameter as  
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3.   CONCLUSION: Isolation out of the contributions to Eq. (10) above, 

from first principles      

To do this we need to examine Eq.(10) and to look at what is contributing to , say 

emergent structure. To do this, we begin with 
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Here, the minimum scale factor has a factor of which we interpret as todays 

value of the cosmological constant. So what we have here, in Eq. (11) is an 

emergent space-time value of what the Cosmological constant would be after 

initial emergence at Planck space-time, from the Pre Planckian space-time values. 

This adds substance to what was brought up by Beckwith in [13] namely that we 

have a minimum scale factor of Eq. (5)  

 

 

In doing so, we need to consider initial conditions so considered that Eq. (11) and 

should be consistent with the inflaton and ‘gravity’s breath’ document by Corda, 

[14]  . This takes into consideration [15, 16]  

 

In addition Freeze’s statement of initial conditions for inflation, as given by [17]  

should be adhered to. It is also extremely important that the LIGO results, even if 

this is of relic gravitational waves, as seen by Abbott in [18,19, 20]  not be 

contravened. 

This, even if we use the following values. As given below[21] 
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So as talked about with [14] setting a minimum energy density given by [15, 16]  

 

                                                               (13) 

 

And this has been applied. Hopefull this will allow investigation of what Corda 

asked about concerning Scalar-tensor gravity models.[22]  

 

Note that the minimum scale factor used in Eq. (11) depends upon magnetic 

fields, as from the Non Linear Electrodynamcis pricnples for early cosmology. 

 

In addition we postulate that the existende of massive gravitons is syominous 

with the classical – quantum mechanics linkage as given in [23] . i.e. on page 

121 of [23] the authors manage to convert a D’ Alembert wave equation is 

converted to a Schrodinger equation, if the group velocity is included as having 

the form 

 

                               / 2(groupv E E V c                                        (14) 

 

Presumably in [23] the normalization of   c =1 means that (14) is if it refers to an 

equation like the D’Alembert equation one for which it has classical behavior, to 

the Schrodinger equation. 

 

Note that as given in [24] that massive gravitons travel at less than the speed of 

light. Our suggestion is that by inference, that massive gravitons, then would be 

commensurate with the HUP which we brought up in this document and that the 

formulation is consistent.  

 

All this should also be tied into an investigation of how the viscosity of Eq. (4) 

would also tie into the results above, with the interplay of Eq.(3) and Eq. (4) 

maybe giving by default some information as to condition for which the 

quantization condition linkage in the classical regime ( represented by the 
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Classical De Alembert equation) and the quantum Schrodinger equation have 

analogies in our model.                      
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