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Abstract 

With the term “Law of Selfvariations” we mean an exactly determined increase of the 

rest mass and electric charge of material particle. In this article we present the basic 

theoretical investigation of the law of selfvariations. We arrive at the central conclusion that 

the interaction of material particles, the corpuscular structure of matter, and the quantum 

phenomena can be justified by the law of Selfvariations. We predict a unified interaction 

between material particles with a unified mechanism (Unified Selfvariations Interaction, 

USVI). Every interaction is the result of three clearly distinct terms with clearly distinct 

consequences in the USVI. We predict a wave equation, whose special cases are the Maxwell 

equations, the Schrödinger equation, and the related wave equations. We determine a 

mathematical expression for the total of the conservable physical quantities, and we calculate 

the current density 4-vector. The corpuscular structure and wave behaviour of matter and 

their relation emerge clearly, and we give a calculation method for the rest masses of material 

particles. We prove the «internal symmetry» theorem which justifies the cosmological data. 

From the study we present, the method for the further investigation of the Selfvariations and 

their consequences also emerges. 

Keywords: Particles and Fields, Quantum Physics, Cosmology. 
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1. Introduction 

The present study is founded on three axioms: The principle of the conservation of the 

four-vector of momentum, the equation of the Theory of Special Relativity for the rest mass 

of the material particles, and the law of Selfvariations. 

With the term “Law of Selfvariations” we mean an exactly determined increase of the 

rest mass and electric charge of material particle. It is consistent with the principles of 

conservation of energy, momentum, angular momentum and electric charge. It is also 

invariant under the Lorentz-Einstein transformations. 

The most immediate consequence of the law of Selfvariations is that the energy, the 

momentum, the angular momentum, and the electric charge of material particles are 

distributed in the surrounding spacetime (when the material particle is electrically charged). 

In order for the value of the electric charge to increase in absolute value, the electron, 

in some way, should 'emit' a positive electric charge in the space-time environment. 

Otherwise, the conservation of the electric charge is violated. Similarly, the increase of the 

rest mass of the material particle involves the “emission” of negative energy as well as 

momentum in the space-time surrounding the material particle (spacetime energy-

momentum, STEM). The law of Selfvariations describes quantitatively the interaction of 

material particles with the STEM. 

Every material particle interacts both with the STEM emitted by itself due to the 

selfvariations, and with the STEM originating from other material particles. The material 

particle and the STEM with which it interacts, comprise a dynamic system which we called 

“generalized particle”.  We study this continuous interaction in the present article. For the 

formulation of the equations the following notation is used: 

W   the energy of the material particle 

J  the momentum of the material particle 

0m   the rest mass of the material particle 

E   the energy  of the STEM interacting with the material particle 

P  the momentum of the STEM interacting with the material particle  

 0E   the rest energy of the STEM interacting with the material particle  

With the above symbolism, the law of Selfvariations for the rest mass is given by equations 
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The the findings resulting from the law of Selfvariations will be referred to as "the 

Theory of Selfvariations" (TSV). Initially, we present the TSV in inertial frames of reference. 

 

 

2. The basic study of the internal structure of the generalized particle 

 

We consider a material particle with rest mass 0 0m  . That is, we consider a 

generalized particle. The rest mass 0m  and the rest energy 0E   given by equations (2.1) and 

(2.2) respectively according to special relativity [1-4] 
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We now denote the four-vectors  

 

0

1

2

3

x ict

x x
X

x y

zx

   
   
    
   
   

  

                                                                                                           (2.3) 



4 
 

 

0

1

2

3

x

y

z

J iW

c

JJ J

JJ

JJ

   
   
   
    
   
   
     

                                                                                                           (2.4) 

 

0

1

2

3

x

y

z

iE
P

c
P

PP
P

P
P

P

 
   
   
    
   
   
    

                                                                                                             (2.5) 

where c is the vacuum velocity of light snd i  is the imaginary unit, 2 1i   . 

            Using this notation, equations (1.1), (2.1) and (2.2) are written in the form of 

equations (2.6), (2.7) and (2.8) 
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After differentiating equation (2.7)   with respect to , 0,1,2,3kx k   we obtain 
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and with equation (2.6)  we obtain 
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and with equation (2.7)  we obtain 
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We now symbolize 
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With this notation, equation (2.9) can be written in the form 

0 0 1 1 2 2 3 3 0, 0,1,2,3k k k kJ J J J k        .                                                              (2.11) 

 We now need the 4 4  matrix T  as given by equation  
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With this notation, equation (2.11) can be written in the form 

0TJ  .                                                                                                                          (2.13) 

            We now prove the following theorem: 

 Theorem 2.1΄΄For 
0 0m  , and for every , 0,1,2,3k i  equation (2.14) holds 
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Proof. Indeed, by differentiating equation (2.6) with respect to , 0,1,2,3ix i   we get    
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and with equation (2.6) we have 
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 and since 
0 0m  , we obtain equation (2.14).  

We now prove the following theorem:  

Theorem 2.2 ΄΄For every  , , 0,1,2,3k i    the following equation holds 
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 Proof. Indeed, by differentiating equation (2.10) with respect to , 0,1,2,3vx v   we get
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 and with equation (2.14) we get 
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and we finally have 
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which is equation (2.15).  

 

3. Physical quantities 
ki
λ , k,i = 0,1,2,3  and the conservation principles of energy and 

momentum 

 

The physical quantities , , 0,1,2,3ki k i   are related to the conservation of energy and 

momentum of the generalized particle. This investigation we will present in this section. We 

prove the following theorem: 

 Theorem 3.1 ΄΄If the generalized particle conserves its momentum along the axes 

, 0,1,2,3ix i   , that is  

 constanti i iJ P c   .                                                                                                   (3.1) 

then the following equation holds 
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Proof. Combining equations (2.14) and (3.1) we obtain 
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and with equation (2.10) we get 
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which is equation (3.2). The rest of equations (3.2) are derived taking into account equation 

(3.1). Equation (3.2) holds for , , i 0,1,2,3k i k  , since equation (2.14), from which 

equation (3.2) results is an identity for k i and gives no information in this case.  

            We now prove the following theorem: 

 Theorem 3.2. TSV theorem for the symmetry of indices: 

΄΄If the generalized particle conserves its momentum along the axes ix and kx  with k i , the 

following equivalences hold 

1.  ik ki k i i k i k k i k i i kJ P J P c J c J c P c P        .                                                (3.3) 

2.  ik ki         
2 2 2

ki k i i k i k k i k i i k

b b b
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, 0,1,2,3,k i k i   .΄΄  

Proof. The theorem is an immediate consequence of equation 3.2.  

    We now consider the four-vector ,C  as given by equation 
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When the generalized particle conserves its momentum along every axis, then the four-vector 

C  is constant. Also, we denote 0M  the total rest mass of the generalized particle, as given by 

equation  

2 2 2 2 2 2

0 1 2 3 0 cTC C c c c c M                                                                                          (3.6) 

where TC  is the transposed of the column vector C . 

            For reasons that will become apparent later in our study, we give the following 

definitions: We name the symmetry , , , 0,1,2,3ik ki k i k i     internal symmetry, and the 

symmetry , , , 0,1,2,3ik ki k i k i      external symmetry. We now prove the following 

theorem: 

Theorem 3.3. Internal Symmetry Theorem: 

΄΄ If the generalized particle conserves its momentum in every axis, the following hold:  

1.  ik ki   for every , 0,1,2,3k i     J , P  and C  are parallel                   

       P J  where , 0   .                                                                            (3.7) 

2.   For 1  the following equation holds: 

      2

0 0E m c                                                                                                                 (3.8) 

3.   For 1  the following equations hold: 
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                                                                                             (3.12) 
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     , i 0,1,2,3
1

i
i

c
P


 


                                                                                              (3.13) 

 where K  is a dimensionless constant physical quantity. 

 4.  We have  ik ki   for every , i 0,1,2,3k   

                                                                                                                                  (3.14) 

      0ki   for every , i 0,1,2,3k   . ΄΄  

 Proof. Equivalence (3.7) results immediately from equivalence (3.3). For 0  from the 

last of equivalence (3.7) we obtain  0,P   which is impossible, since in this case the 

Selfvariations of the rest mass 0 0m  , do not exist, as seen from equation (2.6). Therefore, 

0.  For 1  from the last of equivalence (3.7) we obtain P J   and from equations 

(2.7) and (2.8) we obtain  

2 2 4

0 0E m c   

which is equation (3.8).  

For 1  from the last of equivalence (3.7) we obtain  i iP J  for every 0,1,2,3i   and 

with equation (3.1)  i i iJ P c   we initially obtain equations (3.12) and (3.13). Then, 

combining equations (2.7) and (3.12) we get 

 
 2 2 2 2 2 2

0 0 1 2 32

1
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 and with equation (3.6) we obtain equation 
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 and we finally have 

0
0
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M
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which is equation  (3.10). Similarly, combining equations (2.8) and (3.13) we obtain equation 

(3.11). We now prove that function   is given by equation (3.9). 

Differentiating equation (3.15) with respect to , 0,1,2,3vx v   and considering 

equation (2.6) we obtain  
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 and with equation (3.13) for i v  we arrive at equation 

  , 0,1,2,3.v

v
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c v
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                                                                                         (3.16) 

By integration of equation (3.16) we obtain 
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where K  is the integration constant, which is equation (3.9). 

             Combining equations (2.10), (3.12) and (3.13) for 0,1,2,3k   we obtain 
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and with equation (3.16) for k   we obtain 
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0ki  .  

  According to the previous theorem, internal symmetry is equivalent to the parallelism 

of the four-vectors ,J P . Starting from this conclusion we can determine the physical content 

of the internal symmetry. 
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In an isotropic space the spontaneous emission of STEM by the material particle is 

isotropic. Due to the linearity of the Lorentz-Einstein transformations, this isotropic emission 

has as a consequence the parallelism of the four-vectors ,J P  ([5] par. 5.3). Thus, the 

theorem of internal symmetry 3.3 holds for the spontaneous emission of STEM by the 

material particle due to Selfvariations . 

In the following paragraphs, we will make clear that the internal symmetry refers to a 

spontaneous internal increase of the rest mass and the electrical charge of the material 

particles, independent of any external causes. The consequences of this increase is the 

cosmological data, as we'll see in Paragraph 11. Also, the internal symmetry is associated 

with Heisenberg's uncertainty principle. 

We start the investigation of the external symmetry with the proof of the following 

theorem:  

Theorem 3.4. First theorem of the TSV for the external symmetry: ΄΄If the generalized 

particle conserves its momentum along every axis, and the symmetry 
ik ki    holds for 

every k i, , 0,1,2,3k i  , then: 

 1.   

0

0

0

i vk k iv v ki

i k k i v ki

i k k i v ki

c c c

c J c J c J

c P c P c P

 

 

    

  

  

                                                                                          (3.17) 

for every , , , , , 0,1,2,3i v v k k i k i v    . 

 2.   
2 2

ki v v
v ki ki v ki ki

v

bc bcb b
P J

x


   


    


                                                           (3.18) 

for every , , , 0,1,2,3k i k i   . 

 3.   01 32 02 13 03 21 0        . ΄΄                                                                                (3.19) 

 Proof. From equivalence (3.4) we obtain       

  , , , 0,1,2,3
2

ki i k k i

b
c J c J k i k i                                                                          (3.20) 

Considering equation (3.20) we get 

      0
2

i vk k iv v ki i k v v k k v i i v v i k k i

b
c c c c c J c J c c J c J c c J c J             . 
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Thus, we get the first of equations (3.17). Similarly, from the other two equalities of 

equivalence (3.4) we obtain the second and the third equation of (3.17). Since k i in 

equivalence (3.4), the physical quantities , ,k i ki     in equations (3.17) are defined for 

, , , , , 0,1,2,3k i k i k i       . 

            Differentiating equation (3.20) with respect to , 0,1,2,3vx v   we obtain 

 
2

ki k i
i k

v v v

J Jb
c c

x x x

    
  

   
 

and with equation (2.10) we get 

   

   

2

2

2 2

ki
i v k vk k v i vi

v

ki
v i k k i i vk k vi

v

ki
v i k k i i vk k vi

v

b b b
c P J c P J

x

b b
P c J c J c c

x

b b b
P c J c J c c

x


 


 


 

     
            

  
      


   



 

and with equation (3.20) we obtain 

   
2

ki
v ki i vk k vi

v

b b
P c c

x


  


  


 

and with the first of equations (3.17) we obtain 

 
i vk k vi v kic c c      

  we get 

 
2

ki v
v ki ki

v

bcb
P

x


 


 


 

 which is equation (3.18). The second equality in equation (3.18) emerges from the 

substitution 

  , 0,1,2,3v v vP c J v    

 according to equation (3.5). 

            Taking into account equation (3.20) we obtain 
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        

01 32 02 13 03 21

2

1 0 0 1 2 3 3 2 2 0 0 2 3 1 1 3 3 0 0 3 1 2 2 12
0

4

b
c J c J c J c J c J c J c J c J c J c J c J c J

       

          

 

after the calculations.  

In the next paragraphs we investigate the external symmetry. 

 

4. The Unified Selfvariations Interaction (USVI) 

 

      According to the law of selfvariations every material particle interacts both with the 

STEM emitted by itself due to the selfvariations, and with the STEM originating from other 

material particles. In the second case, an indirect interaction emerges between material 

particles through the STEM. STEM emitted by one material particle interact with another 

material particle. Through this mechanism the TSV predicts a unified interaction between 

material particles. The individual interactions only emerge from the different, for each 

particular case, physical quantity Q  which selfvariates, resulting in the emission of the 

corresponding STEM.In this paragraph we study the basic characteristics of the USVI. We 

suppose that for the generalized particle the conservation of energy-momentum holds, hence 

the equations of the preceding paragraph also hold. For the rate of change of the four-vector 

0

1
J

m
 we get  

0

2

0 0 0

1i i i

k k k

J J m J

x m m x m x

   
   

     

and with equations (2.6) and (2.10) we get 

 
02

0 0 0

1i i
k k i ki

k

J J b b
P m P J

x m m m


   
      

   
 

and we finally obtain  

0 0

, , 0,1,2,3i ki

k

J
k i

x m m

 
  

  
.                                                                                      (4.1) 

      According to equation (4.1), when 0ki   for at least two indices , , , 0,1,2,3,k i k i   

the kinetic state of the material particle is disturbed. According to equivalence (3.14) in the 
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internal symmetry it is 0ki   for every , 0,1,2,3.k i   Therefore, in the internal symmetry 

the material particle maintains its kinetic state. In an isotropic space we expect that the 

spontaneous emission of STEM by the material particle cannot disturb its kinetic state. 

Consequently, the internal symmetry concerns the spontaneous emission of STEM by the 

material particle in an isotropic space. 

      In contrast, in the case of the external symmetry it can be 0ki   for some indices 

, , , 0,1,2,3k i k i  . Therefore, the external symmetry must be due to STEM with which the 

material particle interacts, and which originate from other material particles. The distribution 

of STEM depends on the position in space of the material particle relative to other material 

particles. This leads to the destruction of the isotropy of space for the material particle. The 

external symmetry factor will emerge in the study that follows. 

      The initial study of the Selfvariations  concerned the rest mass and the electric charge. 

The study we have presented up to this point allows us to study the Selfvariations in their 

most general expression. 

      We consider a physical quantity Q  which we shall call selfvariating “charge Q  ”, or 

simply charge Q , unaffected by every change of reference frame, therefore Lorentz-Einstein 

invariant, and obeys the law of Selfvariations, that is equation 

  , 0,1,2,3.k

k

Q b
P Q k

x


 


                                                                                            (4.2) 

In equation (4.2) the momentum ,k 0,1,2,3kP  , i.e. the four-vector P , depends on 

the selfvariating charge .Q  Two material particles carrying a selfvariating charge of the same 

nature interact with each other when the STEM emitted by the charge 1Q  of one of them 

interacts with the charge Q  of the other. In this particular case, we denote with Q  the charge 

of the material particle we are studying. 

The rest mass 0m  is defined as a quantity of mass or energy divided by 2c , which is 

invariant according to the Lorentz-Einstein transformations. The 4-vector of the momentum 

J  of the material particle is related to the rest mass 0m  through equation (2.7). The charge 

Q  contributes to the energy content of the material particle and, therefore, also contributes to 

its rest mass. Furthermore, the charge Q  modifies the 4-vector of momentum J  of the 

material particle and, therefore, contributes to the variation of the rest mass 0m  of the 

material particle. Consequently, for the change of the four-vector J  of the material particle 
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due to the charge ,Q  the four-vector P  of equation (2.10) enters into equation (4.2). The 

consequences of this conclusion become evident when we calculate the rate of change of the 

four-vector 
1

.J
Q

  

Theorem 4.1 Second theorem of the TSV for the external symmetry: 

΄΄1.  The rate of change of the four-vector 
1

J
Q

 due to the Selfvariations of the charge Q  is  

given by equation  

, , 0,1,2,3i ki

k

J
k i

x Q Q

 
  

   .                                                                            (4.3) 

  2.   For k i  the physical quantities ki

Q


 are given by  

, k i,k,i 0,1,2,3ki
kiza

Q


  

                                                                                         (4.4) 

where z is the function 

 0 0 1 1 2 2 3 3exp
2

b
z c x c x c x c x

 
     

  .                                                                       (4.5) 

  3.   For the constants kia  the following equations hold 

       

0

0

0

i vk k iv v ki

i vk k iv v ki

i vk k iv v ki

c a c a c a

J a J a J a

Pa P a P a

  

  

  

                                                                                        (4.6) 

for every , , , , , 0,1,2,3i v v k k i i k     .  

 

  4.  , , , 0,1,2,3ik ki k i k i                                                                                      (4.7) 

 

  5.  01 32 02 13 03 21 0        .΄΄                                                                                  (4.8) 

 

Proof. In order to prove the theorem, we take 

2

1i i i

k k k

J J JQ

x Q Q x Q x

   
   

     
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and with equations (4.2) and (2.10) we get  

2

1i i
k k i ki

k

J J b b
P Q P J

x Q Q Q


   
      

   
  

 

i ki

k

J

x Q Q

 
 

    

which is equation (4.3). Equations (4.2) and (2.10) hold for every , i 0,1,2,3.k   Therefore, 

equation (4.3) also holds for every , 0,1,2,3.k i   

 For , , 0,1,2,3k i k i   and 0,1,2,3v   equation (3.18) holds and, since 0Q  , we 

obtain  

2

ki v
v ki ki

v

bcb
Q PQ Q

x


 


 

  

and with equation (4.2) we get  

2

2

1

2

2

ki v
ki ki

v v

ki ki
ki

ki v ki

v

bcQ
Q Q

x x

bcQ
Q

Q x x Q

bc

x Q Q



 


 

 


 

 
 

 

  
   

  

 
  

  

 

and integrating we obtain  

 0 0 1 1 2 2 3 3exp
2

ki
ki

b
a c x c x c x c x

Q

  
     

   

where , , , 0,1,2,3kia k i k i   are the integration constants, and with (4.5) we get equation 

(4.4). Equations (4.6) are derived from the combination of equations (3.17) and (4.4), taking 

into account that 0zQ  . Equation (4.7) is derived from the combination of equation 

, , , 0,1,2,3ik ki k i k i      with equation (4.4). Simirarly, equation (4.8) is derived from the 

combination of equations (3.19) and (4.4).  

            We will also use equation 

 , 0,1,2,3
2

k

k

bcz
z k

x


  


                                                                                          (4.9) 

which results immediately from equation (4.5).  
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For , , 0,1,2,3k i k i   equation (4.4) does not hold. So we define the physical 

quantities 
kT  as given by equation 

, 0,1,2,3kk
k kkT k

zQ


   .                                                                                          (4.10) 

Taking into account the notation of equation (4.10) the main diagonal of matrix T  of 

equation (2.12) is given from matrix   

00 0

11 1

22 2

33 3

0 0 0 0 0 0

0 0 0 0 0 01

0 0 0 0 0 0

0 0 0 0 0 0

T

T

TzQ

T









   
   
     
   
   
   

                                                       (4.11) 

We now define the three-vectorsα  and β , as given by equations (4.12) and (4.13) 

respectively 

011

2 02

3 03

1
x

y

z

ic

ic
Q

ic

 

  

 

    
    

      
    
    

α                                                                                       (4.12)  

 

321

2 13

3 21

1
x

y

z

Q

 

  

 

    
    

      
    
    

β .                                                                                         (4.13) 

Vectors α  and β  contain all of the physical quantities ki  for , , 0,1,2,3k i k i  since 

ik ki   . 

Combining equations (4.12) and (4.13) with equation (4.4), the vectorsα  and β  are 

written in the form of equations (4.14) and (4.15), respectively 

 

011

2 02

3 03

x

y

z

icz

 

  

 

    
    

      
    
    

α                                                                                       (4.14) 

 

321

2 13

3 21

x

y

z

z

 

  

 

    
    

      
    
    

β  .                                                                                        (4.15) 
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We write equation (2.10) in the form  

 , k,i 0,1,2,3.i
k i ki

k

J b
P J

x



  


                                                                                  (4.16) 

The rate of change of the momentum of the material particle equals the sum of the two terms 

in the right part of equation (4.16). For 0k  , and since 
0x ict , equation (83) gives the rate 

of change of the particle momentum with respect to time ,t  i.e. the physical quantity we call 

“force”. By using the concept of force, as defined by Newton, we also have to use the concept 

of velocity. For this reason we symbolize u  the velocity of the material particle, as given by 

equation 

 

1

2

3

x

y

z

uu

u u

u u

  
  

    
   
   

u .                                                                                                        (4.17) 

Also, we define the 4-vector of the four-vector  u  , as given by equation 

 

0

1

2

3

.
x

y

z

icu

uu
u

uu

u u

  
  
   
  
  
    

                                                                                                           (4.18) 

            We now prove the following theorem: 

Theorem 4.2. ΄΄ The rates of change with respect to time  0t x ict  of the four-vectors J  

and P  of the momentum of the generalized particle carrying charge Q  are given by 

equations 

 

0 0

i
dJ dQ i i

J zQ u Q c
dx Qdx c c

 
    

 
  

u α

α u β

                                                                    (4.19) 

0 0

i
dP dQ i i

J zQ u Q c
dx Qdx c c

 
     

 
  

u α

α u β

.΄΄                                                              (4.20) 
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Proof. The matrix   is given in equation (4.11). By u β  we denote the outer product of 

vectors u  and .β   

We now prove the first of equations (4.19):

0 0 0 0 0
1 2 3

J J J J Jd
u u u

dt Q t Q x Q y Q z Q

            
            
            

  

and using the notation of equation (2.3) we get 

0 0 0 0 0
1 2 3

0 0 1 2 3

J J J J Jicd
ic u u u

dx Q x Q x Q x Q x Q

            
            

            
 

and with equation (4.3) we get 

0 00 10 20 30
1 2 3

0

Jicd
ic u u u

dx Q Q Q Q Q

    
    

 
 

0 00 10 20 30
1 2 3

0

Jd i
u u u

dx Q Q c Q Q Q

      
      

   
 

0 00 01 02 03
1 2 3

0

Jd i
u u u

dx Q Q c Q Q Q

      
      

   
 

0 0 00 01 02 03
1 2 32

0 0

1 dJ J dQ i
u u u

Q dx Q dx Q c Q Q Q

    
     

 
  

 0
0 00 1 01 2 02 3 03

0 0

dJ dQ i
J u u u

dx Qdx c
         

and with equations (4.10) and (4.12) we have 

0
0 0 1 1 2 2 3 3

0 0

dJ dQ i i i i
J zQT Q u u u

dx Qdx c c c c
  

 
     

 
 

which is the first of equations (4.19) since  

0 0 0 0

i i
zQT u zQT ic zQT

c c
    . 

We prove the second of equations (4.19) and we can similarly prove the third and the 

fourth: 

 1 2 3
x x x x xJ J J J Jd

u u u
dt Q t Q x Q y Q z Q

            
            
            
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and using the notation of equations (2.3) and (2.4) we obtain 

1 1 1 1 1
1 2 3

0 0 1 2 3

J J J J Jicd ic
u u u

dx Q x Q x Q x Q x Q

            
            
            

 

and with equation (4.3) we get  

01 311 11 21
1 2 3

0

Jicd
ic u u u

dx Q Q Q Q Q

   
    

 
 

01 3 131 1 11 2 21

0

iuJ iu iud

dx Q c Q Q c Q c Q

   
     

 
 

01 3 131 1 1 11 2 21

2

0 0

1 iudJ J iu iudQ

Q dx Q dx c Q Q c Q c Q

  
        

31 1 2
1 11 01 21 13

0 0

iudJ iu iudQ
J

dx Qdx c c c
         

and with equations (4.10), (4.12) and (4.13), we obtain  

 1
1 1 1 2 3 3 2

0 0

dJ dQ i i i
J zQT Q Q u u

dx Qdx c c c
        

which is the second of equations (4.19). Equation (4.20) results from the combination of 

equations (4.19) and (3.5).  

           Using the symbol J  for the momentum vector of the material particle  

 

1

2

3

x

y

z

JJ

J J

J J

  
  

    
   
   

J  

and taking into account equations (2.3) and (2.4) and (4.11) the set of equations (4.19) can be 

written in the form  

 

2

0

1 1

2 2

3 3

dW dQ
W zQc T Q

dt Qdt

T u
d dQ

zQ T u Q
dt Qdt

T u

   

 
 

     
 
 

u α

J
J α u β

.                                                                       (4.21)      
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Equations (4.21) are a simpler form of equation (4.19) with which they are equivalent.  

The rate of change of the four-vector J  of the momentum of the material particle is 

given by the sum of the three terms in the right part of equation (86). The USVI and its 

consequences for the material particle depend on which of these terms is the strongest and 

which is the weakest. 

The first term expresses a force parallel to four-vector J  which is always different 

than zero due to the Selfvariations. As we will see next, the second term is related to the 

curvature of spacetime. The third term on the right of equation (4.19) is known as the Lorentz 

force, in the case of electromagnetic fields. In many cases a term or some of the terms on the 

right of equation (4.19) are zero, with the exception of the first term which is always different 

than zero.      

From equation  (4.19) we conclude that the pair of vectors  ,α β  expresses the 

intensity of the field of the USVI according to the paradigm of the classical definition of the 

field potential.  From equation (2.10) we derive that the physical quantities  , , 0,1,2,3ki k i   

have units (dimensions) of 
1kg s . Thus, from equation (4.12) we derive that if Q  is the rest 

mass, the intensity α  has unit of 2m s . If Q is the electric charge, the intensity α  has unit of

1N C . Now we will prove that for field  ,α β  the following equations (4.22) hold: 

Theorem 4.3. ΄΄ For the vector pair  ,α β  the following equations hold: 

  1 01 2 02 3 03
2

icbz
c c c      α                                 (a) 

 0 β                                     (b) 

 
t


  



β
α                                    (c)                                       (4.22) 

 

0 01 2 21 3 31

0 02 2 12 3 32 2

0 03 2 13 3 23

2

c c c
bz

c c c
c t

c c c

  

  

  

  
 

          

α
β .΄΄                    (d)  

Proof. Differentiating equations (4.14) and (4.15) with respect to , 0,1,2,3kx k   and 

considering equation (4.9), we obtain equations  
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2

k

k

bc

x


 



α
α                                                                                                               (4.23)   

  
2

k

k

bc

x


 



β
β .                                                                                                             (4.24) 

From equations (4.23) and (4.24) we can easily derive equations (4.22). Indicatively, we 

prove equation (4.22b). From equation (4.15) we obtain  

 
32 13 21

1 2 3

z z z

x x x
  

  
   

  
β   

and with equation (4.9) we get  

  1 32 2 13 3 21
2

bz
c c c      β  

and with the first of equations (4.6) for    , , 1,3,2i v k   we get  

 0 β . 

The first of equations (4.6) should be taken into account for the proof of the rests of equations 

of (4.22).  

            Considering equations (4.22) we define the scalar quantity  and the vector quantity 

j , as given by equations 

 

 1 01 2 02 3 03

0 01 2 21 3 132

0 02 1 21 3 32

0 03 1 13 2 32

2

2

icbz
c a c a c a

c a c a c a
c bz

c a c a c a

c a c a c a

  



     

   
 

    
    

α

j

                                                                  (4.25) 

where 0   is a constant. We now prove that for the physical quantities   and j  the 

following continuity equation holds: 

 0
t


 


j .                                                                                                              (4.26) 

   Proof. : From the first of equations (4.25) we obtain  
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   
t t

t t

 







 

 
 

 

  
   

  

α

α

α

 

and with the second of equations (4.25) and equation (4.22d) we get 

  

 2c
t

t







   




 



β j

j

 

which is equation (4.26).   

According to equation (4.26), the physical quantity   is the density of a conserved 

physical quantity q  with current density j . The conserved physical quantity q  is related to 

field  ,α β through equations (4.22).We will revert to the issue of sustainable physical 

quantities in the next paragraphs. 

  The density  and the current density  j have a rigidly defined internal structure as 

derived from equations (4.25). We now consider the four-vector of the current density j  of 

the conserved physical quantity q , as given by equation 

 

0

1

2

3

x

y

z

i cj

jj
j

jj

j j

  
  
   
  
  
    

                                                                                                           (4.27) 

and the 4 4  matrices M  

01 02 03

01 21 13

02 21 32

03 13 32

0

0

0

0

M

  

  

  

  

 
 
 
 
  
 
  

 .                                                                              (4.28) 

Using matrix M  equations (4.25) can be written in the form of equation 

 
2

2

c bz
j MC


 .                                                                                                            (4.29) 
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 From equations (4.22b,c) we conclude that the potential is always defined in the 

 ,α β - field of the USVI. That is, the scalar potential  

    0 1 2 3, , , , , ,V V t x y z V x x x x   

and the vector potential A   

   
1

0 1 2 3 2

3

, , , , , ,

x

y

z

AA

t x y z x x x x A A

A A

  
  

      
   
   

A A A  

are defined through the equations 

 

0

ic
V V

t x

 

 
     

 

β Α

Α Α
α

 .                                                                               

We can introduce in the above equations the gauge function .f  That is, we can add to 

the scalar potential V  the term  

 
0

f ic f

t x

 
  
 

 

 and to the vector potential A  the term 

  f  

 for an arbitrary function f   

     0 1 2 3, , , , , ,f f t x y z f x x x x   

without changing the intensity  ,α β of the field. The proof of the above equations is known 

and trivial  and we will not repeat it here. For the field potential of the USVI the following 

theorem holds: 
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Theorem 4.4.  

΄΄1.   In the  ,α β -field of USVI the pair of scalar-vector potentials  ,V A  is always defined 

through equations  

 
0

0

ic
V ic A

t x

 

 
     

 

β Α

Α Α
α

   .                                                                               (4.30)                                                                                                                                                                                                    

2.   The four-vector A  of the potential 

 

0

1

2

3

x

y

z

iV
A

c
A

AA
A

A
A

A

 
   
   
    
   
   
    

                                                                                                         (4.31) 

is given by equation  

 

2
, for

, for

ki k

k i

i

k

i

f
z i k

b c x
A

f
i k

x

 
  

 
 



                                                                                      (4.32)                                                                            

 where 0, 0,1,2,3 , 0,1,2,3kc k i    and kf  is the gauge function. 

3.   For 0, , , 0,1,2,3k ic c k i k i    equation (4.33) holds  

 
2

2

4
, 0, , , 0,1,2,3ki

k i k i

k i

z
f f c c k i k i

b c c


     . ΄΄                                                     (4.33) 

Proof. Equations (4.30) are equivalent to equations (4.22b, c) as we have already mentioned. 

The proof of equation (4.32) can be performed through the first of equations (4.6). The 

mathematical calculations do not contribute anything useful to our study, thus we omit them. 

You can verify that the potential of equation (4.32) gives equations (4.14) and (4.15) through 

equations (4.30) taking also into account the first of equations (4.6). □ 

      From equation (4.32) the following four sets of the potentials follow:  
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0

0
0

0

01 0
1
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0 2
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3
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0
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2

2

c

f
A

x

fz
A

b c x
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b c x
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A

b c x
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










 




 




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

                                                                                                      (4.34) 
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10 1
0

1 0

1
1

1

12 1
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1 2

13 1
3

1 3

0
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2

c

fz
A

b c x

f
A

x

fz
A

b c x

fz
A

b c x










 








 




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

                                                                                                       (4.35) 
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2 3

0

2

2

2

c

fz
A

b c x

fz
A

b c x

f
A

x

fz
A

b c x










 




 








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

                                                                                                       (4.36) 
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3

30 3
0

3 0

31 3
1

3 1

32 3
2

3 2

3
3

3

0

2

2

2

c

fz
A

b c x

fz
A

b c x

fz
A

b c x

f
A

x










 




 




 







 .                                                                                                     (4.37) 

      Indicatively, we calculate the components 1  and 1  of the intensity  ,α β  of the 

USVI field from the potentials (4.34). From the second of equations (4.30) we obtain 

0 1
1

1 0

A A
ic

x x


  
  

  
 

and with equations (4.34) we get  

 0 01 0
1

1 0 0 0 1

2f fz
ic

x x x b c x




      
      

       

 

 01
1

0 0

2 z
ic

b c x





 


 

and with equation (4.9) we get 

 1 01icz   

that is we get the intensity 1 of the field, as given by equation (4.14). 

            From the first of equations (4.30) we have  

 3 2
1

2 3

A A

x x


 
 
 

 

and with equations (4.34) we get 

 03 0 02 0
1

2 0 3 3 0 2

2 2f fz z

x b c x x b c x

 


     
      
      

 

 03 02
1

0 2 0 2

2 2z z

b c x b c x

 


 
 

 
 

 and with equation (4.9) we get 

 2 03 3 02
1

0 0

c c
z z

c c

 
     

and considering that 
02 20   , we get  
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  1 2 03 3 20

0

z
c c

c
     .                                                                                             (4.38) 

From the first of equations (4.6) for    , , 2,0,3i v k   we obtain 

  
2 03 3 20 0 32

2 03 3 20 0 32

0c a c a c a

c a c a c a

  

  
 

and substituting into equation (4.38), we see that 

  1 32z   

that is, we get the intensity 1  of the field, as given by equation (4.15). 

           The gauge functions ,k 0,1,2,3kf   in equations (4.34)-(4.37) are not independent of 

each other. For 0kc   and 0ic   for , , 0,1,2,3k i k i   equation (4.39) holds  

2

2

4
, 0, , , 0,1,2,3ki

k i k i

k i

z
f f c c k i k i

b c c


     .                                                          (4.39) 

The proof of equation (4.39) is through the first of equations (4.6). The proof is 

lengthy and we omit it. Indicatively, we will prove the third of equations (4.34) from the third 

of equations (4.35) for 1k   and 0i   in equation (4.39). 

  For 
0 0c   and 

1 0c   both equations (4.34) and equations (4.35) hold. From equation 

(4.39) for 1k   and 0i   we get equation 

 
2

10
1 0 2

1 0

4 z
f f

b c c


  .                                                                                                     (4.40)  

From the third of equations (4.35) and equation (4.40) we get 
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1012
2 0 2

1 2 0 1

2

0 1012
2 2

1 2 0 1 2

2 4

2 4

z z
A f

b c x b c c

fz z
A

b c x b c c x





 
   

  

 
  

 

 

and with equation (4.9) we obtain 

0 2 1012
2

1 2 0 1

2 2f cz z
A

b c x b c c

 
  


 

  0
2 0 12 2 10

0 1 2

2 fz
A c c

bc c x
 


  


 

and since 
10 01   , we get equation 

  0
2 0 12 2 01

0 1 2

2 fz
A c c

bc c x
 


  


.                                                                                   (4.41) 
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From the first of equations (4.6) for    , , 0,1,2i v k   we obtain 

 

0 12 2 01 1 20

0 12 2 01 1 20

0 12 2 01 1 02

0c a c a c a

c a c a c a

c a c a c a

  

  

 

 

and substituting into equation (4.41) we obtain equation 

 02 0
2

0 2

2 fz
A

b c x

 
 


.                                                                                                     (4.42) 

Equation (4.42) is the third of equations (4.34).  

      According to equation (4.39), if 0kc   for more than one of the constants 

, 0,1,2,3kc k  , the sets of equations of potential resulting from equation (4.32) have in the 

end a gauge function. In the application we presented assuming 
0 0c   and 

1 0c   for a 

specific gauge function 0f  in equations (4.34), the gauge function 1f  in equations (4.35) is 

given by equation (4.40).  

      We conclude the investigation of the potential of the field  ,α β of USVI by proving 

the following corollary: 

Corollary 4.1.  ΄΄In the external symmetry, the 4-vector C  of the total energy content of the 

generalized particle cannot vanish: 

0

1

2

3

0

0

0

0

c

c
C

c

c

   
   
    
   
   

  

.΄΄                                                                                                          (4.43) 

Proof. Indeed, for 0C   we obtain J P   from equation (3.5). Therefore, the four-vectors 

J  and P   are parallel. According to equivalence (3.7) the parallelism of the four-vectors J   

and P is equivalent to the internal symmetry. Therefore, in the external symmetry it is 0C  . 

 

A direct consequence of these findings is that the potential of the field  ,α β of USVI 

is always defined, as given from equation (4.43). This conclusion is derived from the fact that 

at least one of the constants  , 0,1,2,3kc k is always different than zero. 
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5. The conserved physical quantities of  the generalized particle and the wave equation 

of the TSV 

 

The generalized particle has a set of conserved physical quantities q which we 

determine in this paragraph. At first, we generalize the notion of the field, as it is derived 

from the equations of theTSV. We prove the following theorem: 

Theorem 5.1.  

΄΄1.   For the field  ,ξ ω  of the pair of vectors  
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ic a

a

 
 
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ξ                                                                                                                  (5.1) 
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 where  0 1 2 3, , ,x x x x   is a function satisfying equation 

  k k

k

b
J P

x
 


  


                                                                                                 (5.3)                                                                                

 0,1,2,3, ( , ) 0,0 , ,k        are functions of 
0 1 2 3, , ,x x x x , the following 

equations holds 

0

t

 


  



ω

ω
ξ

 .                                                                                                                (5.4) 

2.  The generalized particle has a set of conserved physical quantities q  with density   and 

current density j   

  
2

2
c

c t

 



 

 
   

 

ξ

ξ
j ω

                                                                                                 (5.5) 
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where 0   are constants, for which conserved physical quantities the following continuity 

equation holds 

 0
t


 


j .                                                                                                                (5.6) 

3.  The four-vectors of the current density j   are given by equation 

  
2c b

j M J P


      .΄΄                                                                                      (5.7) 

 Proof. Matrix M in equation (5.7) is given by equation (4.28). We denote J and P  the three-

dimensional momentums as given by equations 

 

1

2

3

J

J

J

 
 

  
 
 

J                                                                                                                         (5.8) 

 

1

2

3

P

P

P

 
 

  
 
 

P .                                                                                                                       (5.9) 

 For the proof of the theorem we first demonstrate the following auxiliary equations (5.10)-

(5.15) 

 

32

13

21

0

a

a

a

 
 
  
 
 

J                                                                                                                   (5.10) 

 

32

13

21

0

a

a

a

 
 
  
 
 

P                                                                                                                  (5.11) 

 

01 32

02 0 13

03 21

a a

a J a

a a

   
   

     
   
   

J                                                                                                    (5.12) 

 

01 32

02 0 13

03 21

a a

a P a

a a

   
   

     
   
   

P                                                                                                    (5.13) 
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32 2 21 3 13

13 3 32 1 21

21 1 13 2 32

a J a J a

a J a J a

a J a J a

   
   

     
      

J                                                                                            (5.14) 

 

32 2 21 3 13

13 3 32 1 21

21 1 13 2 32

a P a P a

a P a Pa

a Pa P a

   
   

     
      

P  .                                                                                          (5.15) 

In order to prove equation (5.10) we get  

 

32

13 1 32 2 13 3 21

21

a

a J a J a J a

a

 
 
    
 
 

J  

and with the second of equations (4.6) for ( , , ) (1,3,2)i v k  , we have  

 

32

13

21

0

a

a

a

 
 
  
 
 

J  

Similarly, from the third of equations (4.6) we obtain equation (5.11). We now get  

01 2 03 3 02 2 03 3 20

02 3 01 1 03 3 01 1 30

03 1 02 2 01 1 02 2 10

a J a J a J a J a

a J a J a J a J a

a J a J a J a J a

      
     

         
           

J  

and with the second of equations (4.6) we obtain  

 

01 0 32

02 0 13

03 0 21

a J a

a J a

a J a

   
   

     
      

J  

which is equation (5.12). Similarly, by considering the third of equations (4.6) we derive 

equation (5.13). Equations (5.14) and (5.15) are derived by taking into account equations 

(5.8) and (5.9). 

    Equations (5.4) are proven with the use of equations (5.10)-(5.15). We prove the first as an 

example. From equation (5.2) we obtain 
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32

13

21

a

a

a

 
 

     
 
 

ω  

and with equation (5.3) we get 

 

32 32

13 13

21 21

a a
b b

a a

a a

 

   
   

          
   
   

ω J P  

and with equations (5.10) and (5.11) we obtain  

 0 ω . 

From equations (5.4) and (5.5), the continuity equation (5.6) results. The proof is similar to 

the one for equation (4.26). The proof of equation (5.7) is done with the use of equations 

(5.10)-(5.15), and equation (4.28).  

 Field  ,α β presented in the previous paragraph is a special case of the field  ,ξ ω for 

1

2
    . For these values of the parameteres ,   we obtain from equations (5.3)   

 

1 1

2 2

2

k k

k

k k

k

b
J P

x

b
J P

x

  
    

  


   



 

and with equation (3.5) we obtain 

 
2

k

k

bc

x


  


 

and finally we obtain 

  0 0 1 1 2 2 3 3exp
2

b
z c x c x c x c x

 
       

 
 

and from equations (5.1),(5.2) and (4.14),(4.15) we obtain  =ξ α  and ω β . 

From equation (2.10) it emerges that the dimensions of the physical quantities 

, , 0,1,2,3ki k i   are  
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  1, , 0,1,2,3ki kgs k i   . 

Thus, from equations (4.12), (4.13) and (4.14), (4.15) we obtain the dimensions of the 

physical quantities , , 0,1,2,3kiQ k i  . Furthermore, from equation (4.11) we obtain the 

dimensions of the physical quantities , 0,1,2,3.kT k   Thus, we get the following relationships  

 
 

 

1

1

, , , 0,1,2,3,

, 0,1,2,3.

ki

k

Q kgs k i k i

QT kgs k

 



  

 
                                                                              (5.16) 

            Using the first of equations (5.16) we can determine the units of measurement of the 

 ,ξ ω -field for every selfvariating charge Q . When Q  is the electric charge, we can verify 

that the field units are  1,TV m . When Q  is the rest mass, the field units are  2 1m s s  , . 

The dimensions of the field depend solely on the units of measurement of the selfvariating  

charge  Q . 

From equation (5.7) and taking into account that ,    we can define the 

dimensions of the physical quantities q through the first of equations (5.16). When Q  is the 

electric charge, and for 0  , where 0  is the electric permittivity of the vacuum, q  is a 

conserved physical quantity of electric charge. For 0

e


  , where e  the constant value we 

measure in the lab for the electric charge of the electron, q  is a conserved physical quantity 

of angular momentum. For 0

e


  , q is a dimensionless conserved physical quantity, that 

q  . When Q  is the rest mass, and for 
1

4 G



 , where G is the gravitational constant, q  

is a conserved physical quantity of mass. Theorem 5.1 reveals the conserved physical 

quantities of the generalized particle.  

One of the most important corollaries of the theorem 5.1 is the prediction that the 

generalized particle has wave-like behavior. We prove the following corollary: 
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Corollary 5.1. ΄΄For function   the following equation holds 

 

2
2 2

2

0

2
2 2

2 2

i k
ki

k i

i k
ki

k i

j j
c

x x x

j j
c

c t x x

 

 

    
     

   

    
     

   

                                                                               (5.17) 

, , 0,1,2,3k i k i  .΄΄ 

  Proof. To prove the corollary, considering that 
0x ict , we write equations (5.4) and (5.5) 

in the form 

 

0

0

2

0

0

1

i
j

c

ic

x

i

c c x





  

 


  




  



ξ

ω

ω
ξ

ξ
ω j

.                                                                                                  (5.18) 

We will also use the identity (5.19) which is valid for every vector α   

   2   α α α .                                                                                          (5.19) 

From the third of equations (5.18) we obtain  

 

 

0

0

ic

x

ic

x

 
   

 


   



ω
ξ

ξ ω

  

and using the identity (5.19) we get  

    2

0

ic

x


     


ξ ξ ω   

and with the first and fourth of equations (5.18) we get  

 
2

2

0 2

0 0

i i
j

c x c x 

  
     

  

ξ j
ξ  

and we finally get 
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2

2

02

0 0

i
j

x c x

  
    

  

ξ j
ξ .                                                                                       (5.20) 

Working similarly from equation (5.18) we obtain  

 
2

2

2 2

0

1

x c


    



ω
ω j .                                                                                            (5.21) 

Combining equations (5.20) and (5.21) with equations (5.1) and (5.2), we get 

2
2

2 2

0

, , , 0,1,2,3i k
ki

k i

j ji
k i k i

x c x x




     
        

     
 

which is equation (5.17).  

Equation (5.17) can be characterized as “the wave equation of the TSV”. The basic 

characteristics of equation (5.17) depend on whether the physical quantity  

 
2 2

2 2

2 2 2 2

0

F
x c t

   
     

 
                                                                                  (5.22) 

is zero or not. 

This conclusion is drawn through the following theorem: 

Theorem 5.2. ΄΄For the generalized particle the following equivalences hold 

 
2

2

2 2
0

c t

 
  


                                                                                                   (5.23) 

if and only if for each , , 0,1,2,3k i k i   it is 

  i k

k i

j j

x x

 


 
                                                                                                               (5.24) 

if and only if  

 

2
2

2 2

2
2

2 2

0

0

c t

c t


  




  



ξ
ξ

ω
ω

  .΄΄                                                                                                   (5.25)  
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Proof. In the external symmetry there exists at least one pair of indices 

 ( , ), , , 0,1,2,3k i k i k i  , for which 0ki  . Therefore, when equation (5.24) holds, then 

equation (5.23) follows from equation (5.17), and vice versa. Thus, equations (5.23) and 

(5.24) are equivalent. When equation (5.24) holds, then the right hand sides of equations 

(5.24) and (5.25) vanish, that is, equations (5.25) hold. The converse also holds, thus 

equations (5.24) and (5.25) are equivalent. Therefore, equations (5.23), (5.24), and (5.25) are 

equivalent. □ 

            In case that 0F  , that is in case that equivalences (5.23), (5.24) and (5.25) hold, we 

shall refer to the state of the generalized particle as the “generalized photon”. According to 

equations (5.25), for the generalized photon the  ,ξ ω -field is propagating with velocity c  in 

the form of a wave. For the generalized photon, the following corollary holds: 

Corollary 5.2: ΄΄ For the generalized photon, the four-vector j  of the current density of the 

conserved physical quantities q , varies according to the equations  

 
2

2

2 2
0, 0,1,2,3k

k

j
j k

c t


   


.΄΄                                                                                  (5.26) 

Proof. We prove equation (5.26) for 0k  , and we can similarly prove it  for 1,2,3k  . 

Considering equation (4.27), we write equation (5.6) in the form   

 0 31 2

0 1 2 3

0
j jj j

x x x x

  
   

   
.                                                                                            (5.27)  

Differentiating equation (5.27) with respect to 0x  we get  

0

2

0 31 2

2

0 1 0 2 0 3

0
j jj j

x x x x x x x

        
       

           
 

0

2

0 31 2

2

1 0 2 0 3 0

0
j jj j

x x x x x x x

         
        

           
 

and with equation (5.24) we get 
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0

0

2

0 0 0 0

2

1 1 2 2 3 3

2
20

02

0

0

j j j j

x x x x x x x

j
j

x

         
       

           


 



 

which is equation (5.26) for 0k  , since 
0

x ict .  

             The way in which equations (5.25) emerge in the TSV is completely different from 

the way in which the electromagnetic waves emerge in Maxwell’s electromagnetic theory [6-

10]. Maxwell’s equation predict the eqs. (5.25) for 0j  . The TSV predicts  ,α β waves for  

0j  , when eq. (5.24) is valid. Moreover the current density j in this case varies according to 

eq. (5.26). 

             We now prove the following corollary of theorem 5.1: 

Corollary 5.3. ΄΄For the 4-vector 

0

1

2

3

x

x

x

x

x

 
 
 
 
        
 

 
 
 
 

                                                                                                                                      (5.28) 

it is 

2

1
M j

x c

 
   

                                                                                                                              (5.29) 

where 

01 02 03

01 21 13

02 21 32

03 13 32

0

0

0

0

M

  

  

  

  

 
 
 
 
  
 
  

 

and j  the 4-vector of the current density of the conserved physical quantities of the 

generalized particle.΄΄ 

Proof. From eq. (5.3) and with the notation of eq. (5.28) we have 
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 
b

J P
x

 
 

    
 

and multiplying from the left with the matrix M we get 

 
b

M M J P
x

 
 

    
 

and with eq. (5.7) we have 

2

1
M j

x c

 
   

 

which is eq. (5.29).  

The eqs. (5.3), (5.7) and (5.29) give the relation of the wave function   with the physical 

quantities J , P  and  j  of the generalized particle. 

One of the most important conclusions of the theorem 5.1 is that it gives the degrees 

of freedom of the equations of the TSV. In equation (5.7) the parameters 

, , ( , ) (0,0)      can have arbitrary values or can be arbitrary functions of 0 1 2 3, , ,x x x x . 

The TSV has two degrees of freedom. Therefore, the investigation of the TSV takes place 

through the parameters   and   of equation (5.7). 

If we set    , , 1,0,b i    or  , ,0
i

b
 

 
  
 

 in equation (5.7), we get equations 

0

0

i
J

x

i


 



  J

.                                                                                                                                        (5.30) 

For    , , 0,1,b i    or  , 0,
i

b
 

 
  
 

 we have 

0

0

i

i

P
x



 

 







P

.                                                                                                                                        (5.31) 

For    we have 

  , 0,1,2,3k k

k

b
J P k

x



   


 

and with eq. (3.5) we have 
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, 0,1,2,3k

k

bc
k

x



  


 

and equivalently we have 

0

0

bc

x

b






 



  C

.                                                                                                                                     (5.32) 

Taking into account that 
0x ict  and  0

iW
J

c
 , we recognize in equations (5.30) the 

Schrödinger operators. Using the macroscopic mathematical expressions of the momentum J  

and energy W  of the material particle, we get the Schrödinger equation [11-15]. The 

Schrödinger equation is a special case of the wave equation of the TSV. The designation of 

the degrees of freedom   and   determines in a large extend the form of eq. (5.7). 

 

6. The Lorentz-Einstein-Selfvariations Symmetry 

 

In this paragraph we calculate the Lorentz-Einstein transformations of the physical 

quantities  ki , , 0,1,2,3.k i   The part of spacetime occupied by the generalized particle can 

be flat or curved. TheLorentz-Einstein transformations give us information about this subject. 

We consider an inertial frame of reference  , x , y ,zO t      moving with velocity 

 ,0,0u  with respect to another inertial frame of reference  , x, y, zO t , with their origins O  

and O  coinciding at 0t t   . We will calculate the Lorentz-Einsteintransformations for the 

physical quantities , , 0,1,2,3ki k i  . We begin with transformations (6.1) and (6.2) 
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2

u
t t x

u

x x c t

y y

z z





   
  
   

   
     

 

 

 

 

                                                                                                       (6.1) 

 

 

2

x

x x

y y
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W W uJ

u
J J W

c

J J

J J





  

    
 

 

 

         

 

2

x

x x

y y

z z

E E uP

u
P P E

c

P P

P P





  

    
 

 

 

                                                                (6.2) 

 

where 

1
2 2

2
1 .

u

c




 
  
 

 

We then use the notation (2.3), (2.4), (2.5) and obtain the transformations (6.3) and (6.4) 

 

0 10

1 01

22

33

u
i

x c xx

u
i

x c xx

xx

xx





   
  

   

   
  

   

 



 



                                                                                                  (6.3) 

0 0 1

1 1 0

2 2

3 3

u
J J i J

c

u
J J i J

c

J J

J J





    
 

    
 

 

 

      

0 0 1

1 1 0

2 2

3 3

u
P P i P

c

u
P P i P

c

P P

P P





    
 

    
 

 

 

.                                                                  (6.4) 
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We now derive the transformation of the physical quantity 
00 . From equation (2.10) 

for 0k i   we get for the inertial reference frame  , x , y ,zO t      

0
00 0 0

0

J b
P J

x


   


 

and with transformations (6.3) and (6.4) we obtain 

 

2 2

00 0 1 0 1 0 1

0 1

2 2
2 0 01 1

00 0 0 0 1 1 0 1 12 2

0 0 1 1

u u b u u
i J i J P i P J i J

x c x c c c

J JJ Ju u u b u b u b u b
i i P J i P J i PJ PJ

x c x c x c x c c c

  

 

                  
       

            
      

and replacing physical quantities 

 0 01 1

0 0 1 1

, , ,
J JJ J

x x x x

  

   
  

from equation (2.10) we get  

2
2

00 0 0 00 0 1 01 1 0 10 1 12

2 2
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(

)

b u b u u b u u b
P J i P J i i PJ i PJ
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u b u b u b u b
P J i P J i PJ PJ

c c c c

    



       

    
 

and we finally obtain equation 

2
2

00 00 01 10 112

u u u
i i
c c c

     
 

     
 

. 

Following the same procedure for , i 0,1,2,3k   we obtain the following 16 equations 

(27) for the Lorentz-Einstein transformations of the physical quantities  ki  : 
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 
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                                                                         (6.5) 
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u
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u
i
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 

    
 

 

    .         

The first two of equations (6.5) is self-consistent when equation 

  00 11                                                                                                                          (6.6) 

Then by the second of equations (6.5) we obtain 

 01 01   . 

According to equivalence  (3.14) these transformations relate to the external symmetry, in 

which it holds that ik ki    for , , 0,1,2,3i k i k  .  Thus, we obtain the following 

transformations for the physical quantities , , 0,1,2,3ki k i   
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 

 .                                                 (6.7) 
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Taking into account equations (4.4), (4.10) and that the physical quantity zQ  is invariant 

under the Lorentz-Einstein transformations, we obtain the following transformations for the 

constants , , , 0,1,2,3ki k i k i   and the physical quantities , 0,1,2,3kT k   
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 

 .                                                     (6.8) 

            Equation (6.6) correlates the physical quantities 00 and 11  in the same inertial frame 

of reference. Taking into account equation (4.10) we obtain 0 1T T . Thus, when 

transformations (6.8) hold, 
0 1T T  also holds. The reference frame  , , ,t x y z      moves 

with respect to the reference frame  , , ,t x y z  with constant velocity along the .x -axis. If 

we assume that the motion is along the y - or z -axis, the generalization of equation 
0 1T T  

follows; the Lorentz-Einstein transformations lead to the following equation  

0 1 2 3 0T T T T    .  Thus, we derive the following two corollaries.  

Corollary 6.1. ΄΄ When the portion of spacetime occupied by the generalized particle is flat, 

it is  

0 1 2 3 0T T T T    .΄΄                                                                                                     (6.9) 

Corollary 6.2.΄΄When 

0kT                                                                                                                              (6.10) 

for at least one  0,1,2,3k the portion of spacetime occupied by the generalized particle is 

curver and not flat.΄΄ 
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            Notice that from the way of proof of corollary 6.1 it follows that the converse is not 

true. For external symmetries which have  
0 1 2 3 0T T T T    , spacetime may be either flat 

or curved. In paragraph 9 we have shown how to check if spacetime is flat or curved for 

external symmetries with 
0 1 2 3 0T T T T    . 

            In the external symmetry it is 0ki   for at least on pair of indices  , 0,1,2,3k i . 

Thus, in external symmetry it is 0ki  only for some pairs of indices  , 0,1,2,3k i . The 

Lorentz-Einstein transformations reveal that in flat spacetime this cannot be arbitrary. Let’s 

assume that it is 

02 0   

for every inertial frame of reference. Then, we obtain 

02 0    

and with transformations (6.8) we obtain 

02 21 0
u

i
c

  
 

  
 

 

and since it is 02 0   we obtain that it also holds 

21 0  . 

Working similarly with all of the transformations (6.8) we end up with the following four sets 

of equations of external symmetry in the flat spacetime:   
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                                                                                                          (6.11) 
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                                                                                                           (6.12) 
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                                                                                                           (6.13) 
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.                                                                                                          (6.14) 

            The symmetry that equations (6.11)-(6.14) express will be referred to as the symmetry 

of the Lorentz-Einstein-Selfvarlations. These symmetries hold only in case that the part of 

spacetime occupied by the generalized particle is flat. 

 

7. The Fundamental Study for The Corpuscular Structure of Matter in external 

symmetry. The Π-Plane. 

 

             The material particles are in a constant interaction between them (via the USVI) 

because of STEM. This interaction has consequences in the internal structure of the 

generalized particle, including the distribution of its total energy and momentum between the 

material particle and the surrounding spacetime. 

The internal structure of the generalized particle is determined by the relations among 

the elements of the matrix T . The same holds for the rest mass 0m of the material particle, the 
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rest energy 0E  of STEM, with which the material particle interacts, and the total rest mass 

0M of the generalized particle. In this paragraph, we study this relation among the elements 

of the matrix T . We now prove the following theorem:  

Theorem 7.1. ΄΄ For the elements of the T  matrix it holds that:  

2 2 2 2 2 2

0 1 2 3 0 1 32 0 2 13 0 3 21 1 2 03 1 3 02 2 3 01 0T TT T T T T T T T TT TT T T            .΄΄                          (7.1) 

Proof. We develop equation (2.13), obtaining the set of equations  

0 00 1 01 2 02 3 03

0 01 1 11 2 21 3 13

0 02 1 21 2 22 3 32

0 03 1 13 2 32 3 33

0

0

0

0

J J J J

J J J J

J J J J

J J J J

   

   

   

   

   

    

    

    

 

and from equations (4.4) and (4.10) we have 
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0

0

0

0

J zQT J zQ J zQ J zQ

J zQ J zQT J zQ J zQ

J zQa J zQa J zQ J zQa

J zQ J zQ J zQ J zQT

  

  

  

   

    

     

    

 

and since it holds that 0zQ   , we take the set of equations 

 

0 0 1 01 2 02 3 03

0 01 1 1 2 21 3 13

0 02 1 21 2 2 3 32
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0
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0

0

J T J J J

J J T J J
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  

  

   

    

    

    

.                                                                                 (7.2) 

The set of equations given in (7.2) comprise a 4 4  homogeneous linear system of equations 

with unknowns the momenta 0 1 2 3, , ,J J J J . In order for the material particle to exist, the 

system of equations (7.2) must obtain non-vanishing solutions. Therefore, its determinant 

must vanish. Thus, we obtain equation 

0 1 2 3 0 1 32 0 2 13 0 3 21 1 2 03 1 3 02 2 3 01

2

01 32 02 13 03 21( ) 0

T TT T T T T T T T TT TT T T     

     

     

   
 

and with equation (4.8) we arrive at equation (7.1).  

We consider the  4 4  N matrix, given as:  
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32 13 21

32 03 02

13 03 01

21 02 01

0

0

0

0

N

  

  

  

  

 
 
 
 
  
 
  

  .                                                                                (7.3) 

Using the matrix N , we now write equation (4.6) in the form of 

0

0

0

NC

NJ

NP







.                                                                                                                          (7.4) 

We now prove Lemma 7.1: 

Lemma 7.1.  ΄΄The four-vectors , ,C J P   satisfy the set of equations  

2

2

2

0

0

0

N C

N J

N P







.΄΄                                                                                                                      (7.5) 

Proof. We multiply the set of equations (7.4) from the left with the matrix N , and equations 

(7.5) follow.     

Using lemma 7.1 we prove theorem 7.2 : 

Theorem 7.2. ΄΄For  0M   it holds that: 

1.   0MN NM  .            (7.6) 

2.    2 2 2M N I              (7.7) 

       2 2 2 2 2 2 2

01 02 03 32 13 21            .          (7.8) 

Here, I  is the 4 4  identity matrix.  

3.   For  0   the matrix M  has two eigenvalues 1   and 2 , with corresponding 

eigenvectors  1  and  2  , given by: 

   

1

2 2 2

01 02 03

01 03 13 02 21

1 2

02 01 21 03 32

03 02 32 01 13

0

1

i

i

 

  

    


     

    



   
  

   
   
  

    

                                                                            (7.9) 
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   
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    

.                                                                        (7.10) 

4.   For 0   the matrix N has the same eigenvalues with the matrix M , and two 

corresponding eigenvectors 1n  and  2n  , given by: 
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                                                                         (7.11) 

 

    

2

2 2 2

32 13 21

32 02 21 03 13

2 2

13 03 32 01 21

21 01 13 02 32

0

1

i

i
n

 

  

    

     

    

 

   
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.                                                                        (7.12) 

5.  2 2 2 2 2 2 2

01 02 03 32 13 21 0                                                                              (7.13) 

        

2

2

2

0

0

0

M C

M J

M P







                                                                                                              (7.14) 

if 2 2 , , , 0,1,2,3ki k i k i    . 

6.  2 2M I                                                                                                                (7.15) 

if 2 2 , , , 0,1,2,3kia a k i k i   .΄΄ 

Proof. The matrices M  and N are given by equations (4.28) and (7.3). The proof of 

equations (7.6), (7.7), (7.9), (7.10), (7.11) and (7.12) can be performed by the appropriate 

mathematical calculations and the use of equation (4.8). 
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            We multiply equation (7.7) from the right with the column matrices , ,C J P  , and 

obtain 

2 2 2

2 2 2

2 2 2

M C N C C

M J N J J

M P N P P







  

  

  

 

and from equations (7.5) we obtain 

2 2

2 2

2 2

M C C

M J J

M P P







 

 

 

.                                                                                                               

According to these equations , and for 0  and 2 2M I  , the matrix 2 0M   has 

as eigenvalue 2 0  with corresponding eigenvector 0  . From equations (7.15) it is 

evident that the four-vectors , ,C J P   are parallel to the four-vector  , hence they are also 

parallel to each other. This is imposssible in the case of the external symmetry, according to 

Theorem 3.3. Therefore, 2 0   , so that the matrix 2 0M   does not have the four-vector   

as an eigenvector. If the case it is 2 0M   from equations  (7.15) we get 

2

2

2

0

0

0

C

J

P













 

and because is 0J   we again have 2 0  . Thus, we arrive at equation (7.13). Then, from 

equations 

2 2

2 2

2 2

M C C

M J J

M P P







 

 

 

 

 we arrive at equations (7.14), since it holds that 2 0  . The proof of equation (7.15) can be 

performed by the appropriate mathematical calculations.  

The matrix 2M  , for 2 0M   and 2 2M I  , is a 4 4 symmetric matrix. 

Furthermore, according to theorem 7.2 , it holds that  2 22 0tr M   .  

From theorem 7.2 it follows:  
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Corollary 7.1. ΄΄For the four-vector j  of the conserved physical quantities q  it holds that: 

0Mj                                                                                                                            (7.16) 

0Nj  .΄΄                                                                                                                       (7.17) 

Proof. We multiply equation (5.7) by matrix M from the left and obtain 

 
2

2 2c b
Mj M J M P


      

and with the second and the third of equations (7.14) we have 

0Mj  . 

We multiply the terms of equation (5.7) from the left with the matrix N , and obtain 

 
2c b

Nj NM J P


      

and with equation (7.6) we take 

0Nj  .  

In the equations of the TSV there appear sums of squares that vanish, like the ones 

appearing in equations (3.6) and (7.13). Writing these equations in a suitable manner, we can 

introduce into the equations of the TSV complex numbers. From equation (3.6) , and for 

0 0M  , we obtain 

2 2 2 2

0 31 2

0 0 0 0

1 0
c cc c

M c M c M c M c

       
           

       
. 

Therefore, the physical quantities 

0 31 2

0 0 0 0

, , ,
c cc c

M c M c M c M c
 

belong in general to the set of complex numbers . This transformation of the equations of 

the TSV is not necessary. It suffices to remember that within the equations of the TSV there 

are sums of squares that vanish. We now prove theorem 7.3, which also intercorrelates the 

elements of the matrix T : 
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Theorem 7.3.  ΄΄In the external symmetry and for the elements of the matrix T  it holds that: 

0

, , , , , 0,1,2,3

i kTa

i k k i i k



  



   
 .΄΄                                                                              (7.18)                                                                          

Proof. We differentiate the second equation of the set of equations (4.6) 

0

, , , , , 0,1,2,3

i k k i kiJ J J

i k k i i k

    

  

  

   
 

with respect to , 0,1,2,3jx j  . Considering equations (2.10) and (4.4), we have 

0k j i ji i j k jk ki j j

b b b
P J zQ P J zQ P J zQ        

     
          

     
 

    0j i k k i ki k ji i jk ki j

b
P J J J zQ                    

and with the second equation of the set of equations (4.6), and taking into account that 

0zQ  , we obtain 

0

, , , , , , 0,1,2,3

k ji i jk ki j

i k k i i k j

       

  

  

   
.                                                                              (7.19) 

Inserting into equation (7.19) successively          , , 0,1,2 , 0,1,3 , 0,2,3 , 1,2,3i k  and 

0,1,2,3j  , we arrive at the set of equations 

  

0 32

0 13

0 21

1 02

1 03

1 32

2 01

2 03

2 13

3 01

3 02

3 21

0

0

0

0

0

0

0

0

0

0

0

0

T

T

T

T

T

T

T

T

T

T

T

T

















































.                                                                                                                    (7.20) 

The set of equations (7.20) is equivalent to equation (7.18).    
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            Theorem 7.3 is one of the most powerful tools for investigating the external 

symmetry. This results from corollary 7.3 : 

  

Corollary 7.2. ΄΄For the elements of the matrix T of the external symmetry the following 

hold: 

1.  For every  , , , , , 0,1,2,3k i k i k i       it holds that 

   

0

0

,

ki

k i

k i







 


   
 

.                                                                                                    (7.21) 

2.  

    

0 32 13 21

1 02 03 32

2 01 03 13

3 01 02 21

0 0

0 0

0 0

0 0

T

T

T

T

  

  

  

  

    

    

    

    

  .΄΄                                                                                (7.22) 

   Proof. Corollary 7.3 is an immediate consequence of theorem 7.3.  

From theorem 7.3 the following corollary follows, regarding the elements of the main 

diagonal of the matrices of the external symmetry: 

   Corollary 7.3. ΄΄At least one of the elements of the main diagonal of the matrix T is equal 

to zero.΄΄ 

Proof. If 0T   for every 0,1,2,3  , from equations (7.20)  we obtain 0ki   for every 

set of indices , , 0,1,2,3k i k i  , and from equation (7.1) we have 

0 1 2 3 0T TT T  . 

This cannot hold, since we assumed that 0T   for every 0,1,2,3  . Therefore, at least one 

element of the main diagonal of the matrix T is equal to zero.  

            We present a second way for proving this result. In the case of  0T   for every   

0,1,2,3  , we obtain from equations (7.20) that  0ki   , for every  , , 0,1,2,3k i k i  . 

Thus, the matrix  T takes the form 
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0

1

2

3

0 0 0

0 0 0

0 0 0

0 0 0

T

T
T zQ

T

T

 
 
 
 
 
 

 . 

From equation (2.13) we take 

0 0 1 1 2 2 3 3 0T J T J T J T J     

Since we assumed that  

0 1 2 3 0T TT T   

we obtain  

0 1 2 3 0J J J J    . 

Thus, the material particle does not exist.   

            We consider now the three-dimensional vectors     

1 32

2 13

3 21

 

 

 

   
   

    
   
   

τ                                                                                                            (7.23) 

 

1 01

2 02

3 03

      

n

n

n







   
   

    
   
   

n .                                                                                                         (7.24) 

In the case of the T matrices with      τ 0  and    n 0 , we define the vector    μ 0  from equation 

1 02 21 03 13

2 03 32 01 21

3 01 13 02 32

  

    

    

    

   
   

     
      

μ  .                                                                                    (7.25) 

Combining equations (5.1), (5.2) with equations (7.23) and (7.24) we obtain 

            ic ξ n                                                                                                               (7.26) 

   ω τ  .                                                                                                                      (7.27) 
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The field    ξ is parallel to the vector  n and the field  ω  is parallel to the vector τ . Moreover the 

only variable quantity of the field   ,  ξ ω  is the function  0 1 2 3, , ,x x x x  . 

            For every vector  

1

2

3







 
 

  
 
 

α  

which is determined by the physical quantities of the TSV, we define the physical quantity 

   
1 1

2 2 22 2
1 2 3

T      α α α .                                                                                 (7.28) 

Here, the matrix T
α is the transposed matrix of the column matrix α . 

            From equations (7.23) and (7.24) we obtain 

01 32 02 13 03 21        τ n . 

Also, from equation (4.8) we have 

0 τ n .                                                                                                                        (7.29) 

Therefore, the vectors τ and n are perpendicular to each other. Considering also equation 

(7.25), we see that the triple of the vectors { , ,μ n τ } forms a right-handed vector basis. 

            From equation (7.13) we have 

 2 2 2 2 2 2

01 02 03 32 13 21            

and with equations (7.23), (7.24), and using the notation of equation (7.28), we obtain 

2 2 n τ  

and finally we obtain 

i n τ .                                                                                                               (7.30) 

From equation (7.25) we have 

 
22  μ n τ  
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and since the vectors τ and n  are perpendicular to each other, we obtain from equation (7.29) 

that 

2 2 2μ n τ  

and using the notation of equation (7.28) we have 

2 2 2μ n τ  

 μ n τ  

and from equation (7.30) we take 

2 2i  μ n τ .                                                                                               (7.31) 

            In the case of the T matrices, where n 0 , and from equation (7.31), it follows that 

0, 0 τ μ . In these cases we can define the set of unit vectors { 1 2 3, ,ε ε ε }, given by 

 

1

2

3

0









μ
ε

μ

n
ε

n

τ
ε

τ

n

   .                                                                                                                 (7.32) 

The triple of vectors { 1 2 3, ,ε ε ε } forms a right-handed orthonormal vector basis. 

            In the cases of the T  matrices with τ 0 , we define with   the plane perpendicular 

to the vector τ 0 . In the cases where moreover n 0 , we obtain from equation (7.25) that 

μ 0 .In these cases the vectors n  and μ  are perpendicular to the vector τ , as implied by 

equations (7.25) and (7.29). Therefore, the vectors n  and μ  belong to the plane  , and they 

also form an orthogonal basis of this plane. We note that the vectors of the TSV, which may 

belong to the plane  , are given as a linear combination of the vectors n  and μ . Therefore, 

the condition for τ 0  is not sufficient, in order for the plane   to acquire a physical 

meaning. Also, we note that because of equation (7.13), the plane  , when it is defined, is 

not a vector subspace of  3 .  

            We now prove theorem 7.4: 



58 
 

Theorem 7.4.  ΄΄In the case of the T matrices with τ 0  and n 0  and   τ n 0 , the 

vectors  

, , , ,J P C j  belong to the same plane  .΄΄ 

Proof. From equations (4.6), for    , , 1,3,2i k  , we obtain 

1 32 2 13 3 21

1 32 2 13 3 21

1 32 2 13 3 21

0

0

0

c c c

J J J

P P P

  

  

  

  

  

  

 

and from equations (5.8),(5.9) and (7.23) we get 

0

0

0

 

 

 

τ C

τ J

τ P

                                                                                                                        (7.33) 

where 

 C J P                                                                                                                       (7.34) 

as implied by equation (3.5). From equation (7.33) we conclude that the vectors , ,C J P , 

being perpendicular to vector  τ , belong to the plane  . From equation (5.3) and equations 

(5.8) and (5.9) we obtain 

 
b

    J P . 

Therefore, the vector  , as a linear combination of the vectors ,J P , belongs to the plane 

 . By developing the terms of equation (7.17), the first obtained equation is 

32 1 13 2 21 3 0j j j      

and using equation (7.23) we have 

0 τ j .                                                                                                                        (7.35) 

Therefore, the vector j , being perpendicular to the vector τ , belongs to the plane  . The 

vectors , , , ,J P C j  vary according to the equations of the TSV, while staying on the plane 

 .  
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            From this study we can obtain a method about the determination of the four-vectors  

, ,J P C , as well as for the rest masses 0
0 02
, ,
E

m M
c

. This method is applied in the case the 

matrix M does not vanish, that is 0M  . We shall refer to this method as the SV M  

method. 

The steps of the SV-M  method: 

Step 1. We choose external symmetry matrix T  we want to study. 

Step 2. We apply Theorem 7.3.  

Step 3. We use equation (7.13). 

Step 4. We use equation (2.13), or the equivalent equations (7.2). 

Step 5. We use the second of the set of equations (4.6). 

Step 6. We use the first of the set of equations (7.14). 

Step 7. We use the first of the set of equations (4.6). 

Step 8. We use equation (3.5). 

Step 9. We use equation (3.4). 

Step 10. We use equation (2.10) for , , 0,1,2,3k i k i  . 

Step 6 simplifies the execution of operations in some matrices. It is not necessary though 

since it’s overlapped by step 7. 

As an example, we apply this method on the matrix T : 

 

0 01

01 1 21

21 2

3

0 0

0

0 0

0 0 0

T

T
T zQ

T

T



 



 
 
 
 
 
 
 

                                                                                   (7.36) 

where, 01 21 0   . 

From equations (7.20), and since 01 0   and 21 0  , we have 0 2 3 0T T T   , and 

the matrix (7.36) becomes 
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01

01 1 21

21

0 0 0

0

0 0 0

0 0 0 0

T
T zQ



 



 
 
 
 
 
 
 

.                                                                                    (7.37) 

 

For 1 0T  , according to corollary 6.2 the portion of spacetime occupied by the 

generalized particle is curved. Furthermore, the second term of the second part of the second 

equation in the set of equations (4.21) is nonzero. 

In the case the portion of spactime occupied by the generalized particle is flat, we 

obtain from corollary 6.1 that  
1 0T  . Therefore, 0 1 2 3 0T T T T    . In this case, and from 

equation (4.11), we obtain 0  , and the second term of the second part of equation (4.19) 

vanishes. 

            From equation (7.13) we take 

2 2 2

01 21 0      

21 01i   .                                                                                                                   (7.38) 

From equations (7.2) we obtain 

1 01

0 01 1 1 2 21

1 21

0

0

0

J

J J T J

J



 





   



  

and since 01 21 0   , we have that 

1

01
2 0

21

0J

J J






 
.                                                                                                                (7.39) 

From the second of equations (4.6), for    , , 3,0,1i k  we have 

3 01 1 30 0 13 0J J J      

and since 
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01 30 03 130, 0, 0         

we obtain 

3 0J  .                                                                                                                         (7.40) 

From equations (7.39) and (7.40), and from equation (2.4), we get the four-vector J  

0 001

21

1
1

0
0 0

1

0 0
0

i

W
J J J

i c




 
    
    
      

     
    
     

 .                                                                             (7.41) 

For the second equality in equation (7.41) we applied the second equation of equations 

(7.38). 

From equations (4.29) and (7.37) we have 

01

01 21

21

0 0 0

0 0

0 0 0

0 0 0 0

M



 



 
 
 
 
 
 
 

                                                                                        (7.42) 

2

01 01 21

2

2

01 21 21

0 0

0 0 0 0

0 0

0 0 0 0

M

  

  

  
 
 
  
 
 

.                                                                               (7.43) 

From the first of equations (7.14) we see that 

2 0M C   

and with equations (3.5) and (7.43) we obtain 

2

01 0 01 21 2

2

01 21 0 21 2

0

0

a c a a c

a a c a c

  

  
  

and taking into account that 01 21 0   , we obtain  

01
2 0

21

c c



  .                                                                                                                 (7.44) 
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From the first of the equations (4.6), for          , , 0,1,2 , 0,1,3 , 0,2,3 , 1,2,3i k   we have 

0 12 2 01 1 20

0 13 3 01 1 30

0 23 3 02 2 30

1 23 3 12 2 31

0

0

0

0

c c c

c c c

c c c

c c c

  

  

  

  

  

  

  

  

 

and taking into account the zero elements of the matrix T we have 

0 21 2 01

3 01

3 12

0

0

0

c c

c

c

 





  





 

and since 
01 21 0    we obtain 

21
2 0

01

3 0

c c

c








.                                                                                                                    (7.45) 

The first of equations (7.45) is equation (7.44), because of equation (7.38). From equations  

(3.5) and (7.38), (7.45) we obtain the four-vector C  

0

0

1

1

21
0 0

01
0

0

c
c

c
c

C
c ic





 
  
  
   
  
  
   

.                                                                                                  (7.46) 

Combining equation (3.5) 

P C J   

with equations (7.41) and (7.46) we obtain the four-vector P  

 

0 0

1

0 0

0

c J

c
P

i c J

 
 
 
 
 
 

.                                                                                                        (7.47) 
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            After having determined the four-vectors , ,J P C , we can calculate the rest masses 

0
0 02
, ,
E

m M
c

. From equations (2.7) and (7.41) we get 

0 0m  .                                                                                                                          (7.48) 

From equations (2.8) and (7.47) we have 

0 1E icc  .                                                                                                                    (7.49) 

From equations (3.6) and (7.46) we also have 

1 0c iM c  .                                                                                                                   (7.50) 

The calculation of the four-vector j  of the current density of the conserved physical 

quantities q  is done from corollary 7.2. This method is applied for 0M  , and is performed 

in two steps. We shall refer to this method as the 
qSV  -method. 

The steps of the 
qSV  - method: 

Step 1. We use equation (7.17), or the equivalent equation: 

0

, , , , ,k 0,1,2,3

i k k i kij j j

i k k i i

    

  

  

   
.                                                                                 (7.51) 

Step 2. We use equation (5.7). 

            We apply the 
qSV  -method on the matrix T  given by equation (7.37). From equation 

(7.51), for          , , 0,1,2 , 0,1,3 , 0,2,3 , 1,2,3i k    we have 

0 12 2 01 1 20

0 13 3 01 1 30

0 23 3 02 2 30

1 23 3 12 2 31

0

0

0

0

j j j

j j j

j j j

j j j

  

  

  

  

  

  

  

  

 

and taking into account the elements of the matrix T we have 

0 12 2 01

3 01

3 12

0

0

0

j j

j

j

 





 




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and since 
01 12 210, 0      , we get 

21
2 0

01

3 0

j j

j








.                                                                                                                  (7.52) 

The matrix M is given by equation (7.42). Thus, from equations (4.27) and (7.16) we have 

1 01

0 01 2 21

1 21

0

0

0

j

j j

j



 





  



 

and since 01 0  and 21 0  , we have 

1

01
2 0

21

0j

j j






 
.                                                                                                                (7.53) 

The first of the equations (7.52) and the second of the equations (7.53) are identical due to 

equations (7.38). From equations (7.52) and (7.53) we obtain the four-vector j  

0 021

01

1
1

0
0 0

1

0 0
0

i

j j j c
i





 
    
    
      
    
    
     

.                                                                                 (7.54)                                                                                                 

We now summarize the obtained information for the generalized particle of the matrix T of 

equation (7.36): 

 

0

1

0

0

J J
i

 
 
 
 
 
 

        
 

0 0

1

0 0

0

c J

c
P

i c J

 
 
 
 
 
 

        

0

1

0

0

c

c
C

ic

 
 
 
 
 
 

       0

1

0

0

j j
i

 
 
 
 
 
 

                           (7.55) 

0 0m   , 
1 0c iM c  , 2

0 1 0E icc M c    . 

 

 



65 
 

 

1 0T    curved spacetime                                                                                        (7.56) 

flat spacetime   1 0T  . 

From equations  (5.7) and (7.41), (7.47), (7.54) we have

2 2

0 1 01 1 21

c b i c b
j c c

 
          

and with equation (7.54) we obtain 

01

2

1

21

0

0

c bc
j








 
 
   
 
 
 

                                                                                                                      (7.57)                                                                       

for the matrix T  of our study. Also, from equations (5.17) and (7.54) we obtain 

2 20
01 21

1

0 0

2 0

0

3

2
2

2

0

0

j
c F i c F

x

j j
i

x x

j

x

F
x

   


   


 
 

 






 
   



.                                                                                    (7.58) 

Equations (7.57) and (7.58) correlate the function with the four-vector j  of the 

current density of the conserved physical quantities q . These equations hold for the matrix T

of equation (7.37). 

The presented method about the study of the generalized particle is possibly the 

simplest, but surely not the only one. The TSV stems from one equation which nonetheless 

generates an extremely complex network of equations. We present one method, which serves 

as a test for the self-consistency of the TSV. With the same method we can check for 

calculational errors of the obtained equations, as we proceed from one set of equations of the 

TSV into another set. We shall refer to this method as the SV T -method (Selfvariations Test). 



66 
 

The internal structure of every generalized particle depends on the corresponding 

matrix T . The SV T  method consists of the following steps: 

The SV T  - Method: 

We choose an equation  1E , which holds for the matrix T , and for which there exist 

at least two different components of the four-vector J , or one component and the rest mass 

0m . By differentiating  equation  1E with respect to , 0,1,2,3kx k  we obtain a second 

equation  2E .  

With the help of equation (2.10) 

, 0,1,2,3

i
k i ki k i ki

k

J b b
P J P J zQ

x

k i

 


   




 

the constants , , 0,1,2,3ki k i  are introduced into equation  2E . Equation  2E has to be 

compatible with the elements of the matrix T . In the case equation  1E contains the rest 

mass 0m  we apply equation (2.6) 

0
0 , 0,1,2,3k i

k

m b
P J m k

x


 


. 

We apply the method for the matrix T of equation (7.37). From equation (7.41) we obtain 

2 0J iJ  .                                                                                                                     (7.59) 

This equation contains the components 0 2,J J  of the four-vector J . We differentiate equation 

(7.59) with respect to  , 0,1,2,3kx k  , to obtain 

2 2 0 0k k k k

b b
P J zQ i P J zQ 

 
    

 
 

and using equation (7.59) we have  

2 0k kzQ izQ    

and since 0zQ  we get 
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2 0, 0,1,2,3k ki k    .                                                                                               (7.60) 

In equation (7.60) we insert successively 0,1,2,3k   

For 0k  we obtain 

02 00 0i iT      

which holds, since 02 00, 0T   . 

For 1k  we get 

12 10i     

and since 10 01   , we get 

12 01

2 2

01 21 0

i 

 

 

 
 

which are equations (7.38). 

For 2k  we obtain 

22 20

2 20

a ia

T ia

 

 
 

which holds for the matrix T , since 02 20, 0a T  . 

For 3k  we have 

 
32 30

32 03

i

i

 

 

 


 

which holds for the matrix T , since 32 030, 0   . 

            For the matrix we study it holds that τ 0  and n 0  and   τ n 0 ,and therefore 

plane   is defined. From equations (7.32) we have 
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1

2

3

0

1

0

0

0

0

0

i

i

 
 

  
 
 

 
 

  
 
 

 
 

  
 
 

ε

ε

ε

.                                                                                                                       (7.61) 

From equations (7.46) and (7.61) we have 

1

0 1 20 1

0

c

c ci ic

 
 

    
 
 

C ε ε .                                                                                            (7.62) 

Equations (7.62) contains the components  0 1,ic c of the vector Cwith respect to the vector 

basis  1 2,ε ε of the  -plane. Considering that the vectors 1 2,ε ε  are perpendicular to each 

other, we obtain from equation (7.62) 

1 0

2 1

ic

ic

  

 

ε C

ε C
 

and from equations (7.49) and (7.50) we have 

 
1 0

0 1
2 0 2

ic

E ic
M

c c

  

      

ε C

ε C
                                                                                         (7.63) 

The material particle exists for 0J  ,  hence from equation (7.41) we have 

0 0J  .                                                                                                                                                    (7.64)                                                                                                                                                   

From the equations (7.41) and (7.46) it follows that for 
1 0c   the 4-vectors J  and C  are 

parallel, which is impossible in symmetry for the matrix T of our study. Therefore it is  

1 0c                                                                                                                                                        (7.65)  

for the symmetry of equation (7.37).                                                                                                                           

             From eq. (3.4) we have 
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  , , 0,1,2,3
2

ki i k k i

b
c J c J k i     

and with eq. (4.4) we have 

  , , 0,1,2,3
2

ki i k k i

b
zQ c J c J k i                                                                                            (7.66) 

For 0, 1k i   in eq. (7.66) we have 

 01 1 0 0 1
2

b
zQa c J c J   

and because of 
1 0J   according to eq. (7.41) we have 

0 01

1

2
J zQ

bc
 .                                                                                                                                    (7.67) 

Similarly for 2, 1k i   in eq. (7.66) we have 

2 21

1

2
J zQ

bc
 .                                                                                                                                    (7.68) 

Considering that 
1 3 0J J   according to eq. (7.41), from eqs. (7.67) and (7.68) we have 

01

211

02

0

J zQ
bc





 
 
 
 
 
 

.                                                                                                                                (7.69) 

Eq. (7.69) expresses the contribution of the charge Q  to the 4-vector of momentum of the 

material particle. 

            From equation (2.10) for 0k   and taking into account equation 

00 0 0zQT    

we obtain 

0
0 0

0

J b
P J

x





 

and with equation (7.69) we obtain 

 
0

0

zQ b
P zQ

x





 

0

0 0

Q z b
z Q P zQ

x x

 
 

 
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and with equation (2.6) we obtain 

0 0

0

b z b
z PQ Q P zQ

x


 


 

0

0
z

x





 

and with equation (4.9) we obtain 

0 0c   

and the equations (7.55) and (7.62), (7.63) written in the form 
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211

02

0

J zQ
bc





 
 
 
 
 
 

   

1

0

0

0

c
C

 
 
 
 
 
 

   

P C J 
                                                                                                                                              (7.70)                                                                                                                                            
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
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 
 

  

2

1 0 1 0 0 1 00, 0, ,c m c iM c E icc M c         

1 2

1

0

0

c

c

 
 

  
 
 

C ε  

1

0 1
2 0 2

0

E ic
M

c c

 

      

ε C

ε C
 

for the symmetry 1

0121T . 
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              From eqs. (2.12) and (4.4), (4.10) we have 

 

0 01 02 03

01 1 21 13

02 21 2 32

03 13 32 3

T

T
T zQ

T

T

  

  

  

  

 
 
 
 
  
 
  

.                                                                                            (7.71) 

Eq. (7.71) gives the external symmetry matrices as a function of the constants 

, , , 0,1,2,3ki k i k i    and the physical quantities zQ  and , 0,1,2,3k kkT k  .                                                                                                       

              The physical quantities q appear in the part of spacetime where the USVI prevails, and 

as they are conserved they have the characteristics of a material particle. The mathematical 

expression of the 4-vector of the current density of the conserved physical quantities q is an 

important issue for the TSV. 

              The 
qSV  method gives a mathematical expression of the 4-vector j , correlating the 

components of the 4-vector. The expression for the matrix T of eq. (7.37) we have studied is 

given by eq. (7.54). Eq. (5.17) correlates the 4-vector j  with the wave function  . The 

correlation for the matrix T of eq. (7.37) we have studied is given by eq. (7.57). We observe 

that eq. (7.57) does not contain the degree of freedom   of eq. (5.17), but only the degree of 

freedom  . This is not a random fact valid for the matrix we have studied, but is predicted by 

the next theorem: 

Theorem 7.5  

1.   ΄΄The 4-vector j  of the current density of the conserved physical quantities q  of the 

generalized particle is given by the eq. 

  
2bc

j J MC


                                                                                                       (7.72) 

where  and   the two degrees of freedom of the TSV and 

0

1

2

3

0 0 0

0 0 0

0 0 0

0 0 0

T

T

T

T

 
 
  
 
 
 
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01 02 03

01 21 13

02 21 32

03 13 32

0

0

0

0

M

  

  

  

  

 
 
 
 
  
 
  

 

the fundamental matrices   and M of the TSV. 

2.  
2

0
bc

J j MC


      .΄΄                                                                                                (7.73) 

Proof. From eq. (3.5) we have 

P C J   

and replacing the momentum P in eq. (5.7) we have 

  
2c b

j M J C J


       

  
2c b

j M J C


        

  
2c b

j MJ MC


       .                                                                                             (7.74) 

From eqs. (7.71) and (4.11), (4.28) we have 

 T zQ M   

and from eq. (2.13) we have 

  0zQ M J   

and since 0zQ   we have 

  0M J   

0MJ J   

and finally we get 

MJ J                                                                                                                                              (7.75) 
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From eqs. (7.74) and (7.75) we get eq. (7.72). The eq. (7.73) follows from the eq. (7.72) for 

0J  .  

               As we shall see next the relation 0J  is valid for a large number of external 

symmetry matrices. For these matrices Nr. 2.of theorem 7.5 is valid. 

              From eq. (7.37) we have 

1

0 0 0 0

0 0 0

0 0 0 0

0 0 0 0

T

 
 
  
 
 
 

 

and with eq. (7.41) we have 0J  for the symmetry we have studied. Next from eqs. (7.42) 

and (7.46), eq. (7.57) follows from the relation (7.73). 

              We now prove the following corollary of theorem 7.5: 

Corollary 7.4. ΄΄In flat spacetime the 4-vector j  of the current density of the conserved 

physical quantities  q  of the generalized particle is given by eq. 
2bc

j MC


   .΄΄ 

Proof. From corollary 6.1 and eq. (4.11) it follows that in flat spacetime we have 0   and 

therefore Nr. 2.of theorem 7.5 is true.  

            The next theorem 7.6 relates the four-vector  J  with the elements of the main 

diagonal of the external symmetry matrix T . 

Theorem 7.6.  ΄΄For every external symmetry matrix T it holds that 

2 2 2 2

0 0 1 1 2 2 3 3 0T J T J T J T J    .΄΄                                                                                      (7.76) 

Proof. Since the material particle exists, at least one component of the four-vector J is 

nonzero. We prove the theorem for  0 0J  . The proof for 0, 1,2,3iJ i   follows similar 

lines. For 0 0J  , we obtain from equations (7.2) 
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 

 

 

0 0 1 01 2 02 3 03

01 1 1 2 21 3 13

0

02 1 21 2 2 3 32

0

03 1 13 2 32 3

0

0

1

1

1

J T J J J

J T J J
J

J J T J
J

J J J T
J

  

  

  

  

   

  

  

   

                                                                                   (7.77) 

and replacing the terms 01 02 03, ,a a  in the first of equations (7.77) we obtain 

 

   

 

1 2
0 0 1 1 2 21 3 13 1 21 2 2 3 32

0 0

3
1 13 2 32 3 3

0

0

J J
J T J T J J J J T J

J J

J
J J J T

J

   

 

     

    

 

2 2 2

0 0 1 1 1 2 21 1 3 13 2 1 21 2 2

2

2 3 32 3 1 13 3 2 32 3 3 0

J T J T J J J J J J J T

J J J J J J J T

  

  

    

    
 

2 2 2 2

0 0 1 1 2 2 3 3 0T J T J T J T J     .  

             An immediate consequence of theorem 7.6 is corollary 7.6. 

Corollary 7.5. ΄΄For every matrix T of the external symmetry the following holds 

0 1 2 3

0 1 2 3

0

0
0

T T T T
T T T T

m

   
    

 
.΄΄                                                                  (7.78) 

Proof. For 0 1 2 3T T T T    we obtain from equation (7.76) 

 2 2 2 2

0 0 1 2 3 0T J J J J     

and with equation (2.7) we have 

2 2

0 0 0T m c  .                                                                                                                   (7.79) 

Since  0 0m  , from equation (7.79) we have 0 0T  . Since 0 1 2 3T T T T   , we obtain  

0 1 2 3 0T T T T    .  

We calculate the number of the external symmetry matrices. This number is 

determined by theorem 7.3 and corollaries 7.1 and 7.4. Also notice that the external 
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symmetry matrices are non-zero. Applying simple combinatorial rules, we see that altogether 

there exist 

0 14N   

external symmetry matrices with 0ki   for every , , 0,1,2,3k i k i  . These matrices 

contain non-zero elements only on the main diagonal. The number 
1N  of matrices with one 

element is 

1 6N  . 

The number of matrices with two elements, 0, , , 0,1,2,3ki k i k i    is 

'

2 27N   

with three elements it is 

'

3 20N   

with four elements it is 

'

4 15N   

with five elements it is 

5 6N   

with six elements it is 

6 1N  . 

From equation (2.13) and the second of the equations (4.6) we can prove that some of these 

matrices give the four-vector 0J  , thus are rejected. Therefore, we obtain 

0

1

'

2 2

'

3 3

'

4 4

5

6

14

6

4 24

9 11

12 3

6

1

N

N

N N

N N

N N

N

N





  

  

  





. 
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Thus the total number TN  of external symmetry matrices is 

0 1 2 3 4 5 6 65TN N N N N N N N                                                                      (7.80) 

    The matrix  0T   is unique 

1ON   

and according to theorem 3.3 this matrix expresses the internal symmetry. Therefore, the total 

number of the matrices of the internal and external symmetry predicted by the Law of 

Selfvariations is 

66OT O TN N N                                                                                                       (7.81) 

    There exist 

16 49J TN N                                                                                                           (7.82) 

external symmetry matrices with different four-vectors , , ,J P C j .  

            We now prove for example that the following matrix 

0 01 03

01 1 21 13

21 2

03 13 3

0

0 0

0

T

T
T zQ

T

T

 

  



 

 
 
 
 
 
 
  

 

is not an external symmetry matrix. Applying theorem 7.3 for the above matrix we have 

0 1 2 3 0T T T T     

and therefore it takes the form 

01 03

01 21 13

21

03 13

0 0

0

0 0 0

0 0

T zQ

 

  



 

 
 
 
 
 
 
  

 

and with equation (2.13) we obtain 
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1 01 3 03

0 01 2 21 3 13

1 21

0 03 1 13

0

0

0

0

J J

J J J

J

J J

 

  



 

 

   



  

 

and since 

01 03 13 21 0      

we have 

0 1 2 3 0J J J J     

which is impossible since there is no material particle in this case.  

We present now a notation for the matrices of the external symmetry.  In every matrix 

T we use an upper and a lower index. As lower indices we use the pairs 

 , , , , 0,1,2,3k i k i k i   of the constants 0ki  , which are nonzero. These indices, which 

appear always in pairs, are placed in the order of the following constants: 

01 02 03 32 13 21, , , , ,      , which are nonzero. As upper indices we use the indices of the 

nonzero elements of the main diagonal, in the following order: 0 1 2 3, , ,T T T T . For example, the 

matrix T given in equation (7.37) is denoted as 1

0121T .  

With this notation, the 65TN   external symmetry matrices are given from the 

following seven sets  : 
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 

 



0 1 2 3 01 02 03 12 13 23 012 013 023 123

0

1 01 02 03 32 13 21

0 0 0 3 2 1

2 0102 0103 0103 0203 0203 3213 3213 3221 3221 1321 13210102

1 1 2

0113 0113 0121 0121 0232 0

, , , , , , , , , , , , ,

, , , , ,

, , , , , , , , , , , ,

, , , , ,

T T T T T T T T T T T T T T

T T T T T T

T T T T T T T T T T T T

T T T T T T

 

 

 



 

 

2 3 3

232 0221 0221 0332 0332 0313 0313

0 1 2 3

3 010203 010203 011321 011321 023221 023221 033213 033213 010221 010313 020332

4 01023213 01033221 02031321

5 0102033221 0102033213 0102

, , , , , ,

, , , , , , , , , ,

, ,

, ,

T T T T T T

T T T T T T T T T T T

T T T

T T T

 

 

   

 

031321 0102321321 0103321321 0203321321

6 010203321321

, , ,T T T

T 
.         (7.83) 

We note that the matrix 
321321T , which should be present in the set 

3 , discarded by the 

SV T  method. 

            The internal symmetry expresses the spontaneous isotropic STEM emission from a 

material particle because of the selfvariations. The external symmetry emerges when the 

material particle interacts via the USVI with other material particles and this is equivalent 

with the destruction of the spacetime isotropy. The rest mass of the material particle and of 

the STEM  in the first case, as well as the rest mass which stems from the USVI in the second 

case, is given by the eqs. (2.7) and (2.8). The eqs. (7.69) and (7.70) 

  

 

 

01

211

01

1

211

02

0

0

02

0

0 0

J J Q zQ
bc

c
P P Q zQ

bc









 
 
  
 
 
 

   
   
     
   
   
   

                                                                                                  (7.84) 

give the 4-vectors J  and P  of USVI, and via eqs. (2.7) and (2.8) we get eqs. (7.48), (7.49) 

and (7.50). The rest mass of the material particle which emerges as a consequence of the 
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USVI is 
0 0m  , while we have 2

0 0 1 0E M c icc      for the symmetry 1

0121T  we have 

studied.  

               In eqs. (7.84) we see the term 

 

01

211

02

0

J Q zQ
bc





 
 
 
 
 
 

 

which is responsible for the external symmetry. That is the momentum of the USVI that is 

added to the momentum of the internal symmetry destroying the parallel property of the 4-

vectors J , P  and C . This term is zero if and only if, it is 0Q  , i.e. in the case where the 

material particle does not curry some charge Q  of the interaction. For 0Q   and from eq. 

(7.84) it follows that 0J   and P C , i.e. internal symmetry arises according to theorem 3.3. 

               With the knowledge of the external symmetry term we can express the 4-vectors  J  

and P  of the particle-STEM system when the material particle is involved in an interaction . 

From eqs. (3.12), (3.13) and (7.46), (7.69) we get the 4-vectors J  and P  as given by the eqs. 

 

01

1

211

01

1

211

0

01 2

01

0 0

0

02

01

0 0

c
J zQ

bc

c
P zQ

bc









   
   
    
   
   
   

   
   

     
   
   
   

                                                                                                        (7.85) 

for the symmetry 1

0121T . 

                It is easy to find out via eq. (3.4) that the eqs. (7.85), as well as the eqs. (7.84), 

correctly give the physical quantities , , , 0,1,2,3ki k i k i   . This is expected since internal 

symmetry  cannot affect the physical quantities  , , , 0,1,2,3ki k i k i   . Thus we can calculate 

the constants , , , 0,1,2,3ki k i k i    and the physical quantities , 0,1,2,3kT k   either through 

eqs. (7.84) or through eqs. (7.85). The TSV equations are valid for eqs. (7.84) as well as for 

eqs. (7.85).  
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               For 0Q   from eqs. (7.85) we have 

1

1

0

1

01

0

0

01

0

c
J

c
P

 
 
 
 
 
 

 
 

  
 
 
 

 

that is we get eqs. (3.12) and (3.13) with 
0 2 3 10, 0c c c c    . Therefore when the material 

particle does not interact with other material particles, internal symmetry arises in both cases. 

Also the eqs. (7.85) give the rest mass  

0
0

1

M
m  


 

of the material particle, as follows from eq. (2.7). The interaction (USVI) in which the 

material particle is involved does not affect its rest mass, as given by eq. (3.10). 

               Every external symmetry has its own 4-vector C  and its own term  J Q . In every 

external symmetry there exist equations corresponding to eqs. (7.84) 

   P Q C J Q   

for the USVI particle and to eqs. (7.85) 

 

 

1

1

1

J C J Q

P C J Q

 



 



   

for the material particle. 

               From eqs. (2.7) and (2.8) another important conclusion follows. In internal 

symmetry the material particle and STEM exchange roles if mutually exchanged 

0 0 0
0 1 2 3 0 0 0 1 2 3 02
, , , , , , , , , , , 0,1,2,3k k

k k

m E Eb b
J J J J m P m P P P P J E k

x c x

    
      

    
.  (7.86) 
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According to theorem 3.3 in internal symmetry the 4-vectors J  and P are parallel which 

implies that they have the same form. Hence the mutual exchange (7.86) has no consequences 

in internal symmetry. If we assume that one of the 4-vectors J  and P corresponds to the 

material particle, then the other corresponds to  STEM. This fact can also be seen from eqs. 

(3.9)-(3.13) of the theorem 3.3, which can be written in an equivalent form. 

   * *

0 0 1 1 2 2 3 3 0 0 1 1 2 2 3 3

*

0
0 *

0
0 *

*

*

*

1 1
exp exp

1

1

, 0,1,2,3
1

, 0,1,2,3
1

i
i

i
i

b b
c x c x c x c x K c x c x c x c x

K

M
m

M
E

c
J i

c
P i

   
            

    


 



 



 



 


. (7.87) 

The different appearance of the 4-vectors  J  and P  , and the rest masses  
0m  and 0

2

E

c
 in 

theorem 3.3 is superficial. Their form depends on whether we use equation    or eq. *  to 

write them. 

               In external symmetry the mutual exchange (7.86) is not enough for the role 

exchange of the material particle and STEM. From eqs. (7.85) it follows that the role 

exchange of the material particle and STEM via eqs. (7.87) can only be realized with the 

simultaneous change of sign of the charge Q   Q Q . 

            Combining eqs. (2.10), (3.5) and (4.4),  and with eq. (2.13) we have 

    

, , 0,1,2,3

0

i
k i ki

k

J b
P J zQ k i

x

J P C

TJ




  


 



                                                                                              (7.88) 

It is easy to find out that the TSV can be formulated starting from eqs. (7.88). The eqs. (7.88) 

give the Selfvariations of the 4-vectors J  and P . They are more general than eq. (1.1) since 

they give the TSV equations independent of whether the rest mass 
0m  of the material particle 

is zero or not.  We have chosen to start the formulation of the TSV from eq.  (1.1), which 
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gives the equations of the TSV for 
0 0m  , for the reason that there is no other way to 

approach eqs. (7.88). Moreover their physical content would not be clear. 

The study of the external symmetry  matrix 010203321321T   with elements 

0, , , 0,1,2,3ki k i k i     is algebraically demanding. Hence we shall finish this 

paragraph by stating the elements of this matrix: 

01 02 03

01 03 02

010203321321

02 03 01

03 02 01

01 02 03 32 13 21

0

0

0

0

0

T T zQ

  

  

  

  

     

 
 
 
  
  
 
  



                                                        (7.89) 

  τ n 0                                                                                                                     (7.90) 

2 2 2 2 2 2

01 02 03 32 13 21 0                                                                                         (7.91) 

03 02

0 1

01 01

02 03

01 01

1 0

0 1

a a
J J J

a a

a a

a a

   
   
   
   
    
   
   
   
   

                                                                                              (7.92) 

03 02

0 1

01 01

02 03

01 01

1 0

0 1

C c c
 

 

 

 

   
   
   
   
    
   
   
   
   

                                                                                              (7.93) 

0 1 1 0c J c J                                                                                                                      (7.94) 

P C J                                                                                                                        (7.95)                                                                                                        

 0j                                                                                                                              (7.96) 

 0
0 02

0
E

m M
c

                                                                                                          (7.97) 
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2
2

2

0

0
x

 
   


                                                                                                            (7.98) 

 

 

 

0 0

0

1 1

1

03 02

2 01 0 01 1

02 03

3 01 0 01 1

b
J P

x

b
J P

x

x x x

x x x

 

 

 

 

 

 


  




  



  
  

  

  
 

  

.                                                                                          (7.99) 

The USVI of this symmetry is given by equation 

 

1
01 02 03

01 03 02

2
02 03 010 0

03 02 01
3

1

0

0

0

0

iu

c
dJ dQ

J zQ iu
dx Qdx

c

iu

c

  

  

  

  

 
 

   
    
    
    
       

 
 

.                                            (7.100) 

Using as a base the TSV theorems we can study all external symmetry matrices. In the 

following paragraphs we present the detailed study of two other external symmetry matrices.  

 

8. The Symmetry T=zQΛ  

 

            In this paragraph we study the  T  matrices, which have all their elements equal to 

zero, except the elements on the main diagonal. Thus we study matrices of the form 

0

1

2

3

0 0 0

0 0 0

0 0 0

0 0 0

T

T
T zQ zQ

T

T

 
 
   
 
 
 

                                                                                    (8.1) 

using the notation of equation (4.11). From equations (4.28) ,(7.3) and (8.1) we have 
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0

0

M

N




.                                                                                                                            (8.2) 

The matrices M and N are zero; as a consequence the matrices of the symmetries T zQ    

share common properties, which we shall study in the following. 

According to corollary 7.4 , at least one of the diagonal elements of the matrices of 

equation (8.1) is zero. Also they cannot be all zero, since in the case of the external symmetry 

it holds that 0T  . Therefore, there is a number of 

0

4 4 4
14

1 2 3
N

     
        
     

 

different matrices for which the relation T zQ   holds. 

A common characteristic for the 14 kinds of symmetries T zQ   is that τ 0 , and 

therefore the plane   is not defined. Similarly, the vectors 1 2 3, ,ε ε ε  of equations (7.32) are 

not defined. 

A fundamental characteristic of the symmetries T zQ   is that the four-vector  j  of 

the conserved physical quantites q  vanishes. Combining the first of equations (8.2) with 

equation (5.7) we obtain 

0j  .                                                                                                                              (8.3) 

Therefore, in the part of spacetime occupied by the generalized particle, there is no flow of 

conserved physical quantities q . 

Another common characteristic is that the rest mass  0m  of the material particle can 

be diferent from zero 

0 00 0m m                                                                                                                 (8.4) 

for all 14 matrices of the symmetry. The form of the four-vector J is different for each matrix 

of the symmetry.  

We calculate now the four-vector of momentum J of the matrix 12T . According to 

our notation we have 
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112

2

1 2

0 0 0 0

0 0 0

0 0 0

0 0 0 0

0

T
T zQ

T

TT

 
 
 
 
 
 



.                                                                                              (8.5) 

From equation (2.13), and since 1 2 0TT  ,  0 3 0T T   , we obtain for the four-vector 

J , in the form 

0

3

0

0

J

J

J

 
 
 
 
 
 

.                                                                                                                        (8.6) 

Combining equations (2.7) and (8.6), we obtain for the rest mass 0m the equation 

2 2 2 2

0 0 3m c J J   .                                                                                                             (8.7) 

We apply now the SV T  method : 

We differentiate equation (8.7) with respect to , 0,1,2,3kx k   and taking into account 

equations (2.6), (2.10) and (4.4) we obtain 

2 2

0 0 0 0 3 3 3k k k k k

b b b
P m c J P J zQ J P J zQ 

   
       

   
 

and from equation (8.7) we have 

0 0 3 3 0k kzQJ zQJ    

and since 0zQ  , we have 

0 0 3 3 0, 0,1,2,3k kJ J k    .                                                                                         (8.8) 

We insert successively 0,1,2,3k  into equation (8.8), hence: 

For 0k  we have 

0 0 3 03 0J T J    

which holds since for the matrix 12T  it is 0 03 0T   . 
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For 1k  we have 

0 10 3 13 0J J    

which holds since for the matrix 12T  it is 10 13 0   . 

For 2k  we have 

0 20 3 23 0J J    

which holds since for the matrix 12T  it is 20 32 0   . 

For 3k   we have 

0 30 3 3 0J J T    

which holds since for the matrix 12T  it is 30 3 0T   . 

According to the proof of eq. (8.7) it is possible that 0 0J   or 3 0J  , but it is not 

possible that 0 3 0J J  , since in this case the material particle does not exist. Therefore 

from equation (8.7) we conclude that 

 0 0 3 00 0m m J iJ      .                                                                                      (8.9) 

Simirarly we can prove that relations analogous to relation (8.10), hold for all matrices of the 

symmetry T zQ  . 

For the matrix 12T it is 
1 0T  . Therefore the part of spacetime occupied by the 

generalized particle in the symmetry 12T is curved, according to corollary 6.2. 

Because of equation (8.3) the wave equation (5.17) holds identically  0 0 . Therefore for 

the symmetries T zQ   the study of the wave behavior of matter is done via eq. (5.3). 

            Starting from equation (8.7) and applying the same method of proof as for equations 

(4.19) and (4.20) we obtain 

0 0

dJ dQ
J

dx Qdx
                                                                                                                (8.10) 
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0 0

dP dQ
J

dx Qdx
                                                                                                                                      (8.11) 

for the symmetry 12T . From equations (8.6) and (8.10) we obtain 

0
0

0 0

3
3

0 0

dJ dQ
J

dx Qdx

dJ dQ
J

dx Qdx





 

and finally we obtain 

 
   

0 0

3 3

0 3

0 3

, 0,0

, constants

J Q

J Q





 

 









  .                                                                                                    (8.12) 

Thus the four-vector J is given by equation 

 

   

0

3

0 3

0 3

0

0

, 0,0

, constants

J J Q Q





 

 

 
 
  
 
 
 





                                                                                                      (8.13) 

as implied by equation (8.6). Therefore, for the symmetry 12T the momentum of the material 

particle is proportional to the charge  Q . This feature is a common characteristic for all 

matrices of the symmetry T zQ  . 

            Combining eqs. (3.5) and (8.13) we have 

 

   

0 0

1

2

3 3

0 3

0 3

, 0,0

, constants

c Q

c
P P Q

c

c Q





 

 

 
 
  
 
 

 





 .                                                                                              (8.14) 
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Now from eqs. (4.2) and (8.14) we have 

 

 

 

0 0

0

1

1

2

2

3 3

3

Q b
c Q Q

x

Q b
c Q

x

Q
c Q

x

Q b
c Q Q

x






 














 



.                                                                                                  (8.15) 

From the identity 

, , , 0,1,2,3
k i i k

Q Q
k i k i

x x x x

      
     

      
 

and eqs. (8.15) we have after the calculations 

0 1

0 2

3 1

3 2

0 3 3 0

0

0

0

0

c

c

c

c

c c









 











 

and because of 

     0 3, 0,0    

we finally get 

1 2

0 3 3 0

0c c

c c 

 


.                                                                                                                   (8.16) 

From eqs. (8.15) and (8.16) we have 

 

 

 

0 3

0 0

0

3 3

3

,Q Q x x

Q b
c Q Q

x

Q b
c Q Q

x








 




 



.                                                                                                   (8.17) 

From eq. (8.17) we have 
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 

0

0
12 0 0 3 3

0 3 3 0

0

1

1 exp

0

c
Q

b
K c x c x

c c



 




 

   
 





                                                                          (8.18) 

 

 

 

3

3
12 0 0 3 3

0 3 3 0

3

1

1 exp

0

c
Q

b
K c x c x

c c



 




 

   
 





                                                                         (8.19) 

where 
12 12, 0K K  constant. For 

0 3 0   the eqs. (8.18) and (8.19) are equivalent, 

because of the 2nd eq. of (8.16). 

            From eq. (8.14) and the 1st eq. of (8.16) we have 

 

0 0

3 3

0

0

c Q

P P Q

c Q





 
 
  
 
 

 

.                                                                                               (8.20) 

From eq. (3.5) and the 1st eq. of (8.16) we have 

0

3

0

0

c

C

c

 
 
 
 
 
 

.                                                                                                                      (8.21) 

            From eqs. (8.18), (8.19) and (8.13) we have 

   
 

0

0 3 0 3

12 0 0 3 3

3

01
, , ,

0
1 exp

c

J J Q J x x c c
b

K c x c x
c

 
 
   
  

     
   

                               (8.22) 

and from eqs. (8.21), (8.13) and (8.18), (8.19) we have 
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   
 

0

0 3 0 3

12 0 0 3 3

3

01
, , , 1

0
1 exp

c

P P Q P x x c c
b

K c x c x
c

  
  
     
         

    

.                     (8.23) 

            From eqs. (8.21), (8.22) and (8.23) it follows that the 4-vectors , ,J P C   are parallel. 

According to the equivalence (3.4) and eq. (4.4) this parallelism is expected for the 

symmetries T zQ  , since it is 0, , , 0,1,2,3ki k i k i     . However the parallelism of the 

4-vectors , ,J P C  we have met in the theorem 3.3 as a characteristic of internal symmetry. 

Hence we will finish the paragraph for the symmetries T zQ   with the refutation of this 

apparent inconsistency. 

            From eq. (8.13) we get  
1 2 0J J   for the symmetry  12T , hence the initial eq. (2.7) 

is written 

2 2 2 2

0 3 0 0J J m c   .                                                                                                      (8.24) 

Subsequently we perform the same procedure as for the proof of eq. (2.10), from eq. (2.7). 

After the calculations and because in symmetry 12T it holds that 0, , , 0,1,2,3ki k i k i       

equation (8.5) follows from eq. (8.24). During the procedure of proof, the physical quantities 

1T and 
2T do not follow from eq. (8.24). In contrast from eq. (2.7) for 

1 20, 0J J  and  

0, , , 0,1,2,3ki k i k i      we get
1 2 0T T  , as is predicted from the internal symmetry 

theorem 3.3. Exactly at this point we find the differences of the symmetries T zQ   with 

internal symmetry. In internal symmetry it is 
0 1 2 3 0T T T T    , and according to corollary  

6.1 the part of spacetime occupied by the generalized particle may be a plane. Moreover 

space is isotropic, in the part of spacetime occupied by the generalized particle. The 

momentum vectors J , P  and Care 3-dimensional, and it is not possible to let vanish some 

component 
1 2 3, ,J J J  of the momentum from eq. (2.7), with an appropriate rotation of the 

reference system we use. There is a very specific inertial reference frame in which 

1 2 3 0J J J   ([5], paragraph 5.3). In contrast with the symmetries T zQ   spacetime is 

curved as implied by the corollary 6.2. Moreover in symmetries T zQ  space is intensely 

anisotropic, in the part of spacetime which is occupied by the generalized particle.  

According to eqs. (8.21), (8.22) and (8.23) the momentums C , J  and P in symmetry 12T are 
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1-dimensional, towards the direction of the axis 
3x z . The intense anisotropy of space, in 

the part of spacetime which is occupied by the generalized particle, is a basic characteristic of 

the symmetry T zQ  . This anisotropy varies for the symmetries of the set 
1  in eq. (7.78). 

One symmetry T zQ   is characterized by the symmetries of the 4-vector J which are 

absend in the eq. (2.7). For symmetry  12T the components are 
1J  and 

2J . 

            From eqs. (8.13) and (8.24) we have 

 
   

2 2 2 2 2

0 3 0

0 3

0

, 0,0

Q m c 

 

  


.                                                                                              (8.25) 

Eq. (8.25) gives the contribution of charge Q to the rest mass  
0m of the material particle. 

            We now calculate the distribution of the total rest mass 
0M of the generalized particle 

between the material particle and STEM. From eqs. (8.22) and (8.24) we have 

 

2 2
2 20 3
02

12 0 0 3 3

0

1 exp

c c
m c

b
K c x c x


 

  
    

  

 

and from eq. (8.21) and (3.5) we have 

 

2 2
2 20
02

12 0 0 3 3

0

1 exp

M c
m c

b
K c x c x

  
  
    

  

 

and finally we get 

 

0
0

12 0 0 3 31 exp

M
m

b
K c x c x

 
 

   
 

                                                                           (8.26) 

Analogous from eqs. (8.23), (2.8), and (3.5) we have 

 

 

2

0 12 0 0 3 3

0

12 0 0 3 3

exp

1 exp

b
M c K c x c x

E
b

K c x c x

 
  
 

 
 

   
 

                                                                       (8.27) 
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Eqs. (8.26) and (8.27) give the distribution of rest mass 
0M between the material particle and 

STEM. The study of the remaining 13 symmetries T zQ   is done in the same way as the 

one we demonstrated for symmetry 12T . 

We now set 
12K K   in equations (8.22) and (8.23), where K  the constant of 

equation (3.9). Comparing equations (8.22), (8.23) and (3.9), (3.12), (3.13) we come to the 

conclusion that the external symmetry 12T  can emerge from the internal symmetry for 

1 2 0J J  . This can occur when an external cause blocks the emmision of STEM along the 

axes 
1x  and 

2x . In this way the isotropic emmision of the internal symmetry is converted into 

the anisotropic external symmetry 12T . In general the following corollary of theorem 3.3 

holds: 

Corollary 8.1 : ΄΄The external symmetry T zQ   can emerge from the internal symmetry 

when an external cause blocks the emmision of STEM along one or more axes , 0,1,2,3ix i  . 

These axes define the kind of external symmetry T zQ   that results.΄΄ 

              We present the method which can produce the symmetry 12T from internal symmetry. 

We consider a case where an external cause can block the STEM emission in external 

symmetry, on the plane defined by the two axes 
1x  and 

2x . In this case we have 

 
1 2 0P P  .                                                                                                                  (8.28) 

Now from eqs. (3.13), (3.12) and (8.28) we have 

 
1 2

1 2

0

0

c c

J J

 

 
 .                                                                                                                 (8.29) 

From the combination of eqs. (8.28), (8.29) with eqs. (3.12), (3.13), (3.10), (3.11) there arise 

the corresponding eqs. (8.22), (8.23), (8.26), (8.27) with 
12K K  . 

            Using function   of equation (3.9) for 
1 2 0c c  , and 

12K K   equations (8.22), 

(8.23), (8.26) and (8.27) are written in the form 

1 2

, i 0,1,2,3
1

0

i
i

c
J

c c

 


 

                                                                                                                        (8.30) 
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1 2

, i 0,1,2,3
1

0

i
i

c
P

c c


 



 

                                                                                                                        (8.31) 

0
0

1 2

1

0

M
m

c c

 


 

                                                                                                                         (8.32) 

2

0
0

1 2

1

0

M c
E

c c


 



 

.                                                                                                           (8.33) 

            Corollary 8.1 gives us a mechanism through which the symmetry T zQ   can 

emerge. The external cause is necessary, since the internal symmetry expresses the 

spontaneous isotropic emmision of STEM due to the selfvariations. 

               From the combination of equations (3.5), (5.3) and (8.30), (8.31) we get 

  0

0 1

1

cb

x

b

 

 

 
 

 

 
  


C

.                                                                                             (8.34) 

            By setting 

 0 1 2 3, , ,
1

G G x x x x
  

 


                                                                              (8.35) 

equation (8.34) is written in the form 

0

0

b
Gc

x

b
G


 



  C

 .                                                                                                                                     (8.36) 

From identity 

0   

and with the second of equations (8.36), we get 

0G  C  

and consequently vector G   is written in the form 

b
G g  C                                                                                                                          (8.37) 
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where  0 1 2 3, , ,g g x x x x . 

From equations (8.36) and (8.37) we get the wave equation of the TSV for the symmetry 

T Q  ,  as given by equations 

 

0

0

2 2
2 2

2

b
Gc

x

b
G g

b
G g


 



    

 

C

C

.                                                                                                          (8.38) 

The third of the eqs. (8.38) correlates the functions  G  and g . One of the pairs of functions 

G  and g is given by the equations  

1

k

k

b
G

b
g k



 
  
 

 
 






 

r C

r C
                                                                                                                                 (8.39) 

where  1 2 3, ,x x xr  and k  constant. From eqs. (8.38) and (8.39) we have 

0

0

2 12 2
2

2

k

k k

bc b

x

b b b
k



  
  

  

    
             



 

r C

rC C r C
.                                                                      (8.40) 

Equations (8.38) have general validity in the symmetry T zQ  . Every symmetry 

T zQ  is defined by the constants , 0,1,2,3ic i  , which go to zero. The same holds for 

function  0 1 2 3, , ,x x x x  . In the symmetry 12T  it is  0 3,x x   . The symmetries of 

the set 
1  have 0j   and therefore the wave equation   does not relate to any flow of 

conserved physical quantities q . 
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9. The  Symmetries 0

010203T  and 
010203

T . 

 

In this chapter we study the generalized particle of the matrix 

0 01 02 03

01 1

02 2

03 3

01 02 03

0 0

0 0

0 0

0

T

T
T zQ

T

T

  







  

 
 

 
 
 
 



 .                                                                                   (9.1) 

From theorem 7.3 we have that for this matrix it is  

1 2 3 0T T T    

and thus it is written in the form 

0 01 02 03

01

02

03

01 02 03

0 0 0

0 0 0

0 0 0

0

T

T zQ

  







  

 
 

 
 
 
 



 .                                                                                   (9.2) 

From the matrix in equation (9.2) we obtain the symmetries 

0 01 02 03

010

010203

02

03

01 02 03 0

0 0 0

0 0 0

0 0 0

0

T

T T zQ

T

  







  

 
 

  
 
 
 



                                                                        (9.3) 

01 02 03

01

010203

02

03

01 02 03

0

0 0 0

0 0 0

0 0 0

0

T T zQ

  







  

 
 

  
 
 
 



.                                                                       (9.4) 
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First we study the symmetry 0

010203T . For this symmetry it is 0M   , hence we apply 

the SV M -method. From equation (7.3) we have 

2 2 2

01 02 03 0     .                                                                                                         (9.5) 

From equations (7.2) we obtain 

0 0 1 01 2 02 3 03

0 01

0 02

0 03

0

0

0

0

J T J J J

J

J

J

  







   







 

and since 01 02 03 0     and 0 0T  we have 

0

1 01 2 02 3 03

0

0

J

J J J  



  
.                                                                                               (9.6) 

From the second of the equations (4.6), and for          , , 0,1,2 , 0,1,3 , 0,2,3 , 1,2,3i     we 

obtain 

2 01 1 02

3 01 1 03

3 02 2 03

0

0

0

J J

J J

J J

 

 

 

 

 

 

.                                                                                                           (9.7) 

From equations (9.6),(9.7), and since it holds that 01 02 03 0a a a  , we have 

0

02
2 1

01

03
1

01

0J

J J

J J















.                                                                                                                    (9.8) 

From equations (9.8) we obtain the four-vector  J J Q   
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  02

1

01

03

01

1

0

1

0

J J Q J

J









 
 
 
 

   
 
 
 
 



                                                                                                      (9.9) 

From equations (4.28) and (9.3) we have 

01 02 03

01

02

03

0

0 0 0

0 0 0

0 0 0

M

  







 
 

 
 
 
 

                                                                                        (9.10) 

2 2 2

01 02 03

2

2 01 01 02 01 03

2

01 02 02 02 03

2

01 03 02 03 03

0 0 0

0

0

0

M

  

    

    

    

   
 

   
   
 

    

 

and with equation (9.5) we obtain 

2

01 01 02 01 032

2

01 02 02 02 03

2

01 03 02 03 03

0 0 0 0

0

0

0

M
    

    

    

 
 

  
 
   
 

   

.                                                                     (9.11) 

From the first of the equations (7.14) and the equation (9.11), we get after the calculations 

1 01 2 02 3 03 0c c c     .                                                                                                (9.12) 

From the first of the equations (4.6), and for          , , 0,1,2 , 0,1,3 , 0,2,3 , 1,2,3i     we 

obtain 

2 01 1 02

3 01 1 03

3 02 2 03

0

0

0

c c

c c

c c

 

 

 

 

 

 

.                                                                                                          (9.13) 

From equations (9.12) and (9.13) we have 
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02
2 1

01

03
3 1

01

c c

c c













.                                                                                                                    (9.14) 

From equations (9.14) we obtain the four-vector C  

0

1

02
1

01

03
1

02

0 0

c

c

cC

c

c









 
 
 
 

  
 
 
 
 



.                                                                                                                (9.15) 

From equation (3.5) and equations (9.9) and (9.15) we obtain the four-vector  P P Q  

   

 

0

1 1

02
1 1

01

03
1 1

01

c

c J

c JP P Q

c J









 
 


 
 

   
 
 

 
 

 .                                                                                         (9.16) 

    With the knowledge of the four-vectors , ,J P C  we can calculate the rest masses 

0
0 02
, ,
E

m M
c

 of the material which emerges as a concequence of the USVI. From equations 

(2.7) and (9.9) we get 

2 2

2 2 2 02 03
0 1

01 01

1m c J
 

 

    
       
     

 

and using equation (9.5) we obtain 

0 0m  .                                                                                                                          (9.17) 

From equations (2.8) and (9.16) we have  

0 0E icc  .                                                                                                                    (9.18) 
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For the proof of equation (9.18) we used also equation (9.5). From equations (3.6) and (9.15) 

we have 

0 0c iM c  .                                                                                                                   (9.19) 

            The vector τ vanishes 

32

13

21

0

0

0







   
   

    
   
   

τ  

and thus the plane   is not defined. For the same reason it also holds that μ 0 . On the 

contrary the vector n  is nonzero 

01

02

03

0

0

0







   
   

    
   
   

n .                                                                                                           (9.20) 

From equations (9.9),(9.15) and (9.16) we see that the vectors , ,    J P C  are parallel to the 

vector n . From equivalence (3.4) we obtain 

  , , , 0,1,2,3
2

ki i k k i

b
c J c J k i k i           

and with equation (4.4) we have 

 
2

ki i k k i

b
zQ c J c J    

and for 0, 0,1,2,3k i   we obtain 

 

 

 

01 1 0 0 1

02 2 0 0 2

03 3 0 0 3

2

2

2

b
zQ c J c J

b
zQ c J c J

b
zQ c J c J







 

 

 

 

and with equations (9.9) and (9.15) we have 



100 
 

0
01 1

0
02 2

0
03 3

2

2

2

bc
zQ J

bc
zQ J

bc
zQ J







 

 

 

 

and solving with respect to 1 2 3, ,J J J  we obtain 

1 01

0

2 02

0

3 03

0

2

2

2

J zQ
bc

J zQ
bc

J zQ
bc







 

 

 

 

and using equation (9.20) we take 

 
0

2
Q zQ

bc
  J J n  

and taking into account that 0 0J  , we have 

  01

020 0

03

0

02 2zQ zQ
J J Q

bc bc







 
 

           
 
 

n
.                                                                                   (9.21) 

                                                                                                                                                                  

In equation (9.21) the function z  is given by equation (4.5). Equation (9.21) expresses 

the dependence of the four-vector J on the charge Q  in the case of the external symmetry 

0

010203T . 

            From equation (2.10) for 1,2,3k i   and taking into account equation  

 11 22 33 1 2 30 0T T T          

we obtain 

, 1,2,3k
k k

k

J b
P J k

x


 


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and with equation (9.21) we get 

 
, 1, 2,3k

k

zQ b
P zQ k

x


 


 

, 1,2,3k

k k

Q z b
z Q P zQ k

x x

 
  

 
 

 and with equation (2.6) we obtain 

, 1,2,3k k

k

b z b
z P Q Q P zQ k

x


  


 

0, 1,2,3
k

z
k

x


 


 

and with equation (4.9) we obtain 

1 2 3 0c c c    

and with equation (9.15) we obtain 

   

0

0

0

01

020

03

0

0

0

0

0

0 2

0

0

c

C

c

c

zQ
P P Q C J Q

bc







 
 
 
 
 
 



  
  
      
  
  

   

                                                                              (9.22) 

for the four-vectors C and P . 

For the matrix 0

010203T  it is 0M   therefore we apply the 
qSV  - method for the 

determination of the four-vector j . For          , , 0,1,2 , 0,1,3 , 0,2,3 , 1,2,3i     in equation 

(7.51), and considering the elements of the matrix 0

010203T , we obtain 
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02
2 1

01

03
3 1

01

j j

j j













 .                                                                                                                   (9.23) 

From equations (4.27), (7.16) and (9.10) we have 

01 1 02 2 03 3 0j j j      .                                                                                              (9.24) 

From equations (9.23) and (9.24) we obtain the four-vector j  

0

1

02
1

01

03
1

01

j

j

jj

j









 
 
 
 

  
 
 
 
 

 .                                                                                                                 (9.25) 

From equations (9.25) and (9.20) we obtain the current density 

1

01

   
j


j n .                                                                                                                      (9.26) 

Therefore the current density j has the same direction as the vector n . 

            From the wave equation (5.17) and equations (9.25) and (9.20) we obtain 

1
0

01 0

1 1 1

01 1 02 2 03 3

2
2

2

0

2 1

1 1 1

c
j

j
x

j j j

x x x

F
x

F


 






 



  
 

  

 
   



n n

.                                                                                        (9.27) 

From the second of equations (9.27) we have 

02 031 1 1
1

1 1 01 1 01

01

1
1 02

01 1

03

, ,

1

j j j
j

x x x

j
j

x

 

 








   
   

   

 
  

     
 
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and with equation (9.20) we have 

1
1

01 1

1 j
j

x


 


n  .                                                                                                             (9.28) 

From equations (9.28) and (9.20) we have 

 2 2 21
01 02 032

01 1

1 j

x
  




   


 j  

and with equation (9.5) we get 

0 j .                                                                                                                        (9.29) 

Combining the continuity equation (5.6) with equation (9.29) we obtain 

0

0

0
j

x





 .                                                                                                                       (9.30) 

Therefore the charge density 0j i c  does not depend on time in the symmetry we study. 

            Combining equations (5.3), (9.9) and (9.16) we have 

   

0

0

0
1

01 02

, , , 0,0

bc

x

cb
J









  



 


 



 
    









n  .                                                                                     (9.31) 

Let us remind that the parameters ,   appearing in equation (9.31) express the two degrees 

of freedom of the TSV. 

            Setting  

  0
0 1 2 3 1

01 02

, , ,
c

G G x x x x J
 

 


                                                                                               (9.32) 

equation (9.31) is written in the form 

0

0

bc

x

b
G


 



  n

 .                                                                                                                         (9.33) 

From identity 
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0   

and the second of equations (9.33) we get 

0G  n  

and, therefore, the vector G  is written as 

b
G g  n                                                                                                                           (9.34) 

where  0 1 2 3, , ,g g x x x x . 

From the second of equations (9.33) we get 

 2 b
G G    n  

and with the second of equations (9.33), and equation (9.34) we get 

 
2

2 2

2

b
G g     n n n  

 
2

2 2

2

2b
G g    n  

and with equation (9.20) we get 

  
2

2 2 2 2 2

01 02 032

b
G g           

and with equation (9.5) we finally get 

2 0   .                                                                                                                        (9.35) 

In the symmetry 0

010203T  the wave function   of the  TSV satisfies the Laplace equation. The 

first of equations (9.33) and equation (9.35) 

0

0

2 0

bc

x


 



  

                                                                                                                        (9.36) 

constitute the wave function of the TSV for the symmetry 0

010203T . 

               From eq. (9.25) it follows that the 4-vector of the current density j  has two free 

parameters  
0j  and 

1j . In theorem 7.5 we find the information for these parameters. From eq. 

(7.3) we have 
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0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

T 
 
  
 
 
 

 

and with eqs. (7.72) and (9.10), (9.9), (9.15) we get after calculations 

0

2

0
1 01

0j

c bc
j

 




 
 

and with eq. (9.25) we have 

2
010

02

03

0

abc c
j

a

a




 
 
  
 
 
 

                                                                                                                         (9.37) 

for the symmetry 0

010203T . It is easy to prove that equation (9.37) is compatible with eqs. (9.27) 

and (9.36). However eq. (9.37) provides information which are not provided by the 
qSV  

method via eq. (9.25). The eq. (9.25) does not provide the information that 
0 0j  . Generally, 

for the symmetries which have 0J  one must consider theorem 7.5. 

The portion of space-time occupied by the generalized particle is curved, since 
0 0T 

, according to corollary 6.2. Also from the combination of equations (9.9), (4.19), and taking 

into account that 1 2 3 0T T T     and 
0 0J  ,  we obtain 

0 0 0

d dQ i dQ
Q zQ

dx Qdx c Qdx
  

J
J Jα n                                                                          (9.38)                                                                                            

for the USVI of the external symmetry 0

010203T . 

            In symmetry 010203T  it holds that 0 1 2 3 0T T T T    . Hence from theorem 7.6 we 

could have that 0 0J  , and the four-vector J could take the form 
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 

0

1

02
1

01

03
1

01

0 0

J

J

JJ J Q

j

J









 
 
 
 

   
 
 
 
 



                                                                                                    (9.39) 

in the symmetry 010203T . However equation (9.39) is rejected. Following the same procedure 

as the one for proving equation (9.17), we obtain from equation (9.39) that 

2 2 2

0 0 0m c J   .                                                                                                            (9.40) 

Applying the SV T method, we conclude that equation (9.40) cannot hold. Therefore, the 

symmetries 0

010203T and 010203T have the same four-vectors  , ,J P C  and j . The only difference 

lies in the vanishing or non-vanishing of the physical quantity  0T . 

            The symmetry 0

010203T  has 
0 0T   and therefore the spacetime part occupied by the 

generalized particle is curved according to corollary 6.2. In symmetry 
010203T  it is 

0 0T   and 

following from corollary 6.1 the spacetime could be either flat or curved. We shall prove that 

in symmetry 
010203T  spacetime is curved. 

               From eq. (3.5) it follows that the components of the 4-vector C  transform under 

Lorentz-Einstein as well as the components of the 4-vectors J  and P . That is they transform 

under Lorentz-Einstein according to eqs. (6.4). The first parts of eqs. (9.18) and (9.19) are 

invariant under Lorentz-Einstein while the second parts are not. Thus the Lorentz-Einstein 

transformations are not valid for the symmetry 
010203T , therefore spacetime is curved. With the 

observation that spacetime is curved we conclude the study of the symmetries 0

010203T  and 

010203T . 
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10. The Generalized Particle of the Field  ,α β and the Confinement Equation. 

 

In this paragraph we study the generalized particle of the field  ,α β , for which the 

function   is known. This shall allow us to perform a particular application of theorem 5.1. 

             We prove now that the field  ,α β  is a special case of the field  ,ξ ω . For  

1

2
     in equation (5.3) we obtain 

  , 0,1,2,3
2

k
k k

k

b
J P k

x


    


 

and with equation (3.5) we have 

, 0,1,2,3
2

k k

k

bc
k

x


   


 

and using the notation of equation (4.9) we have 

 0 0 1 1 2 2 3 3exp
2

b
z c x c x c x c x

 
       

 
                                                              (10.1) 

From equation (10.1) and equations (5.1), (5.2) and (4.14), (4.15), we obtain 

 

01

02

03

32

13

21

icz icz

z z













 
 

 
 
 
 

 
 

   
 






ξ α n

ω β τ

.                                                                                                (10.2) 

The field   ,α β  is a special case of the field   ,  ξ ω  for 
1

2
     . 

The fact that the function  of  the field  ,α β is known allows us to derive two 

impotant results about the total rest mass 0M  of the generalized partcle. The first concerns 
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the relation between the total rest mass 
0M  of the generalized particle with theorem 5.2, in 

case of field  ,α β . From equation (10.1) we obtain 

 
2 2 2

2 2 2 2 2 2

0 1 1 12 2 2 2

0 4

b
c c c c

x c t

   
         

 
 

and with equation (3.6) we have 

2 2 2
2 2 2 2

02 2 2 2

0 4

b
M c

x c t

   
        

 
 .                                                               (10.3) 

According to equation (10.3) and theorem 5.2 the generalized photon in the field  ,α β exists, 

if and only if  

0 0M  ,                                                                                                                         (10.4) 

that is in the case the total rest mass of the generalized particle is zero.  For 0 0M   the 

generalized particle appears. 

Setting 
1

2
     in the equations of paragraph 5, we arrive at the equations of the 

field  ,α β . For example, by setting 
1

2
     into equation (5.7) we obtain 

2

2

c bz
j MC


 . 

This is equation (4.29), as we have proved in paragraph 4, for the field  ,α β . On the other 

hand, equation (10.3) results only because the function   is known, as given by equation 

(10.1) for the field  ,α β . 

The second conclusion concerns the consequences for the total energy 
0c  of the 

generalized particle when it is trapped in a fixed volume V . By knowing the function we 

can study the consequences for a material particle that is confined within a constant volume 

V . The conserved physical quantity q , is constant within the volume V occupied by the 

generalized particle. Therefore, it holds that 
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0

0

constant

dq icdq

dt dx

V

 



 .                                                                                                            (10.5) 

            The total conserved physical quantity q contained within the volume V occupied by 

the generalized particle is 

Vq dV  .                                                                                                                   (10.6) 

The equation (10.6) holds independently of the fact, whether the volume V of the generalized 

particle variates or not. The density   for the field   ,α β is given by the first of the 

equations (4.25) 

 1 01 2 02 3 03
2

icbz
c c c        .                                                                              (10.7) 

In the case of 

1 01 2 02 3 03 0c c c     , 

that is in the case of 

0 n C  , 

as derived from equations (3.5) and (7.24), we obtain from equation (10.7) that 0  . That 

is, for the field  ,α β the following equivalence holds 

1 01 2 02 3 030 00 c c c        n C .                                                              (10.8) 

In the case of 0  , and from the combination of equations (10.6) and (10.7), we have

 
2

V

icb
q zdV


  

n C
.                                                                                             (10.9) 

The integration in the second part of equation (10.9) is performed within the total volume V

occupied by the generalized particle. Therefore, in the case the volume V is constant, the 

integral in the second part of equation (10.9) is independent of the quantiites  

1 2 3, ,x x x y x z   . Therefore, in the case volume V is constant, the physical quantity  q  in 

equation (10.9) depends only on time.  

Thus by combining equations (10.5) and (10.9) for a constant volume V , we obtain 
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0

cons t

0

tan

V

d
zdV

dt

V





 



n C  .                                                                                                            (10.10) 

Working with equation (10.10) in the general case presents some mathematical 

difficulties. Therefore in the present work we will restrict our study on the simplest case. We 

shall study the case for which the total momentum Cof the generalized particle is aligned on 

the direction of the x  - axis, that is for the case of 1 2 30, 0c c c   . In this case we obtain 

from equation (3.6) that 2 2 2 2

0 0 1M c c c   . Furthermore it must also hold that 0  , that is 

1 01 0c  , according to  equivalence (10.8), and since 1 0c  , it must also hold that 01 0  . 

Therefore our study refers to the particular case where 

1

2 3

01

2 2 2 2

0 0 1

0

0

0

c

c c

M c c c





 



  

.                                                                                                         (10.11) 

We suppose that the generalized particle occupies the constant volume V defined by 

the relations (10.12) in a frame of reference  1 2 3, , ,O t x x x y x z   .   

1

2 2

3 3

2 3 2 3

0

0

0

, 0, , constants

x

x L

x L

L

L L L L

 

 

 

 

 

 



  

 

  .                                                                                    (10.12) 

For the quantities ,  it holds that 

d d
u c

dt dt

 
                                                                                                          (10.13) 

where u  is the velocity with which the volume V is moving in the chosen frame of reference. 

From equation (10.1), relations (10.11), and since 0x ict , we have 

0 1exp exp
2 2

icbc bc
z t x

   
    

  
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2 3 0 1 1

1

2
exp exp exp

2 2 2
V

L L icbc bc bc
zdV t

bc

       
            

      
 .                          (10.14) 

 From equation (10.14) we see that equation equation (10.10) holds, if and only if  

 

1 1

1

exp exp 0
2 2

exp 1
2

bc bc

bc

 

 

   
      
   

 
  
 

       

1exp 1
2

bc L 
 

 
.                                                                                                            (10.15) 

Equation (10.15) holds only in the case the constant b of the Law of Selfvariations is an 

imaginary number, b i b , b  .  In this case we obtain 

1

1

cos 1
2

sin 0
2

,

bc L

bc L

b i b b

 
 

 

 
 

 

 

 

and finally, we get 

1

4
, 1, 2, 3,...c n n

L b


                                                                                          (10.16) 

Combining equation (10.16) with the last of the equations (10.11) we have 

2 2
2 2 2 2

0 0 2 2

16
, 1,2,3...M c c n n

L b


                                                                             (10.17) 

Therefore the momentum 1c and the rest mass 0M of the confined generalized particle is 

quantized. 

In the case of the generalized photon, that is for  0 0M  , and according to equation 

(10.17) we have 

0

0

4
, 1, 2, 3,...

0

i
c n n

L b

M


    



  .                                                                                  (10.18) 
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Combining equations (10.1),(10.16) and (10.18) we have 

 

0

4
exp

1, 2, 3,...

0

i
z n ct x

L

n

M

 
    

 

   



.                                                                                      (10.19) 

The function  expresses a harmonic wave of wavelenght  
2

L

n
   propagating along the x  -

axis. 

We now calculate the equation corresponding to the equation (10.10) for the field 

 ,  ξ ω , in general.  The reason of not having calculated the general equation (in the case of 

the one spatial dimension) already in paragraph 5 is that the relation of the confinement of the 

generalized particle with the appearance of the quantization would not have become obvious. 

From equations (4.27), (4.28) and (5.7), and since it holds that 0j i c , we obtain: 

   01 1 02 2 03 3 01 1 02 2 03 3

icb
J J J P P P                  

and together with equations (5.8), (5.9) and (7.24) we have 

 
icb

      J n P n .                                                                                         (10.20) 

From equations (10.5), (10.20) for the generalized particle occupying a constant volume V

we obtain 

  0

const

0

ant

V

d
dV

dt

V

 

 

  

















J n P n

J n P n .                                                                                  (10.21) 

For 
1

2
     equation (10.21) gives equation (10.10), after considering equations (3.5) 

and (10.1). 

For the internal symmetry 0T   it holds that  0M  , and from equation (5.7) we 

obtain 0j  . Hence equation (10.5) degenerates into the identity, 0 0 , therefore the 

confinement equation (10.21) does not hold. The same holds also for all the external 
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symmetries T zQ   as follows from equation (8.4). Therefore the confinement eq. (10.21) 

is valid for the 44  generalized particles of the external symmetries of the sets 

1 2 3 4 5, , , ,      of eq. (7.83). 

             The field  ,α β exists in all external symmetries,  except the ones with T zQ   of 

the set 
1  of eq. (7.83). Every external symmetry of the set 

1 2 3 4 5 6       

expresses one of the possible states of the generalized particle. For the field  ,α β every 

external symmetry expresses one of the possible states of the field. We complete the 

paragraph with the study of the symmetry 2

0221T  of the set 
2 ,  for the field  ,α β . We 

consider the case where Q  is electric charge, hence  α  is the electric field and  β   the 

magnetic. 

             The symmetry  2

0221T  is given by the matrix 

0 02

1 21

02 21 2

3

02 21

0 0

0 0

0

0 0 0

0

T

T
T zQ

T

T





 

 

 
 


 
 
 
 



 

according to eq. (7.71),  and considering eqs. (7.20) we have 

02

212

0221

02 21 2

02 21

0 0 0

0 0 0

0

0 0 0 0

0

T T zQ
T





 

 

 
 


  
 
 
 



.                                                                                      (10.22) 

From eq. (10.22) we get the matrix M  

02

21

02 21

0 0 0

0 0 0

0 0

0 0 0 0

M





 

 
 


 
 
 
 

.                                                                                                        (10.23) 

From eqs. (4.14), (4.15) and (10.22) we have 

02

0

0

icz 

 
 

  
 
 

α                                                                                                                                       (10.24) 
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21

0

0z



 
 

  
 
 

β .                                                                                                                                        (10.25) 

The electric field is on axis 
2x y  and the magnetic on axis 

3x z . The function z in eqs. 

(10.24) and (10.25) expresses the wave form of the field for 

b i                                                                                                                                                      (10.26) 

according to eq. (10.1). 

             Applying the SV M  method we get the eqs. 
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2 2

02 21

0

0

0

2

0

1

0

0

0

i
J J Q J

c

ic
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 
 
 
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 
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 
 
 
 
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 .                                                                                                            (10.27) 

The material particle exists for 0J  ,  hence from the 3rd of eqs. (10.27) we have 

0 0J  .                                                                                                                                                  (10.28) 

From the 3rd and 4th of eqs. (10.27) it follows that for 
2 0c   the 4-vectors J  and C  are 

parallel, which is impossible in symmetry 2

0221T . Therefore it is  

2 0c  .                                                                                                                                                  (10.29) 

Considering the 2nd of eqs. (10.27), the eq. (10.24) can be written in the form 

21

0

0

cz 

 
 

   
 
 

α .                                                                                                                                    (10.30) 

From eqs. (10.25) and (10.30) it follows that the electric and the magnetic field have equal 

norm:  
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α β                                                                                                                                             (10.31)                                                                                                                

              Applying the 
qSV   method,  and taking into account the 2nd of eqs. (10.27) we have 

0

1

1

0 0

0 0

i

i
j j c

   
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
    
   
   
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.                                                                                                                     (10.32) 

 

From eqs. (10.7), (10.22) and (10.26) we have 

2 02

2

cc z 
   

and replacing density   in eq. (10.32) we have 

2

2 02

0

1 0

0 02

0 0

i

c c
j z

 

   
   

    
   
   
   

.                                                                                                            (10.33) 

               According to the 3rd of eqs. (10.27) the vector  

  0

1 0

0 0 0

0 0 0

i
W

Q J
c

     
     

        
     
     

J J                                                                                           (10.34) 

of the momentum of the particle is on the axis 
1x x . Similarly from eq. (10.33) it follows 

that the vector 

2

2 02

1 0

0 0
2

0 0

c c
z

 
   
   

    
   
   

j                                                                                                              (10.35)  

is also on the axis 
1x x . 

            Let 
0  , where 

0  is the dielectric constant of the vacuum, then in eq. (10.33) we 

have 

2

0 2 02

0

1 0

0 02

0 0

i

c c
j z

 

   
   

    
   
   
   

.                                                                                                           (10.36) 
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Inserting 0

e


   in eq. (10.33) we get 

2

0 2 02

0

1 0

0 02

0 0

i

c c
j z

e

 

   
   

    
   
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   

.                                                                                                           (10.37) 

Eq. (10.36) gives the 4-vector of the current density of a conserved quantity of electric charge 

(see paragraph 5.). Similarly eq. (10.37) gives the 4-vector of the current density of a 

conserved quantity of angular momentum. In both cases the vector j  is on axis
1x x , as 

follows from eq. (10.35). Finally from the 3rd, 4th and 5th  of eqs. (10.27) we have 

0

2 0

2

0 2 0

0

0

0

m

c M c

E cc M c



  

    

                                                                                                                 (10.38) 

for the rest masses of the material particle which emerges as a consequence of the USVI. 

            The above eqs. completely describe the state of the field  ,α β  in the case of the 

symmetry 2

0221T . Working in the same way we can study the field  ,α β  for the symmetries of 

the sets 
2 3 4 5 6, , , ,     . 

 

11. The external symmetry factor 

 

               In this paragraph we study the factor which generates external symmetry. That is the 

momentum which emerges from the USVI, which is added to the internal symmetry 

momentum and eliminates the parallel property of the 4-vectors J , P  and C . To isolate and 

eventually to work out the external symmetry factor it is necessary to use all fundamental 

theorems of paragraph 7, as well as theorem 4.4 of paragraph 4.  Next we give the first of 

these: 

Corollary 11.1 ΄΄In the 36 external symmetries of the set 
2 3 5   , in which 

0 0M  ,  

the factor  J Q  which eliminates the parallel property of the 4-vectors J , P  and C  of 

external symmetry during the involvement of a material particle in an interaction (USVI) is 

given by the equation  
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c
A

AJ J Q QA Q Q
A

A
A

A

 
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   
         
   
   
    

                                                                                       (11.1) 

where A  is the 4-vector of the potential of the field  ,α β  with gauge function  

0, 0,1,2,3kf k  , as given by the equation                                                                                        

2
, for

0, for

0

ki

ki

k

z i k
b cA

i k

c




 
 



                                                                                                (11.2)                                                                            

 where 0, 0,1,2,3 , 0,1,2,3kc k i   . ΄΄ 

Proof. The field  ,α β  is defined for external symmetries of the sets 
1 2 3 4 5 6, , , , ,       

of eq. (7.83). The potential of the field  ,α β  is given by eq. (4.32) of theorem 4.4. the 

determination of the external symmetry factor was possible only after the study of every one 

of the 36 external symmetries of the set 
1 2 3 5    , in which 

0 0M  . The external 

symmetry factor for this set is given by eqs. (11.1) and (11.2). According to corollary 4.1 in 

external symmetry there is 0kc   for at least one index 0,1,2,3k . Therefore the potential 

(11.2) is defined in all symmetries of the set 
1 2 3 5    . In cases where 0kc   for 

more than one index 0,1,2,3k  the potentials which emerge from eq. (11.2) are 

equivalent, according to eq. (4.33) of theorem 4.4. The factor of external symmetry is that 

what, in the field «language» we would name potential momentum of the field  ,α β  of the 

USVI.  

              With the knowledge of the 4-vector  J Q , as given by eqs. (11.1) and (11.2) we get 

the 4-vector  P Q  of USVI from eq. 

   P P Q C J Q                                                                                                                           (11.3) 

From eqs. (11.1) and (11.2) it follows that in all symmetries of the set 
1 2 3 5     the 

rest mass 
0m  of the USVI particle is zero: 
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0, 0 0USVIm m                                                                                                                                      (11.4) 

From eqs. (11.3) and (11.2) it follows that the rest energy 
0, 0USVIE E  of the USVI particle is 

not the same in every symmetry of the set 
1 2 3 5    , in any case however we have 

the equality 

2

0, 0 0USVIE E M c                                                                                                                             (11.5) 

where 
0M  the total rest mass of the generalized particle. 

               In internal symmetry, i.e. the spontaneous STEM emission of the material particle 

as a consequence of the Selfvariations, the 4-vectors J , P  and C  are parallel. When the 

material particle involves in an interaction the direction of the 4-vector  J Q  of the potential 

momentum of the USVI in spacetime depends not only on the material particle. Thus the 

addition to the internal symmetry 4-vector destroys the parallel property of the 4-vectors J , 

P  and C of the generalized particle. The momentum 4-vector of internal symmetry is given 

by theorem 3.3, and considering eq. (11.1) we have 

 

0 0

1 1

2 2

3 3

1 1 1

1 1 1

c A

c A
J C J Q C QA Q

c A

c A

   
   
        
     
   
   

                                                     (11.6) 

for the momentum 4-vector J  of the generalized particle. From eqs. (3.5) and (11.6) we also 

have 

0 0

1 1

2 2

3 3

1

c A

c A
P Q

c A

c A

   
   

     
   
   
   

                                                                                                                      (11.7) 

for the momentum 4-vector P  of  STEM. Another proof of the eq. (11.7) can be done from 

theorem 3.3 and eq. (11.1). 

               In this notation we do not discriminate between the 4-vectors    ,J Q P Q  of 

potential  momentum as a consequence of the USVI, and the total momentums ,J P  of the 

generalized particle, by generally using the symbols ,J P  . The presence of the function   in 
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eqs. (11.6) and (11.7) eliminates any cause of confusion. Also we use the same symbol 
0m  

for the rest mass of the particle which emerges as a consequence of the USVI as for the rest 

mass of the material particle. For the rest masses also there is not case of confusion since the 

USVI particles of the symmetries of the set 
1 2 3 5     have always 

0 0m  , while 

the material particle’s rest mass is always 0
0

1

M
m 


. This conclusion, as well as corrollary 

11.1, follows from the study of all external symmetries of the set 
1 2 3 5    . 

               From eqs. (3.4) it follows that we get exactly the same physical quantities 

, , 0,1,2,3ki k i   whether we use the pair of eqs. (11.1), (11.3) or the pairs (11.6), (11.7) in 

eq. (3.4). The terms of internal symmetry 

1

1
C


 

in eq. (11.6) and 

1
C




 

in eq. (11.7) do not affect the physical quantities , , 0,1,2,3ki k i  . We suggest to select one 

particular symmetry of the set 
1 2 3 5     and do the mathematical calculations. A 

good practice also for the understanding of the  TSV is the proof of eqs. (5.10)-(5.15), first 

with the pairs of 4-vectors (11.1), (11.3) and then with the pairs (11.6), (11.7). The eqs. of the 

TSV are valid for the 4-vectors (11.1), (11.3) as well as for the 4-vectors (11.6), (11.7). This 

fact reflects the physical content of the two symmetries, internal and external. The spacetime 

isotropy implies the parallel property of the 4-vectors J  and P  which in turn implies eq. 

0, , 0,1,2,3ki k i    , as follows from eq. (3.4). The USVI  is caused by the spacetime 

anisotropy, which implies the relation 0ki   for at least a pair of indices  , , , 0,1,2,3k i k i  , 

as follows from eq. (3.4). 

               We now apply corollary 11.1 to symmetry 0

010203T , whose elements we know from 

paragraph 9. According to eq. (9.22) we have
0 0c  , hence from eqs. (11.2) we have 
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01

020

03

0

2 z
A

bc







 
 
 
 
 
 

                                                                                                                                      (11.8) 

 and with eq. (11.2) we have 

  01

020

03

0

2 zQ
J J Q

bc







 
 
   
 
 
 

                                                                                                                (11.9) 

and with eq. (9.22) we have 

 

0

01

020

03

0

0 2

0

0

c

zQ
P P Q

bc







  
  
    
  
  

   

                                                                                           (11.10) 

for the momentum of the USVI particle. 

               Now from eqs. (11.6), (11.7), (9.22) and (11.8) we have 

 

0

01

020

03

0

01 2

01

0

c

zQ
J

bc







  
  
   
  
  

   

                                                                                                    (11.11) 

 

0

01

020

03

0

0 2

01

0

c

zQ
P

bc







  
  

    
  
  

   

                                                                                                    (11.12) 

for the momentum of the generalized particle. 

               From eqs. (2.7) and (11.9) we have 

 
2 2 2

2 2 2 2 2

01 02 03 02 2

0

4
0

z Q
m c

b c
       

and with eq. (9.5) we have 
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2 2

0

0

0 0

0

m c

m

 


 

for the rest mass of the USVI particle. From eqs. (2.8) and (11.10) we have 

 
22 2 2

2 2 2 2 0
0 01 02 032 2 2

0

4
0

Ez Q
c

b c c
        

and with eq. (9.5) we have 

2
2 0
0 2

0 0

0
E

c
c

E icc

 

 

 

which is eq. (9.18). 

 

 

              From eqs. (2.7) and (11.11) we have 

 
 

2 2 2 2
2 2 2 2 2 2 20
0 1 2 3 01 02 032 2 2

0

4

1

c z Q
J J J J

b c
        


 

and with eq. (9.5) we have 

 

2
2 2 2 2 0
0 1 2 3 2

1

c
J J J J   


 

and with eq. (2.7) we have 

 

2
2 2 0
0 2

1

c
m c 


.                                                                                                                             (11.13) 

From eq. (9.22) we have 

2 2 2 2 2

0 1 2 3 0c c c c c     

and with eq. (3.6) we have 

2 2 2

0 0M c c   

and with eq. (11.13) we have 
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 

2 2
2 2 0
0 2

1

M c
m c 


 

and finally we have 

0
0

1

M
m  


  

which is eq. (3.10). Likewise from the eqs. (2.8) and (11.12) we get (3.11)  

0
0

1

M
E


 


 . 

               From the pairs of eqs.  (11.11) and (11.12) we have 

0
0

01
1

0

0
0

01
1

0

1

2

1

2

c
J

zQ
J

bc

c
P

zQ
P

bc








 








    .                                                                                                                           (11.14) 

From eq. (3.4) and eqs. (11.14) we have 

 01 0 1 1 0
2

b
J P J P     

0 01 0
01 01

0 0

22

2 1 1

c zQ cb zQ

bc bc


 

   
        

 

01 01
1 1

zQ zQ
 

 
  

  
  

01 01zQ  .                                                                                                                                         (11.15) 

Eq. (11.15) is the eq. (4.4) for  0k   και 1i  . In the same way we can proof that the pair of 

eqs. (11.1), (11.3) and (11.7), (11.8) give eqs. (4.4) for the symmetries of the set 

1 2 3 5    . 
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               A question which arises from corollary  11.1 is if it can be generalized with the gauge 

function  , 0,1,2,3 , 0k kf k c   to be different than zero ( 0kf  ) in eq. (4.32). The answer 

is yes and is given by the following corollary: 

Corollary 11.2 ΄΄For the factor  J Q QA   of external symmetries of the set 

1 2 3 5     the 4-vector A  of the potential of the field  ,α β  is given by eq. 

2
, for

, for

ki k

k i

i

k

i

f
z i k

b c x
A

f
i k

x

 
  

 
 



                                                                                             (11.16)                                                                            

where 0, 0,1,2,3 , 0,1,2,3kc k i    and the gauge function 
kf  satisfies the condition 

, 0,1,2,3 , 0,1,2,3k k
k i

i k

f f
c c k i

x x

 
  

 
.                                                                                  (11.17) 

In the case where  0kc    for more than one index 0,1,2,3k , i.e. where 

0, , , 0,1,2,3k ic c k i k i   , the potentials which arise from eq. (11.16) are equivalent, as follows 

from eq. (4.33) 

2

2

4
, 0, , , 0,1,2,3ki

k i k i

k i

z
f f c c k i k i

b c c


                                                                          (11.18) 

of the theorem 4.4.΄΄  

Proof. From eqs. (11.1) and (11.3) we have 

, 0,1,2,3

k k

i i i

J QA

P c QA

k i

 

 



.                                                                                                                                     (11.19) 

Initially we ask that the combination of the eqs. (3.4) and (11.19) should give eq. (4.4): 

 
2

ki k i i k

b
J P J P    

    
2

ki k i i i k k

b
zQ QA c QA QA c QA       

 2 2

2
ki i k k i k i i k

b
zQ Qc A Q A A Qc A Q A A        

 
2

ki k i i k

b
zQ Q c A c A    



124 
 

2
ki k i i kz c A c A

b
   .                                                                                                                        (11.20) 

Combining eqs. (11.20) and (11.16) for 0, 0,1,2,3 , , 0,1,2,3kc k i k i     we have 

2 2 ki k k
ki k i

k i k

f f
z c z c

b b c x x




  
   

  
 

0 k k
k i

i k

f f
c c

x x

 
 

 
 

and finally we have 

k k
k i

i k

f f
c c

x x

 


 
 

which is condition (11.17). The proof is completed by showing that the corollary is valid for 

everyone of the external symmetries of the set 
1 2 3 5    . The last step of the proof 

is necessary because in the procedure of the proof we used eq. (11.1) of corollary 11.1.  

               Corollary 11.1 is a special case of corollary 11.2 for 0, 0,1,2,3kf k  . Via eqs. 

(11.6), (11.7) and (11.1), (11.3) corollary 11.2 gives the 4-vectors J  and P  of the material 

particle and the USVI particle respectively for the symmetries of the set 
1 2 3 5    . 

It is easy to prove that the rest mass of the material particle is given by eq. (3.10) and the rest 

mass of the USVI particle is zero. 

               For the symmetries T zQ   of the set 
1  the field  ,α β is not defined. Therefore 

the present study does not concern the symmetries T zQ  . The cause of external 

symmetries for the symmetries of the set 
1  is given by corollary 8.1 of paragraph 8. 

 

12. The Cosmological Data as a Consequence of the Theorem of Internal Symmetry  

 

The theorem 3.3., that is the theorem of internal symmetry, predicts and justifies the 

cosmological data. We present the relevant study in this paragraph.  

The emission of the electromagnetic spectrum of the far-distant astronomical objects 

we observe today has taken place a long time interval ago. At the moment of the emission the 

rest mass and the electric charge of the material particles had smaller values than the 
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corresponding ones measured in the laboratory, “now”, on Earth, due to the manifestation of 

the Selfvariations. The consequences resulting from this difference are recorded in the 

cosmological data. The cosmological data have a microscopic and not a macroscopic cause. 

Due to the Selfvariations of the rest masses of the material particles the gravitational 

interaction cannot play the role attributed to it by the Standard Cosmological Model (SCM). 

The gravitational interaction cannot cause neither the collapse, nor the expansion of the 

universe, since it decreases on a cosmological scale according to the factor 
1

1 z
. The 

gravitational interaction exercised on our galaxy by a far-distant astronomical object with 

redshift 9z   is only the 
1

10
 of the expected one. The universe is static and flat, according 

to the law of Selfvariations. 

For a non- moving particle, that is for  1 2 3 0J J J   , from equation (3.12) we get 

that 1 2 3 0c c c    and from equation (3.9) we obtain 

0 0exp
b

K c x
 

   
 

 

and since 0x ict , we have 

0exp
icc

K t
 

   
 

 

and from equation (3.10) we obtain 

  0
0 0

01 exp

M
m m t

icc
K t

  
 

  
 

  .                                                                            (12.1) 

The rest mass 0m  of the material particle is a function of time  t  . 

           We now denote by k  the constant  

0icc
k          

and from eq. (3.5) we have 
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0icc W E
k


   .                                                                                                      (12.2) 

We also denote by A  the time-dependent function 

   expA A t K kt     .                                                                                       (12.3) 

Following this notation, equation (12.1) is written as 

  0
0 0

1

M
m m t

A
  


 .                                                                                                  (12.4) 

            From equation (12.3) we have 

dA
A kA

dt



   .                                                                                                               (12.5) 

for the expression of the parameter  A A t . Similarly, using the above notation equation 

(3.11) is written as 

 
2

0
0 0

1

M c A
E E t

A
 


.                                                                                                (12.6) 

We consider an astronomical object at distance  r  from Earth. The emission of the 

electromagnetic spectrum of the far-distant astronomical objects we observe “now”on Earth 

has taken place before a time interval 
r

t t
c

    . From equation (12.3) we have that the 

parameter A  obtained the value 

   
r

A A r A t exp k
c

 
   

 
 

and from equation (12.4) we have 

  0
0

1 exp

M
m r

r
A k

c

 
 

  
 

 .                                                                                         (12.7) 

Similarrly from equation (12.6) we have 
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 

2

0

0

exp

1 exp

r
M c A k

c
E r

r
A k

c

 
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 


 

  
 

 .                                                                                       (12.8) 

From equations (12.4) and (12.7) we have 

 0 0

1

1 exp

A
m r m

r
A k

c




 
  

 

 .                                                                                       (12.9) 

            We can prove that for the electric charge q  of the material particles an equation 

analogous to equation (12.7) is valid. From equation (4.2) we derive an equation 

corresponding to equation (12.9), which is the following equation 

 

1

1

1 exp

B
q r q

r
B k

c




 
  

 

 .                                                                                        (12.10) 

    The fine structure constant   is defined as 

2

04

q

c



                                                                                                                 (12.11) 

and using equation (12.10) we obtain 

 

2

1

1

1 exp

B
r

r
B k

c

 

 
 
 

     
  

 .                                                                                  (12.12) 

The wave length  of the linear spectrum is inversely proportional to the factor 4

0m q , 

where 0m  is the rest mass and q  is the electric charge of the electron. If we denote by 0 the 

wavelength of a photon emitted by an atom “now”on Earth, and by  the same wavelength of 

the same atom received “now” on Earth from the far-distant astronomical object, the 

following relation holds:  

   

4

0

4

0 0

m q

m r q r




  

and from equations (12.9) and (12.10) we obtain 
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4

1

0

1 exp 1 exp

1 1

r r
A k B k

c c

A B





    
       

    
  

 
 

.                                                                (12.13) 

From equation (12.13) we have for the redshift  

0

0 0

1z
  

 


  

 

of the astronomical object that 

4

11 exp 1 exp

1
1 1

r r
A k B k

c c
z

A B

    
       

     
  

 
 

.                                                             (12.14) 

Equation (12.14) can also be written as 

 

21

1
1

r
Aexp k

c
z

A r





 
          

                                                                                (12.15) 

after considering equation (12.12). 

From the cosmological data and from measurements conducted on Earth, we know 

that the variation of the fine structure constant is extremely small. Therefore, from equation 

(12.15), we obtain with extremely accurate approximation 

1 exp

1
1

r
A k

c
z

A

 
  

  


 

1
1

kr

c
A

z e
A

 
  

  
.                                                                                                    (12.16) 

 Equation (12.16) holds with great accuracy. The variation of the fine structure constant is so 

small, so that any contribution t redshift is overlapped by the same contributions from the far-

distant astronomical objects, due to Doppler’s effect. 

For small distances r , we obtain from equation (12.16) 
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and comparing this with Hubble’s law 

cz Hr     

we get 

1

kA
H

A



                                                                                                                    (12.17) 

where H is Hubble’s parameter. 

            From equation (12.17) we have 

 

 
2

1

1

k A A kA AdH
H

dt A

 

  
 


  

 
2

1

k A
H

A







   

and with equation (12.5) we obtain 

 

2

2
1

k A
H

A






  

and from equation (12.17) we have 

H
H

A



   .                                                                                                                     (12.18) 

            For 
2

0 0

2 2

0 0

0 0
m c E

M c M c
    or  

2

0 0

2 2

0 0

0 0
m c E

M c M c
    we have  

2

0 0

2 2

0 0

0
m c E

M c M c
  

and with eqs. (3.10) and (3.11) we have 
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 
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0
1





 

0  

and with eq. (12.3) we finally get 

0

0A

 

  
 .                                                                                                               (12.19) 

           From eq. (12.17) we have  

0
1

kA

A



 

and considering relation (12.19) we get two combinations for the constant k and the 

parameter A : 

0 1 0 0 1 1 0

1 0 1 0 0

A k k

A k k

         

       
 .                                                                   (12.20)    

From eqs. (12.7) and (12.8) it follows that the sign change of the constant k  is equivalent 

with the interchange of the roles of the rest masses 
0m  and 0

2

E

c
 . Hence it suffices to present 

the conclusions resulting from the first case of (12.20). 

           For 0k  for eq. (12.16) we have  

lim
1r

A
z

A



 .                                                                                                             (12.21) 

The redshift has an upper limit which depends on the value of the parameter A , even in the 

case that the universe extends to infinity. In the case the universe has finite extension, let 

maxr R and from eq. (12.16) we have 

max 1
1

kR

c
A

z e
A

 
  

  
.                                                                                                (12.22) 

Thus redshift has a maximum value. The upper redshift limit of eq. (12.21) and 
maxz  of eq. 

(12.22) are almost equal. Hence in the following we will use eq. (12.21). 

            From eqs. (12.16) and (12.5) we get after the calculations 
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and with eq. (12.17) we have 
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.                                                                                     (12.23) 

Thus the redshift of far distant astronomical objects increases slightly with the passage of 

time. 

            According to eq. (12.21) it is 

1

A
z

A



 

and because of 1 0A   we have 

1

z
A

z



 

and because of 1A  we have 

1
1

z
A

z
 


.                                                                                                               (12.24) 

From the inequality (12.24) it follows that 

1A   .                                                                                                                      (11.25) 

We prove now that as 1A   the equation (12.16)   tends to Hubble’s law cz Hr  . Let 

1 A
x

A


   then 0x    for 1A    , while from eq. (12.17) we get k xH  and eq. (12.16) 

may be written as    

1
1 exp

Hr
z

x c

  
    

  
. 

Hence we get 

1 0

1
lim lim 1 exp
A x

Hr Hr
z x

x c c  

  
     

  
. 
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            From relation (12.5) follows the conclusion that 

0
dA

kA
dt

  .                                                                                                               (12.26) 

 Thus the parameter A  increases with the passage of time. Hence according to the 

forementioned proof, the eq. (12.16) tends to the Hubble law with the passage of time. 

            Combining eqs. (12.9) and (12.16) we have 

  0
0

1

m
m z

z



 .                                                                                                            (12.27) 

The eq. (12.27) has multiple consequences on cosmological scale. 

            According to eq.  (12.27) the gravitational interaction between two astronomical 

objects is smaller than expected by the factor 
1

1 z
. The redshift z depends on their distance 

r as given in eq. (12.16). This is the redshift that an observer on one object would measure by 

observing the other object. 

            For the solar system or for the structure of a galaxy or a galaxy cluster, eq. (12.27) has 

no consequences. On this distance scale we practically have 0z  . However we can seek 

consequences on this scale from another equation. From eq. (12.4) we have   

 
0

0 2
1

odm M A
m

dt A




  


 

and from eq. (12.4) we have 

0 0
1

A
m m

A







 

and with eq. (12.5) we get 

0

0 1

m kA

m A






 

and with eq. (12.17) we get 
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0

0

m
H

m



                                                                                                                       (12.28) 

for the rest mass of the electron. 

             Eq. (12.28) concerns the mass  0 0m m t . Therefore its consequences can be found 

in our galaxy or even in the solar system. We notice that the value of the Hubble parameter

H  is probably smaller than the one accepted today, but we will not continue the analysis to 

this matter in this publication. In any case the experimental verification of eq. (12.28) 

requires measurements with sensitive instruments of observation. For the conduct of these 

measurements eq. (4.19) of the USVI must also be taken into account. 

            Eq. (12.27) has important consequences on cosmological scale distances. For such 

distances the gravitational interaction diminishes quickly and beyond some distance it 

practically vanishes. It has however played an important role for the creation of all large 

structures in the universe. 

            As we will see further down, the very early universe differed only slightly from 

vacuum. The gravitational interaction strengthens with the passage of time, as the rest masses 

of material particles increase. Moreover, its strength depends on distance as predicted by the 

law of universal gravitation, but also for cosmological distances, as predicted by eq.  (12.27). 

Both these factors played an important role for the creation of all large structures in the 

universe and have not been both accounted for in the interpretation of the cosmological data 

via the SCM. 

            From eqs. 2E mc  and (12.27) we have 

 
1

E
E z

z



 .                                                                                                             (12.29) 

In every case of transformation of mass to energy. The production of energy in the universe is 

mainly achieved via hydrogen fusion and nuclear reactions. Therefore the energy produced in 

the past in the far distant astronomical objects was smaller than the corresponding energy 

produced today in our galaxy through the same mechanism. This fact has two immediate 

consequences. 

            The first is that eq. (12.16) is valid for the redshift 
az  of the radiation which stems 

from accelerated / decelerated electrons  
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And hence for the continuous spectrum. Similar mechanisms which accelerate electrons in 

our galaxy and in far distant astronomical objects do not give the same amount of energy to 

the electrons. According to eq. (12.29) the energy which is supplied to the electrons in far 

distant astronomical objects is less than the corresponding energy in our galaxy. 

            The second consequence concers the luminosity distance D  of far distant astronomical 

objects. The overall decrease of the energy produced in the past, due to eq. (12.29) has as 

consequence the overall decrease of luminositites of distant astronomical objects. From the 

definition of the luminosity distance D  it follows easy that 

1D r z    .                                                                                                             (12.31) 

Between the distance r of the astronomical object and the distance D  measured from its 

luminosity. The luminosity distance D  is measured always larger than the real distance of the 

astronomical object. The real distance r  of the distant astronomical object is given by eq. 

 
ln

1 1

c A
r

k z A

 
     

                                                                                                (12.32) 

which follows from eq. (12.16). The distance measurement from eq. (12.32) can be made if 

we know the constant k  and the parameter A . Generally, due to eq. (12.17) it suffices to 

know two of the parameters , ,k A H . 

            The ionization energy as well as the excitation energy
nX of atoms is proportional to 

the factor 4

0m q , where 
0m is the rest mass and q the electric charge of the electron. Hence we 

get 

     
4

0

0

n

n

X r m r q r

X m q

 
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
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and because of 
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and with eq. (12.27) we have 
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X r X z
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   
1

n
n n

X
X r X z

z
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
 .                                                                                             (12.33) 

From eq. (12.33) we conclude tha the ionization and excitation energies of atoms decrease 

with inceasing redshift. This fact has consequences on the degree of ionization of atoms in 

the distant astronomical objects 

            The number of excited atoms in a gas in a state of thermodynamic equilibrium is 

given by Boltzmann’s eq. 

1 1

expn n nN g X

N g KT

 
  

 
                                                                                                 (12.34)    

where  
nN   is the number of atoms at energy level  n , 

nX  the excitation energy from the the 

1st to the nth energy level, 23 11.38 10K JK     Boltzmann’s constant, T the temperature in 

degrees Kelvin, and 
ng  the multiplicity of level  n , i.e. the number of levels into which level 

n  is split apart inside a magnetic field. 

            Combining eqs. (12.33) and (12.34) we get 

 
 1 1

exp
1

n n nN g X

N g KT z

 
    

.                                                                                     (12.35) 

For the hydrogen atom for 19

2 1 22, 10.5 16.4 10 , 2, 8n X eV J g g      and at the surface 

of the Sun where 6000T K  eq. (12.34) implies that just one in 810  atoms is at state 2n  . 
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Correspondingly from eq. (12.35) and for 1z   we have 42

1

2.2 10
N

N

  , for 2z   we have 

32

1

5.8 10
N

N

  , and for 5z   we have 2

1

0.15
N

N
 . 

            Considering eq. (11.21) we get from eq. (12.33) 

   1n nX r X A   .                                                                                            (12.36) 

Considering relations (12.24) and (12.25) we conclude that the ionization and excitation 

energies of atoms tend to zero in the very early universe. The universe went through an 

ionization phase in its initial phase of evolution. 

            The laboratory value of the Thomson scattering coefficient is given by eq. 

 
4

2 4

0

8

3

q

m c


                                                                                                              (12.37) 

where 
0m the rest mass and q the electric charge of the electron. Thus we have 
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and because of   z   we get 
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and with eq. (12.27) we have 

 
 

2
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T

T

z
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


  .                                                                                                        (12.38) 

            The Thomson coefficient concerns the scattering of photons with low energy E . For 

photons with high energy E the photon scattering is determined from the Klein-Nishina 

coefficient : 

0

2
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3 2 1
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8 2
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m E

E m c
 

  
   

  
                                                                                     (12.39) 
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in the laboratory and 
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                                                           (12.40) 

in astronomical objects with redshift z . From eqs. (12.27) and (12.29) we have 

 

 
0 0

m z m

E z E
  

hence from eq. (12.40) we get 
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and with eq. (12.38) we have 
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z z
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   .                                                                                            (12.41) 

            From eq. (12.41) we conclude that the Thomson and Klein-Nishina scattering 

coefficients increase with redshift and indeed in the same manner. Considering eq. (12.21) we 

have 

   

 
2

1

1

T

T

r r

A

 

 

 
 


.                                                                         (12.42) 

Considering eqs. (12.24) and (12.25) we conclude that the Thomson and Klein-Nishina 

scattering coefficients had enormous values in the vary early universe. In its initial phase the 

universe was totally opaque. From this initial phase stems the cosmic microwave background 

radiation (CMBR) we observe today. 

            The internal symmetry theorem (3.3) predicts that the initial universe was at a 

‘vacuum state’ with temperature 0T K . Due to the Selfvariations the universe evolved to 

the state we observe today. This evolution agrees with the fact that the CMRB corresponds to 

a black body radiation with temperature 2.73T K . 

            Combining eqs. (3.11) and (12.3) we have in the laboratory 
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for an astronomical object at distance  r , and combining these two eqs. with eq. (12.9) we get 

   0
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i

i

J r m r
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  

and with eq. (12.27) we have 
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
.                                                                                            (12.43) 

            From the Heisenberg uncertainty principle for the axis 
1x x  we have 

 
1J x  

in the lab, and 

    1J z x z  

for the astronomical object, and combining these two relations we get 

    1 1J z x z J x    

and with eq. (12.43) we have 

   1x z z x    .                                                                                                      (12.44) 

            From eq. (12.44) we conclude that the uncertainty  x z  of position of a material 

particle increases with redshift. Moreover as the universe evolved towards the state we 

observe today, the uncertainty of position of material particles was decreasing. 

    From eqs. (12.44) and (12.21) we have 
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  
1

x
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
.                                                                                                   (12.45) 

Considering relations (12.24) and (12.25) we conclude that in the very early universe there 

existed great uncertainty of position of material particles. The same conclusions arise for the 

Bohr radius. The TSV is agrees with the uncertainty principle. In the next paragraph we will 

see that the uncertainty of position of a material particle is one more consequence of theorem 

3.3. 

            From eq. (12.33) it follows that as the universe evolved to the state we observe today 

the ionization energy increased. This prediction is generally valid for any kind of negative 

dynamical energies which bind together material particles to produce more complex particles. 

From eq. (12.27) we have 

  
2

2 0
0

1

m c
m z c

z


 


                                                                                                   (12.46) 

for the energy 2

0m c , the mass deficiency, which ties together the particles which constitute 

the nuclei of the elements. According to eq. (12.46) the energy 2

0m c , like the ionization 

energies,  increased as the universe evolved towards its present state.  

            Particle like the electron, which today are considered fundamental may in fact be 

composed of other particles. Our inability to break them apart could be due to the 

strengthening of the binding energies of the constituent particles. The mass
0M  in eq. (3.10) 

has many chances to the only realy fundamental rest mass, from which the masses of all other 

particles are composed. 

            From eqs. (12.27) and (12.21) we have 

    0 0 1 0m r m A    .                                                                                     (12.47) 

    Considering the relations (12.24) and (12.25) we conclude that, towards the initial state of 

the universe, the rest masses of material particles tend to zero: 

    0 0 1 0m r m A    .                                                                                    (12.48) 

From eq. (12.8) we have 

  0 0E r   .                                                                                                         (12.49) 
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According to the relations (12.48) and (12.49) the initial state of the universe slightly differed 

from vacuum. The same conclusion arises in the case the universe is finite, taking 

maxr R  instead of the condition r   we have used. 

We have studied the case of  
1 2 3 0J J J    in equation (3.12) in order to bypass the 

consequences on the redshift produced by the proper motion of the electron. Thus, from 

equation (3.6) we obtain 

0
0

ic
M

c
  . 

From equation (12.2) we also have 

0 2

k
M

c
  .                                                                                                                 (12.50) 

From equation (12.17) we obtain that the constant k obtains an extremely small value. 

Therefore, the same holds and for the rest mass 0M , as a result of equation (12.50). 

From equation (12.5) we conclude that the parameter Avaries only very slightly with the 

passage of time. The age of the Universe is correlated at a greater degree with the value of the 

parameter A  we measure today, and less with Hubble’s parameter H . In any case the two 

parameters Aand H are correlated via eq. (12.17). 

            With the exception of eqs. (12.16) and (12.32), the TSV equations for cosmology do 

not depend on the values of the parameters k , A  and H . They solely depend on z , which is 

accurately measured. Eq. (12.27) allows us to express all the fundamental astrophysical 

equations as a function of z . For measurements with higher accuracy, and whenever allowed 

by the observation instruments, we have to consider eqs. (12.10) and (12.12). 

            The redshift in equation (12.14) comes from the selfvariations of the rest mass and the 

electric charge of the electron. The redshift in the main volume of the linear spectrum we 

observe from distant astronomical objects, is actually caused by this effect. Today, however, 

we have the capability [16] to perform high sensitivity measurements of the effects of the 

Selfvariations. The structure of matter predicted by TSV must be taken into account in these 

measurements. The fundamental rest mass 
0M  of equation (12.50) is by far smaller than the 

neutrino mass. Neutrinos, not to speak of other particles, have internal structure. This 
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structure could influence  the sum  W E  in the right part of equation (12.2). In such a case, 

we will obtain a different value for the constants k  and 
0c  for different material particles. 

Writing equation (12.2) in the form 

0, p p p

p

ic W E
k


                                                                                                 (12.51) 

we can introduce an index “ p ” in the equations of this paragraph. Every index “ p ” 

corresponds to a specific particle when the right part of equation (12.2) is not constant. 

The measurements we perform on a cosmological scale depend on the physical 

quantity 

1

p p

p

p

k A
H

A



.                                                                                                  (12.52) 

The main volume of the linear spectrum we get from distant cosmological objects comes 

from the process of atomic excitation/relaxation, thus the Hubble parameter H  as given by 

equation (12.17) 

1

kA
H

A



 

expresses the consequences of the selfvariation of the electron rest mass. In equations 

(12.14), (12.16), (12.22), (12.32), (12.33), (12.35), (12.41) and (12.42) the rest mass of the 

electron comes into play. Therefore, these equations are unaffected by equation (12.51). 

The energy of the   radiation that comes from nuclear reactions, and not from 

accelerated/decelerated electrons, depends on the particles that take part in the reaction. 

Consequently, their energy depends on equation (12.51). In this case equation (12.9) takes the 

form 

 0 0

1

1 exp

p

p p

A
m r m

r
A k

c




 
  

 

                                                                                            (12.53) 

and considering that 
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we get 

 
1 exp
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r c
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
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



 
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and we finally get 

1 exp
1

p
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p

A r
z k

A c


  
    

   
.                                                                         (12.54) 

For relatively small distances, from equation (12.54) we get 

1

p p

p

p

k A r r
z H

A c c
  


.                                                                                      (12.55) 

Correlating a source of   radiation from nuclear reactions with a galaxy, we can compare the 

z  and z  redshifts. From this comparison we can draw important conclusions about equation 

(12.51) as well as about the predictions of the TSV. We note that the SCM, in explaining the 

redshift through the hypothesis of universal expansion, does not predict any difference 

between the z  and z  redshifts. 

Equation (12.28) 

0

0

m
H

m



  

holds for the rest mass of the electron. For other particles it is written in the form 

0

0 1

p p

p

p

k Am
H

m A



 


.                                                                                      (12.56) 

The mass of the electron represents a small part of the mass of the atom. Therefore, in 

measurements based on the gravitational interaction, the consequences of the mass 

selfvariation are governed by equation (12.56). 

               The rest mass 
0,Hm   of the hydrogen atom is 

0, 0, 0,H p em m m                                                                                                                                (12.57) 
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where 
0, pm  and 

0,em  the rest mass of the proton and the electron respectively. From eq. 

(12.57) we have 

0, 0, 0,H p em m m
  

   

and with eqs. (12.56) for the proton and (12.28) for the electron we have 

0, 0, 0,H p p em H m Hm


  .                                                                                                                   (12.58) 

From eqs. (12.57) and (12.58) we have 

0, 0, 0,

0, 0, 0,

H p p e

H p e

H m Hmm

m m m
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



 

and considering that today it is 

4

0, 0,5.4 10e pm m    

we have 
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.                                                                        (12.59) 

From eq. (12.59) we conclude that the ratio 

 
0,

0,

H

H

m

m



  

of the hydrogen atom depends on the relation of the parameter 
pH  for the proton with the 

Hubble parameter H . Similarly we obtain 
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1 5.4 10
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p n
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m
H H H

m



   
      
   

                                                                         (12.60) 

for any atom, where   is the atomic number and  is the nucleon number of the atom. Eqs. 

(12.59) and (12.60) is valid for relatively small distances, up to a few hundred kpc . For larger 

distances we have to repeat the procedure of the proof using eqs. (12.9) and (12.53) instead of 

(12.28) and (12.56).  
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Equation (12.51) affects equations (12.27) and (12.29), which are written in the form 

  0
0

1

m
m z

z







                                                                                      (12.61) 

 
1

E
E z

z







.                                                                                      (12.62) 

The energy produced in the past at distant astronomical objects was smaller than the 

corresponding energy produced today in our galaxy. The production of energy in the universe 

is mainly through hydrogen fusion and nuclear reactions. Therefore, equation (12.62) is of 

greater accuracy than equation (12.29). Nevertheless, the selfvariation of the electron’s rest 

mass played a defining role in the energy produced in the past at distant cosmological objects. 

This is due to the fact that the fundamental astrophysical parameters depend on the rest mass 

of the electron. These parameters, therefore, depend on the redshift z , and not on the z , 

according to equations (12.33), (12.35), (12.36), (12.41) and (12.42). The most characteristic 

example concerns type  
a  supernovae. The value of the rest mass of the electron, given as a 

function of the redshift z  from equation (12.27), plays a defining role at all phases of 

evolution of a star undergoing type 
a supernovae. 

It is very likely that there exists a small set of elementary particles with rest masses 

0 2

pk
M

c
  

and not just one elementary particle of rest mass 

0 2

k
M

c
 . 

It seems improbable that the sum W E  on the right side of equation (12.2) is not affected 

by the internal structure of the generalized particles. 

All of the presented consequences of theorem 3.3 are recorded within the 

cosmological data [17-27]. For the confirmation of the predictions of the theorem for the 

initial state of the Universe the improvement of our observational instruments is demanded. 

We also recommend evaluating the data recorded in CMRB, based on the equations of the 

TSV. 
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In the observations conducted for distances of cosmological scales, we observe the 

Universe as it was in the past. That is, we observe directly the consequences of the 

Selfvariations. We do not possess this possibility for the distances of smaller scales. The 

cosmological data are the result of the immediate observation of the Selfvariations and their 

consequences. 

 

13. Other Consequences of the Theorem of the Internal Symmetry . The set  . 

 

The consequences of the theorem of the internal symmetry cover a wider spectrum, 

than the one already stated for the cosmological data. In these, the consequences of the 

dependence of the function  on time 0x ict  are recorded. The function  , according to 

equation (3.9), is a function of the set of the coordinates and also of the constants 

0 1 2 3 0 1 2 3, , , , , , ,x x x x c c c c , and given as 

   0 1 2 3 0 1 2 3 0 0 1 1 2 2 3 3, , , , , , , exp
b

x x x x c c c c K c x c x c x c x
 

      
 

 .                          (13.1) 

As in the previous paragraph, we refrain our study in the case of  1 , as included in 

theorem 3.3. This case is equivalent with the relation 0C  . 

Equations (3.10) and (3.11) express the rest mass 0m of the material particle and the 

rest energy 0E  as a function of   

0
0

1

M
m  


                                                                                                                 (13.2) 

2

0
0

1

M c
E


 


                                                                                                              (13.3)    

2 2

0 0 0E m c M c   .                                                                                                      (13.4) 

 In these equations the only constant is the rest mass  0M  of the generalized particle. 

Additionally the rest masses 
0m  and 

0E  depend on the constants 
0 1 2 3, , ,c c c c , according to 

eqs. (13.2), (13.3) and (3.9), in the following sense: For a constant rest mass 
0M of a 
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generalized particle there are infinite values of the constants  
0 1 2 3, , ,c c c c , i.e. infinite states of 

the 4-vectorC , for which eq. (3.6) is valid: 

2 2 2 2 2 2

0 1 2 3 0c c c c M c     .                                                                                            (13.5) 

According to eq. (3.12) the different states of the 4-vector C are equivalent with the ability of 

the material particle to have different momentums at the same point  0 1 2 3, , ,A x x x x . 

Therefore the evolution of the generalized particle depends on all physical quantities 

0 1 2 3 0 1 2 3, , , , , , ,x x x x c c c c .   We now deduce corollary 13.1 of theorem 3.3. 

Corollary 13.1. ΄΄ The only constant physical quantity for a material particle is its total rest 

mass 0M . The evolution of the Universe, or of a system of particles, or of one particle, does 

not depend only on time. Its evolution is determined by the Selfvariations, as this 

manifestation is expressed through the function .΄΄ 

Proof. Corollary 13.1 is an immediate consequence of theorem 3.3.  

According to corollary 13.1, each material particle is uniquely defined from the rest mass 0M

of equations (13.2) and (13.3). 

            From equations (2.4), (2.5) and (3.5) , and since it holds that 0x ict , we can write 

the function  in the form 

   1 2 3 1 1 2 2 3 3, , , exp
b

t x x x K W E t c x c x c x
 

           
 

                             (13.6) 

with the sum 0W E icc    being constant. This equation gives   as a function of time t  , 

instead of the variable 0x ict . 

In the afterword we present the reasons, according to which the TSV strenghtens at an 

important degree the Theory of Special Relativity [28-29]. In contrast, the theorem of internal 

symmerty highlights a fundamental difference between the TSV and the Theory of General 

Relativity. According to equations (13.1) and (13.2), the physical quantity, which is being 

introduced into the equations of the TSV and remains invariant with repsect to all systems of 

reference, is the quantity given by 

 0 0 1 1 2 2 3 3

b
c x c x c x c x       .                                                                            (13.7) 
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Therefore, the TSV studies the physical quantity   , and not, the also invariant with respect 

to all systems of reference, physical quantity of the four-dimensional arc length 

       
2 2 2 22

0 1 2 3dS dx dx dx dx     .                                                                         (13.8) 

This arc length is studied by the Theory of General Relativity. The study of 2dS  can be 

interpreted in the manner that the Theory of General Relativity is a macroscopic theory. On 

the contrary, in the TSV a differentiation between the levels of the macrocosm and the 

microcosm does not exist. In equations (3.12), and for the energy and the momentum of the 

material particle,  

, 0,1,2,3
1

i
i

c
J i 


                                                                                                              

the concept of velocity does not exist. With the exception of equations (4.19) and (4.20), 

within the totality of the equations of the TSV we already presented, the concept of velocity 

does not enter. As we will see in the following, theorem 3.3 which justifies the cosmological 

data, predicts the uncertainty of the postion-momentum of the material particles. The 

difference among these two theories is highlighted in a concrete manner by the comparison of 

equations (13.7) and (13.8). In the first, spacetime appers together with the four-vector C . 

The second equation refers only to spacetime. 

We present an example which highlights the diffrences among these two theories. It is 

the famous Twin Paradox. We consider that the reader is familiar with this thought 

experiment, as well as the result of the Theory of General Relativity [30]. The Theory of 

General Relativity predicts correctly the time difference in the time duration counted by the 

two twins. On the other hand, according to corollary 13.1, this time difference does not 

suffice for providing a difference in the evolution of the twins. The twins have the same 

generalized particles, which acquire the same rest masses 0M , at the time they meet together. 

At the beginning and at the end of the travel the two twins are identical. Einstein drives the 

wrong conclusion, not because the Theory of General Relativity is wrong, but because he 

regards that this time difference implies a different evolution of the twins. But, this is not a 

characteristic of the Theory of General Relativity. This is a common characteristic of all the 

physical theories preceding the TSV. 

At this point let me commentate. Einstein refers to this thought experiment as the 

“Twin Paradox”, and not as a consequence of the Theory of General Relativity. According to 
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my opinion, Einstein understood that something was missing from the Theory of General 

Relativity. To this point advocates also his peristance for determining the cause of the 

quantum phenomena. 

            General relativity has been experimentaly verified from a large number of 

experiments. Moreover on a distance scale of a few hundred kpc its predictions are not 

affected by eq.  (12.27). We expect that the combination of the two theories on this distance 

scale will give important results for the physical reality. 

            We consider a generalized particle with rest mass 0M . The material particle of the 

generalized particle (together with STEM) can be at the spacetime point  0 1 2 3, , ,A x x x x with 

its energy-momentum having any value. According to eqs.  (3.9) and (3.12) this can happen 

only with the variation of the 4-vector C . For a generalized particle the rest mass
0M  is 

constant, which means that through the variation of the 4-vector C , equation (13.5) remains 

valid. 

            From eq. (3.1) we have  

, , 0,1,2,3i i i

k k k

J P c
k i

c c c

  
  
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                                                                                      (13.9) 

and from eq. (3.9) we have 
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 

 .                                                                  (13.10) 

Eqs. (13.9) and (13.10) remain valid for any variation of the 4-vectorC . We will know prove 

the following corollary of theorem 3.3: 

Corollary 12.2 ΄΄The variation of the 4-vectorC of a generalized particle with rest mass
0M ,  

2 2 2 2 2 2

0 1 2 3 0c c c c M c                                                                                                (13.11) 

implies the variation of the 4-vectors J  and P  according to eqs. 
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       

        
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                                   (13.12) 
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1 1
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jk k k
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cP c cb
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c c c


  
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  .΄΄                                  (13.13) 

Proof:  From eq. (13.11) it follows that any change of one of the constants , 0,1,2,3kc k  , 

induces a change to the others. Taking the derivatives with respect to 0, 0,1,2,3kc k  we 

have 

3

0

, 0, 0,1,2,3
j

k j k

j k
j k

c
c c c k

c



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
 .                                                                            (13.14) 

The corollary is then implied from the combination of the eqs. (3.12), (13.10) and (13.9).  

            According to the relation (12.19) we have 0 , while according to the relations 

(12.20) the physical quantity  1 can be a positive or negative number. Hence from eqs. 

(13.12) and (13.13) we may determine the consequences for the material particle depending 

on whether the rates of change of 

 , , , 0,1,2,3i i

k k

J P
k i

c c

 


 
 

are negative, positive or zero. 

            As the 4-vector C  variates there arises an uncertainty for the position of the material 

particle. Corollary (13.2) predicts many cases for this uncertainty. We will restrict ourselves 

to one of them. For 0i

k

J

c





 and 1 0  from eq. (13.12) we have 
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 
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and from eq. (3.12) we have 
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J x x k i

c c

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   
 

  .                                                               (13.15) 

From inequality (13.15) for , , 0,1,2,3i k k i   we have 
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and because 0  we have 
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In the case where 
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x
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                                                                                                               (13.17) 

from inequality (13.16) we have 

 

, 0,1, 2,3

0

k kJ x k
b

  


 

 .                                                                                          (13.18) 

From eqs. (3.12) and (3.13) it follows that , 0,1,2,3k kP J k  , and considering that 0

we get from inequality (13.18) that 

, 0,1,2,3k k

b
P x k   .                                                                                              (13.19) 

The inequalities (13.16), (13.17), (13.18) and (13.19) reverse direction for 1 0  . The 

inequalities (13.18) and (13.19) correspond to Heisenberg’s uncertainty principle [31]. 

Corollary (13.2) gives rise to restrictions in the position of the material particle, in the 

spacetime area occupied by the generalized particle. These restrictions concern the position-

momentum product. 

            The USVI gives the variation of the 4-vectors J  and P in spacetime. However the 

internal symmetry theorem brings about a ‘hidden’ parameter of the interactions: The 4-

vectors J  and P  may variate according to the variation of the 4-vectorC . One of the 

consequences of the variation of the 4-vector C  is the intense uncertainty of position-

momentum showing up in the laboratory. 
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            The theorem of internal symmetry, as well as the two degrees of freedom appearing in 

equations (5.3) and (5.7), foundain on a novel basis the manipulation of quantum 

information. The generalized particle is a sustained state, with constant total rest mass 
0M . 

We may however interfere with the internal structure of the generalized particle changing the 

momentum of the material particle. According to eq. (3.12) the variation of the momentum of 

the material particle can be effected either with the change of position  0 1 2 3, , ,A x x x x  of the 

material particle, or with the change of the 4-vector C . The first variation is determined by 

the USVI and the second from corollary 13.2. With a periodic variation of either the energy 

of the material particle or the 4-vector C  we can achieve the redistribution of the physical 

quatities 
0 0, , , ,m E J P j  in the spacetime area occupied by the generalized particle. Through 

the variation of the physical quantities 
0 0, , , ,m E J P j  we can transmit information in 

spacetime. Until now the transmission of information was achieved only with the first 

approach. Moreover we did not know the origin or structure of STEM. Corollary 13.2 permits 

us to study the possibility of information transmission through the variation of the 4-vector C

. The two degrees of freedom in eqs.  (5.3) and (5.7) refer to the function  , which has a 

fundamental role for the transmission of information in either way. This role is clearly visible 

in eq. (5.7)  for the 4-vector j  of the current density of the preserved quantities of the 

generalized particle. 

               In corollary 13.2 we assumed that the change of the 4-vector C  does not change the 

total rest mass 
0M  of the generalized particle. It is easy to show that the relations (13.12) and 

(13.13) are also valid in the case where the change of the 4-vector C  causes a change of the 

total rest mass 
0M  of the generalized particle. In such a case there happens a transition to 

another generalized particle since the rest mass 
0M characterizes the generalized particle. In 

this case we have a change of eq. (13.14) which becomes 

3
2 0
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c c M c k

c c


 
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 
 .                                                                   (13.20) 

Eq. (13.20) is obtained from differentiation with respect to 0, 0,1,2,3kc k   of eq. (13.11). 

               If there is only one fundamental particle, with rest mass 0 2

k
M

c
  , eq. (13.14) 

necessarily applies. The eq. (13.20) can only be applied if there are more than one 

fundamental material particles, with rest masses 
0 2

pk
M

c
 . Moreover, if there are more than 
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one fundamental material particles, the constants , 0,1,2,3kc k   can vary independently, i.e. 

they can vary in a way such that 

0, , 0,1,2,3 , 0,1,2,3
j

k

c
j k k j

c


   


                                                                                    (13.21) 

during the variation of the 4-vector C .  In this case from corollary 13.2 there follow the 

inequalities (13.18) and (13.19) for 1 0 , and in opposite direction for 1 0  . The 

condition (13.21) can be realized when rest masses 
0M  are more than one. 

               We now present a physical procedure where the 4-vector C  varies. Initially we use 

the notation 
0  for the set which has as unique element the internal symmetry matrix. The 

internal symmetry matrix is the 4 4  zero matrix 0T  , hence 

 0T   .                                                                                                                                    (13.22) 

The sets 
0 1 2 3 4 5 6, , , , , , ,         contain all symmetries of the TSV. Moreover the sets 

0 1 2 3 4 5 6, , , , , , ,         do not have common elements, that is 

0 1 2 3 4 5 6

0 1 2 3 4 5 6





        

        
.                                                                    (13.23) 

Every generalized particle corresponds to a particular matrix of the set  . Therefore the set 

  all possible states of matter, all possible states of physical reality predicted by the TSV. 

               Inside the set   any transition can happen, with the generalized particle going from 

one symmetry to another. This transition can happen either inside one set  

, ,0,1,2,3,4,5,6k k    or between two different sets , , , ,0,1,2,3,4,5,6k i k i    . 

               The set   contains 65 1 66T oN N     matrices. The transitions inside the set 

can happen to both directions, therefore there are in total 

66
2 4290

2
N

 
  

 
                                                                                                                          (13.24) 

possible transitions inside the set  . In 4274 of the 4290  possible transitions the 4-vector C  

changes, and only in 16  cases it remains unchanged. In the 4274  cases where the 4-vector C  

changes the corollary 13.2 is valid. Of particular interest are the 
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8
2 56

2

 
 

 
                                                                                                                                           (13.25) 

transitions between sets 
k  and 

i  with , , ,0,1,2,3,4,5,6k i k i   . 

            In contrast with the variation of the 4-vector C , in all transitions there is either a 

constant rest mass 

0 2

k
M

c
  

or a limited, possibly small number of rest masses  

0 2

pk
M

c
 . 

The finite number of rest masses 
0M  emerges as a consequence of the finite number of 

elements of set  . 

               In the 4 symmetries of the set 
4 6   the matrix T  of the symmetry, as well as the 

4-vector C , have more than one mathematical expressions. In these symmetries the 4-vector 

C  can vary inside the symmetry. These transitions are not included in the 4290 possible 

transitions of eq. (13.24). A characteristic of these symmetries is that the total rest mass of the 

generalized particle is 
0 0M  ( 0

0 02
0

E
m M

c
   ). An example of such a symmetry is 

01033221T  of the set 
4 4 6   . The matrix 

01033221T  has four different mathematical 

expressions  
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01

01

01

01

0 1 0

1 0 0

0 0 1

0 1 0

0 1 0

1 0 0

0 0 1

0 1 0

0 1 0

1 0 0

0 0 1

0 1 0

0 1 0

1 0 0

0 0 1

0 1 0

i

i
T zQ

i

i

i

i
T zQ

i

i

i

i
T zQ

i

i

i

i
T zQ

i

i









 
 
 
 
 
 
 

 
 

 
 
 
  

 
 

 
  
 
 

 
 
 
 
 
 

 

 

and correspondingly four different 4-vectors C  
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0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

c

c
C

ic

ic

c

c
C

ic

ic

c

c
C

ic

ic

c

c
C

ic

ic

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

  . 

The generalized particle has rest mass 
0 0M  ( 0

0 02
0

E
m M

c
   ) . 

            There are symmetries in which the 4-vector C  has more than one mathematical 

expressions, with 
0 0M  . In these symmetries the 4-vector C  can also vary inside the 

symmetry. As an example we mention the symmetry 
0103321321T  of the set 

5 , which has two 

mathematical expressions for the 4-vector C  

21

0

01

13

01

0

1

0

0

C c

c









 
 
 
 

  
 
 
 
 


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1

03

21

1

0

1

0

0

C c

c





 
 
 
 
 
 
  



 

 and the rest mass 
0 0M  . 

            The Selfvariations illuminate a property of the universe that cannot be illuminated by 

the theories of the last century. It is the «internality of the universe to the process of 

measurement». That is , the fact that the Selfvariations also affect the physical quantities we 

use as units for the measurement of other similar physical quantities. 

Comparing the rest masses of two similar material particles, two electrons for 

example, we will always find them equal. This equality stems from the fact that a certain 

material particle, like the electron, expresses a certain state within set  ; a state in which the 

Selfvariations are evolving in the exact same maner. 

Two different material particles express two different states of set   and, therefore, 

the selfvariations could evolve at different rates. The ratio of the rest masses of two different 

material particles could vary with time. In such a case, this variation will occur at an 

extremely slow rate, as emerges from the analysis of the cosmological data. 

The electric charge of material particles can be either positive or negative. It also 

increases at a clearly slower rate than that of the rest mass of the electron. These are two 

fundamental differences we already know between the rest mass and the electric charge. We 

can make analogous hypotheses regarding the differences of the ΄΄selfvariating charge Q ΄΄ 

and the rest mass. We have not presented these hypotheses in the current article, since it is 

about the basic study of the Selfvariations. 

The observational instruments we have at our disposal, and the techniques that have 

been devised [16, 19, 25, 26] have brought us on the cusp of a direct detection of the 

consequences of the Selfvariations. Together with the measurements we perform, it is 

essential to analyse the microwave background radiation (CMBR) according to the 

predictions of the TSV. During the phase of evolution of the universe when the CMBR was 

produced, the rest masses of material particles were clearly smaller than the corresponding 
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laboratory ones. A similar thing is true about the electric charge of the electron. We speculate 

that this fact is in some way recorded on the CMBR. 

The continuous emmision of STEM in the surrounding spacetime of the material 

particles entails the continuous strengthening of negative potential energies of every kind. 

The consequences of this strengthening are multiple: from the shortening of the Bohr radius, 

to the strengthening of the cohesion of the material particles with time. The analysis of the 

cosmological data allows us to define the order of magnitude of the rest mass 
0M . A 

conclusion that emerges is that particles we considered fundamental, like the electron and the 

neutrino, constitute composites of simpler particles. Our inability to break up the electron in 

the lab is a consequence of the strengthening of its cohesion, for the afforementioned reason. 

 There are a number of ways in which we can search for material particles with elementary 

rest masses 

0 2

k
M

c
  

and 

0 2

pk
M

c
  

predicted by the TSV. But they all require the improvement of our observational instruments. 

One way is to give material particles extremely large energies in the laboratory. The 

energies at which we collide particles today are far too small to achieve such a disintegration. 

Another way is to perform measurements at extremely large distances. In the very early 

universe the cohesion of material particles, even of the neutrino, tends to zero. This phase of 

the evolution of the universe is predicted over and above the limit set by the standard 

cosmological model for the size of the universe. 

The TSV predicts 
0M  as the minimum value of the rest mass of material particles. 

Since neutrinos have the smallest rest mass of all material particles we know off today, it is 

quite likely that they have the simplest structure of all known material particles. We, 

therefore, propose the intensification of the experimental study of neutrinos and their 

properties.  

 



158 
 

14. Afterword  

 

We offer as an epilogue some comments on the TSV as a whole. Having concluded 

our study, it has become clear that the network of equations of the TSV arises from the 

combination of the axiom of the Selfvariations, as given by equation (4.2), and the principle 

of conservation of the momentum 4-vector and equation (2.7). The conservation principle of 

the 4-dimentional momentum has emerged empirically, from the experimental data. The TSV 

lays the axiomatic foundations of theoretical physics with just three axioms. Indeed, it is very 

likely that equation (2.7) emerges from the other two axioms. As far as we know, no other 

science, including mathematics, is axiomatically founded with such a small number of 

axioms. Equation (2.7) comes from special relativity. We, therefore, start our comments with 

the relation of the TSV with special relativity. 

Special relativity imposes constraints on the mathematical formulation of physical 

laws. All mathematical equations of physical laws have to be invariant under Lorentz-

Einstein transformations. The TSV comes to impose an even greater constraint on these 

mathematical formulations. If we denote L  the set of equations that are Lorentz-Einstein-

invariant and S  the set of equations compatible with the law of Selfvariations, it is S L  

with S L .  

A classic example are the Lienard-Wiechert electromagnetic potentials. These were 

proposed by Lienard and Wiechert in 1899 and give the correct electromagnetic field and 

electromagnetic radiation for a randomely moving electric charge. After the formulation of 

special relativity by Einstein in 1905, the Lienard-Wiechert potentials proved to also be 

invariant under Lorentz-Einstein transformations. On the contrary, with the formulation of 

the TSV they prove to be incompatible with the Selfvariations. The TSV replaces the 

Lienard-Wiechert electromagnetic potentials with the macroscopic potentials of the TSV, 

which give exactly the same field with the Lienard-Wiechert potentials. The macroscopic 

potentials of the TSV are compatible with the Selfvariations as well as with the Lorentz-

Einstein transformations ( S L ). An additional characteristic of the macroscopic potentials 

of the TSV is this: Whether we consider that the Selfvariations happen, or whether we 

consider the electric charge constant, exactly the same field emerges. It is an expression of 

the ‘’internality of the universe to the process of measurement’’.  
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To get the Lorentz-Einstein transformations we consider two observers exchanging 

signals with velocity c . If the observers are moving with the same velocity with respect to 

each other, the Lorentz-Einstein transformations emerge. If the observers exchange signals 

with a velocity different from c , for example sound signals, other transformations emerge 

which are incorrect. As is natural, Einstein was asked about this issue. His answer essentially 

was that we chose the exchange of signals with light speed because of the result: the 

transformations that emerge in this way are the correct ones.  

On this point the TSV reinforces special relativity to a superlative degree. There is a 

constant exchange of STEM between material particles which, in the macrocosm, and when 

spacetime is flat, occurs with velocity c . According to the TSV the exchange of signals with 

velocity c  is not just a hypothesis we can make in order to obtain the Lorentz-Einstein 

transformations, but constitutes a continuous physical reality. 

The Selfvariations of the rest massess occur if and only if they are counterbalanced by 

a corresponding emmission of negative energy in the surrounding spacetime of the material 

particle, so that the energy-momentum conservation holds. This energy-content of the 

spacetime is expressed by the 4-vector P  of equation (2.5). Macroscopicaly this energy is 

expressed by equation (12.8), which has emerged from equation (3.11), i.e. the internal 

symmetry theorem. This is expected since the internal symmetry expresses specifically the 

spontaneous realization of the Selfvariations. Something analogous holds for the electric 

charge and for any selfvariating charge Q . The spontaneous emmision of negative energy in 

spacetime has two fundamental consequences.  

The continuous exchange of STEM implies a continuous exchange of information 

between material particles. If the universe is finite, with a finite age, there are still parts of it 

that have not exchanged information through the STEM, as a consequence of the finite speed 

of the STEM. This, however, will occur in the future. With the passage of time, every part of 

the universe interacts with an ever larger part of the rest of the universe. According to 

equation (12.45), going back in time the uncertainty of the position of material particles tends 

to become infinite. Regions of the universe which will interact through STEM at a future 

time, have already interacted through material particles at a past time. The above hold even in 

the case where the universe is infinite and of infinite age. The only difference is that all of its 

parts have also interacted through STEM. We thus come to the following fundamental 

conclusion of the TSV: The universe behaves as one object.  
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The second consequence is the indirect dynamic interaction of the material particles 

(USVI). When we were differentiating for the calculation of the rate of change of the 

momentum of the material particle, there where specific conditions: the law of Selfvariations 

predicts a unified mechanism for all interactions. Consequently, the Lorentz force should 

emerge after the differentiation and also, in some way, the relation of the USVI with the 

curvature of spacetime according to Einstein’s work on gravity. We now know that equation 

(4.19) contains both of these terms.  

We are often asked why we set as an axiom the Selfvariations of the rest masses and 

the electric charge, and not the Selfvariation of some other physical constant. An axiom is 

judged exclusively by the conclusions to whch it leads. Nevertheless, there is always a 

specific ΄΄logic΄΄ for the introduction of an axiom in a scientific field. This is also the case for 

the axiom of the Selfvariations. Taking into account the energy-momentum conservation 

principle, the Selfvariation of the rest mass of the material particle can only take place with 

the simultaneous emmision of energy-momentum into the surrounding spacetime of the 

particle. The combination of the Selfvariations with the conservation of energy-momentum 

has as a consequence the presence of energy-momentum in the surrounding spacetime of the 

material particle. The introduction of the axiom of the rest mass Selfvariation was made with 

the expectation that this energy-momentum in spacetime could provide a cause for the 

interaction of material particles. In retrospect, this expectation was confirmed. The 

fundamental physical quantities , , 0,1,2,3ki k i   that emerge from this combination lead to 

the USVI, and are at the heart of the TSV. Being aware of the existence of the gravitational 

interaction we set as an axiom the selfvariation of the rest mass. Similarly, due to the 

existence of the electromagnetic interaction we set as an axiom the selfvariation of the 

electric charge. Following the same ΄΄logic΄΄ we introduce in the TSV the ΄΄selfvariating 

charge Q ΄΄ through equation (4.2). 

The internal symmetry theorem and the set 
  express the isotropic emission of 

STEM in the flat spacetime of special relativity. The theorems of external symmetry and the 

set 
0 1 2 3 4 5 6        express the anisotropic emmision of STEM in an 

anisotropic spacetime. Every generalized particle corresponds to a matrix-element of the set 

0 1 2 3 4 5 6        . Every element of set   contains an 

extremely large amount of data and information about the physical condition it describes. The 

set   contains all the information about the physical reality predicted by the TSV. 
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In the internal symmetry, the distribution of the total rest mass 
0M  of the generalized 

particle, between the material particle and the STEM, is given by equations (3.10) and (3.11). 

For every selfvariating charge Q  there are 65TN   external symmetry matrices. There are, 

therefore, 65TN   ways to distribute the rest mass 
0M  in the external symmetry. In chapter 8 

we proved that in the 
0 14N   symmetries T zQ  , it can be 

0 0m   for the rest mass of the 

USVI particle. In the remaining 
0 51TN N   external symmetries, it is 

0 0m  . 

We left for last some comments on equations (2.10), (2.13) and (4.6). Equation (2.10) 

cannot arise without the axiom of the Selfvariations. The fundamental physical quantities 

, , 0.1,2,3ki k i   cannot arise from the physical theories of the last century. That is, they 

cannot arise in any way other than the hypothesis of the Selfvariations. From equations (2.10) 

flows the entire network of equations of the TSV, including equations (2.13) and (4.6).  

Equations (2.13) and (4.6) predict the USVI and, additionally, correlate the 

corpuscular with the wave behaviour of matter. The properties of the wave-function   as 

well as the 4-vector j  of the conserved physical quantities, express exactly these equations. 

The laws of Maxwell are four preciselly because the first of equations (4.6) expands into four 

distinct equations. The theorems of chapter 7, which define the corpuscular structure of 

matter, are nothing more than the consequences of equation (2.10). The same holds for the 

internal symmetry theorem and its consequences, which emerge from equation (2.10). 

Using the SV T  method we can verify the self-consistency of the network of 

equations we provide. The TSV is a closed and self-consistent theory. 
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