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Abstract

We propose an extension of real numbers which reveals a surprising algebraic role of
Bernoulli  numbers,  Hurwitz  Zeta  function,  Euler-Mascheroni  constant  as  well  as
generalized  summations  of  divergent  series  and  integrals.  We  extend  elementary
functions to the proposed numerical system and analyze some symmetries of the special
elements.  This  reveals  intriguing  closed-form  relations  between  trigonometric  and
inverse trigonometric functions. Besides this we show that the proposed system can be
naturally used as a cardinality measure for fine comparison between infinite countable
sets in metric space which respects the intuitive notion of the set's size. 

Question regarding comparison of infinite sets

Intuitively  it  is  conceivable  that  the  set  of  even  numbers  is  “smaller”  than  the  set  of  integer
numbers, because the integers are composed of even and odd numbers. Similarly it is conceivable
that the set of non-negative integers is “smaller” than the set of positive integers because it includes
one more number (zero).

Cantor’s method of comparison between infinite sets (cardinals) does not fit these intuitive notions
because  it  is  based  on bijection  between elements  of  the  sets.  Cantorean cardinality of  all  the
mentioned sets is the same.

Here we propose another measure for infinite sets. It is meant for comparison of sets in metric
spaces.  We base  it  on  extending  the  real  numbers  with  a  set  of  extended  numbers.  Extended
numbers consist of the extended part and standard part which is a usual real or complex number. 

If we denote the measure of the set of integers as , the measure of the set of even numbers, as
well as odd numbers will be . At the same time we cannot divide the set of integers into two equal
left and right parts because there is the zero at the origin. That’s why one of the parts will be greater
than the other by one. This way we denote the measure of positive integers as  
and the measure of non-negative integers as  so that . We will
call these values “special elements”.

We postulate that  is a purely extended number (having no standard part). If so, the standard part
of  is -1/2 and the standard part of  is 1/2.

It  is  possible to define some operations on sets that do not change their  measure,  for instance,
moving a finite number of elements along the real line. More details on this below.

Connection with the divergent series.

If the elements of a set are situated at the points corresponding to natural numbers, we can naturally
postulate equivalence between the measure of such set and the sum of the series, which has under
its sum sign the membership function of the set (1 if the natural number belongs to the set and 0 of
it does not). This way we can build correspondence between a series (possibly, divergent) and all
subsets of natural numbers. 



Particularly,

We thus postulate that the standard part of the measure of such sets is equal to the regularized sum
of the corresponding divergent series. In particular, the above-mentioned series have regularized
sums of -1/2 and 1/2 correspondingly.

We can extend our definition to consider not just subsets of natural numbers but sets of weighted
dots. The standard part of the measure of such sets will be expressed as regularized sum as well.

To derive further results we will use Faulhaber’s formula for Ramanujan’s summation:
 

In fact, Faulhaber’s formula is a Taylor series for standard part of antiderivative of . We arrive
at the following relation:

Particularly, we obtain the standard part of the powers of special elements as Bernoulli numbers:

where  are the second Bernoulli numbers (those which have ).

This is fascinating ralation, that reveals the algebraic role of the Bernoulli numbers: they represent
the standard part of the two special elements.

This is especially notable because many series representations use Bernoulli numbers. This way, the
sums of these series can be expressed as standard parts. Having two series:



we can obtain a relation:

From the definition of Bernoulli numbers:

In general, this property allows us to find standard part of any function of non-standard numbers.

Particularly,  the  formula  for  the  standard  part  of  the  powers  of  the  special  elements  can  be
generalized with use of Hurwitz Zeta function, revealing its algebraic role:

and, in particular,

where  are Bernoulli polynomials.

We see that Zeta function is essentially the standard part of exponential function.

Symmetries.

We can observe relations between standard parts of the powers of special elements:

This way the standard parts of powers of  and , exceeding 1, coincide. This reflexes the deep
symmetry between these special elements.

We  also  can  obtain  expressions  for  standard  parts  of  the  elementary  functions  of  the  special
elements:



Plot for :

In particular, we see that 

Plot for :

On the other hand,



where   - is the digamma function. We can see that this function has a pole at

, thus  is not defined. At the same time, , where  is the Euler-
Mascheroni constant.
 
The same way we observe that it is impossible to divide by . Moreover, all negative powers of
this element are undefined. On the other hand, it is completely possible to divide by . Moreover,
thanks to the Riemann functional equation, posiutive and negative powers of  display symmetry:

 

Impressive  feature  of  this  relation  that  uncovers  the  algebraic  role  of  the  Riemann  functional
equation is that when it is applied to a Taylor series term by term, it converts exponential functions
to logarithmic ones and vice versa.

This way we can write relations between trigonometric and hyperbolic functions and their inverse
ones in closed form:

It remains unclear whether similar relations can be obtained without the operation of taking the
standard  part,  and thus  connect  the  logarithmic  and exponential  functions  in  the  same way as
Euler’s formula connects trigonometric and hyperbolic functions.

Expression for the derivative without using limits.

Coming back to the Faulhaber’s formula and noticing that all positive integer powers of   and
 except the power one have the same standard part, we can separate the coefficient of the power

one. This coefficient is the derivative:

There exist other similar formulas:

These relations allow to express the derivative of an analytic function without using the idea of
limit.  This  is  in  a  sense  similar  to  the  formula  for  the  derivative  in  Robinson’s  Non-Standard
Analysis.



If the function  is odd, then 

Other relations coming from Faulhaber’s formula::

In last two relations the integrals should be understood as differences between the antiderivatives
evaluated at the integration limits.

Norm.

Using analogy with the complex numbers we can introduce the notion of the norm of an extended
number:

In this case appears an interesting role of the Euler-Mascheroni constant:

Divergent integrals.

Since we can represent the sums of divergent series as non-standard numbers, a question arises
whether the same can be done with divergent integrals. 

We  postulate  that  any set  of  weighted  dots  on  the  real  axis  can  be  represented  by a  sum of
symmetric distributions, cantered at the weighted dots and each having area the same as that of the
dot it is centered at.

This way we can establish correspondence between sets of weighted dots and (divergent) integrals.

Particularly, we can see that 

 

because these integrals correspond to the sets of weighted dots at integers.



Moreover, we come to the following:

An objection is possible here that the integral at the left will have a different value after variable
change. That’s why it is very important that  axis has the same scale as the function under integral.
We will consider this true for  axis in this paper.

Following our principle, we can obtain exact expressions for other integrals as well:

 

Besides this, from our definition follows the general rule: if  is periodic and integral over the
period is zero, then

and if also even, then

In particular,

It is important to notice that we are speaking about the precise value here rather than just standard
part.

Standard parts of divergent integrals.

Using the definition of integral as a limit of the integral sum, we can derive the following formula
for standard part of an improper integral. 



Particularly,

Connection with generalized functions and Dirac Delta function.

According the integral definition of Delta function,

With real  the value of the integral is zero, according to our previous result. But at   we
arrive

This expression is equal to the . We can arrive at the same result, considering Fourier transform of

the Dirac comb.

Since  Delta-function  is  a  derivative  of  the  step  function,  we can  arrive  at  a  conclusion  that  a
derivative of a step function at the step point can be represents as extended numbers: the step size
defines the extended part, and limit of derivative defines the standard part. Particularly,
 

Equivality between two extended numbers.

We postulate that two extended numbers are equal if distributional representation of one can be
transformed into distributional representation of the other using only operations that preserve the
value of Fourier transform of the distributions at the point zero.

Conjecture regarding closed forms of some infinite series.

We hereby conjecture the following property under the above definition of the extended numbers
equality.

Particularly, for 

In regards to standard part the conjecture can be trivially seen to hold.



Geometric interpretation of Riemann functional equation.

The volume of the unit n-sphere is defined with the following expression:

and the surface area is

Following Riemann’s functional equation, this gives us interesting relations between properties of
positive-dimentional and hypothetical negetive-dimentional n-sphere of radius :

It is unclear whether these relations may have deeper geometric meaning.

Problem of a weighted dot in a hollow cavity in infinite filled space.

Consider an infinite 3-dimentional Euclidean space uniformly filled with dense matter. There is a
spherical cavity in the space and a weighted point in that cavity at a distance from the cavity’s
center. 

The  question  is:  will  the  weighted  dot  experience  any acceleration?  It  seems  that  the  answer
depends on what point one takes as a start for doing the infinite summation. We believe, our theory
provides comprehensive answer by means of extended numbers: yes, the point would be accelerated
in  the  direction  opposite  to  the  cavity’s  center.  A similar  problem often  appears  in  physics  of
vacuum, such as calculation of Casimir effect.

Comparison to other non-Archimedean extensions.

Compared to other non-Archimedean extensions of real numbers (non-standard analysis, hyperreals,
ordinals etc), this extension is non-trivial because produces fruitful relations between elementary
functions.  Besides  this,  the  non-standard  analysis  and  hyperreals  suffer  from  the  problem  of
definability:  there is  no way to define a  unique infinite  (or infinitesimal)  element  based on its
properties.  In  the  majority  of  non-Archimedean extensions,  even if  the  definability  problem is
solved, there exists only one infinite special element, usually corresponding to the counting ordinal.

A difference  of  the  proposed  here  system  is  in  that  there  are  two  equally  important  special
elements, corresponding to the cardinality measure of natural numbers (positive integers) and non-
negative integers, expressing symmetry with each other (and, in the end, between 0 and 1).

This system unites quite distant areas of mathematics, dealing with infinities: comparing infinite
sets, the theory of divergent series, divergent integrals, number theory, finite differences, theory of
distributions, etc.



Extended  numbers  can  be  generalized  for  comparing  everywhere  dense  sets,  as  well  as  not
countable ones, which was not addressed in this paper.

Physical applications.

Regularization of divergent series and integrals for getting rid of infinities is used in quantum field
theory,  vacuum physics,  quantum chromodynamics.  Particularly,  Paul  Dirac  obtained  the  mean
energy of quantum harmonic oscillator using the regularization of the divergent series:

The same value when using extended numbers would look like:

The  first  term  here  corresponds  to  zero-point  energy.  That  way,  a  conjecture  arises  that  
corresponds  to  the  infinite  number  of  filled  negative  energy  levels  in  the  Dirac  sea,  and  the

minimum ofservable energy of a quantum harmonic oscillator is   exactly because the standard

part of  is 1/2. 

Expression for the vacuum energy for calculation of Casimir effect between two parallel plates also
can be written using extended numbers:

              

The infinite term usually thrown away during regularization here is usually interpreted as vacuum
zero-point energy.

Considering the above examples, a possibiility arises that extended numbers may play in quantum
field theory and vacuum physics the same role as complex numbers play in quantum mechanics.


