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We present a wavefunction comprised of the eight fundamental geometric objects of a minimally
complete Pauli algebra of 3D space - point, line, plane, and volume elements - endowed with elec-
tromagnetic fields. Interactions are modeled as geometric products of wavefunctions, generating a
4D Dirac algebra of flat Minkowski spacetime. The resulting model is naturally gauge invariant,
finite, and confined. With regard to the Ul x SU2 x SU3 gauge group at the core of the Standard
Model, natural finiteness and gauge invariance are benign. However, reflections from wavefunction
geometric impedance mismatches yields natural confinement to the Compton wavelength, rendering

both weak and strong nuclear forces unnecessary.

INTRODUCTION

As Professor Weinberg remarks in opening his essay on
the making of the Standard Model [I],

“The study of what was not understood by scientists,
or was understood wrongly, seems to me often the most
interesting part of the history of science.”

That essay makes no mention of two essential concep-
tual structures, no mention of two fundamental concepts
absent from the dialog of particle physicists during the
decades preceeding its writing.

One is the geometric interpretation of Clifford algebra,
the background independent algebra of interactions of
geometric primitives of physical space [2].

The other is that which governs amplitude and phase
during interactions of these geometric objects, the back-
ground independent quantized impedances associated
with all potentials, both geometric and topological [3].

What follows places these omissions in historical con-
text, and explores consequences of their inclusion in
worldviews of physicist and philosopher.

GEOMETRIC CLIFFORD ALGEBRA

Over fifty years have passed since the original geo-
metric intent of Clifford algebra [4HG] was rediscovered
by David Hestenes, expanded, and introduced to physics
[2], and fifteen years since he was awarded the Oersted
Medal by the American Physical Society for “Reformu-
lating the Mathematical Language of Physics”[7]. The
geometric interpretation remains unrecognized by main-
stream physics, a profound measure of our inertia.

When realized, the power of geometric algebra suggests
one might arrive at intuitive understanding of the Stan-
dard Model in which all of physics is geometry [8, ].
According to Wheeler, “There is nothing in the world
except empty curved space. Matter, charge, electromag-
netism, and other fields are only manifestations of the
curvature of space.” [10]

However, the geometry of Standard Model point parti-
cles (quarks and leptons) is static, their attributes taken
to be intrinsic, internal. It is only with the external
gauge fields that dynamics enters geometry and the phase
coherence defining quantum system boundaries is mani-
fested. ‘Internal’ coherence is geometrically inaccessible.

While string theory moves beyond dimensionless points
to mode structures of 1D strings and 2D branes, it is not
unreasonable to suggest that a satisfactory model will
ultimately require fundamental geometric objects corre-
sponding to the full three dimensions of physical space.

As jumping to strings led to innumerable landscapes,
and yet more so with branes, it would seem that step-
ping up to the full 3D Pauli algebra of our physical
space would yield dynamics of landscapes upon land-
scapes upon landscapes, burying insight under the in-
tractable wealth of possibilities.

However, with that jump the dynamics are now those
of the 4D Dirac algebra of flat Minkowski spacetime.
Couldn’t be simpler. Dimensions of string theory become
a subset of the degrees of freedom of the model. The per-
spective shifts from abstract higher dimensions to inter-
actions of objects one can visualize in 3D space. Within
the more limited constraints of the Standard Model, the
perspective shifts from point particles to the structure of
spacetime. The perspective shifts.

The wavefunction presented here is comprised of two
constructs - geometry and fields. For geometry it adopts
the minimally complete 3D Pauli algebra of physical
space - one scalar, three vectors, three bivector pseu-
dovectors, and one trivector pseudoscalar - point, line,
plane, and volume elements of Euclid, with the addi-
tional attribute of being orientable. For fields it endows
them with quantized electric and magnetic fields [3].

While this wavefunction can be easily and intuitively
visualized, it is not an observable[11}[12]. Observables are
interactions, represented in geometric algebra by geomet-
ric products of wavefunctions. These geometric products
generate a 4D Dirac algebra of flat Minkowski spacetime.
Time (relative phase) emerges from the interactions.
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FIG. 1. Evolution of Geometric Algebra [15]

Figure 1 illustrates an important point - geometric al-
gebra (and its extension into geometric calculus) claims
to encompass the better part of the particle physicist’s
mathematical toolkit[7, T3], T4].

Clifford Algebra as originally conceived is the algebra
of interactions between geometric objects. Grassman was
“...a pivotal figure in the historical development of a uni-
versal geometric calculus for mathematics and physics...
He formulated most of the basic ideas and... anticipated
later developments. His influence is far more potent and
pervasive than generally recognized.” [16]

Grassman’s work lay fallow until Clifford “...united the
inner and outer products into a single geometric product.
This is associative, like Grassman’s product, but has the
crucial extra feature of being invertible, like Hamilton’s
quaternion algebra.” [17]

While Clifford algebra attracted considerable interest,
with his early death in 1879 the absence of an advocate
to balance the powerful Gibbs contributed to its even-
tual neglect. It was “...largely abandoned with the in-
troduction of what people saw as a more straightforward
and generally applicable algebra, the wvector algebra of
Gibbs... This was effectively the end of the search for a
unifying mathematical language and the beginning of a
proliferation of novel algebraic systems...” [14].

Geometric algebra resurfaced, unrecognized, as alge-
bra without geometric meaning in the Pauli and Dirac
matrices. It remains that the power of geometric inter-
pretation has for the most part been lost in physics.
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FIG. 2. Geometric algebra components in 3D Pauli algebra
of space. The term grade is preferred to dimension, whose
meaning is sometimes ambiguous and confused with degrees
of freedom. The two products (dot and wedge or inner and
outer) comprising the geometric product lower and raise the
grade. Mixing of grades makes geometric algebra unique in
the ability to handle geometric concepts in any dimension[I8]

Topological symmetry breaking is implicit in geometric
algebra. Given two vectors a and b, the geometric prod-
uct ab mixes products of different dimension, or grade.
In the product ab = a - b+ a A b, two 1D vectors have
been transformed into a point scalar and a 2D bivector.

“The problem is that even though we can transform
the line continuously into a point, we cannot undo this
transformation and have a function from the point back
onto the line...” [19].

Interactions of wavefunctions are represented by the
geometric product. They break topological symmetry
due to this property of grade increasing operations.

PROTON STRUCTURE

With a little help from the topological duality be-
tween electric and magnetic charge[20H22], the remark-
able power of geometric interpretation becomes evident
in calculating nucleon mode structure[23] [24].

The photon is our fiducial in measurements of the prop-
erties of space. Topological duality arises from the differ-
ence in coupling to the photon of magnetic and electric
charge. If we take magnetic charge g to be defined by the
Dirac relation eg = h and the electromagnetic coupling
constant to be a = €2 /4meghc, then e is proportional to
\/a whereas g varies as 1/y/a. The characteristic coher-
ence lengths of figure 3, precisely spaced in powers of
«, are inverted for magnetic charge[25]. The Compton
wavelength A = h/mc is independent of charge.



FIG. 3. Inversion of fundamental lengths by magnetic charge
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figure 4 provides the needed filter, given the assumption
that unstable particles contain at least one dark mode to
drive decoherence.
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FIG. 4. As shown at top and left, a minimally complete Pauli algebra of 3D space is comprised of one scalar, three each vectors
and bivectors, and one trivector. Attributing electric and magnetic fields to these fundamental geometric objects (FGOs) yields
the wavefunction model [3]. In the manner of the Dirac equation, taking those at the top to be the electron wavefunction
suggests those at the left correspond to the positron. Their geometric product generates the background independent 4D Dirac
algebra of flat Minkowski spacetime, arranged in odd transition modes (yellow) and even eigenmodes (blue) by geometric grade.
Time (relative phase) emerges from the interactions. Modes of the stable proton are highlighted in green|23]. The
network comprised of modes indicated by symbols (triangle, square, dot, diamond) is shown in figure 9.



The speed of light (or free space impedance) can be cal-
culated from excitation of virtual electron-positron pairs
by the photon[26]. Just as the massless photon excites
the vacuum impedance structure, so do the electromag-
netic fields of all massive particles, stable and unstable.

Dark fundamental geometric objects (FGOs) couple
differently to the vacuum impedance and therefore ex-
perience different phase shifts. Modes containing one
or more dark FGOs decohere from differential phase
shifts[27H30]. To identify the mode structure of the pro-
ton we need only consider modes comprised exclusively
of visible FGOs, a tremendous simplification. Restricting
attention to these modes, highlighted in green in figure 4,
gives us both transition modes (yellow background) and
eigenmodes (blue background) of the proton.
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FIG. 5. Eigenmodes of figure 4 having only visible Pauli FGOs
entering the geometric products, showing emerging grades
and corresponding electromagnetic FGOs of the model, which
again comprise a Pauli wave function.

As shown in figure 5, eigenmode FGOs of figure 4 en-
tering the geometric products number three scalars, two
vectors, and three bivectors. Those emerging from the
geometric products number three scalars, two bivectors,
and one quadvector - an even subalgebra of the Dirac al-
gebra, itself again a Pauli algebra, a wavefunction. Elec-
tric charge is conserved in the interaction.

The connection of the three emergent scalars with
three quarks seems obvious. The only scalar in our wave-
function model is electric charge. Given that the top and
left Pauli algebras of figure 4 correspond to electron and
positron wavefunctions, then all three scalars follow from
three particle-antiparticle geometric products (e€, ¢ppdy,
and ppfig), one for each of the three grades entering the
products. All are found on the diagonal of figure 4. Also
prominent on the diagonal is the Coulomb mode gg of
magnetic charge, part of the mode structure of the su-
perheavies (top, Higgs, Z, W,...).

The first ‘quark’, the scalar e emerging from the pair
ee, is unaccompanied. One wonders if it is observably
different from the second, arising from the ¢pdy inter-
action in the company of bivector up, or whether they
differ from the third, emerging from ppfig accompanied
by quadvector I

The two bivectors up emerging from geometric prod-
ucts ¢p¢p and ppe might be identified with Yang-Mills
axial vectors. With relevance to the proton spin contro-
versy [31H34], the 938 MeV rest mass of the emergent

upfig mode corresponds to stored electromagnetic field
energy not of the measured moment, but rather the spin
1/2 proton Bohr magneton, suggesting the anomaly is
not a property of the proton near field [23].

The grade-4 quadvector I = ~gy1727ys defines space-
time orientation as manifested in the phases, with -y the
sign of time orientation. The vy, are orthogonal basis vec-
tors in the geometric Dirac algebra of flat 4D Minkowski
spacetime, not matrices in ‘isospace’[17].

Most remarkably, a plausible proton wavefunction
emerges from the algebra, together with relative phase
information of the coupled modes. The role of nucleon
topological mass generation in observation of the anoma-
lous moment is addressed in detail elsewhere[23, [24], the
point being that the anomaly is a far-field property of
the proton. In the near field the proton is spin 1/2, the
nuclear Bohr magneton. To proceed we must introduce
generalization of impedance quantization and its func-
tional role in gauge theory.

GAUGE THEORY REQUIRES IMPEDANCES

Gauge theory is the theory of quantum phase coher-
ence, of that which distinguishes quantum from classical.
Phase is relative, not a single measurement observable.
The boundary of a quantum system may be defined by
absence of phase coherence with its surroundings. The
existence of a quantum system is contingent upon co-
herence. With decoherence comes state reduction, wave-
function collapse, loss of phase information[27H30].

Gauge theory impedances shift phases. Inductive
impedance advances phase, capacitive retards. Equally
fundamental, impedance matching dictates the ampli-
tudes. Wavefunction amplitude and phase are both gov-
erned by impedances. Gauge theories cannot be under-
stood in full without impedance quantization.

Gauge Theory

While both Maxwell’s electrodynamics and Einstein’s
general relativity are gauge theories, it was only with the
invention of the wavefunction in the late 1920s that the
gauge parameter assumed a central role in physics.

The evolution shown in figure 6 had two motivations -
to unify electromagnetism and gravity, and develop work-
ing gauge theories of nuclear forces. With hindsight it is
surprising that making the role of gauge theory more ex-
plicit in foundations of QED was not a priority.

“Gauge symmetry, however, played almost no role in
QED. It was largely regarded as a complication and a
technical difficulty that had to be carefully handled, es-
pecially as people were struggling with the quantization
of quantum electrodynamics. This is partly due to the



difference between local gauge symmetry and ordinary
global symmetries of nature.” [35]

The first impetus to the gauge program was given by
Weyl[36], who gauged the scale of space in an effort
to unite gravity with electromagnetism. Unlike phase,
which is not a single measurement observable, spatial
scale is an observable and cannot be gauged. The error
was pointed out by Einstein (who quite liked the idea)
via the path independence of observable atomic spectra.
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FIG. 6. Key papers in development of gauge theory beyond
the U(1) gauge group of Maxwell’s electromagnetism and its
gauge boson, the photon.[37] [38]

Gauge invariance found a home in the quantum me-
chanics of the 1920s, with the gauge parameter corre-
sponding not to spatial scale but quantum phase. In his
1929 paper Weyl elevated gauge invariance from a sym-
metry to a fundamental principle. Unfortunately, the
label ‘gauge’ remained, and continues to cause confusion
to this day. In the present context quantum interactions
care not about scale invariance, but rather invariance of
observables under phase transformations. ‘Phase Invari-
ance’ would have been a better choice.

Possible connections between gravity and electromag-
netism remained a distraction, prominent in the contri-
butions of Schrodinger, London, and Weyl, and a mo-
tivation in the papers leading up to the embrace of the
nuclear forces by Shaw, Yang and Mills, and Utiyama in
1954. Here is where confusion multiplies, where we en-
ter into “what was not understood by scientists, or was
understood wrongly,...” [1J.

The need for nuclear binding forces was predicated
upon the problem of confinement. What could hold pro-
tons together in the nucleus against electrostatic repul-
sion if not some sort of strong nuclear force? What might
account for anomalously long lifetimes of unstable nuclei
and flavor families, if not a weak nuclear force?

Straightforward connection between the simple U(1)
of electromagnetism and nuclear forces remained for the
most part unexplored, the possibility seemingly ruled out
by experimental evidence. It was in some small part ad-
dressed for the weak force by Glashow, Weinberg, and
Salam in the mid-1960s. Efforts to include the strong
force in standard model unification remain unsuccessful.
It is only with inclusion of impedance quantization, with
inclusion of that which governs the flow of energy in all
interactions, that such a unification becomes possible.

Impedance Quantization

Impedance may be defined as amplitude and phase of
opposition to the flow of energy. When impedances are
matched energy flows without reflection. Consider the
bell of the trumpet, matching the player’s lips to ambient
atmosphere. That the force of the player can enter the
room is a consequence of the impedance match [39].

Given the practical utility of the impedance concept in
technical applications, it is not surprising that one finds
the most helpful historical introductions and expositions
not in academic literature, but rather in that of tech-
nologically advanced industries, where application of the
concept is essential for economic success [40H43].

This inadvertent divorce of theoretical from practi-
cal has profound consequences for quantum field the-
ory (QFT), where the Hamiltonian and Lagrangian for-
malisms focus upon conservation of energy and its flow
between potential and kinetic, rather than upon that
which governs the flow, the impedances.
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The most rudimentary example can be found at the
foundation of QED, in the photon-electron interaction.
The formidable breadth of the crack through which
impedances have fallen becomes apparent when one con-
siders that the near field photon impedances [44] shown
in figure 7 cannot be found in the curriculum or text-
books of electricity and magnetism, QED, or QFT [46].

What governs the flow of energy in photon-electron in-
teractions is explicitly absent from the formal education
of the PhD physicist.

The significance can be seen in figure 7. The scale-
dependent photon near-field dipole impedance permits
energy to flow between Rydberg and Bohr, between pho-
ton and hydrogen atom. However, what is lacking in the
impedance match is the corresponding scale-dependent
electron dipole impedance. Both quantized impedances
must be present for reflectionless energy transfer. Neither
is explicit in the physics curriculum.
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green, and the scaffolding of QFT in red [46].

The essential point, missing from QFT and crucially
relevant in models and theories of quantum interactions,
is this: Impedances are quantized. Yet how, if impedance
quantization is both fact of nature and powerful theoreti-
cal tool, is it not already present in the Standard Model?

This absence is most remarkable. Impedance is a fun-
damental concept, universally valid. The oversight can
be attributed primarily to three causes. The first is his-
torical [46], the second follows from the habit of setting
fundamental constants to dimensionless unity, and the
third from topological and electromagnetic paradoxes in
our systems of units [3], 47, 4§].

Historically, the foundation of QED (the template for
QFT, highlighted in red in the figure) was set long before
the Nobel prize discovery of the scale invariant quantum
Hall impedance in 1980 [49]. Prior to that impedance
quantization was more implied than explicit in the liter-
ature [50H57]. The concept of exact impedance quanti-
zation did not exist.

The second origin of overlooked impedance quantiza-
tion is the habit of particle physicists to set fundamen-
tal constants to dimensionless unity. Doing so with free
space impedance made quantization just a little too easy
to overlook. And to no useful purpose. What matters
are not absolute values of impedances, but rather their
relative values, whether they are matched.

The third confusion is seen in an approach [52] sum-
marized [53] as “..an analogy between Feynman dia-
grams and electrical circuits, with Feynman parameters
playing the role of resistance, external momenta as cur-
rent sources, and coordinate differences as voltage drops.
Some of that found its way into section 18.4 of...” the
canonical text [54]. As presented there, the units of the
Feynman parameter are [sec/kg], the units not of resis-
tance, but rather mechanical conductance [39].

It is not difficult to understand what led us astray [52l-
[61]. The units of mechanical impedance are [kg/sec].
One would think that more [kg/sec] would mean more
mass flow. However, the physical reality is more [kg/sec]
means more impedance and less mass flow. This is one of
many interwoven mechanical, electromagnetic, and topo-
logical paradoxes [48] to be found in the SI system of
units, which ironically were developed with the intent
that they “...would facilitate relating the standard units
of mechanics to electromagnetism.” [62].

With the confusion that resulted from misinterpreting
conductance as impedance and lacking the concept of
quantized impedance, the anticipated intuitive advantage
[54] of the circuit analogy was lost. The possibility of the
jump from a well-considered analogy to a photon-electron
impedance model was not realized at that time.

Had impedance quantization been discovered in 1950
rather than 1980, one wonders whether it might have
found its way into the foundation of QED at that time,
before it was set in the bedrock. As it now stands the in-
evitable reconciliation of practical and theoretical, the in-
corporation of impedances into the foundations of quan-
tum theory, opens new and exciting possibilities.
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FIG. 9. Correlation between coherence lengths (boundary of the light cone) of the unstable particle spectrum and nodes of the
energy/scale dependent impedance network of a subset of the modes of figure 4 [64]. Impedances are matched at the nodes,
permitting the transfer of energy between modes essential for particle decay. Precise calculation of g, , and i’ branching
ratios shown at the upper left and resolution of the chiral anomaly follow from impedance matching considerations [65].

THE UNSTABLE PARTICLE SPECTRUM

Impedance quantization is possibile for all forces [3]
[63]. Quantizing with electromagnetic forces only and
taking the quantization length to be the electron Comp-
ton wavelength gives the impedance network of figure 9.
Nodes of the network are strongly correlated with unsta-
ble particle coherence lengths [27), [64], suggesting that
energy flows to and from the unstable particle spectrum
via this network of electron impedances.

In QFT one is permitted to define but one fundamental
length (customarily the short wavelength cutoff). The
impedance approach is finite, divergences being cut off
by mismatches as one moves away from the fundamen-
tal length of the model, the Compton wavelength. With
FGOs confined to that scale by the mismatches, interac-
tion impedances can be calculated as a function of their
separation, the ‘impact parameter’. Strong correlation of
the resulting network nodes with unstable particle coher-

ence lengths[44] [66H69] follows from the requirement that
impedances be matched for energy flow between modes
as required by the decay process.

S-matrix and the Impedance Representation

Chapter 11 of Hatfield’s textbook on quantum field
theories of point particles and strings opens with this
statement of S-matrix universality[70]:

“One of our goals in solving interacting quantum field
theories is to calculate cross sections for scattering pro-
cesses that can be compared with experiment. To com-
pute a cross section, we need to know the S-matrix el-
ement corresponding to the scattering process. So, no
matter which representation of field theory we work with,
in the end we want to know the S-matrix elements. How
the S-matrix is calculated will vary from representation
to representation.”
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FIG. 10. A subset of impedance networks of the electron and Planck particle, showing both a .511 Mev photon entering from
the right (included here not to imply relevance to the Big Bang but rather for illustrative purposes only), and the primordial
photon entering from the left[78]. The end of inflation in the impedance approach (as in the cosmological Standard Model)
comes at ~ 10732 seconds, at the intersection of the two impedance networks, referred to here as the ‘Mach scale’ [79].

Calculating mode impedances of interactions shown
in figure 4 yields an impedance representation of
the S-matrix [3, 23} [7IH74]. Transformation between
impedance and scattering matrices is standard fare in
electrical engineering[75H77]. As we endeavor to make
clear, when seeking to understand details of the elemen-
tary particle spectrum significant advantages accrue for
the physicist working in the impedance representation.

GRAVITY AND THE BIG BANG

Just as the energy of a photon whose wavelength is the
Compton wavelength of the electron is equal to the rest
mass of the electron, the energy of a photon whose wave-
length is the Compton wavelength of the Planck particle
is the rest mass of the Planck particle and its associated
event horizon. This is the ‘electromagnetic black hole’,
the simplest eigenstate of the Planck particle.

A more detailed model of the Planck particle can be
had by quantizing the 3D Pauli wavefunction not at
the electron Compton wavelength, but rather the Planck
length, resulting in the network of figure 10 [79].

Calculating the impedance mismatch between electron
and Planck particle gives an identity between electromag-
netism and gravity[80]. The gravitational force between

these two particles is identically equal to the mismatched
electromagnetic force they share. The Newtonian grav-
itational constant G (by far the most imprecise of the
fundamental constants) cancels out in the calculation,
suggesting that both gravity and rest mass are of elec-
tromagnetic origin, and that gravity is nothing more than
impedance mismatched electromagnetism.

That the impedance approach of flat 4D Minkowski
spacetime delivers an exact result at the event horizon of
the Planck particle (and beyond to the singularity, com-
pletely decoupled by the infinite impedance mismatch to
the dimensionless point) is perhaps surprising. One won-
ders what correspondence exists between this result and
the dictates of general relativity near the event horizon,
how the two might be found to be in agreement.

The discovery that Gauge Theory Gravity in flat space
is equivalent to General Relativity in curved space [14]
[I7, BTH&4] is both astounding and a paradigm shift of
itself. Why work in curved space all these years if one
can work so much more easily in flat space? How did it
get this way?

Like the absences of impedance quantization and the
geometric interpretation of Clifford algebra from main-
stream modern physics, this is another historical acci-
dent. When FEinstein and company were searching for
a mathematical framework in which to cast a theory



of gravity the geometric interpretation was in abeyance.
They did not have those tools at hand, worked with ten-
sor calculus (a subset of geometric algebra/calculus, as
shown in figure 1) in curved space.

Whether one describes gravity as the effect of mass
curving space or quantum phase shifts in flat space, the
claim is that they yield equivalent results[85], that gauge
theory gravity and general relativity are one.

Connections between the impedance model and ge-
ometric algebra go deep, to the coordinate-free back-
ground independence essential for quantum gravity[86].
Geometric algebra uses a coordinate-free representation.
Motion is described with respect to a coordinate frame
defined on the object in question rather than an exter-
nal coordinate system. Similarly, mechanical impedances
are calculated from the two body problem[58]. Motion
is described with respect to a coordinate frame on one
of the bodies, the ‘observer’. The two body problem is
inherently background independent. There is no inde-
pendent observer to whom rotations can be referenced,
only fermionic and bosonic spin, the one topological and
the other geometric.

It is precisely this shared background independence of
geometric algebra and the impedance model that per-
mits scale invariant impedances (quantum Hall, chiral,
centrifugal, Coriolis, three body,...) of the impedance
model to be associated with the rotation gauge field of
gauge theory gravity, and scale dependent impedances
(Coulomb, dipole, scalar Lorentz,...) with the transla-
tion gauge field[87]. In the case of forces associated with
invariant impedances, the resulting motion is perpendic-
ular to the applied force. They are non-local, can do no
work, cannot communicate information, but rather only
quantum phase, not a single measurement observable.

Gauge invariance is maintained via covariant dervia-
tives. Equivalently, phase shifts generated by quantum
impedances encode the phase information. The same
gauge theory, seen from complementary perspectives.

Just as mass is of electromagnetic origin in the
impedance approach[47], so must be gravity. However,
two essential properties of gravity seem upon first con-
sideration to rule out an electromagnetic origin [8§].

First, unlike electromagnetic forces, it appears that
gravity cannot be shielded. However, scale invariant
impedances cannot be shielded[27], [89]. Consider for in-
stance centrifugal force, or the Aharonov-Bohm effect of
the vector Lorentz force.

Second, unlike the bipolarity of electromagnetism,
gravity appears to have only one sign. We observe only
attractive gravitational forces. Here the distinction be-
tween near and far fields plays a pivotal role. For the
interaction between two electrons, gravity is forty-two
orders of magnitude weaker than the Coulomb force, a
consequence of the impedance mismatch.

If we take a characteristice length to be the electron
Compton wavelength (about 10712 meters), or equiva-
lently the wavelength of a .511MeV photon, then the
wavelength of the mismatched ‘gravity photon’ will be
about forty-two orders of magnitude greater, or about
1030 meters. The radius of the observable universe is
about 1026 meters.

The point is that our material existence appears to be
in the extreme near field of the ‘gravity photons’ of al-
most all of the mass in the universe. In the near field
there exist both transverse and longitudinal electromag-
netic fields. The almost arises due to the 7/2 phase shift
of those gravity photons whose average energy is above
a few GeV. The phase shift due to field oscillation in
the transition from near to far field reverses the effective
longitudinal direction at around the present age of the
universe. The high energy portion of matter becomes
repulsive on the scale of the universe.

In the extreme near field the scale dependent
impedances appear scale invariant, due to the flatness
of the phase as the amplitude goes to zero. One might
conjecture that this is what permits the scale dependent
impedances to appear to have the ‘cannot be shielded’
property of the scale invariant impedances. Hopefully
the topological character of geometric algebra will pro-
vide a proper formalism for such a conjecture.

QUANTUM INTERPRETATIONS

Interpretations of the formalism and phenomenology of
quantum mechanics address distinctions between knowl-
edge and reality, between epistemic and ontic, between
how we know and what we know. It’s a pursuit that
straddles the boundary between philosophy and physics.
There are many areas of contention, including reality
and observability of the wavefunction and wavefunction
collapse, determinism and the probabilistic character of
wavefunction collapse, entanglement and non-locality,
hidden variables, realism versus the instrumentalism of
‘shut up and calculate’; the role of the observer,...[T1].

In each of these areas quantum interpretations seek to
address the same basic question - how to understand the
measurement problem?[90] [91] How does one get rid of
the shifty split[02] of the quantum jump[93], develop a
smooth and continuous real-space visualization of state
reduction dynamics?[27] What governs the flow of energy
and information in wavefunction collapse?

The point here is that, unlike other interpretations, the
present approach has a working electromagnetic geomet-
ric model. The wavefunction can be visualized in our 3D
physical space. It is this that permits resolution of the
contentions of quantum interpretations.
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Values in the Index column are calculated by adding a point for entries that agree with a given

interpretation, subtracting for entries that disagree, and giving half values for agnostics. Appearance over the course of nearly a
century of a growing number of quantum interpretations and contentions demonstrates the lack of proper physical understanding

of fundamental phenomenal|I].
The Measurement Problem

Contentions in quantum interpretations are for the
most part manifestations of the measurement problem:

“The measurement problem in quantum mechanics is
the problem of how (or whether) wavefunction collapse
occurs. The inability to observe this process directly has
given rise to many different interpretations of quantum
mechanics, and poses a key set of questions that each
interpretation must answer.” [94]

At root the confusion arises from modeling electrons
and quarks as point particles. Points cannot collapse.
One cannot understand the decoherence of wavefunction
collapse without understanding self-coherence. Presence
of the point particle in the Standard Model leaves self-
coherence lost in mathematical abstraction, rather than
presenting the impedance-driven coherence and decoher-
ence of interacting electromagnetic modes visualized in
4D spacetime.

Reality and Observability of the Wavefunction

The wavefunction is comprised of fundamental ge-
ometric objects shared by geometric algebra and the
impedance model, the eight component Pauli algebra of
3D space. The wavefunction is not observable. Interac-

tions of wavefunctions generates the observable S-matrix
of the elementary particle spectrum[23], [[0H74]. By con-
servation of energy, the reality of observable interactions
would seem to require that the things that interact, the
wavefunctions, are real.

Reality and Observability of Wavefunction Collapse

Collapse of the wavefunction follows from
decoherence[28, [29], from differential phase shifts
between the coupled modes of a given quantum system.
The phase shifts are generated by interaction impedances
of wave functions [27]. What emerges from collapses are
observables. The reality of observables would seem to
require that the collapse is real, however the smooth and
continuous dynamics of wavefunction collapse are not
observable, only the end result.

Determinism and Probabilistic
Wave Function Collapse
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the Schrodinger wave equation determines the
wavefunction at any later time. If observers and their
measuring apparatus are themselves described by a de-
terministic wave function, why can we not predict precise
results for measurements, but only probabilities?” [30]



The probabilistic character of quantum mechanics fol-
lows from the fact that phase is not a single measurement
observable. The measurement extracts the amplitude.
The internal phase information of the coherent quantum
state is lost as the wave function decoheres. For quan-
tum mechanics to be deterministic would require phase to
be a single measurement observable, a global symmetry
rather than local.

Deterministic aspects are present in the sense that en-
semble probabilities are determined by the impedance
matches[65]. This unobservable determinism, as required
by gauge invariance, removes some of the mystery from
‘probabilistic’ behavior.

Superposition of Quantum States

Investigating the meaning of the newly discovered
quantum states of Heisenberg and Schrodinger, Dirac led
the way in introducing state space (later to be identified
with Hilbert space) to the theory. He defines states as
“...the collection of all possible measurement outcomes.”
[95] According to Dirac,

“The superposition that occurs in quantum mechanics
is of an essentially different nature from any occurring
in the classical theory” (italics in original) [96].

What distinguishes quantum superposition from clas-
sical is linear superposition of states, of wavefunctions, as
opposed to superposition of fields. The wavefunction is
comprised of coupled electromagnetic modes, their fields
sharing the same energy at different times. The state into
which they collapse is determined by time/phase shifts of
impedances they see.

Entanglement

“Entanglement is simply Schrodinger’s name for super-
position in a multiparticle system.” [97] For a system of
wavefunctions to be entangled means they are quantum
phase coherent, that the entangled wavefunctions share
that unobservable property.

non-Locality

The scale invariant impedances (photon far-field, quan-
tum Hall/vector Lorentz, centrifugal, chiral, Coriolis,
three body,...) are non-local. With the exception of the
massless photon, which has both scale invariant far-field
and scale dependent near-field impedances, the invariant
impedances cannot do work, cannot transmit energy or
information. The resulting motions are perpendicular to
the applied forces. They only communicate phase, not
a single measurement observable. They are the channels
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linking the entangled eigenstates of non-local state re-
duction. They cannot be shielded[89], 98]. The invariant
impedances are topological. The associated potentials
are inverse square.

Hidden Variables

Early on in the development of quantum theory, the
probabilistic character prompted Born[99] [100] to com-
ment “...anybody dissatisfied with these ideas may feel
free to assume that there are additional parameters not
yet introduced into the theory which determine the indi-
vidual event.”

If one takes the ‘hidden’ variables to be quantum
phases (not single measurement observables!), then it
follows that the “...additional parameters not yet intro-
duced into the theory...” are the phase shifters, the quan-
tum impedances.

Observer Role

Quantum impedances are background independent.
The method of calculating quantum impedances derives
from consideration of the two body problem and Mach’s
principle[58], [78]. There is no independent observer in the
two body problem.

In the present work the two bodies are taken to be two
interacting wavefunctions, and wavefunctions to be not
observable. If it makes sense to talk of an observer role,
then the observer must be either or both of the two wave-
functions. Which is to say the observer is a wavefunction.
Which is to say observers are not observable.

This paradox suggests that in fact it makes no sense to
talk of a role for an observer in the quantum mechanics of
single measurements, that it is an emergent concept hav-
ing no place in the conceptual foundations of the present
approach.

SUMMARY AND CONCLUSION

The electron is not a point particle. It gives that ap-
pearance if one doesn’t appreciate the possibility that
electron geometric structure, when endowed with elec-
tric and magnetic fields and excited by the photon, might
generate the remainder of the massive particle spectrum.
By far the lightest of all charged elementary particles,
the electron impedance network is the natural candidate
for this role[85], in some sense might be considered the
structure of the vacuum|26].

The impedance model requires that five fundamental
constants be input by hand - speed of light, Planck’s
constant, electric charge quantum, permittivity of free
space, and electron Compton wavelength. There are no



adjustable parameters. With these constants one can
assign quantized electromagnetic fields to the fundamen-
tal geometric objects of the 3D Pauli algebra of physical
space, and calculate quantized interaction impedances of
the resulting wavefunctions[3].

There are no gluons or weak vector bosons to bind the
constituents. The modes are confined by the impedance
mismatches, by reflections as one moves away from the
quantization scales as defined by the impedance nodes.
Mismatches also remove infinities associated with singu-
larities. The impedance approach is finite and confined.

The serendipitous commonality of fundamental geo-
metric objects between the impedance model and geo-
metric Clifford algebra lends a formal structure to the
impedance approach that maximizes the utility of both,
providing simple yet powerful mathematical tools to the
physicist and physical intuition to the mathematician,
philosopher, and layperson.

Thus far applications of generalized quantum
impedances have been primarily conceptual. Sage advice
[101] suggests that the most fertile field for impedance
quantization will be in condensed matter - in atomic,
molecular, and optical physics[46]. If there is practical
value in the approach presented here, AMO is likely the
place where it will be found. Though harking back to
Wheeler [71], impedance matching might prove equally
useful in understanding both fission and fusion.
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APPENDIX
Clarifying Terminology in Geometric Algebra

There is possibility for confusion in the terminology of
geometric algebra.
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terminology difference between Pauli and Dirac algebras

scalar vector | pseudovector | pseudoscalar

3D Pauli
e de s b s g _

GAgrade | 0-scalar | 1-vector| 2 - bivector

3 - trivector | 4 - quadvector

e de e b Lg £ I

scalar vector

4D Dirac

bivector pseudovector | pseudoscalar

FIG. 12. Bivector and trivector are pseudovector and pseu-
doscalar of the Pauli algebra. Trivector and quadvector are
pseudovector and pseudoscalar of the Dirac algebra.

As shown in the figure, the highest grade element of an
algebra is the pseudoscalar of that algebra. In the Dirac
algebra, this results in the bivector being interposed be-
tween vector and pseudovector of the Pauli algebra, and
opens possibilities for endless confusion. For this reason
we favor the scalar /vector /bivector/trivector /quadvector
nomenclature, but at times the use of conventional pseu-
dovector or pseudoscalar tags seems well advised. At
such times both appelations will be shown.
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