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Abstract. This work lays the foundations of the theory of kinematic changeable sets
(“abstract kinematics”). Theory of kinematic changeable sets is based on the theory of
changeable sets. From an intuitive point of view, changeable sets are sets of objects
which, unlike elements of ordinary (static) sets, may be in the process of continuous
transformations, and which may change properties depending on the point of view on
them (that is depending on the reference frame). From the philosophical and imaginative
point of view the changeable sets may look like as “worlds” in which evolution obeys
arbitrary laws.

Kinematic changeable sets are the mathematical objects, consisting of changeable sets,
equipped by different geometrical or topological structures (namely metric, topological,
linear, Banach, Hilbert and other spaces). In author opinion, theories of changeable and
kinematic changeable sets (in the process of their development and improvement), may
become some tools of solving the sixth Hilbert problem at least for physics of macrocosm.
Investigations in this direction may be interesting for astrophysics, because there exists
the hypothesis, that in the large scale of Universe, physical laws (in particular, the laws
of kinematics) may be different from the laws, acting in the neighborhood of our solar
System. Also these investigations may be applied for the construction of mathematical
foundations of tachyon kinematics.

We believe, that theories of changeable and kinematic changeable sets may be interest-
ing not only for theoretical physics but also for other fields of science as some, new,
mathematical apparatus for description of evolution of complex systems.
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Preface

As it was noted in the abstract, the theories of changeable and kinematic changeable sets may
become important not only for mathematics but also for physics, and other branches of science,
which deal with the evolution of complex systems. But, at the present time, the main notions
and results of these theories are scattered in many different papers. This fact makes these
theories difficult for understanding. The purpose of this work is to bring together the different
results of the theories of changeable and kinematic changeable sets and to expose these theories
from a single point of view.

Our main aim is to depict a single picture from the separated puzzles, contained in the
papers |L-15].

Introduction

In spite of huge success of modern theoretical physics and the mightiness of mathematical tools,
applied by it, the foundations of theoretical physics remain unclear. Well-known sixth Hilbert’s
problem of mathematically strict formulation of the foundations of theoretical physics, posed
in 1900 [16], is not completely solved to this day [17,|18]. Some attempts to formalize certain
physical theories were done in many papers (for example see [19-24]). The main defect of
these works is the absence of a single abstract and systematic approach, and, consequently,
insufficiency of flexibility of the mathematical apparatus of these works, excessive its adapt-
ability to the specific physical theories under consideration. Moreover the attempts in [21]
to immediately formalize the maximum number of known physical objects, without creating
a hierarchy of elementary abstract mathematical concepts have led to the not very easy for
analysis mathematical object [21, page. 177, definition 4.1]. In general, it should be noted,
that the main feature of existing mathematically strict models of theoretical physics is that
the investigators try to find intuitively the mathematical tools to describe physical phenomena
under consideration, and only then they try to formalize the description of this phenomena,
identifying physical objects with some constructs, generated by these mathematical tools, for
example, with solutions of some differential equations on some space or manifold. As a result,
quite complicated mathematical structures appear, whereas most elementary physical concepts
and postulates, obtained by a help of experiments, life experience or common sense (which
led to the appearance of these mathematical models), remain not formulated mathematically
strictly. In works [25,126] it is expressed the view that, in the general case, it is impossible to
solve this problem by means of existing mathematical theories. Also in [25]26] it is posed the
problem of constructing the theory of “dynamic sets”, that is the theory of new abstract math-
ematical structures for modeling various processes in physical, biological and other complex
systems.

In the present work the foundations of the theory of changeable sets are laid and the basic
properties of these sets are established. The theory of changeable sets can be considered as
attempt to give a solution of the problem, posed in [25,26].

From an intuitive point of view, changeable sets are sets of objects which, unlike the elements
of ordinary (static) sets may be in the process of continuous transformations, and which may
change properties depending on the point of view on them (the area of observation or reference
frame). From the philosophical and imaginative point of view, changeable sets may look like
as “worlds” in which changes obey arbitrary laws.
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Another approach to formalization of physical theories (namely, the theory of relativity)
was developed by the group of Hungarian mathematicians (Hajnal Andreka, Judit Madarasz,
Istvan Nemeti, Gergely Szekely and others) in [27H30] and many other papers of these authors.
This approach is based on using the apparatus of mathematical logic. The mathematical logic
tools allows to avoid quite complex and burdensome mathematical structures and notions in
the fundamentals of the theory. However, on the other hand, this approach results to the ap-
pearance of certain artificial axioms and concepts, which cause some unnecessary reflections
and discussions of “philosophical type”. For example, the Axiom AxPh in [30, page 18] de-
mands the existence of light sphere in every point of Space-time. This axiom is required only
for receiving of Lorentz-Poincare transformations between inertial reference frames. But it is
unnecessary for solving the most of concrete problems, appearing in the framework of Special
Relativity and leads to some excessive philosophical reflections (whether in real World every
point of Space-time is penetrated by photons in all directions?). Thus, we have seen, that the
concrete task of receiving of Lorentz-Poincare transformations between reference frames leads
to appearance of artificial axiom of kind AxPh. And we can do a more general conclusion, that
axiomatic approach leads to necessity of own system of axioms for each physical problem. The
reason for this situation is that, unlike the school course in geometry (where Euclidean plane
or Euclidean space is a repository of all possible geometrical figures), the building of a single
repository for all variants of the evolution of physical systems is the very difficult task. And any
attempt of solving the last task must lead to artificial mathematical an logical constructions. In
view of the above, the proposition to apply for this task the “modal logic framework”, appeared
in |29, page 210] also sems to be not very helpful.

Note, that some attempts to construct the mathematical objects, bit like to the changeable
sets (namely — variable sets) were made in [31,32]. In comparison with the changeable sets,
more primitive mathematical objects have been proposed in these works. For example, “variable
sets” from [31] may only change their composition over time, but elements of these “variable
sets” can not evolve. The same can be said about the categories Bun(X) (bundles over X) and
Shv(X) (sheaves over X) from [32]. Elements of the category Biv from [32| may evolve but
only by means of “leap” within of two discrete time points. Moreover, the authors of [31,32]
have not gone further than philosophical considerations and some definitions or axioms.

Thus, we may summarize, that (in our opinion) there are the following main causes of the
lack of productivity of approaches, considered in the papers, analyzed above:

1) the absence of a single abstract and systematic approach;

2) attempts to construct the mathematical theories of physical objects “from zero” using
axiomatic method;

3) involvement the existing mathematical structures and universal classes (such as categories
or bundles) as basic objects.

In the present paper we repepresent a single abstract approach for formalization of physical
theories, based on the theory of changeable sets. For the construction of this theory we don’t
review or complement the axiomatic foundations of classical set theory. Changeable sets are
defined as a new abstract universal class of objects within the framework of classical set theory
(just as are defined groups, rings, fields, lattices, linear spaces, fuzzy sets, etc.). Of course, we
can not guarantee the applicability of changeable set theory for formalizatin of all branches of
theoretical physics (for example for quantum mechanics). But, author hopes, that the apparatus
of the theory of changeable sets will be able to generate the necessary mathematical structures
at least for physics and some other natural sciences in macrocosm.

The main feature of our approach is that more complex mathematical objects are built on the
basis of simpler ones. Part [l|sets forth the theory of changeable sets. We start our consideration
with the most simple mathematical objects — oriented sets and primitive changeable sets
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(Sections of Part . Fundamentals of the theory of primitive changeable sets also have
been presented in [2]. Further we introduce and investigate the more complex objects: base
changeable sets (Sections of Part [l) and (general) changeable sets (Sections of Part
M. Theory of base changeable sets also is contained in [5/9]. General theory of changeable sets
also is located in [4L8]. The main statements of the changeable set theory have been announced
in [1]. Most of main results from the abovementioned papers are collected in the preprint [3].

Part [T deals with the kinematic changeable sets. Kinematic changeable sets are the math-
ematical objects, in which changeable sets are equipped by different geometrical or topological
structures, namely metric, topological, linear, Banach, Hilbert and other spaces. Kinematic
changeable sets are designed for mathematical modeling of physical evolution in a spatial envi-
ronment under various kinematic laws. The main results in this direction have been announced
in [11] and expounded in [10}/12].

In Part [[TT] we consider kinematic changeable sets with given universal coordinate transforms
(universal kinematics). Universal coordinate transforms are coordinate transforms, under which
the geometrically-time provision of an arbitrary material object in any reference frame is deter-
mined by geometrically-time position of this object in a certain, fixed frame, independently of
any internal properties of the object. The main results of Part [[1I| were expounded in [13-15].

Kinematic changeable sets and universal kinematics may be interesting for astrophysics,
because there exists the hypothesis, that in the large scale of Universe, physical laws (in par-
ticular, the laws of kinematics) may be different from the laws, acting in the neighborhood of
our solar System. And “subuniverses” with physical laws, different from our, may also exist.
Hence, we hope, that development of the theories of changeable and kinematic changeable sets
may lead to elaboration of mathematical tools, necessary for “construction” of such “worlds”
with physical laws different from our.
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Part I
Abstract Theory of Changeable Sets

1 Oriented Sets and their Properties

When we try to see on any picture of reality (area of reality) from the most abstract point
of view, we can only say that this picture consists at any time of its existence of certain
things (objects). During the investigation of this area of reality, the objects participating in
it can be divided into smaller elementary objects, which we call elementary states. Method
of division of a given area of reality into elementary states depends on our knowledge about
this area, the level of research detailing, required for practice, or the level of physical and/or
mathematical idealization of the analyzed system. Depending on these factors, we can use as
elementary states, for example, the position of a material point (or an elementary particle) at
given time, the value of scalar, vector or tensor field at a given point of space-time, the state
of an individual of a species at given time (in mathematical models of biology) and others. If
the picture of reality does not change with time, then this picture of reality can be described
(in the most abstract form) in the terms of classical set theory, when elementary states are
interpreted as elements of a certain set. However, the reality is changeable. Elementary states
may change their properties in the process of evolution (and thus lose their formal mathematical
self-identity). Also elementary states may born or disappear, decompose into several elementary
states, or, conversely, several elementary states may merge into a single one. But, whenever
it is possible to trace “evolution lines” of the analyzed system, we can give a define answer
to the question whether the elementary state "y" is the result of transformations (ie, is a
"transformation offspring") of the elementary state "x". Therefore, the next definition may be
considered as the simplest (starting) model of a set of changing objects.

Definition 1.1.1. Let, M be any non-empty set (M #0).

An arbitrary reflexive binary relation <— on M (that is a relation satisfying Ve € M = < z)
we name an orientation, and the pair M = (M, <) we call an oriented set. In this case
the set M is named the basic set or the set of all elementary states of oriented set M
and it is denoted by Bs(M). The relation < we name the directing relation of changes
(transformations) of M, and denote it by o

In the case where the oriented set M is known in advance, the char M in the denotation
I will be released, and we will use denotation < instead. For the elements z,y € Bs(M) the

record y < x should be understood as “the elementary state y is the result of transformations
(or the transformation offspring) of the elementary state x”

Remark 1.1.1. 1. Some attempts to construct abstract mathematical structures for modeling
physical systems were made in [23[24]. In these works as a basic abstract model it is proposed
to consider a pair of kind (M, <), where M is some set and < is the local sequence relation
(in the sense of |24, page 28]), which satisfies the additional axioms TK;-TKj3 [24]. Recall
that, according to [24, page 28|, local sequence relation is the relation < on M, satisfying the
following conditions:

(Pm1) there not exist z,y € M such, that © < y and y < x;
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(Pm2) for each p € M the relation < is transitive on the sets:
pr={reMlp=z}, p ={zeM|z<p}. (L.1)

The main deficiency of this approach is, that it is not motivated by abstract philosophical
arguments, while the main motivation is provided by the specific example of order relation,
generated by the “light cone” in Minkowski space-time. Due to these factors, the model, sug-
gested in [23,24], is not enough flexible. In particular, due to the axioms TK;-TKj3 from [24],
this model is unusable for the description of discrete processes. Also, due to the axiom (Pm2)
(weak version of transitivity), this model is not enough comfortable for consideration (at the
abstract level) of complex branched processes, where different “branches” of the process can “in-
tersect” or “merge” during transformations. Moreover the construction of mathematical model
of the special relativity theory, based on the order relation of “light cone” makes impossible the
mathematically strict study of tachyons under this model, while building a formal theory of
tachyons is one of the actual areas of modern theoretical and mathematical physics [33[38].

2. Note, that there is a certain “ideological” difference between our model and the model
proposed in [23/24] in the sense of way of interpretation. Namely, the directing relation of
changes in Definition displays only real transformations, of the elementary states which
have appeared in the oriented set, while the the local sequence relation [23,[24] (in particular
“light cone” order relation), display all potentially possible transformations. So, considering an
oriented set or mathematical objects, generated by it, we always mean a specific evolution of
a particular system, but we should not imagine all potentially possible directions of evolution
of a group of systems, satisfying certain conditions. But, from the other hand, models of the
works [23,124] can be interpreted as partial cases oriented sets specified in Definition .
Indeed, let us consider the following binary relation om M:

=< U{(z,x) |[r € M}.

Hence for arbitrary =,y € M the condition z < y holds if and only if z < y or x = y. Taking
into account the the condition (Pml) we can see, that the binary relation < can be uniquely
restored by the relation <. Hence, any model (M, <) from [23,24] is equivalent to the oriented
set (M, <). But oriented sets of kind (M, <), generated by the models from [23,24] are only
particular cases of general oriented sets described in Definition [[.1.7]

Let M be an oriented set.

Definition 1.1.2. The subset N C Bs(M) will be referred to as transitive in M if for any
x,y,2 € N such, that z <y and y <+ x we have z ¢ x.

The transitive subset N C Bs(M) will be called mazimum transitive if there not exist
a transitive set Ny C Bs(M), such, that N C Ny (where the symbol C denotes the strict
inclusion, that is N # Ny).

The transitive subset L C Bs(M) will be referred to as chain in M if for any x,y € L at
least one of the relations y<—x or <y is true. The chain L C Bs(M) we will name by the
maximum chain if there not exist a chain L; C Bs(M), such, that L C L.

Assertion I.1.1. Let M be an oriented set.
1. Any non-empty subset N C Bs(M), containing not more than, two elements is transitive.

2. Any non-empty subset L = {x,y} C Bs(M), containing not more than, two elements is a
chain if and only if y< x or x<vy. In particular, any singleton L = {x} C Bs(M) is a
chain.

The proof of Assertion is reduced to trivial verification.
Denotation I.1.1. Further we denote by 2M the set of all subsets of any set M.
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Lemma I1.1.1. Let M be an oriented set.

1. Union of an arbitrary family of transitive sets of M, linearly ordered by the inclusion
relation, is a transitive set in M.

2. Union of an arbitrary family of chains of M, linearly ordered by the inclusion relation, s
a chain in M.

Proof. 1. Let 91 C 2%5M) he a family of transitive sets of M, linearly ordered by the inclusion
relation. Denote:

N::UN.

Nen

Consider any elementary states x,y,z € N such, that z+y and y < x. Since z,y,z € N =
Uwen &V, then there exist N, Ny, N, € 9 such, that x € N,, y € Ny, z € N,. Since the family
of sets 91 is linearly ordered by the inclusion relation, then there exists the set Ny € {V,, N,, N, }
such, that N,, N,, N, C Ny. So, we have z,y,z € Ny. Since Ny € {N,, N,, N.} C N, then Ny
is the transitive set. Therefore from conditions z <—y and y < x it follows, that z <—x. Thus N
is the transitive set.

2. Let £ C 2%5M) be a family of chains of M, linearly ordered by the inclusion relation.
Denote:

Z::UL.

By the post 1, L is the transitive set. Consider any elementary states z,y € L. Since the
family of sets £ is linearly ordered by the inclusion relation, then, similarly as in the post 1,
there exists a chain Lo € £ such, that z,y € Ly. And, because Ly is chain, at least one of the
relations y < x or x <y is true. Thus L is the chain of M. n

Using Lemma and the Zorn’s lemma, we obtain the following assertion.

Assertion 1.1.2.

1. For any transitive set N of oriented set M there exists a maximum transitive set Nyax
such, that N C Npax.

2. For any chain L of oriented set M there exists a maximum chain Ly, such, that L C L.

It should be noted that the second post of Assertion [[.1.2] can be interpreted to as the
generalization of the Hausdorff maximal principle in the framework of oriented set theory.
The following corollaries result from assertions [[.1.2] and [[.1.1]

Corollary 1.1.1. For any two elements x,y € Bs(M) in the oriented set M there exists a
mazimum transitive set N C Bs(M) such that x,y € N.

Corollary 1.1.2. For any two elements z,y € Bs(M), such that y < x, there exists a maximum
chain L of the oriented set M such that x,y € L.

If we put z = y € Bs(M) (by Definition Bs(M) # ), we obtain, that maximum

transitive sets and maximum chains must exist in any oriented set M.

Main results of this Section were anonced in [1] and published in |2, Section 2].
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2 Definition of the Time. Primitive Changeable Sets

In theoretical physics, scientists tend to think, that the moments of time are real numbers. But
the abstract mathematics deal with objects of an arbitrarily large cardinality. With this in
mind, in the papers of Hajnal Andreka, Judit Madarasz, Istvan Nemeti, Gergely Szekely it is
proposed to consider any ordered field as the scale of time points (see [27H30] and many other
papers of these authors). In our abstract theory we will not be restricted to the moments of
time belonging to the set of real numbers R or some other ordered field. And, as it will be
seen further, we need not any assumptions about algebraic structure on time scale for obtaining
many interesting abstract results. In the next definition, moments of time are elements of any
linearly (totally) ordered set (in the sense of [40, p. 12|). Such definition of time is close to
the philosophical conception of time as some “chronological order”, somehow agreed with the
processes of transformations.

Definition 1.2.1. Let M be an oriented set and T = (T,<) be a linearly ordered set. A
maping v : T +— 225 M) s referred to as time on M if the following conditions are satisfied:
1) For any elementary state x € Bs(M) there exists an element t € T such that x € 1)(t).
2) If x1,29 € Bs(M), x94 11 and x1 # xo, then there exist elements ti,ts € T such
that 1 € Y (t1), 2 € ¥ (t2) and t; < to (this means that there is a temporal separateness of
successive unequal elementary states).
In this case the elements t € T we call the moments of time, the pair

H=(T,¢)=(T,<),v)
we name by chronologization of M and the triple
P=WMT,¢)=(M(T,<),¢)
we call primitive changeable set.

Remark 1.2.1. In [23,24] linearly ordered sets has been used as time-scales also. But the
conception of time in Definition is significantly different from [23,24]. Note, that the
definition of time in [23124] is less general, then Definition due to less generality of the
model, suggested in [23,24] (recall that according to Remark the models of the works
[23,[24] can be interpreted as partial cases oriented sets specified in Definition .

We say that an oriented set M can be chronologized if there exists at least one chronol-
ogization of M. Tt turns out that any oriented set can be chronologized. To make sure this we
may consider any linearly ordered set T = (T, <), which contains at least two elements and
put:

Y(t) :=Bs(M), teT.

The conditions of Definition for the function ¢ (-) apparently are satisfied. More non-trivial
methods to chronologize an oriented set we will consider in Section
The following two assertions ([.2.1] and [[.2.2) are trivial consequences of Definition [[.2.1]

Assertion 1.2.1. Let M and M, be oriented sets, and while Bs(M) C Bs (M;) and < - i

(last inclusion means that for x,y € Bs(M) the condition y o implies v x).
1

If a mapping 1, : T s 2%5MO (yhere T = (T, <) is a linearly ordered set) is a time on
M then the mapping:

U(t) = ¢ (t) N Bs(M)

15 the time om M.

10
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Assertion 1.2.2. Let M be an oriented set and and ¢ : T — 2%5M) be ¢ time om M.
(1) If Ty CT, Ty #0 and ¥(t) = 0 for t € T\ Ty, then the mapping 11 = ¢ | Ty, which
18 the restriction of 1 on the set T1 also is time on M.

(2) If the linearly ordered set (T, <) is embedded in a linearly ordered set <T, §1) (preserving
order) then the mapping 1 : T s 2B5(M)

- o Ju(), teT
w(t)_{@, teT\T

also is time on M.

Assertion affirms, that “moments of full death” may be erased from or added to “chrono-
logical history” of primitive changeable set.

Main results of this Section were anonced in [1] and published in |2, Section 3].

3 One-point and Monotone Time. Chronologization Theorems

Definition I1.3.1. Let (M, T, ) = (M, (T, <),) be a primitive changeable set.
1) The time 1 will be called quasi one-point if for any t € T the set Y(t) is a singleton.
2) The time 1 will be called one-point if the following conditions are satisfied:
(a) The time ¢ is quasi one-point;
(b) [f X € w(tl), To € ¢(t2) and t1 <ty then To < Tq.
3) The time v will be called monotone if for any elementary states x1 € 1 (t1), T2 € ¥ (t2)
the conditions xo < 11 and x1 <~ xo imply t1 < to.
In the case, when the time v is quasi one-point (one-point/monotone) the chronologization
(T, %) of the oriented set M will be called quasi one-point (one-point/monotone) correspond-

mngly.

Ezxzample 1.3.1. Let us consider an arbitrary mapping f : R — R? (d € N), where N is the
set of all natural numbers. This mapping can be interpreted as equation of motion of single
material point in the space R?. This mapping generates the oriented set M = (‘Bs(/\/l), </\_/t)’
where Bs(M) = R(f) = {f(t)|t € R} C R? and for x,y € Bs(M) the correlation Y is

true if and only if there exist ¢1,%2 € R such, that x = f (t1), y = f (t2) and t; < t5. It is easy
to verify, that the mapping:

v(t) ={f(t)} €S Bs(M), teR
is a one-point time on M.

Example makes clear the definition of one-point time. It is evident, that any one-point
time 1s quasi one-point and monotone. It turns out that a quasi one-point time need not be
monotone (and thus one-point), and monotone time need not be quasi one-point (and thus
one-point). The next examples prove facts, written above.

Ezample 1.3.2. Let us consider any two element set M = {x1, 22} (21 # x2). We construct
the oriented set M = <‘Bs(/\/l), </\_/t> by the following way:

Bs(M) = M = {z1, 22} ;
x = {(x9,x1), (x1,21), (22, 22)}

! This means that T C T and for &,y € T the correlation z < y holds if and only if x <; y.

11
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(or, in other words, xs <A—Ax1, 1 </\_4$1’ 2 </\—/‘x2) Note that the directing relation of changes
¢, can be represented in more laconic form: o= {(z2,21)} U diag(M), where diag(M) =

{(z,z) |z € M}. As a linearly ordered set we take T = (R, <) (with the usual order on the
real field). On the oriented set M we define time by the following way:

. {I1}7 t¢@;
=l 122

where Q is the field of rational numbers. It is easy to verify, that the mapping v really is time
on M in the sense of Deﬁnitio. Since 1(t) is a singleton for any ¢ € R, the time ) is
quasi one-point. If we put t; = v/2, t5 = 1, we obtain z1 € ¢ (t1), xo € ¥ (t2), To < x1, T1 <~ T2,
but t; > t5. Thus the time 9 is not monotone.

Ezxample 1.3.3. Let us consider an arbitrary four-element set M = {xy, 22, 23,24} (z; # 7,
for i # j) and construct the oriented set M = <‘Bs(/\/l), </\_/t> by the following way:

Bs(M) = M = {x1, 29, 23,24} ;
<,/\_/[ = {(ﬂfg,l‘l) , (ZE4,I3)} U dlag(M)

As a linearly ordered set we take T = ({1,2}, <) (with the usual ordering on the real axis).
Time on M is defined by the following way:

Y(t) = {{xl’x?’}’ b=

{$2,$4}, t=2.

It is not hard to prove, that the mapping ¢ is a monotone time on M. But this time, obviously,
is not quasi one-point.

Denotation 1.3.1. Futher we denote by m,n (where myn € N, m < n) the set: m,n =
{m,...,n} CN.

It appears that quasi one-point and monotone time need not be one-point. This fact is
illustrated by the following example.

Ezxample 1.3.4. Let the oriented set M be same as in Example [[.3.3] We consider the ordered
set T = ({1,2,3,4},<) = (1,4, <) (with the usual natural or real number ordering). Time on
M we define by the following way:

O(t) = {z}, tel,4
It is not hard to verify, that v (-) is quasi one-point and monotone time on M. Although, if we
put ty := 2, ty := 3, we receive, Ty € P (t1), 3 € ¥ (t2), t; < t9, but x3 <~ z5. Thus, the time ¢
is not one-point.

Definition 1.3.2. Oriented set M will be called a chain oriented set if the set Bs(M) is
the chain of M, that is if the relation < if transitive on Bs(M) and for any x,y € Bs(M) at
least one of the conditions x <y or y<— x 1s satisfied.

Oriented set M will be called a cyclic if for any x,y € Bs(M) both of the relations x <y
and y < x are true.

It is evident, that any cyclic oriented set is a chain.

Lemma 1.3.1. Any cyclic oriented set can be one-point chronologized.

12
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Proof. Let M be a cyclic oriented set. By definition of oriented set, Bs(M) # (. Choose
any two disjoint sets T1, T equipotent to the set Bs(M) (T; N Ty = 0). (Such sets must
exist, because we can put T; := Bs(M) and construct the set Ty from the elements of set
T = 2T\ Ty, cardinality of which is not smaller than the cardinality of T}.) Let <; (i = 1,2)
be any linear order relation on T; (by Zermelo’s theorem, such linear order relations necessarily

exist). Denote:
T .= T1 U T2.

On the set T we construct the relation:
Szﬁl U ﬁg U{(t,T) ‘t c Tl; T E Tz)},

or, in the other words, for t,7 € T relation ¢t < 7 holds if and only if one of the following
conditions is satisfied:

(O1) t,7 € T; and t <; 7 for some ¢ € {1,2};

(02) t e T17 T E TQ.

The pair (T, <) is the ordered union of the linearly ordered sets (T, <y) and (T3, <5). Thus,
by [39, p. 208], (T, <) is a linear ordered set. Let f : Ty +— T be any bijection (one-to-one
correspondence) between the (equipotent) sets Ty and Ty. And let g : T; — Bs(M) be any
bijection between the (equipotent) sets Ty and Bs(M).

Let us consider the following mapping v : T — 2B5M).

. {g(t)}v teTl;
v {{g<f<t>>}, reT, )

We are going to prove, that v is a time on the oriented set M.

1) Let x € Bs(M). Since the mapping g : Ty r—> Bs(M) is bijection between the sets
T, and Bs(M), there exists the inverse mapplng g Bs(M) + T,. Let us consider the
element t, = gl=!(x) € T; C T. According to .

(ts) = {g(t.)} = {9l ()} = {a}.
Therefore, x € 1(t,). Thus the first condition of the time Definition is satisfied.
2) Let z,y € Bs(M) be elements of Bs(M) such, that y <z and = # y. Denote:
te 1= 9[_1]( ) € T
= ft ( Uy )) € Ty

By (02), t, <t,. Since T N'Ty = @, we have t, # t,. Thus ¢, <t,. In accordance with ,
we obtain:

U(ta) = {g(ta }—{g([” )}Z{SB};
w(ty) { y }:{9< ( - (9[71}(y>)))}:{y}~

Consequently, x € ¥(t,), y € ¥(t,) and t, < t,. That is the second condition of the time
Definition also is satisfied.

Thus ¢ is a time on M. It remains to prove that the time v is one-point.

According to ([.2), for any ¢ € T the set ¢(¢) consists of one element (is a singleton). Thus
the condition (a) of the one-point time Definition is satisfied. Since the oriented set M is
a cyclic, the condition (b) of Definition is also satisfied. Thus time v/ is one-point. O

Theorem 1.3.1. Any chain oriented set can be one-point chronologized.

13
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Proof. Let M be a chain oriented set. Then the set Bs(M) is a chain of oriented set M, ie
the relation < = < is quasi ordelﬂ on Bs(M).

We will say that elements x,y € Bs(M) are cyclic equivalent (denotation x%y) if vy
and y<—z. In accordance with [40, page 21|, relation Z is equivalence relation on Bs(M).
Let F| and F; be any two classes of equivalence, generated by the relation =, We will denote
Fy < Fy if for any x1 € Fi, x9 € F3 it is true x < 1. According to |40, page 21|, the relation
< is ordering on the quotient set Bs(M)/ = of all equivalence classes, generated by = We

aim to prove, that this ordering is linear. Chose any equivalence classes Fi, Fy € Bs(M)/ =
Because Fi,F, are equivalence classes, they are nonempty, therefore there exists the elements
xr1 € Fi, x9 € F,. Since the oriented set M is a chain, at least one from the relations x5 < 24
or Ty < T is true. But, because any two elements, belonging to the same class of equivalence,
are cyclic equivalent, in the case x5 < x; we will have F, <— Fj, and in the case x <+ x5 we
obtain Fy < Fy. Thus (Bs(M)/=, <) is a linearly ordered set.

Any equivalence class F' € Bs(M)/ = is a cyclic oriented set relatively the relation <—
(restricted to this class). Consequently, by Lemma , any such equivalence class can be
one-point chronologized. Let (Tr,v¥r) = ((Tr, <pr),?r) be a one-point chronologization of the
class of equivalence F' € Bs(M)/ =. Without loss of generality we can assume that TpNTg = ()
for F' # (G. Indeed, otherwise we may use the sets:

o

Tr={(t,F):tcTp}, FecBsM)/=,
with ordering:

(t1, F) Sp (ta, F) <=t <pta, ti, b €Tp  (F € Bs(M)/Z)

and times:
'(;F ((t,F)) = l/JF(t), teTyr (F € %E(M)/%),

it is evident, that these times are one-point.
Thus, we will assume that T N Tg = 0, F # G. Denote:

T = U Tp.

FeBs(M)/ 2

According to this denotation, for any element ¢t € T there exists an equivalence class F'(t) €

Bs(M)/ = such, that t € Tr@. Since Tp NTe =0, F # G, such equivalence class F(t) is for
an element t € T unique, ie the following assertion is true:

(F)  For any element t € T the condition t € Tp (F € Bs(M)/ =) results in F = F(t).

For arbitrary elements ¢,7 € T we will denote ¢t < 7 if and only if at least one of the following
conditions is true:

(O1) F(t) # F (1) and F(7) < F(t).

(02) F(t)=F(r) and t <F@) T-

The pair (T, <) is the ordered union of the (linearly ordered) family of linearly ordered sets
(TF)Fe%s(M)/%' Thus, by [39, p. 208], < is a linear ordering on T.

Denote:
P(t) = (T (1), teT. (1.3)

2 In accordance with |[40] any reflexive and transitive binary relation <, defined on the some set X is named by quasi order on
X. That is the < relation on X is quasi order if and only if it satisfies the following conditions:

1) Vz € X (z<z); 2) For any z,y, z € X the correlations z<y and y<z lead to correlation z<z.

14
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Since Ypu(t) C F(t) C Bs(M), t € T, the mapping 1) reflects T into 2%s(M) - Now we are
going to prove, that v is one-point time.

(a) Let 2 € Bs(M). Then there exists an equivalence class ® € Bs(M)/=, such, that
x € ®. Since the mapping e : Te > 2% is a time on the oriented set (®, <), there exists a
time moment t € Tq, such, that z € ¥ (t). Since t € T4, then by virtue of Assertion (F) we
have ® = F(t). Therefore:

U(t) = Vrn(t) = Ya(t) 3 .
Thus, the first condition of the time Definition is satisfied.

(b) Let 2,y € Bs(M), y <z and y # . According to the item (a), there exist t, 7 € T such,
that = € ¢(t), y € ¥(7). And, using ([.3), we obtain, = € ¥(t) = Ypw)(t) C F(t), y € F(7).
Hence, since y <z, for any 2’ € F(t), v € F(7) (taking into account, that 7 =, y’%y), we
obtain y' <—2’. This means, that F'(7) <= F(t). And, in the case F(t) # F(7), using (O1), we
obtain, t < 7, so, taking into account, that F'(t) # F(7) causes t # 7, we have ¢ < 7. Thus
it remains to consider the case F(t) = F(7). In this case we have z,y € F(t). And since
y<x,y # x and Pp) is a time on (F(t), <), there exist the elements ¢', 7" € T p) such, that
x € Ypwy(t'), y € Yre (') and ' <py) 7. Therefore, since ¢/, 7" € T, using Assertion (F),
we obtain x € Ypy)(t') = Ypw)(t') = (') and y € (7). Hence v € ¢(t'), y € ¢(7'), where,
t" <pw 7' (that is t’ <pq) 7" and ¢’ # 7’). So, by (F) and (02), we obtain t' < 7'.

Thus ) is a time on M.

(c) It remains to prove, that the time ¢ is one-point. Since for any equivalence class G €
Bs(M)/ 2 the mapping ¢ is a one-point time, by , set ¢(t) is a singleton for any ¢ € T.
Thus, the first condition of the one-point time definition is satisfied.

Let x € 9(t), y € ¥(7), where ¢t < 7. Then by x € (t) = rp(t) C F(t), y € F(r).
And in the case F(t) = F(7) the relation y < z follows from the relation z =y. Concerning the
case F'(t) # F(7), in this case, by (01),(02), we obtain F(7) < F(t), which involves y .
Thus, the second condition of the one-point time definition also is satisfied.

Therefore, the time 1 is one-point. O]

Theorem 1.3.2. Any oriented set can be quasi one-point chronologized.

Proof. 1. Let M be an oriented set. Denote by £ the set of all maximum chains of the M. In
accordance with Theorem [[.3.1] for any chain L € £ there exists an one-point chronologization
((Ty,<p),v1) of the oriented set (L, <). Similarly to the proof of the Theorem [[.3.1] without
loss of generality we can assume, that T, NTy; = (), L # M. Denote:

T:=|JT.. (1.4)

Leg

Let < be any linear order relation on £ (by Zermelo’s theorem, such linear order relation
necessarily exists). By virtue of ([.4), for any element ¢ € T chain L(f) € £ exists such, that
t € Try. Since TpNTg = 0 (F # G), this chain L(t) is unique. This means, that the
following assertion is true:

(L)  For any element t € T the condition t € Ty, (L € £) causes L = L(t).

Let t,7 € T. We shall put ¢ < 7 if and only if one of the following conditions is satisfied:

(O1) L(t) # L(7) and L(t) < L(7).

(02) L(t) = L(r) and t <y 7.

The pair (T, <) is the ordered union of the (linearly ordrered) family of linearly ordered sets
(TL)ce- Thus, by [39, p. 208], (T, <) is a linearly ordered set. Denote:

() =ty @) teT. (L.5)
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Note, that 1(t) = ¢ (t) € L(t) € Bs(M), t € T.

2. We intend to prove, that the mapping ¢ : T — 2%5M) ig a time.

2.a) Let z € Bs(M). In accordance with Corollary there exists the maximum chain
N, € £ such, that x € N,. And, since the mapping ©n, : Ty, + 2™ is a time, there exists an
element t, € Ty, C T, such, that x € ¢y, (t;). Since t, € Ty,, by Assertion (L) (see above)
we have N, = L (t,). Therefore:

Y (t,) = ULty (tz) = ¥n, (tz) 2 .

Thus, for any element x € Bs(M) always an element ¢, € T exists, such, that « € ¢ (,).

2.b) Let z,y € Bs(M), y<=x, * # y. According to Corollary a maximum chain
Ngy € £ exists, such, that x,y € N,,. Since y <z, v # y and mapping ¢n,, : Tn,, — 2Nay
is a time, there exist elements t,,t, € Ty,, such, that ¢, <w,, t, (ie t, <n,, t,. t- # t,) and
r € Yn,, (tz), y € ¥n,, (t,). Since t,,t, € Ty,,, in accordance with Assertion (L), we obtain
L(t;) = L(t;) = Ngy. Therefore:

(0 (tx) = ¢L(tz) (tw) = way (tm> S
¥ (ty) = Vi, (b)) = Un,, (ty) 9.

Since L (t,) = L (t,) = Nay, t» <n,, ty and t, # t,, by (O2) we obtain t, < t, and t, # t,, that
Is b, < ty.

Consequently for any elements x,y € Bs(M) such, that y <z,  # y there exists elements
ty,t, € T, such, that t, <t,, v € Y(t,), y € ¥(t,).

Thus, the mapping ¢ : T — 2%*M) really is a time on M.

3. Since the times {¢;|L € £} are one point, from it follows, that for any ¢t € T the
set ¢(t) is a singleton. Thus, the time 1 is quasi one-point. O]

It is clear, that any oriented set M, containing elementary states z1, xs € Bs(M) such, that
T9 ¢~ 1 and x1 ¢4 o, can not be one-point chronologized. Thus, not any oriented set can be
one-point chronologized. The next assertion shows, that not any oriented set can be monotone
chronologized.

Assertion 1.3.1. If oriented set M contains elementary states 1, o, x3 € Bs(M) such, that
To$— Ty, T14FTa, T34 To, Tof T3, X14 T3, T1 # x3, then this oriented set can not be
monotone chronologized.

Proof. Let oriented set M contains elementary states xy, zo, x5 € Bs(M), satisfying the con-
ditions of Assertion. Suppose, that the monotone chronologization ((T,<),) of the oriented
set M exists. This means, that the mapping v : T — 2P5M) is a monotone time on M.
Since 1 ¢ x3 and 1 # x3, by time Definition [.2.1] there exist time points ¢1,¢3 € T such,
that 21 € ¥(t1), z3 € ¥(t3) and t3 < t;. Also, by Time Definition [[.2.1] there exists time point
ty € T, such, that xo € ¥(t2). Then, by Definition of monotone time from conditions
To < T1, I <7L$27 XT3 < To, T2 <7Ll‘3 it fOHOWS, that t1 < tg, 1o < t3. Hence t; < ts, which
contradicts inequality above (3 < t;1). Thus, the assumption about the existence of monotone
chronologization of M is wrong. O

Problem 1.3.1. Find necessary and sufficient conditions of existence of one-point chronolo-
gization for oriented set.

Problem 1.3.2. Find necessary and sufficient conditions of existence of monotone chronolo-
gization for oriented set.

Main results of this Section were anonced in [1] and published in |2, Section 4].
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4 Time and Simultaneity. Internal Time

Definition I1.4.1. Let (M, T, ) = (M, (T, <) ,¢) be a primitive changeable set. The set

Yy ={y(t) |t € T}
will be referred to as the set of stmultaneous states, generated by the time 1.

Directly from the time definition (Definition [[.2.1)) it follows the next assertion.

Assertion 1.4.1. Let (M, T,¢) = (M, (T, <),) be a primitive changeable set, and Yy be a
set of simultaneous states, generated by the time 1. Then:

U A =Bs(M).

AEYw

Definition 1.4.2. Let M be an oriented set. Any family of sets Y C 2%5M) which possesses
the property | joy A = Bs5(M) we will call the simultaneity on M.

According to Assertion [[.4.1) any set of simultaneous states, generated by the time 1 of a
primitive changeable set (M, T, ) is a simultaneity.

Let Y be a simultaneity on an oriented set M and A, B € Y. We will denote B+ A (or
B < A) if and only if:

A=B=0,or Jze€AJye B (y+x).
The next lemma is trivial.

Lemma 1.4.1. Let Y be a simultaneily on an oriented set M. Then the pair (Y, <) itself is
an oriented set.

Theorem 1.4.1. Let M be an oriented set and Y C 2%5M) be g simultaneity on M. Then
there exists time 1 on the oriented set M, such, that:

Y =Y,,
where Yy, is the set of simultaneous states, generated by the time 1.
Proof. Let M be an oriented set and Y C 2Bs(M) he g simultaneity on M.

a) First we prove the Theorem in the case, where the simultaneity Y “separates” sequential
unequal elementary states, that is where the following condition holds:

(Rp) For any z,y € Bs(M) such, that y <+ x and z # y there exists sets A, B € Y such, that
r€A ye Band A#B.

By Lemma [[.4.1] (Y, <) is an oriented set. According to Theorem oriented set (Y, <)
can be quasi one-point chronologized. Let W : T + 2Y be quasi one-point time on (Y, <). By
Definition of quasi one-point time, for any ¢ € T the set ¥(¢) is a singleton. This means,
that:

Vte T3A, €Y VY(t)={A}.

Denote:
w(t) = At7 te T.

The next aim is to prove, that 1 is time on M. Since W is time on (Y, <), then | J,.p ¥(t) = Y.
And, taking into account, that W(¢) = {A,}, t € T, we obtain {A;|t € T} =Y. Therefore,
since the family of sets Y is simultaneity on M, we have, (J,cp ¥(t) = Ujer At = Usey A =
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Bs(M). Hence, for any x € Bs(M) there exists a time moment ¢ € T such, that z € ¥(¢).
Thus, the first condition of time Definition is satisfied. Now, we are going to prove, that
the second condition of Definition [[.2.1] also is satisfied. Let z,y € M, y+« and = # y. By
condition (Rp), there exist sets A, B € Y, such, that z € A, y € B and A # B. Taking into
account, that z € A, y € B and y < x, we obtain B< A. Since B« A, A# B and ¥ — time
on (Y, <), there exist time moments ¢, 7 € T such, that A € ¥(¢), B € V(1) and ¢t < 7. And,
taking into account W(t) = {A;}, ¥(7) = {A,}, we obtain A = A;, B = A,, that is A = ¢(1),
B =1(7). Since x € A, y € B, then = € ¥(t), y € ¥(7), where t < 7.

Thus, 1 is a time on M. Moreover, taking into account that it has been proven before, we
get:

Vo= {6(t)| t €T} = {A,[te T} =Y.

Hence, in the case, when (Rp) is true, Theorem is proved.
b) Now we consider the case, when the condition (Rp) is not satisfied. Chose any element
z, such, that x ¢ Bs(M). Denote:

M = Bs(M)U{i}.
For elements ,y € M we put y<=z if and only if one of the following conditions is satisfied:
(a) z,y € Bs(M) and y«z; (b)z=y=1.

That is the relation <= can be represented by formula < = <—U{(Z, Z)}. Taking into account,
that for x,y € Bs(M) the condition y<z is is equivalent to the condition y< x, further
for relations < and < we will use the same denotation <, assuming, that the relation < is

expanded to the set M. It is obvious, that <M7 <—) is an oriented set. Denote:

Yo={BeY|dr,ye B: v #y, y<z}.
Since Condition (Rp) is not satisfied, we have Yy # (). For B € Y we put:

B:= BU{#}.
Also we put:
?QI: {B|BEYO}
Y :YUYO

Since Y is a simultaneity on M, and # € B for any set B € Y, then Y is a simultaneity
on (M , <—>. The simultaneity Y readily satisfies the condition (Rp). Therefore, according to

result, proven in paragraph a), there exists the time ¢; : T — oM on (M, <—>, such, that
Yy, = {¢1(t) |t € T} =Y. Now, we denote:

Y(t) =1 (t) N Bs(M), teT.
In accordance with Assertion [[.2.1] v is a time on M. Moreover we obtain:

Yw:{w(t)\téT}:{%(t)ﬂ%s(/\/l)\teT}:{Am%s(M)yAe?}:
—{ANBs(M)| A€ YU {ANBs(M) | A€ Yo} =

:{A\AeY}U{Bﬂ%s(MHBGYO}:YU{B|BGY0}:

18
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=YUYy=Y.
[

Definition 1.4.3. Let Y C 2%5M) pe any simultaneity on the oriented set M. Time 1) on M
will be named the generating time of the simultaneity Y if and only if Y =Yy, where Y, is
the set of simultaneous states, generated by the time ).

Thus, Theorem [[.4.1] asserts, that any simultaneity always has it’s own generating time.
Below we consider the question about uniqueness of a generating time for a simultaneity (under
the certain conditions). To ensure the correctness of staging this question, first of all, we need
to introduce the concept of equivalence of two chronologizations.

Definition 1.4.4. Let M be an oriented set and 1, : T{ — 2Bs(M) Py : Ty — 2Bs(M) e
some times for M, defined on the linear ordered sets (T1,<1), (T2, <s). We say, that the
chronologizations Hy = ((T1,<1),¢1) and Hy = ((To, <3),15) are equivalent (using the
denotation Hy 17 Ha) if and only if there exist an one-to-one correspondence & : Ty — Ty such,
that:

1) € is order isomorphism between the linearly ordered sets (T, <1), (T, <3), that is for
any t, 7 € Ty the inequality t <; T is equivalent to the inequality & (t) <o £ (7).

2) For any t € Ty it is valid the equality 11 (t) = 19 ((1)).

Assertion 1.4.2. Let M be any oriented set and VW is any set, which consists of chronologiza-
tions of M. Then the relation 1T is an equivalence relation on V.

Proof. Throughout in this proof H; = ((T;,<;), %) € W (i = 1,2,3) mean any three chronol-
ogizations of the oriented set M.

1) Reflexivity. Denote &11(t) := t, t € Ty. It is obvious that &;; is a order isomorphism
between (T, <;) and (T, <;). Besides we have ¢(t) = ¢)(£(t)), t € T. Thus H; T Hi-

2) Symmetry. Let H; 17 Ho. Then, by Definition [.4.4] there exist an one-to-one correspon-
dence &5 : Ty — Ty such, that:

1) &9 is order isomorphism between the linearly ordered sets (T4, <;), (Tq, <s).

2) U1(t) = ¥2(&12(t)), for any t € T;.

Since the mapping ;o is bijection, there exists the inverse mapping &5 (t) := 51] (t) € Ty,
t € Ty. Since & is order isomorphism between the linearly ordered sets (T4, <;), (Tg, <s),
then &y is order isomorphism between (T, <5) and (T;,<;). Moreover, for any ¢t € Ty we

obtain:

Ua(t) = s (&2 (€57(1)) ) = 1 (Ear(0))
Thus, Hs T Hi.
3) Transitivity. Let H; ] Ha, Ho 1T Hs. Then there exist order isomorphisms &5 : T1 — Ty

and 523 . TQ — T3 SllCh, that 77ZJ1(t) = 2/}2 (glg(t)), t e T1 and ’(/Jg(t) = @Dg (fgg(t)), t e TQ.
Denote, &15(t) = &3 (&12(t)), t € Ty. It is easy to verify, that &3 is an order isomorphism
between (T1,<;) and (T3, <3). Moreover, for any ¢t € T; we obtain:

PV1(t) = 2 (§12(t)) = ¥3 (23 (§12(2))) = Y3 (&3(2)) -
Therefore, Hq 1T Hs. H

Now, if we consider the question about uniqueness of a generating time for a simultaneity up
to equivalence of corresponding chronologizations, the answer still is negative. For example we
can consider a linearly ordered sets (T, <) and (T4, <) such, that ) # T; C T (more accurately
linear order relation on T is a restriction of order relation on T, and both relations are denoted
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by the same symbol “<”). If ¢, : T; — 2%5M) is a time on the oriented set M, then for any
fixed element t; € T; we can define the time:

L wl(t), tETl;
w(t)‘_{wl(tl), teT\T, (teT).

This time is such, that Y, = Y},,, although, in the case, when the ordered sets (T, <) and (T4, <)
are not isomorphic, the chronologizations ((T,<),) and ((Ty,<),%;) are not equivalent.
That is why, to obtain the positive answer for the above question, further we will impose
additional conditions on simultaneity and generating time.

Definition 1.4.5. Let M be an oriented set.
1) We will say, that a set B C Bs(M) is monotonously sequential to a set A € Bs(M)
in the oriented set M if and only if there exist elements x € A and y € B such, that y </\_/1 x and

x4~ y. In this case we will use the denotation B <—(m) A.
M M

2) Let Q C 2B5M) be any system of subsets of Bs(M). We will say, that a set A € Q is
transitively monotonously sequential to a set B € Q relative to the system Q if and only
if there exist a finite sequence of sets Cy, Cy,--- ,C,, € Q (n € N) such, that Cy = A, C,, = B

- Q
and Cy <(m) Cy_1, for any k € 1,n. In this case we will use the denotation B «—(m) A.
M M

In the case where the oriented set M is known in advance, the char M in the denotations
<—(m) and «—%m) will be released, and we will use the abbreviated denotations <—(m) and «—%m)
(r/(;/épectivelyj\)/l.

Remark 1.4.1. Tt is easy to prove, that for any system of sets Q C 2%*M) (in any oriented set

Q
M) the binary relation «—(m) is transitive on the set Q.

Assertion 1.4.3. Let M be an oriented set, and &,& C 2%M) pe systems of subsets of
Bs(M), moreover & T & (this means, that for any set A € S there exist a set A’ € &' such,
that AC A').

S
Then for any A,B € & and A", B" € & such, that A C A’, B C B’ correlation B «—(m) A

>/

leads to the correlation B’ «—(m) A’.

Proof. Suppose that the conditions of Assertion are performed. Let A,B € 6, A/, B’ € &,

ACA, BC B and B«—%m)A. Then, there exists a finite sequence of sets Cy,--- ,C, € &
(n € N) such, that Cy = A, C,, = B and C}, <—(m) Cy_; (for any k € 1,n). Since & C &', there
exist sets Cp, -+ ,C! € & such, that Cy C C}, (k € 0,n). Moreover, since Cp = AC A’ € &,
C, =B C B' € &, we can consider that Cj = A’, C] = B’. Taking into account that C} C C}

(k € 0,n), and Cy <(m)Cy_; (k € 1,n), by Definition [[.4.5] we obtain C} <m)C;_;, k € I,n

!/

(where C = A/, C". = B'). Thus B’ «(m) A" 0

Definition 1.4.6. Let M be an oriented set.

1) System of sets & C 2B5M) wyill be referred to as unrepeatable if and only if there not
exist sets A, B € & such, that A«—?m)B and B«—(?m)A. In particular, in the case, where
a simultaneity Y C 2%*M) s unrepeatable system of sets, this simultaneity we will call an
unrepeatable simultaneity.

2) Simultaneity Y C 2%5M) will be referred to as precise if and only if for any x,y € Bs(M)
such, that y<—x and x # y there exist sets A, B € Y such, that x € A, y € B, A # B and

Y
B «(m) A (this means, that this simultaneity “fizes” all changes on the oriented set M ).
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3) Simultaneity Y will be called precisely-unrepeatable if and only if it is precise and, at
the same time, unrepeatable.

Assertion 1.4.4. Let M be an oriented set and & C 2B5M) s unrepeatable system of sets.
Then:

IS
1) For any A, B € &, such, that B «(m) A is true A # B.
2) If &, C 2%M) gnd &, C &, then &, also is unrepeatable system of sets.

S
Proof. 1) Let & C 2%*™M) be unrepeatable system of sets. If we suppose, that B «—(m) A and
& &
A = B (for some A, B € &), then we obtain A «(m)B and B «(m) A, which is impossible,
since the system of sets & is unrepeatable.
2) Let &; C &. Suppose, that the system of sets & is not unrepeatable. Then, there
S &
exists sets Ay, By € &; such, that A; «—(in) B; and B, «—(in) Aj. Since & C G, there exist sets
&
A, B € & such, that Ay C A, By C B. Hence, by Assertion [[.4.3] we obtain A «(m)B and

&
B «—(m) A, which is impossible, since the system of sets & is unrepeatable. Thus, the system of

sets &, is unrepeatable, because the opposite assumption is wrong. O

Remark 1.4.2. From Remark and Assertion [[.4.4] (item 1) it readily follows, that in the
(M)

Y

case, where a simultaneity Y C 2%* is unrepeatable, the relation «—(m) is a strict order on
Y

Y (ie «—(m) is anti-reflexive and transitive relation).

Lemma 1.4.2. Let ¢ : T — 2%5M) be a monotone time on an oriented set M, and Yy be a

Y,
simultaneity, generated by the time 1. Then for any ti,ty € T the condition 1) (t5) «—(wm)q/) (t1)
leads to t; < ts.

Proof. 1) First we consider the case, where v (t3) <—(m) ¢ (t1). In this case, by Definition [[.4.5]
there exist elements x1 € ¥ (t1), x2 € ¥ (t2) such, that xe < x; and z; </ x5. Hence, since the
time 1 is monotone, we obtain ¢; < t5 (by Definition [[.3.1]).

Yy
Now, we consider the general case, 1 (t3) «—(m) % (t1). In this case, by Definition [[.4.5 there
exist time points 79,7y, -+ , 7, € T such, that 7o = t1, 7, = t5 and ¢ (73,) <=(m) ¢ (73,—1) for any
k € 1,n. By statement 1), 7,1 < 7, k € I,n. Thus, t1 =19 <73 < -+ <7, = ta. O

Definition 1.4.7. We will say, that a simultaneity Y on an oriented set is monotone-

connected if and only if for any sets A, B € Y such, that A # B it holds one of the conditions
Y Y
A«(m)B or B«(m)A.

Remark 1.4.3. Directly from Definition [.4.7] and Remark it follows, that if a simultaneity

Y
Y C 2%5M) i5 unrepeatable and monotone-connected, then the relation «—(m) is a strict linear
order on Y.

Definition 1.4.8. Let M be an oriented set and (T, <) be a linearly ordered set. Time 1) :
T +— 255M) il be called incessant if and only if there not exist time points t1,ts € T such,
that ty <ty and for any t € T, satisfying t; <t <ty it is true the equality Y (t) = ¢ (t1). In the
case, where the time 1 is both monotone and incessant it will be called strictly monotone.

Lemma 1.4.3. Let Y be precisely-unrepeatable and monotone-connected simultaneity on the
oriented set M and 1) : T s 2%5M) s the time, generating this simultaneity.

1) If the time v is strictly monotone, then it is unrepeatable (this means, that for any
t1,ta € T such, that t, # to the correlation v (t1) # 1 (t2) is valid).

2) The time 1 is strictly monotone if and only if for any t1,ty € T inequality t; < to implies

the correlation v (ts) «—‘((m) W (t1).
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3) If the time 1 is strictly monotone, then the strictly linearly ordered sets (T,>) and

Y
Y, «—(m) | are isomorphic relative the order, and the mapping ¢ : T — Y is the order

1somorphism between them.

Proof. 1) Let, under conditions of the Lemma, time ¢ : T + 2%M) be strictly monotone.
Suppose, there exist time points t; ¢, € T such, that ¢; < ¢, and ¢ (t1) = v (¢2). Since
the time ¢ (being strictly monotone) is incessant, there exists a time point t3 € T such,
that ¢, < t3 < ty and ¥ (t3) # ¥ (t1) = ¥ (t2). So far as ¥ (t3) # 1 (t1) and the simul-
Y Y
taneity Y is monotone-connected, one of the conditions v (t3) «—(m) v (t1) or ¥ (t1) «—(m) ¢ (t3)
Y
is performed. But since t; < t3 the correlation 1 (¢1) «—(m) (t3) is impossible by Lemma
Y
[.4.2l Therefore, v (t3) «—(m)? (t1). Similarly, since t3 < ty and ¢ (t3) # 1 (t2), we obtain

Y (t2) «—‘({m)l/J (t3). Hence, taking into account, that ¢ (t1) = ¢ (t2), we have ¢ (t3) «—‘({m) Y (t)

Y

and 1 (t1) «—(m) ¢ (t3), which is impossible, because the simultaneity Y =Y}, is unrepeatable.
2.a) Suppose, that the time ¢ : T + 2%M) jg strictly monotone. Chose any time

points t1,t2 € T such, that t; < t5. By the first statement of this Lemma, 1 (¢;) # ¢ (t2).

Y
Since the simultaneity Y is monotone-connected, one of the conditions v (t3) «—(m)® (1) or

Y Y
Y (t1) «—(m) Y (t2) is performed. But, so far as ¢; < tg, the condition ¢ (¢1) «—(m) ¢ (t2) is impos-
sible by Lemma |[[.4.2, Thus:

Y
th, to e Tt <ty = 77@ (tg) «—(m)@b (tl) . (16)

2.b) Now we suppose, that Condition holds. The first aim is to prove, that the time v is
monotone. Consider any elementary states z1, x2 € Bs(M) such, that x; € ¢ (¢1), x2 € ¥ (ta),
T9 <—x1 and x; <~ xo (where t1,ty € T). By Definition ¥ (tg) <—(m) ¥ (t1). Consequently,

Y
P (t2) «(m) ¢ (t1) . (L7)
If we suppose t; > to, we must obtain:
Y
¥ (t) «(m) 1) (t2) (1.8)

(indeed, in the case t; = ty the correlation follows from (I.7), and in the case t; > to
the correlation (L.8)) is caused by Condition (L.6)). Thus, in the case t; > 9, both of the
conditions and must be performed, which is impossible (since the simultaneity Y is
unrepeatable). Consequently, only the inequality t; < ¢, is possible. This proves that the time
¥ is monotone.

Thus, it remains to prove, that the time ¢ is incessant. Suppose, there exist time points
t1,te € T such, that ¢t; < to, and ¥(t) = 9 (t1) for any t € T, satisfying t; < t < t5. Then, in
particular, ¢ (t) = 1 (t2) (where ¢; < t5). Since t; < to, by Condition (L.6), correlation (L.7)
must be performed. But since ¢ (t1) = ¢ (¢2), the correlation also is performed, which is
impossible (since the simultaneity Y is unrepeatable). Therefore, the time v is incessant.

Thus, the time ) is strictly monotone.

3) Let the time 1 : T > 2%M) be strictly monotone. According to the first statement
of the Lemma, the mapping ¢ : T — Y = Y, is one-to-one correspondence between T and
Y = Y,. According to the second statement of the Lemma, for any ¢;,%, € T the inequality

Y
to > t; implies the correlation 1 (t3) «—(m) 1) (¢1). Hence, taking into account, that by remark

Y
1.4.3, (Y, «—(m)) is a linearly ordered set (with strict order), we conclude, that the mapping
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Y
1 is isomorphism between the strictly linearly ordered sets (T, >) and (Y, «—(m)). ]

Remark 1.4.4. Tt turns out, that for any precisely-unrepeatable and monotone-connected simul-
taneity Y C 2%*M) the assertion, inverse to the first statement, of Lemma in general, is
not true. To demonstrate this we present the following example.

Ezxzample 1.4.1. Let us consider the following oriented set:

Bs(M) :={1,2,3,4};
< ={(3,1), (4,2)} U diag (Bs(M)),

that is, in the other words, 3<-1, 42, 1+ 1, 2+ 2, 3<3, 4<-4. In this oriented set we
consider the following simultaneity:

Y = {{1,2}, {3,4}, {2,3}}.

Then7 we have {27 3} (m) {17 2}7 {37 4} < (m) {27 3}7 {3a 4} (m) {1a 2}7 and {27 3} <7L(Tn) {37 4}7
{1,2} <A(m){2,3}, {1, 2} <~(m) {3, 4}, moreover, any set of simultaneity Y is not monotonously
sequential by the itself. That is, schematically:

{3,4} <+m) {2,3} <+m {1,2}
N <—— m) <—
and, moreover, the relation “<—(m)” on the simultaneity Y is fully generated by the last scheme.
And from this scheme it is evident, that the simultaneity Y is unrepeatable and monotone-

connected. Moreover, it is easy to verify, that this simultaneity is precise.
Also we consider the following linearly ordered set:

T :={1,2,3},

with the standard linear order relation on the natural numbers (<). The simultaneity Y can
be generated by the following times:

¢1 : ¢1<1) = {172}7 ¢1(2) = {273}7 wl(?’) = {374};
ot he(1) = {1,2}, o(2) :={3,4}, ¥2(3) :={2,3}.

Both of times 1, and 1, are, evidently, unrepeatable, but the time )5 is not monotone, because
of:

2 € y(3), 4€u(2),
442,244, but3+£2.

Theorem 1.4.2. For any precisely-unrepeatable and monotone-connected simultaneity Y an
unique up to equivalence of chronologizations strictly monotone time 1 exists, such, that Y =
Y.

It should be noted, that the uniqueness up to equivalence of chronologizations in Theorem
is understood as follows:

“if strictly monotone times ¢; and 5, defined on linear ordered sets T; and T, are such,
that Y =Y, =Y,,, then H; 1T Ho, where H; and H, are corresponding chronologizations

(Hi = (Ti, ), i € {1,2})".

Proof. 1. Let Y be precisely-unrepeatable and monotone-connected simultaneity on an oriented
Y Y
set M. Then, by Remark [[.4.3, «—(m) is a strict linear order on Y. Hence, the relation (m)—»,

Y
inverse to the relation «—(m), also is a strict linear order on Y. Denote:

T:=Y.
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For t,7 € T =Y we will assume, that ¢ < 7 if and only if:

Y
t=T1ort(m)—rT.

Y
That is, < is (non-strict) linear order, generated by the strict order (m)—». Therefore, for
t,7 € T the following logical equivalence is true:

Y
<7 <= tm)—>T, (1.9)

where “<=" is the symbol of logical equivalence (“if and only if”) and record ¢ < 7 means, that
t <7 andt# 7. Thus, (T, <) is a linearly ordered set. Denote:

Y(t):=t, teT=Y.

Since T=Y, then ¢(t) =t € Y C2%M fort € T .

2. The next aim is to prove, that ¢ is a time on M.

(a) Since Y is a simultaneity, then for any x € Bs(M) there exists set t, € Y = T, such,
that x € t,. Therefore, we obtain v (t,) = t, > x. Thus, the first condition of the time
Definition is performed.

(b) Suppose, that z,y € Bs(M), y<+x and x # y. Since the simultaneity Y is precise,

Y
there exist ¢,,t, € Y = T such, that 2 € t,, y € ¢, and ¢, «-(m)?,. Then, by 1} ty < 1y
Moreover, since ¥(t) =t, t € T, we have:

TEl,=1Y(t); yeEL =v(ty).

Consequently, the second condition of Definition [[.2.1] also is satisfied.
Thus, the mapping 9 is a time.
3. Now we aim to prove, that the time ) is strictly monotone.
(a) Let z € ¥ (t,), y € ¥ (t,), y+x and z <4 y. Then t, = 9 (t,) <~(m) ¢ (t,) = t;. Conse-

quently, t, «—‘({m) t., ie, by 1} ty < t,. Thus, the time ) is monotone.

(b) Suppose, that this time is not incessant. Then there exist ¢;,t; € T such, that t; < o
and ¢ (t) = 1 (t1) for any t € T, satisfying the inequality ¢; <t < t5. In particular this means,
that ¢ (t2) = ¥ (¢t1). And, since (1) = 7, 7 € T, we obtain ¢, = ¢;, which contradicts the
inequality ¢; < t5. Therefore, the assumption is wrong, and the time 1) is incessant.

Thus, the time %) is strictly monotone.

4. It remains to prove, that the time 1 is unique up to equivalence of chronologizations.
Let ¥ : Ty + 2%5M) be an other strictly monotone time such, that Y,, =Y (where (T, <)
is a linearly ordered set. Then, by Lemma , the linearly ordered (by strict order) sets

Y
(Ty,>1) and (Y, «—(m)) are isomorphic relative the order, with the mapping ¢, : Ty — Y

being isomorphism, where >; is relation, inverse to the relation <;, and <; is strict order,
generated by non-strict order <;. Thus, the ordered sets (T, <;) and (Y, <) = (T, <) also
are isomorphic with the isomorphism ;. Moreover, for any ¢t € T, we have:

i(t) =¥ (¥(?),
ie, by Definition [[.4.4, ((T1,<1),¢1) 11 (T, <), 9). H
Definition 1.4.9. Let M be an oriented set, and ¢ : T +— 2B5M) pe g time on M.

A mapping h : T > 2B5M) will be referred to as chronometric process (for the time 1),
of and only if:
1) h(t) C(t) for anyt € T.
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h(T)
2) For arbitrary t,7 € T inequality t < 7 is valid if and only if h(7) «—(m) h(t) and h(t) #

h(7), where h(T) = {h(t) |t € T};

The time ¥ on M will be referred to as internal if and only if there exists at least one
chronometric process for this time.

Sense of the term “internal time” lies in the fact that in the case, where a time on a primitive
changeable set is internal, this time can be measured within this primitive changeable set, using
the chronometric process as a “clock” and states of this process as “indicators of time points”.
The next aim is to establish the sufficient condition of existence and uniquness of internal time
for given simultaneity.

Lemma 1.4.4. The generating time for precisely-unrepeatable and monotone-connected simul-
taneity is internal if and only if it is strictly monotone.

Proof. Let M be an oriented set, Y is precisely-unrepeatable and monotone-connected simul-
taneity and ¢ : T > 2B*M) ig a time on M, which generates Y (ie Y = Yy).

1) Suppose, that the time v is internal. Then there exists a chronometric process h : T —
255M) for the time .

1.a) First we are going to prove, that the time ¢ is monotone. Let z1 € ¢ (t1), o € ¥ (t2),
To < 11 and 1 ¢~ 9. Then ¥ (t2) <—(m) ¢ (t1), ie ¥ (t) «—‘((m) ¥ (t1). Hence, since the simultane-
ity Y is unrepeatable, using Assertion we obtain ¢ (t;) # ¥ (t2), ie t; # t. Thus, the
possible cases are t; < ty or to < t;. Let us suppose, that t5 < t;. Then, since h is chronometric

h(T)
process, we have, h (t;) «~(m)h (t3). From Definition [l.4.9| it follows, that h(T) C Y (where

Y
h(T) = {h(t) |t € T}), consequently, using Assertion [[.4.3} we obtain ¢ (1) «—(m) ¢ (t2), which
is impossible, because the simultaneity Y is unrepeatable, and, according to the above proved,

Y (t2) «—‘({m)l/J (t1). So only possible it remains the inequality ¢; < t3, which proves, that the
time 1) is monotone.

1.b) Now, we are going to prove, that the time 1 is incessant. Assume the contrary. Then
there exist the time points t1,t, € T such, that t; < t9, and for any ¢ € T, satisfying ¢; <
t < tq, the equality ¢ (t) = ¢ (t1) is true. Then, in particular, ¢ (t2) = ¢ (t1). But, since
h is chronometric process, then h (¢5) «Ii((rl;r)l)h(tl), and, by Assertion [[.4.3] v (t2) «—S([m)w (t1).
Therefore, by Assertion Y (t2) # 1 (t1), which contradicts the above written. Thus, the
time 1) is incessant. And, taking into account that has been proved in Paragraph 1.a), we have,
that time 1) is strictly monotone.

2) Now we suppose, that the time ¢ is strictly monotone. Then, by Lemma the

Y Y,
strictly linearly ordered sets (T, >) and (Y, «—(m)) = (Y, e&(wm)) are isomorphic relative the
order, and the mapping ¢ : T +— Y is the order isomorphism between them. That is why,

Y,
for any t1,t; € T the conditions t; < ty and ¥ (t2) «—(wm) Y (t1) are logically equivalent (where
Yy, =Y =4 (T)). Thus, taking into account statement 1 of Assertion [[.4.4] we conclude, that
the mapping h(t) = ¥(t), t € T is a chronometric process for the time . Consequently, the
time ¢ is internal. O]

The next theorem follows from Lemma and Theorem

Theorem 1.4.3. For any precisely-unrepeatable and monotone-connected simultaneity Y an
unique up to equivalence of chronologizations internal time 1 exists, such, that'Y =Y.

Philosophical content of Theorem is that the originality of pictures of reality, possibility
to see any changes in the sequential simultaneous states, and connectivity of different pictures
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of reality by chains of changes are uniquely generating the course of “internal” time in “our”
world.

Remark 1.4.5. Further we will denote primitive changeable sets by large calligraphic letters.
Let P = (M, T, ¢) be a primitive changeable set, where T = (T, Q) is a linearly ordered set.
We introduce the following denotations:
Bs(P) := Bs(M); o= Tm(P) =T,
<p:=g; vpi=¢; Tm(P):=(Tm(P),<p) = (T, ).
Also we will use the records >p,<p,>p to denote the inverse, strict and strict inverse orders,
generated by the order <p. The set Bs(P) we will name the basic set or the set of all elementary

states of the primitive changeable set P. Elements of the set Bs(P) will be named elementary
states of P. The relation <; we will name the directing relation of changes of P. The set

Tm(P) will be named the set of time points of P. The relations <p,<p,>p,>p will be referred
to as the relations of non-strict, strict, non-strict inverse and strict inverse time order on P.
In the case, where the primitive changeable set P is clear, in the notations <;, <p, <p, >p,

>p, ¥p the symbol P will be omitted, and the notations <—, <, <, >, >, ¥ will be used instead.

Remark 1.4.6. From definitions of oriented and primitive changeable sets taking into account
the denotations, accepted above, we conclude, that

Bs(P) £ 0
for any primitive changeable set P.

Main results of this Section were anonced in [1] and published in |2, Section 5].

5 Systems of Abstract Trajectories and Primitive Changeable Sets,
Generated by them
Definition 1.5.1. Let M be an arbitrary set and T = (T, <) be any linearly ordered set.

1. Any mapping r : D(r) — M, where D(r) C T, D(r) # 0 will be referred to as an abstract
trajectory from T to M (here ©(r) is the domain of the abstract trajectory r).

2. Any set R, which consists of abstract trajectories from T to M and satisfies:
U R(r)=M
reR

will be named by a system of abstract trajectories from T to M (here R(r) is the range
of the abstract trajectory r).

Theorem 1.5.1. Let R be a system of abstract trajectories from T = (T, <) to M. Then there
exists a unique primitive changeable set P, which satisfies the following conditions:

1) Bs(P)=M; Tm(P)=T (that is Tm(P) =T, <p=<).

2) For any x,y € Bs(P) the condition y <« x is salisfied if and only if there exist an abstract
trajectory v = r,,, € R and elements t,7 € ©(r) C T such, that v = r(t), y = r(7) and
t<T.

3) For arbitrary x € Bs(P) and t € Tm(P) the condition x € (t) is satisfied if and only if
there exist an abstract trajectory r = r, € R such, that t € ©(r) and x = r(t).
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Proof. Let R be any system of abstract trajectories from T = (T, <) to M. Define the following
relation:

G ={(y,z)eM xM|IreRIt,TeD(r): z=rt),y=r(r), t <7}
R
on the set M (where the symbol x denotes the Cartesian product of sets). Or, in other words,

for x,y € M the correlation y < x is true if and only if there exist an abstract trajectory
R

r=rg, € R and elements t,7 € D(r) such, that = r(t), y = r(7) and t < 7. Also we define
the following mapping or : T > 2M:

ert)= | {r®y={r@)|reR, ted(r)}.
reR, teD(r)

In particular, ¢r(t) = 0 in the case, where there not exist a trajectory r € R such, that
teD(r).

It is not hard to verify, that the pair M = (M, <}—) is an oriented set and the mapping ¢r
R
is a time on M. Therefore, the triple:

P=(M,T,pr) = ((M i—) ,(T,S)mn)

is a primitive changeable set. And it is not hard to see, that this primitive changeable set
satisfies the conditions 1),2),3) of this Theorem.

Inversely, if a primitive changeable set P; satisfies the conditions 1),2),3) of this Theorem,
then from the first condition it follows, that Bs (P;) = M, Tm (P;) = T, <p,=<. And the
second and third conditions imply the equalities <P—1 = <7]z_’ Yp, = pr. Thus,

Pi= (BP0 ) Tm Py <p)0m ) = (3190 ) (7.9 ) =P,

]

Definition 1.5.2. Let R be any system of abstract trajectories from T = (T,<) to M. The
primitive changeable set P, which satisfies the conditions 1),2),3) of Theorem will be
named by primitive changeable set, generated by the system of abstract trajectories R,
and it will be denoted by Atp(T,R):

Atp(T,R) :=P.

Thus, systems of abstract trajectories provide the simple tool for creation of primitive change-
able sets.

Main results of this Section were anonced in [1] and published in |2, Section 6].

6 Elementary-time States and Base Changeable Sets

6.1 Elementary-time States of Primitive Changeable Sets and their Properties

Definition 1.6.1. Let P be a primitive changeable set. Any pair of kind (t,x), wheret € Tm(P)
and x € Y(t), will be named by elementary-time state of P.
The set of all elementary-time states of P will be denoted by Bs(P):

Bs(P) :={w |w = (t,z), wheret € Tm(P), x € P(t)}.
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Remark 1.6.1. From definitions and it follows that Bs(P) # () for any primitive
changeable set P.

By Definition P(t) C Bs(P) for all t € Tm(P). That is why, we have:
Bs(P) C Tm(P) x Bs(P)

for any primitive changeable set P.
Let T = (T <) be any linearly ordered set and X be any set. For any ordered pair w =
(1,€) € T x X we introduce the folliwing denotations:

bs(w) :=¢, tm(w):=T7. (I.10)

Hence, for any w € T x X we obtain, w = (tm (w), bs (w)).
In particular, for any elementary-time state w = (¢, ) € Bs(P) we have:

bs(w) =z, tm(w)="=t.

Definition 1.6.2. We say, that an elementary-time state wy € Bs(P) is formally sequen-
tial to an elementary-time state wy € Bs(P) if and only if w1 = wy or bs (ws) <;bs (w1) and

tm (w1) <p tm (wq). For this case we use the denotation:

Wy < (f) wq.
P

In the case, where the primitive changeable set P, in question is known, in the denotation

wy < (fyw; the symbol P will be omitted. In this case we use the abbreviated denotation
P

wa < (f) wq.
Assertion 1.6.1. 1) If wy,wy € Bs(P) and wy < (f)wi, then tm (w1) < tm(w2). If, in addition,
wy # wa, then tm (wy) < tm (wo).

2) The relation < (f) = < (f) is asymmetric on the set Bs(P), that is if wi,ws € Bs(P),
P
Wy < (f)wy and wy < (f) wa, then w; = ws.

Proof. The first statement follows by a trivial way from Definition [[.6.2] and the second state-
ment derives from the first. O

Definition 1.6.3. The oriented set M is named anti-cyclical if for any x,y € Bs(M) the
conditions x <y and y < x cause the equality r = y.

Assertion 1.6.2. Let P be a primitive changeable set. Then:
1) The pair Q = (]B%s(P), — (f)) = (Bs(P), < (t)) is an anti-cyclical oriented set.
P
2) The mapping:

U(t) = ¥p(t) = {w € Bs(P) | tm (w) =t} € 22P) ¢ € Tm(P) (1.11)

is a monotone time on Q. y 3
3) For t; # ty we have ¥ (t1) N (t2) = 0.
4) If, in addition, (t) # 0, t € Tm(P), then the time v is strictly monotone.

Proof. 1) The first statement of Assertion follows from Definition and second state-
ment of Assertion N

2) 2.1) Let w € Bs(P). Then, by , w € Y(t), where t = tm (w).

2.2) Let wi,wy € Bs(P), wo < (Hlwy and wy # wo. According to (L.1I)), for ¢ = tm (wy),
to = tm (w9) we obtain:

wi €Y (), ws €1 (ta).
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Since wy < (f)wy and wy # wi, then, by Assertion [[.6.1] (statement 1), ¢; < to.

From 2.1),2.2) it follows, that ¥ is a time on Q.

2.3) Let w; € ¥ (t1), we € ¥ (t2), wo <— (fHwy and wq <~ (f)wy. Then, by definition of time i
([L11), tm (w1) = t1, tm (we) = to. Therefore, by Assertion [[.6.1] statement 1, ¢; < t5. Thus,
the time 15 is monotone.

3) Let t1,t; € Tm(P). Suppose, that ¥ t1) N U (t3) # 0. Then there exists an elementary-
time state w € ¢ (t;) N4 (t). Hence, by , we obtain t; = tm (w) = t.

4) Assume, that, in addition, ¢(t) # (),t € Tm(P). Then for an arbitrary ¢ € Tm(P) there
exists an elementary state x; € Bs(P) such, that x; € ¥(t). Consequently, the elementary-
time state w, = (¢, ;) € Bs(P) satisfies the condition tm (w;) = ¢, that is w, € ¢(¢). Thus,
U(t) # 0, t € Tm(P). Hence, taking into account the statement 3) of this Assertion, we
obtain, ¢ (t1) # ¥ (to) for t1,to € Tm(P), t; # ts. Consequently, the time ¢ is incessant, and,
taking into account the statement 2) of this Assertion, we conclude, that the time 1/; is strictly
monotone. [

6.2 Base of Elementary Processes and Base Changeable Sets

As it had been proved in Assertion [[.6.2] for any primitive changeable set P the pair
(Bs(P), < (f)) is an oriented set, in which < (f) is the directing relation of changes. But, it
turns out, that sometimes the relation < (f) is not quite fit for description of evolution of
elementary-time states in real systems. And in the reality, this relation may generate such
“transformations” of elementary-time states, which never took place in the real physical sys-
tem. To illustrate this fact, we consider the following example.

Ezxample 1.6.1. Let us consider the system of abstract trajectories, which describes the uniform
linear motion of the system of identical material points, evenly distributed on the straight tra-
jectory of their own motion. The identity of the material points assumes, that all characteristics
of these points in a some time moment can be reduced only to their coordinates. This means,
that a material point, which has a certain coordinates at a some time moment is completely
mathematically identical to the one point that have the same coordinates in another time. This

system of material points can be described by the following system of abstract trajectories from
R to R:

R ={ro|a€R}, where (I.12)
ro(t):=t+a, teR, a€eR (D (ro) =R, a € R).

Denote:
P = Atp((R, <), R),

where “<” is the standard linear order relation on the real numbers. By Definition and
condition 1) of Theorem Bs(P) = Tm(P) = R. We aim to prove, that for the elements
r1,22 € Bs(P) = R the condition zy < x; is equivalent to the inequality x; < z5. Indeed,
in the case 1 < x5 for t; = x1, to = x5 we obtain 1 = 1o (t1), 2 = ro (t2), where t; < ts.
Therefore, by the condition 2) of Theorem we obtain xs < x;. Inversely, if x < 1,
then, by condition 2) of Theorem [[.5.1] there exist numbers a,t,t, € R such, that ¢; < ¢,
Ty =14 (t1), Ta =14 (t2), that is 1 = t; + a, 9 = to + a, where t; < t5. Hence, z1 < 5.

The next aim is to prove, that Bs(P) = R x R. Since Bs(P) = Tm(P) = R, we have
Bs(P) C R x R. Thus, it remains to prove, the inverse inclusion. Let w = (7,2) € R x R.
Denote a, :=  — 7. Then r,,(7) = 7 + (x — 7) = x. Therefore, by condition 3) of Theorem
[L5.1] = € ¢p(7). This means, that w = (7,2) € Bs(P). The equality Bs(P) = R x R has been
proved.

By Definition of formally sequential elementary-time states, for w; = (t1,71), wy =
(ta, x2) € Bs(P) the condition wy + (f)w; is performed if and only if w; = wy or t; < ¢y and
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r1 < xo. Hence, if we choose any elementary-time states w; = (t1, 1), we = (t2, 19) € Bs(P) =
R x R, satisfying t; < t5 and z; < 9, we obtain wy < (f)w;. But in the case x; — t; # 19 — 9
there not exist an abstract trajectory r, € R such, that w;,ws € r,. This means, that in this
model of real physical process, the elementary-time state wy = (t2, r2) may not be the result of
transformations of the elementary-time state w; = (t1,21) under condition x; — t; # xg — t.
Thus, in this example, the relation < (f) generates infinitely many “parasitic transformation
relations”, which never took place in the reality.

There is a way of overcoming the above uncomfortable situation by introducing a formal
“signs of non-identity” for material points that move along the specified trajectories. For ex-
ample, instead of ([.12) we may consider the system of trajectories from R to R? of kind:

R ={ro|a€R}, where
ro(t) = (t+a,a) €eR? tER (a€R).

Note, that the value « in the second coordinate of 7,(t) should not be understood as a space
coordinate, but only as a “number” of the trajectory r,. However, in the abstract situation, this
approach is not convenient because it could complicate description of different “branched pro-
cesses” when elementary states during the evolution can be “divided” into a few, or, conversely,
several elementary states may be “merged” into one.

Another (more flexible) way of overcoming the above situation is to define the directing
relation of changes not only on the set of elementary states Bs(P), but, also, on the set of
elementary-time states Bs(P) of a primitive changeable set P. Indeed, let us consider the
primitive changeable set P := Atp(R) from Example For wy,wy € Bs(P) we can put
wy < wy if and only if tm (wy) < tm (w9) and there exist an abstract trajectory r, € R such,
that wy,ws € 1, (that is such, that bs(w;) = 7, (tm (wq)), bs(ws) = r4 (tm (w2))). Thus, we
obtain the relation “<—", which reflects only such transformations of the elementary-time states,
which actually took place in the reality.

Definition 1.6.4. Let P be a primitive changeable set.
1. Relation <— on Bs(P) is named by base of elementary processes if and only if:

(1) Vw € Bs(P) w s w.
(2) If wi,wy € Bs(P) and wy <—wy, then wy < (f)wy (ie 94— C <+ (f)).

(3) For arbitrary xi,x2 € Bs(P) such, that xe<—x; there exist wi,ws € Bs(P) such, that
bs (w1) = x1, bs (wy) = w9 and wy < wy.

2. In the case, where <— 1is the base of elementary processes on the primitive changeable set
P, the pair:
B=(P,<)

will be referred to as base changeable setE].

6.3 Remarks on Denotations

For further, base changeable sets will be denoted by large calligraphy symbols.
Let B = (P, <) be a base changeable set. We introduce the following denotations:

Bs(B) :=Bs(P); Bs(B) :=Bs(P); =

—(f) = (f); i—s =< Tm(B) := Tm(P);
B P

<g:=<p; Tm(B) := Tm(P) = (Tm(B),<p); <g=<p;

ZB::ZP; >B::>'P; /éDB = ¢'P'

3 Note that in some early works (for example in |3]) the term “basic changeable set” is used instead of the term “base changeable
set”. This situation appeared due due to existence of two variants of translation of this term from Ukrainian language.
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In the case, where the base changeable set B, is clear in the denotations ?, — (), <]i—5 <g,
B

<B, =5, >n5, ¥ the symbol B will be omitted, and the denotations <—, < (f), <B—5, <, < >, >,
1 will be used instead.
Also for elementary-time states wy,ws € Bs(B) we may use the denotations wz%wl or

. . B B . .
wy < wy instead of the denotations ws iwl Or Wy & wy (in cases, where this does not lead to

misunderstanding).
The next properties of base changeable sets follow from definitions and remarks

1.4.6}
Properties 1.6.1. Let B be any base changeable set. Then:

1. The pair By = (Bs(B),+) = (%E(B), %) is an oriented set (that is < = < is a reflexive
binary relation on Bs(B), so, for any elementary state x € Bs(B) the correlation Ti-T
is performed,).

2. Bs(B) # 0 and Bs(B) # 0.

3. <p is relation of (not-strict) linear order defined on Tm(B) (i.e. Tm(B) = (Tm(B), <p)
is linearly ordered set).

4. Bs(B) C Tm(B) x Bs(B).

5. The mapping 1 = ¥p is a time on By = (Bs(B), +).

6. <HZ—5 is reflexive binary relation, defined on Bs(B). Hence, w<—w for any elementary-time

state w € Bs(B).

7. If wi,ws € Bs(B) and wy<—wy, then wy< (f)wy, and therefore, bs(wsy) < bs(w;y) and
tm (wy) <tm (we). If, in addition, wy # wa, then tm (w1) < tm (ws).

8. For arbitrary xi,xo € Bs(B) the condition xo<—x1 holds if and only if there exist
elementary-time states wy,ws € Bs(B) such, that bs (wy) = 1, bs (ws) = 9 and wy + w;.

9. Bs(B) = {bs (w) |w € Bs(B)}.

6.4 Examples of Base Changeable Sets
Ezxzample 1.6.2. Let P be any primitive changeable set. Then the relation < (f) = < (f) is base

P
of elementary processes on P. Indeed, the conditions (1) and (2) of Definition for the
relation < (f) are fulfilled by a trivial way. To verify the condition (3) we consider arbitrary
11,73 € Bs(P) such, that xo < ;. In the case 1y = x9 by Time Definition there exist
a time point t; € Tm(P) such, that z; € ¥ (t;). Hence, for wy = wy = (t1,21) € Bs(P) we
obtain bs (wy) = bs (we) = 1 = x5 and wy < (f) w;. Thus, in the case x; = 5 the condition (3)
of Definition is satisfied. In the case x; # x5, by Definition there exist time points
t1,ta € Tm(P) such, that =y € ¢ (t1), zo € ¢ (t2) and t; < to. Hence, for wy; = (t1,21), wy =
(t1,72) € Bs(P), we obtain bs (wy) = 1, bs (ws) = x5 and wy — (f) wy. Thus, in the case x1 # xo
the condition (3) of Definition also is satisfied.

Therefore any primitive changeable set can be interpreted as base changeable set Py =
(P, < (f)) in which the relation <« (f) is the base of elementary processes.
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Example 1.6.3. Let R be any system of abstract trajectories from T = (T, <) to M. Denote:

P = Atp(T, R).

By Theorem [L.5.1} Bs(P) = M, Tm(P) = T. Moreover, by third statement of this Theorem
for (t,x) € T x M the condition (¢,x) € Bs(P) holds if and only if there exist an abstract
trajectory r = r;, € R such, that ¢t € ®(r) and x = r(t), ie such, that w = (¢,2) € r. Thus,

Bs(P) = | J . (1.13)
re€R
Then, for wi,ws € Bs(P) we put we <—[R|w; if and only if tm(w;) < tm(ws) and there
exists an abstract trajectory r € R such, that wy,ws € R (ie such, that bs (w;) = r (tm (wq)),
bs (w2) = 7 (tm (w2))). We are going to prove, that the relation <—[R] is a base of elementary
processes on P.
(a) Let w € Bs(P). Then, by (L13), there exist an abstract trajectory » € R such, that
w € r. Hence, by definition of the relation “<—[R]”, we have w <—[R]w.
(b) Let wy = (t1,21), wa = (t2,x2) € Bs(P) and wy <—[R|wy. Then, from definition of the
relation “<—[R]", it follows, that t; < ¢; and there exists an an abstract trajectory r € R
such, that wy,ws € R (ie such, that x; = r (t1), xo = r (t2)). Consequently, by statement 2) of

Theorem [[.5.1} x- A(—(R) x1. Therefore, in the case t; # t5 we have t; < t3 and x5 < x1, besides
tp

in the case t; =ty we obtain x; = r (t1) = r (t2) = x2, that is w; = wy. But, in the both cases
the correlation wy < (f) wy is true.
(c) Let 1,29 € Bs(P), xo¢ 21 (ie x2A<—(R) z1). Then, by statement 2) of Theorem [[.5.1}
tp

there exists an abstract trajectory r € R such, that z; = r (t1), xo = r(t3) for some t;,ty €
Tm(P) such, that t; < ¢5. Denote:

W; = (ti,l‘i), 1€ {1,2} .

Then, wi,ws € 1 € U, p = Bs(P), bs (w;) = z; (i € {1,2}) and, by definition of the relation
“<4-[R]", wy <= [R]ws.

From the items (a)-(c) it follows, that the relation <—[R] is base of elementary processes on
P = Atp(T,R). Thus, the pair:

At(T,R) = (P, <-[R]) = (Atp(T,R), <-[R])

is a base changeable set.
From Properties ,@H it follows, that if for a some base changeable set B we know

Tm(B), <g, Bs(B) and base of elementary processes %, then we can we can recover the set
Bs(B), the directing relation of changes < and the time vYg(t) (using the formula ¢(t) =

{z € Bs(B)| (t,z) € Bs(B)}, t € Tm(B)), and thus, we can recover the whole base changable
set B. Hence from the last example it follows the next theorem.

Theorem 1.6.1. Let R be a system of abstract trajectories from T = (T, <) to M. Then there
exists a unique base changeable set B = At(T,R), such, that:

1) Tm (At{(T,R)) =T (that is Tm (At(T,R)) =T, <aurr)=<);

2) Bs( AT, R)) = U, ep 7

3) For arbitrary wy,wy € Bs(At(T,R)) the condition wo AtéER) wy 18 satisfied if and only if
tm (wy) < tm (w2) and there exist an abstract trajectory r € R such, that wy,ws € .

4 Reference to Properties @,@D means reference to the items |8 and E] from the group of properties “Properties ’.
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Remark 1.6.2. 1. Since the construction of the base changeable set At(T,R) is based on the
primitive changeable set Atp (T, R), for any base changeable set of kind B = At(T,R) the
statements, formulated in the items 1),2),3) of Theorem remain true (with replacement
the character P by B or by At(T,R)).

2. In the case, when the linearly ordered set T is given in advance, we will use the denotation
At(R) instead of At(T,R).

6.5 Another Way to Definition of Base Changeable Sets

The following theorem demonstrates another, more laconic, although more artificial, way for
the definition of the base changeable set concept.

Theorem 1.6.2. Let T = (T, <) be any linearly ordered set, X be any set and <— be a binary
relation, defined on some set B C T x X. Suppose, that the relation <— satisfies the following
conditions:

1. Relation < s reflexive on B;
2. Vwi,ws € B the conditions wy <—w; and wy # wy lead to tm (wy) < tm (ws).
Then there exists a unique base changeable set B, which satisfies the following conditions:

a) Tm(B) =T,

b) Bs(B) = B;
Bs

c) &« =<.
B

Proof. 1. Denote:

rw1,w2 = {wth}) W1, W2 S B
R = {Tww Wi, w2 € B, wy < w1} (1.14)

We are going to prove, that all elements of the set R are abstract trajectories from T to X.
Consider any fixed wy,wy € B such, that wy <—w;. Since 7y, 4, = {w1,w2} € B C T x X,
we conclude, that r,, ., is a binary relation from T to X. We shall prove, that this relation
is function. Assume the contrary. Then there exist (¢, 1), (t,2) € T4, 4, such, that z; # xy
(and, consequently, (¢,21) # (t,x2)). Thus only two cases (t,x1) = wq, (t,22) = wy or (t,x1) =
wa, (t,x9) = wy are possible. But, since wy < wy, by the condition [2| of this Theorem, in the
both cases we obtain wrong inequality ¢ < ¢. Hence, the relation r, ., is function. This means,
that r,, «, is an abstract trajectory from T to X'. Thus, R is a system of abstract trajectories
from T to (J,cr R(r) € X. Denote:

B:= At (T,R).

a) By Theorem [[.6.1] (item 1), Tm(B) = T.
b) By Theorem (item 2):

Bs(B) = U r= U {wi,wr} € B. (L.15)
reR wi,wy € B
Wo <+ W1

From the other hand, taking into account, that the relation <— is reflexive, we obtain the

inverse inclusion:
Bs(B) = U  Awvw}2J{w}=B (1.16)

wi,ws € B weB

Wo <= wq
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Thus, Bs(B) = B. Hence, the base changeable set B satisfies the conditions a),b).

c) We aim to prove, that the condition c) for the base changeable set B also is satisfied. It
is necessary to prove, that for any w;,ws € B = Bs(B) the condition wy < w; is equivalent to
the condition wy %wl (that is to the condition ws < w;). Since both the relations < and %

are reflexive on Bs(B) = B, it is sufficient to prove the last assertion only for the case wy # ws.
Thus, we consider any fixed wy,wy; € B = Bs(B) such, that w; # ws.
c.1) Suppose, that wy <~ w;. Then, by Theorem [[.6.1] (item 3)

tm (wy) < tm (w2) (L.17)

and there exist a trajectory ry, ., € R (ws<—wp) such, that wy,ws € ry,w = {w1,wa}.
Consequently, since wy <— w; and wy # ws, one of the following conditions:

Wo <+ w; Or Wi <+ wo

must be fulfilled. But the case w; <— ws is impossible, because in this case, by the condition
of the present theorem we obtain the inequality tm (w2) < tm (w;), which is in a contradiction
to the inequality ([.17)). Therefore, wy <— w;.

c.2) Conversely, suppose, that wy <—w;. Then, by ([.14)), r,, ., € R, and, by the condition
of this Theorem, tm (w;) < tm (w2). Hence, by Theorem [I.6.1] (item 3) wq <— w.

The equality % = < have been proven. Thus, the base changeable set B satisfies the

conditions a),b),c).

We need to prove, that the base changeable set B, which satisfies the conditions conditions
a),b),c) is unique. Assume, that a base changeable set B, also satisfies the conditions a),b),c).
We shall prove, that this base changeable set B; must satisfy the conditions 1),2),3) of Theorem
for the system of abstract trajectories R, defined in ([.14]).

2.1) By the condition a), Tm (B;) = T.

2.2) Using the condition b), and equalities ([.15)),(L.16) we obtain:

Bs (B)) =B =Bs(B) = |

reR

2.3) Since both base changeable sets B and B; satisfy the condition c), we have:

Bs Bs Bs
=G =4 = — .
By B At(T,R)

This means, that B; satisfies the condition 3) of Theorem [[.6.1]
Therefore, the base changeable set B; satisfies all conditions of Theorem for the system
of abstract trajectories R. Thus, by Theorem [1.6.1, B; = At(T,R) = B. ]

Remark 1.6.3. From Properties and Definition it follows that for base changeable set
B, which satisfies the conditions a),b),c) of Theorem the following propositions are true:

1. Bs(B) = bs (B) = {bs (w) |w € B};

2. for arbitrary z,xo € Bs(B) the correlation zy <27 holds if and only if there exist
elementary-time states wy,wy € Bs(B) such, that bs (w;) = 21, bs (wq) = 29 and wy < wy.

3. ¥p(t) = {bs(w) |w € B, tm (w) =t}, t € Tm(B). In particular, ¢5(t) = () in the case,
where there not exist w € B such, that tm (w) = t.

Remark 1.6.4. Let B be any base changeable set. Denote:
T:=Tm(B); X :=Bs(B); B:=Bs(B), <« := (Iii‘

It is obvious, that conditions 1,2 of Theorem for T, X, B, < are satisfied. Moreover, B is
a (unique) base changeable set, which satisfies conditions a),b),c) of the conclusion part of this
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theorem. Thus, using Theorem we may give the new definition of the base changeable set
notion as a mathematics structure, which consists of linearly ordered set T = (T, <), set X,
subset B C T x X, and binary relation <—, defined on B, satisfying conditions 1,2 of Theorem
. This approach to definition of base changeable sets is implemented in [9].

From Theorem (taking into account Remark [[.6.4)) we obtain the following corollary.
Corollary 1.6.1. If for base changeable sets By, By we have Tm (By) = Tm (By), Bs (B;) =

Bs (By), « =<, then B = Bs.
B1 B2

Main results of this Section were anonced in [1| and published in |5, Section 2|, while Theo-
rem is published in [8, Theorem 2.2].

7 Chains in the Set of Elementary-time States. Fate Lines and their
Properties

Using definition of base changeable sets as well as assertions [[.6.2| and [[.6.1] (item 2) we obtain
the following assertion.

Assertion 1.7.1. Let B be a base changeable set. Then:
1) The pair Qp = <B5(B), <]B;—5> = (Bs(B), <) is an anti-cyclical oriented set.
2) The mapping

D(t) = ds(t) = {w € Bs(B) [tm (w) = t} € 25B) ¢ € Tm(B) (1.18)

18 a monotone time on Qp.
3) If, in addition, ¥(t) # 0, t € Tm(P), then the time 1 is strictly monotone.

According to Assertion|I.7.1] for any base changeable set B the pair QO = (Bs(B), <) is (anti-
cyclical) oriented set. Therefore we may introduce transitive sets and chains in the oriented set
(Bs(B), <—). From anti-cyclicity of the oriented set (Bs(B), <) it follows the following assertion.

Assertion 1.7.2. Let B be a base changeable set.

1) Any transitive subset N' C Bs(B) of the oriented set (Bs(B), <) is a (partially) ordered
set (relatively the relation < ).

2) Any chain L C Bs(B) of the oriented set (Bs(B), <) is a linearly ordered set (relatively
the relation < ).

Denotation 1.7.1. Futher we denote by LI(B) the set of all chains of the oriented set
(Bs(B), &) = (Bs(B), +-).

Definition 1.7.1. Let B be a base changeable set.
1) Any mazimum chain £ C Bs(B) of the oriented set (Bs(B),%) = (Bs(B), <) will be
named by fate line of B. The set of all fate lines of B will be denoted by Ld(B): {E]}
Ld(B) ={L € LI(B) | L is a fate line of B} .

2) Any fate line, which contains an elementary-time state w € Bs(B) will be named the
(eigen) fate line of elementary-time state w (in B).

3) A fate line £ € Ld(B) will be named the (eigen) fate line of the elementary state x €
Bs(B) if and only if there exists the elementary-time state w, € Bs(B) such, that bs (w,) = x
and L is eigen fate line of w,.

5 Ukrainian name of the term “fate line” looks like as “liniya doli” (in English transliteration). This explains the genesis of the
denotation “Ld(B)”. Note, that some denotations in this paper are generated by Ukrainian names of corresponding terms in English
transliteration.
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From Definition it dollows, that
Ld(B) C Li(B)

for any base changeable set B.
It is clear that, in the general case, an elementary (elementary-time) state may have many
eigen fate lines.

Definition 1.7.2. We will say, that elementary (elementary-time) states x1,z2 € Bs(B),
(wi,ws € Bs(B)) are united by fate if and only if there exist at least one fate line L € Ld(B),
which is eigen fate line of both states xq,xs (wi,ws).

Assertion 1.7.3. 1) Any elementary-time state w € Bs(B) must have at least one eigen fate
line.

2) For elementary-time states wy,wq € Bs(B) to be united by fate it is necessary and sufficient
satisfaction one of the following conditions:

Wy =Wy O w4 Wws. (1.19)

Proof. 1) The first statement of this Assertion follows from Corollary [.1.2]

2) 2.a) Suppose, that for the elementary-time states wq,ws € Bs(B) there exist a common
fate line £ € Ld(B) such that wy,ws € £. Then, by Assertion [[.7.2] item 2, the pair (£, <) is
a linearly ordered set. Thus at least one of the conditions must be fulfilled.

2.b) Let, wy,ws € Bs(B) and wy<—w;. Then, by Corollary there exist a maximum
chain (fate line) £ C Bs(B) (£ € Ld(B)) such, that wy,wy € L. O

Assertion 1.7.4. 1) Any elementary state x € Bs(B) must have at least one eigen fate line.
2) For elementary states x,y € Bs(B) to be united by fate it is necessary and sufficient
satisfaction one of the following conditions:

Yy<x or Ty (1.20)

Proof. 1) Let x € Bs(B). Then, by the definition of time, there exist a time point ¢ € Tm(B)
such, that = € ¥(t). By Assertion [[.7.3] the elementary-time state w, = (t,2) € Bs(B) must
have an eigen fate line £ € Ld(B). This fate line £ must be eigen fate line of elementary state
.

2) 2.a) Let z,y € Bs(B), y<«x. Then, by Property (see Properties [[.6.1)), there
exist elementary-time states wy,ws € Bs(B) such, that bs(w;) = z, bs (ws) = y and wy < wy.
By Assertion [[.7.3] there exist a common fate line £ € Ld(B) for the elementary-time states
wi,wsy (such, that wy,ws € £). By Definition [[.7.1] this fate line £ must be eigen fate line of
both elementary states x and y.

2.b) Suppose, that for the elementary states z,y € Bs(B) there exist a common eigen
fate line £ € LLd(B). Then, there exist elementary-time states wy,ws € Bs(B), such, that
bs (w1) = x, bs (w2) = y and wy,ws € L. Hence, by Assertion [[.7.3] statement 2), one of the
conditions wy <— wy or wy < wo must be satisfied. Then, by Property @, at least one of the
conditions must be fulfilled. O

As it was shown in Theorem any system of abstract trajectories, defined on some
linearly ordered set T = (T, <), generates the base changeable set At(T,R). The next aim is
to show, that any base changeable set B can be represented in the form B = At(T, R), where

R is some system of abstract trajectories, defined on some linearly ordered set T.
Definition 1.7.3. Let R be a system of abstract trajectories from T = (T,<) to M.

1. Trajectory v € R will be named a mazimum trajectory (relatively the R) if and only
if there not exist any trajectory p € R (p # r) such, that © (r) C D (p) and r(t) = p(t)
t € ®(r) (that is such, that r C p).
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2. The system of abstract trajectories R will be referred to as the system of mazrimum
trajectories if and only if any trajectory r € R is mazimum trajectory (relatively the R).

Recall, that in Subsection we introduced the following denotation (for any base change-
able set B):
Tm(B) := (Tm(B), <p).

Assertion 1.7.5. Let B be a base changeable set. Then:

1) Any chain L € LI(B) is an abstract trajectory from Tm(B) to Bs(B).

2) The set LI(B) is a system of abstract trajectories from Tm(B) to Bs(B).

3) Any fate line L € Ld(B) C LI(B) is a mazimum trajectory (relatively the system of
abstract trajectories LI(B)).

4) The set Ld(B) is a system of mazimum trajectories (from Tm(B) to Bs(B)).

Proof. 1) Let £ C Bs(B) be a chain of the oriented set (Bs(B),<). Since Bs(B) C Tm(B) x
Bs(B) and L C Bs(B), then L is a binary relation from the set Tm(B) to the set Bs(B). Thus,
to make sure that £ is an abstract trajectory from Tm(B) to Bs(B), it is sufficient to prove,
that this relation £ is a function from Tm(B) to Bs(B). Suppose contrary. Then there exist
elementary-time states wy,ws € L of kind wy = (¢,21), we = (t,x2), where x1 # xs. Since L
is a chain, one of the conditions wy < w; or wy < wy must be satisfied. Assume, that wq < w;.
Then, since w; # wy, by Property , we obtain ¢ < t, which is impossible. Similarly the
assumption w; <—woy also leads to contradiction. The obtained contradiction proves that the
chain £ is a function. Thus, we have proved item 1).

Taking into account, that, according to item 1), any chain £ € LI(B) is an abstract trajec-
tory, we may use the notations (L) for the domain of £ and = L(t) (where t € D(L)) to
indicate the fact that (¢,x) € L.

2) Chose any elementary state x € Bs(B). By the time definition, there exist a time point ¢ €
Tm(B) such, that = € ¢(t). By Assertion [[.1.1] item 2, the singleton set £, = {(¢,z)} C Bs(B)
is a chain of the oriented set (Bs(B),<). Besides, R (L,) = {x} > x. Thus, any elementary
state © € Bs(B) is contained in the range of some abstract trajectory £, € LI(B). Therefore,
Uiy R(L) = Bs(B). Thus, taking into account the statement 1) of this Assertion we
conclude, that LI(B) is the system of abstract trajectories from Tm(B) to Bs(B).

3) Let £ € Ld(B) be a fate line of B (ie £ is a maximum chain of the oriented set (Bs(B), +—)).
Then, there not exist any chain (abstract trajectory) £, € LI(B) such, that £ C £;. Hence, L
is a maximum trajectory (relatively the system of abstract trajectories LI(B)).

4) Now, we are going to prove, that {J.cp 4 R(L) = Bs(B). Since Upepqp £ S Bs(B) C
Tm(B) x Bs(B), we have oy R(L) € Bs(B). Thus, it remains to prove the inverse
inclusion. Chose any elementary state = € Bs(B). By Assertion [[.7.4] (item 1), the elementary
state © must have an eigen fate line £, € Ld(B). This (by Definition means, that there
exist an elementary-time state w, = (t,x) € Bs(B) such, that w, € L,. Since (t,z) € L,, then
L,(t) = x. Therefore, x € R (L) € Upcpap RL). Thus, Urepap R(L) = Bs(B). Hence,
Ld(B) is a system of abstract trajectories from Tm(B) to Bs(B). Since (by item 3 of this
Assertion) any fate line £ € Ld(B) C LI(B) is a maximum trajectory relatively the system
of abstract trajectories LI(B), it is the maximum trajectory relatively the narrower system of
abstract trajectories Ld(B). O

Assertion 1.7.6. Let R be a system of abstract trajectories from T to M. Then
R CLI(At(T,R)).

Proof. Let R be a system of abstract trajectories from T = (T, <) to M. Let us consider any
r € R. According to Theorem we get r C Bs (At (T, R)), moreover, for any wy,ws €

the condition wy ) HR) wy holds if and only if tm (wy) < tm (wy). Hence, since (T, <) is linearly
t(T,

ordered set, we have, that r is a chain of At (T, R). ]
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The next theorem shows, that any base changeable set can be generated by some system of
maximum trajectories.

Theorem 1.7.1. For any base changeable set B the following equality is true:

At (Tm(B), Ld(B)) = B.

Proof. Denote: R := Ld(B). We need to prove, that At(R) = B. {[|}
1) By Assertion R = Ld(B) is the system of abstract trajectories from Tm(B) =
(Tm(B), <g) to Bs(B). Hence, by the first item of Theorem [.6.1]

Tm (At(R)) = Tm(B).
2) By the second item of Theorem [[.6.1}

Bs(At(R)) = |Jr= ] £ < Bs(B). (1.21)

rer LeLd(B)

On the other hand, by Assertion [[.7.3] for any w € Bs(B) the fate line £, C Bs(B) exists such,
that w € £,,. Threfore, Bs(B) C U,cpqp £ = Bs (AL(R)). And, taking into account (.21) we
obtain:

Bs (AL(R)) = Bs(B).

3) Let us consider any elementary-time states w; = (t1,71), we = (t2,72) € Bs(B) =
Bs (At(R)).
3.a) Suppose, that wy <E wi. By Property 1.6.1, tm (wq) < tm (ws). Moreover, by Assertion

(item 2) the fate line £ € Ld(B) exists such, that wi,ws € £. Thus, by Theorem [[.6.]]

(item 3), wo <+ wq, that is wy <+ wy.
At(Ld(B)) At(R)

3.b) Conversely, suppose, that ws < wy, scilicet we < w;. Then, by Theorem [.6.1
At(R) At(Ld(B))

(item 3), tm (wy) < tm (w2) and there exists the fate line £ € Ld(B) exists such, that wy,ws € £.
Since the fate line £ is a chain, at least one from the correlations ws ?wl or wq <Ew2 must

be true. We shall prove, that wggwl. Assume the contrary (ws <4 wi). Then, we have
B

w1 ?wg and wy # w; (because in the case w; = wy we have wy %wl). Hence, by Property
1.6.1)(7), tm (w2) < tm(wy). The last inequality is impossible, because we have proved, that
tm (wy) < tm (wy). Therefore, wy ?wl.
From the items 3.a) and 3.b) it follows, that <E = A?z : (for the bases of elementary processes
t
on Bs (At(R)) = Bs(B)).
According to the items 1),2),3) below, we have, that Tm (At(R)) = Tm(B), Bs (At(R))

Bs(B), A?Q) =< Hence, by Corollary [[.6.1] we obtain At(R) = B.
t

CIll

The following example shows that the equality Ld(A¢(R)) = R for any system of maximal
trajectories R, in the general case is not true. Moreover, in general, we can not even assert
about the inclusion of one of these sets to another.

Ezxzample 1.7.1. Let f: R +— R be the function of kind:

iy =1t

We consider the system of abstract trajectories R = {r,|a € [0,00)}, where

te R

Ta(t) L= f(t + a)v te (—OO,Q] (© (’roz) = (—O0,0{]), € (0,00);

6 We use the abbreviated denotation At(R) instead of At(Tm(B),R).
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ro(t) : =0, te0,00) (D(ro) =[0,00)), a=0.

It is easy to verify, that R is the system of maximum trajectories from R to [0, 00). However,

the trajectory 1o € R is not fate line of base changeable set At(R). Thus, ry ¢ Ld(At(R)),

and, therefore R Z Ld(At(R)). From the other hand, we may consider the trajectory of kind:
ry(t) =0, teR (D (ry) =R).

(re =A{t,rg () [t e R} = {(£,0)[t € R} C |, e = Bs (At(R))). It is easy to verify, that
ry is a fate line of base changeable set At(R), although ry” ¢ R. Hence, Ld(At(R)) € R.

o | o

Graph of the trajectory y = r,(t) for a € (0, 00).

Below it will be described the simplest class of cases, where the equality Ld(At(R)) = R
still takes place.

Definition 1.7.4. System of abstract trajectories R from T = (T,<) to M will be named a
system of individual trajectories if and only if any two different trajectories r1,ro € R are
disjoint (Vri,r9 € R (r1 £ro = r1Nry=10)).

It is easy to see, that a system of abstract trajectories R from T = (T, <) to M is a system
of individual trajectories if and only if for any r1,ry € R such, that r; # 7o it is true one of the
following propositions:

D(r)ND(re) =0 or ri(t) #ra(t) (VE €D (1) ND (r2)).

From here, in particular, it follows, that the trajectory system R in Example|l.6.1]is a system
of individual trajectories.

Theorem 1.7.2. Let R be a system of individual trajectories from T = (T, <) to M. Then:
Ld(At(T,R)) = R.

Proof. Throughout this proof symbol “<” will mean the directing relation of changes or the
base of elementary processes in the base changeable set At(R) = At(T,R).

1. Let r € R. According to Assertion [L.7.6] r € LI (At(R)), that is the trajectory r is a
chain of the oriented set (Bs(At(R)),<«). We aim to prove, that r is a fate line of At(R))
(that is 7 is a maximum chain in Bs(A¢(R))). Suppose opposite. Then there exists a fate line
L € Ld (At(R)) such, that » C L. Since the inclusion r C L is strict, there exists an elementary-
time state w € L such,that w ¢ r. From the other hand, by definition of abstract trajectory
(Definition [[.5.1] item [I), any trajectory of the system R is nonempty. Hence, there exists an
elementary-time state wy € r. Since r C L, we have wy € L. Therefore, the elementary-time
states w and wy are united by fate. Thus, by Assertion [[.7.3] one of the conditions w <—wy
or wy < w must be satisfied. But, in the both cases, by Theorem (item 3), a trajectory
r1 € R must exist such, that w,wy € r1. Since w ¢ r and w € ry, we have r # r;. However,
from the other hand, wy € r N7y, which is contradicts to the fact, that R is the system of
individual trajectories. This contradiction proves, that r is a fate line of At(R)). Thus:

R C Ld (At(R)). (1.22)
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2. Let, £ € Ld (At(R)). From Remark and Corollary it follows, that any fate line
of any base changeable set is nonempty set. Hence, there exists an elementary-time state w € L.
Since w € £ C Bs(A#(R)), then, by Theorem [[.6.1] (item 2), there exist a trajectory r € R
such, that w € r. Let us consider any elementary-time state w; € £. And because w,w; € L,
then the elementary-time states w and w; — are united by fate. Hence, by Assertion one
of the conditions w; < w or w 4wy must be satisfied. Therefore, by Theorem [[.6.1] (item 3), the
trajectory r; € R such, that w,w; € r; must exist. Thus, we have, that, w € r N r;. But, since
R is the system of individual trajectories, the last relation is only possible when r = r;. Hence,
any elementary-time state w; € £ belongs to r. This means, that £ C r. But, according to
the item 1 of this proof, the trajectory r also is the fate line of A¢(R). Since r and L are the
fate lines of At(R), the inclusion £ C r is possible only by condition £ = r. Thus, L =r € R.
Taking into account, that the fate line £ € Ld (A¢(R)) had been chosen by an arbitrary way,
we obtain the inclusion, inverse to the . O]

Ezxzample 1.7.2. Let X be a complete metric space. Recall [41, page. 4], that a dynamic system
on X is any pair of kind:
S=(©,W), where: (1.23)

e O C R is an arbitrary subset of the real axis R;

e W is an operator-valued function, defined on the set © = {(7,t,) € R%| to,to + 7 € O},
which maps any pair of kind (7,%y) € O to the opetrator W (7,ty) : X — X, and satisfies

the following conditions:
W (0,t))x =z, xz€X, ty€O; (1.24)
W(t—i‘s,t(]):W(t,to—FS)W(S,tg), to,to—f—s,to—i‘t—i—é@e@, (125)
where the product of operators is defined by the standard way (W (t,to + s) W (s,t9) =
Wt to+s) (W (s,tp) x), x € X).
(Note, that the operators W (7, o) ((7,t,) € ©) may me nonlinear.)
Any dynamic system S of kind ([.23) generates the system of abstract trajectories:
Rs = {res, |z € X, to € OF,
Tz to (t) =W (t — toﬂfo) r, rvE€X, te e (126)
from Tg = (0,<) to X, where < is the standard linear order relation on the real numbers.
From ([.24)),(L.25) it follows, that, any trajectories from the Rg possess the following properties:

Teto (to) =2, x€X, tH€O,

— /
Tyt = T{Tz,t/o(to)],to’ r € X, to, 1y € 0.

Thus, for any fixed t; € © the system of trajectories Rg can be represented in the form:
Rs = {rsq, |z € X}. (1.27)

We are going to prove, that Rg is the system of individual trajectories. Indeed, consider
any fixed number ¢, € ©. Using the equality ([.27), we may consider arbitrary trajectories
Tu1to> Tzato € Rs. Suppose, that for some ¢ € © we have 7, 4, (t) = 74,4 (t). Then, taking into
account ([.24]), (I.25), (L.26]), we obtain:

To =W (0,t0)xe =W (tog — t,t) W (t — to, to) o = W (to — t, 1) Tup sy (t) =
= W(to — t,t)T’xhtO(t) = W(to —t7t)W(t —to,t0)$1 = XT1.
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Consequently, 14, ¢, = 72,4 This means, that for any trajectories r;, 1, 72,4 € Rs such, that
Tuito 7 Tauoty We have ry 4 (t) # 14,4 (t) (V& € ©). Hence, Rs is the system of individual
trajectories. In particular, for any x € X and ¢y, € © there exists a unique trajectory p, € Rs
such, that p,, (to) = = (where py 1y = T44,)-

The system of abstract trajectories Rg generates the base changeable set At (Rs), moreover,
by Theorem [[.6.1, Tm (At (Rs)) = ©. From Theorem it follows, that if we know the base
changeable set At (Rs), then we can recover the system of trajectories Rs. From here, we can

uniquely restore the evolution operators {W (1,t0) | (7,t0) € é} by the help of formula:

W (T,t0) x = payy (T+10), z€X, to,to+7€O,

where p, ., € Rs is the trajectory, satisfying the condition p, 4, (to) = . Thus, the dynamic
system S can be uniquely restored by the base changeable set At (Rs). Consequently, dynamic
systems of kind ([.23)) can be interpreted as particular cases of base changeable sets.

Main results of this Section were anonced in [1] and published in [5, Section 3].

8 Changeable Systems and Processes

Definition 1.8.1. Let B be a base changeable set. Any subset S C Bs(B) we will name a
changeable system of the base changeable set B.

In the mechanics the elementary states can be interpreted as the states or positions of
material point in various moments of time. That is why, the concept of changeable system
may be considered as the abstract generalization of the notion of physical body, which, in the
general case, has not constant composition.

Definition 1.8.2. Let B be a base changeable set. Any mapping s : Tm(B) — 2%55) such,
that s(t) C (t), t € Tm(B) will be referred to as a process of the base changeable set B.

Since primitive changeable sets can be interpreted as base changeable set with the base of
elementary processes < (f), the chronometric processes, introduced in Definition [[.4.9] can be
considered as the particular cases of processes, introduced in Definition [[.8.2]

Let S C Bs(B) be an arbitrary changeable system of any base changeable set B. Denote:

S™(t) = {z € Bs(B) | (t,2) € S}, € Tm(B) (1.28)

(in particular S~ (t) = 0 in the case, where there do not exist x € Bs(B) such, that (t,z) € S).
It is easy to see, that S™(t) C v(t), t € Tm(B). Thus, by Definition [[.8.2) S™ is a process of
the base changeable set B.

Definition 1.8.3. The process S~ will be named the process of transformations of the
changeable system S.

Assertion 1.8.1. Let B be a base changeable set.

1. For any changeable systems Sy, 5, € Bs(B) the equality ST = S5 holds if and only if
Sl - SQ.

2. For an arbitrary process s of the base changeable set B a unique changeable system
S C Bs(B) exists such, that s = S~ .

Proof. 1. To prove the first statement, it is enough to verify that for any S, Sy € Bs(B) the

equality ST = S5 implies the equality S; = Sy. Hence, suppose, that S7" = S5. Then for

any t € Tm(B) we have Sy (t) = S5(t). Therefore, by ([.28), for an arbitrary ¢t € Tm(B) the

condition (¢,x) € S; is equivalent to the condition (¢,z) € Sy. But, this means, that S; = Ss.
2. Let s be a process of a base changeable set B. Denote:
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S:={(t,x)[te TmB), zes(t)} = (] ({t} xs(t)),

teTm(B)

where the symbol x denotes Cartesian product of sets. Since for any pair (t,z) € S it is true
x € s(t) C(t), we have S C Bs(B). Therefore, S is a changeable system of B. Moreover, for
any t € Tm(B) we obtain:

S™(t) = {x € Bs(B) | (t,z) € S} = {x € Bs(B) |z € s(t)} = s(t).

Consequently, S~ = s. Suppose, an other changeable system S; exists such, that S7" = s.
Then, S~ = ST, and, by the statement 1, S = S;. Thus, changeable system S, satisfying
S~ = s is unique. O

Therefore, the mapping (-)~ provides one-to-one correspondence between changeable systems
and processes of any base changeable set. Taking into account this fact, further we will “identify”
changeable systems and processes of any base changeable set, and for denotation of processes
of a base changeable set we will use letters with tilde, keeping in mind, that any process is the
process of transformations of some changeable system.

We say, that a changeable system U C Bs(B) in a base changeable set B is a subsystem of
a changeable system S C Bs(B) if and only if U C S. The following assertion is true:

Assertion 1.8.2. Changeable system U C Bs(B) is a subsystem of a changeable system S C
Bs(B) if and only if:
Vte Tm(B) U~ (t) C S™(t).

Proof. 1. Let S,U C Bs(B) and U C S. Then, by (I.28), for any ¢ € Tm(B) we obtain:
U~(t)={zxe€Bs(B)|(t,z) e U} C{x € Bs(B)| (t,z) € S} = S~(¢t).
2. Conversely, suppose, that U~(t) C S~ (t) for any ¢t € Tm(B). Denote:

Si=|J {thxs~@); Uit):= (J {t}=xU~@.

teTm(B) teTm(B)

As it had been shown in the proof of statement 2 of Assertion Sy =8~ Uy =U0".
Therefore, by the first item of Assertion [[.8.1] S; =S, Uy = U. Thus:

v=t:= |J {gxvrmc |J {Bxsw=5==5
teTm(B) teTm(B)

]

Definition 1.8.4. We say, that the elementary state x € Bs(B) of a base changeable set B
belongs to a changeable system S C Bs(B) in a time point t € Tm(B) if and only if x € S™(t).

The fact, that elementary state x € Bs(5) of a base changeable set 3 belongs to a changeable
system S in a time point ¢, will be denoted by:

x €lt,B] S,
and in the case, when the base changeable set is clear, we will use the denotation:
x €]t] S.

By Assertion [I.8.2 for any changeable systems U, S C Bs(B) the correlation U C S holds if
and only if for any ¢ € Tm(B) and = € Bs(B) the condition = €[t] U assures = €[t] S.
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The last remark indicates that a changeable system of any base changeable set can be
interpreted as analog of the subset notion in the classic set theory, and the relation € []
can be interpreted as analog of the belonging relation of the classic set theory. However, the
elementary-time state is not the complete analogue of the notion of element in the classic set
theory, because knowing all the elementary-time states of a base changeable set, we can not
fully recover this base changeable set.

It is evident, that any fate line £ € Ld(B) of a base changeable set B is the changeable
system of B.

Definition 1.8.5. The process L™, generated by a fate line L € Ld(B) of the base changeable
set B we name by the elementary process of B.

The concept of elementary process can be considered as the complete analogue of the notion
of element in the classic set theory, because knowing all the elementary process of a base
changeable set, we can fully recover this base changeable set, using Theorem [[.7.1]

Main results of this Section were anonced in [1] and published in [5, Section 4].

9 Evolutional extensions and analogues of the operation of union for
base changeable sets

9.1 Motivation

In physics we often encounter speculations, when the physical system is imaginary incorporated
by additional components, not really existing in it. For example, during deduction of the
formulas of Lorentz Transformations for reference frames with parallel axes it is often used
the method of “light sphere”. Namely, it is supposed, that on the zero time point a light had
flashed in the origin of the frame, and light rays are traveling in all directions from the origin
(for example see [42, page. 25]). This assumption does not imply, that in any evolution model,
connected with the special relativity (SR) the light sphere must exist. But, simply, it is assumed
that the coordinate transform will not be changed under the condition, that we “attach” the
light sphere to any evolution model in the framework of SR, that is if we will consider the
“extended” model, containing the light sphere, instead of the original model.

In the present paper we try to give mathematically strict foundation of the procedure of
incorporation of new, “virtual” evolving components to the original model on the level of the
theory of base changeable sets under the assumption, that incorporation of this components do
not effect on the evolution of the original components of system. For this purpose we introduce
the analogs of the set-theoretic inclusion relation and set-theoretic operation of union for base
changeable sets.

Note that base changeable sets may be treated as the simplest particular cases of general
changeable sets to be introduced further (in Section , namely as changeable sets, which have
only one reference frame. Therefore, our consideration in this Section concerns only the case
of single reference frame.

9.2 Definition and Properties of the Evolutional Extension and Evolutional Union

Definition 1.9.1. Base changeable sets By and By will be named chronologically affined if
and only if Tm (By) = Tm (B,).

Definition 1.9.2. Base changeable set By will be named by evolutional extension of an base
changeable set By if and only if:

1. By and By are chronologically affined;
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2. Bs (Bo) Q Bs (Bl);
3. For any wy,ws € Bs (By) the condition w2<8—w1 leads to the correlation wsy <B—w1. Or, in
0 1

., B B : : B B
other words, we can write, (B—s C (B—s (where the binary relations (B—s and <B—5 are usually
0 1 0 1

understood as the sets, in particular ? = {(wa,w1) |wi,w2 € Bs (By), wa—wy}).
0

In the case, where the base changeable set By is an evolutional extension of the base changeable
set By, we also will say, that By is evolutionarily included in By, using the denotation ng[)’l

or By QBO.

In Section [§]it is explained, that the notion of elementary process (generated by some fate
line) may serve as analog of the notion of element of ordinary (static) set. The last fact
motivates the next definition.

Definition 1.9.3. Base changeable set By will be named as super-evolutional extension of
an base changeable set By if and only if:

1. By and By are chronologically affined;
2. Ld(By) C Ld(By), that is any elementary process of By is the elementary process of By.

In the case, where the base changeable set By is an super-evolutional extension of the base
changeable set By, we also say, that By is super-evolutionarily included in By, using the
denotation Bogb’l or Blgb’o.

Assertion 1.9.1. If BogBl, then:
1. Bs <B()> C Bs (Bl),’
2. ? C ? (that is for arbitrary x1,xo € Bs (By) the condition xy <B— x1 leads to the correlation
0 1 0

x2<6—1x1).

Proof. 1. Since By C By, then, by Definition W (item 2), we have Bs (By) C Bs (B;). Hence,
using Property [[.6.1|(9), we obtain:

Bs (By) = {bs (w) |w € Bs (By)} C {bs (w) |w € Bs (By)} = Bs (By).

2. Suppose, that z1,xe € Bs (By) and xo Pt Then, according to Property I.6.1, there
0

exist the elementary-time states wy, ws € Bs (By) such, that bs (w;) = x; (i = 1,2) and wo o
0

Since ngBh then, by Definition [[.9.2] (items , wi,wy € Bs (B;) and we - Therefore, we

have bs (w;) = z; (i = 1,2), where wy,ws € Bs (B;) and ws - that is, by Property 1.6.1,

To<— T1. L]
B1

Assertion 1.9.2. Any super-evolutional extension of arbitrary base changeable set By is its
evolutional extension, that is the correlation BogBh always leads to the correlation Bogb’l.

Proof. 1. According to Theorem [[.7.1] for any base changeable set B we have:
At (Tm(B),Ld(B)) = B. (1.29)
Hence, by Theorem [[.6.1] (item 2), we obtain the equality:

Bs(B) = Bs (At (Tm(B),Ld(B))) = | ] L. (1.30)

Leld(B)
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2.1. Suppose, that BogBl. Then, by definition, we have ILd (By) C Ld (B). Hence, using
the equality (I.30), we obtain:

ULC ULIB%ﬁBl

Leld(Bo) Leld(By)

2.2. Let wy,wy € Bs (By) and Wa £ W1 Then, from ([.29) and Theorem [[.6.1| (item 3), it
0
follows, that tm (w;) < tm (wy) and there exist the fate line L € Ld (By) such, that wy,ws € L.
Since By By, then, by Definition we have, Ld (By) C Ld(By). Therefore, we obtain
L € Ld(B;). Thus, tm(w;) < tm(ws) and wy,we € L, where L € Ld(By) (L C Bs(By)).
Hence, in accordance with formula ([.29) and Theorem [I.6.1] (item 3), we get wo LW

From the items 2.1 and 2.2 it follows, that BogBl. O

Henceforth we use the denotation M *?2 for Cartesian square of the set M, ie M*? = M x M.
The next example shows, that the statement, inverse to Assertion is not true.

Ezample 1.9.1. Let, Ry = {ro}, R1 = {r1} be the systems of abstract trajectories from R to
R, with:
£3) (TO) - [07 OO>7 Tg(t) = t? te® (TO) ;
@(7’1) :R, Tl(t) :t, tE’D(rl).

Since Ry and R, are composed of the single trajectory, then Ry and R, are the systems of
individual trajectories in the sense of Definition [[.7.4] Denote:

By = At (Rord; RO) ) B, = At <Rord’ Rl) ’

where R, = (R, <) and < is the standard linear order relation on the real numbers.
Since Ry and R, are systems of individual trajectories, then, by Theorem we have:

ILd (Bo) = Ro; Ld (Bl) = Rl

And we get Ld (By) € Ld (1), because Ry € Ry. Hence, according to Definition B; can
not be super-evolutional extension of By, therefore B gBl.

From the other hand, taking into account the inclusion ry C r; and applying Theorem [[.6.1],
we receive:

Tm (Bo) :Rord = Tm (Bl),
= U r=rqoCr = U r=Bs(B);

re€Ro reR1

£ = {(wayw1) € Bs (Bo)* | (tm (wr) < tm (wn)) A

Bo

A(Tr € Ro(wi,ws €1))} =
(w2, wi) € Bs (By)™? | (tm (wi) < tm (ws)) A (wi,ws € 1)} C
(

wo,wi) € Bs (B1)? | (tm (w1) < tm (w2)) A (wi,wy €71)} =

N

Il
~— =

I
PTe

Y

where the symbol A denotes the logical operation of conjunction.
Hence, we have proved, that Tm (B,) = Tm (B;), Bs (By) C Bs (B;) and o C <. Therefore,
0

B
by Definition Bogb’l. Thus, By E)Bl, although BogBl.

Assertion 1.9.3. The evolutional inclusion possesses the following properties:
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1. BgB for an arbitrary base changeable set B;
2. [f BlgBQ and nggl then 81 = 82,'
3. ]f BlgBQ and ngBg then Blng.

Proof. 1. The correlation B gB follows by a trivial way from Definition W
2. Suppose, that Blng and ngBl. Then, by Definition W

Bs (B;) C Bs (By); <~ C & Bs(B,) CBs(B)); & C &
B Ba 2 B
Therefore, we receive:
Bs (B,) = Bs (By) ; < = &, (1.32)
B B

Thus, the equality B; = B, follows from the equalities (I.31)),([.32), by means of Corollary
L6l

3. Let Blgb’g and ngBg. Then, by Definition @I, the base changeable sets B; and B
as well as By and B3 are chronologically affined. Hence, B; and Bs also are chronologically
affined. According to Definition , the evolutional inclusions Blng and ngB;», lead to

the inclusions:

Bs (B1) € Bs (Ba); £ C <% Bs(By) CBs(By); £° C &

B2 B3
Thus, Bs (B;) C Bs (Bs3) and (IZB; C <2—5. Therefore, by Definition [[.9.2} we receive Blng. O
1 3

In Assertion [[.7.5] (item 2)) it had been proved, that for any base changeable set B, the set
LI(B) is the systems of abstract trajectories from Tm(B) to Bs(B).

Assertion 1.9.4. If for some base changeable set B the correlation R C LI(B) holds while

R # 0, then
At (Tm(B),R) gB.
Proof. Suppose, that the condition of this Assertion is satisfied. Denote:
By := At (Tm(B),R) .
Since R C LI(B) C 2% then, by Theorem m
Bs (B)) = | J r € Bs(B). (L.33)

reR

Now, we consider any two elementary-time states wy,ws € Bs (B1) such, that ws <B— wy. Accord-
1

ing to Theorem [.6.1]
tm (wl) S tm (WQ) s (134)

moreover a trajectory r € R must exist such, that wy,wy € R. Since R C LI(B), we have
r € LI(B). Hence r is a chain of B. Thus, at least one of the conditions w; 4 W OT W 4= Wy must
be satisfied. Now, we assume, that w, <74w1 Then, we obtain w, <—w2, moreover by Property

-@ w1 # wy. Hence, by Property -. we receive tm (w2) < tm (w;), which contradicts

to the inequality ([.34). Therefore the assumption, that wy ¢ w; is wrong. Consequently,
B

Wo ?wl. From the last correlation, taking into account the inclusion ([.33[), and Definition
1.9.2] we get, that BlgB. O]
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Assertion 1.9.5. Let R; (i € {1,2}) be systems of abstract trajectories from T to M;, and,
besides Ry C Rq. Then
At (T, R1) SAL(T, Ro) .

Proof. Let R; (i € {1,2}) be systems of abstract trajectories from T to M;, and Ry C Ro.
Denote:

= At (T, R;) (1 € {1,2}).
By Theorem we get:

~Ure Jr=Bs(s). (135)

reR1 rERa

Now, we chose any wy,wy € Bs (B;) such, that ws <B—w1. In accordance with Theorem [[.6.1 we
1

have tm (w;) < tm (w2), and, besides, trajectory r € Ry must exist such, that wy,ws € r. Since
R1 C R,, then we get r € Ry. Hence, applying Theorem [[.6.1, we get wo <B—w1. And, taking
2

into account the inclusion 1 , by Definition we receive Blng. H

Assertion 1.9.6. For arbitrary chronologically affined base changeable sets By and Bs, the
following statements are equivalent:

1. BlgBQ;
2. L1 (B,) C LI (By);
3. Ld (B,) C LI (B);

Proof. 1. First, we are going to prove the implication 1=2. Suppose, that Blng. Chose

any chain L € Ll (B;). According to Definition [[.9.2) Bs (B;) C Bs (By). Hence L C Bs (B,).

Therefore, we need to prove, that the binary relation %, defined on L, satisfies the following
2

conditions:

Bs . o, .
1. <B— is transitive on L;
2

2. for any wq,wy € L at least one of the correlations wy <B—w1 or wi <B—w2 must be true.
2 2

Since L € Ll (B;), then the binary relation <B—5 satisfies the conditions 1,2. By Definition [[.9.2]

for wy,ws € L condition wy <—w1 leads to the correlation ws <—w1 Thus, the desired result
will be proved if we verify, that for arbitrary wy,ws € L the Correlatlon Wa ewl leads to the
correlation wo <B—1 w1.

Suppose, that wi,ws € L and wg%wl. Since L is chain in Bs (B;), at least one of the

correlations ws % w1 Or Wy % wo must be true. Assume, that ws <4 w;. Then, since, by Property
B1

I.6.1(@), the binary relation <B— is reflexive, we have w; # ws. Thus, we have got w; # w, and
1

Wi £ wp. Hence, according to Property I.6.1(]7|), we receive tm (wg) < tm (wq). From the other
1

hand, since ws o then, by Property [[.6.1)(7), the inequality tm (w;) < tm (wz) must be true.
2

The obtained contradiction shows, that the assumption wy <4 w; is incorrect. Thus, we have
B1
seen, that wy <—w1, and that it was necessary to prove.

2. Let, LI (Bl) C LI (B,). Taking into account the fact, that any fate line of arbitrary base
Changeable set forms its chain, we obtain, Ld (B;) C LI (B;) C LI (By).
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3. Now we are going to prove the implication 3=1. Suppose, that Ld (B;) C LI (B,).
Then, according to Theorem and Assertion [1.9.4) we get, By = At (Tm (B,),Ld (B,)) =
At (Tm (B,) ,Ld (By)) GCBs. O

Assertion 1.9.7. The super-evolutional inclusion possesses the following properties:
1. BgB for an arbitrary base changeable set B;
2. If Blng and ngBl then By = By;
3. If Blng and ngBg then Blng,.

Proof. First property is trivial. Second property is a consequence of assertions [[.9.2] and [[.9.3]
Now, we are to prove the third property. If Blng and ngBg then, according to Definition
[.9.3] the base changeable sets B; are B3 chronologically affined. Moreover, by Definition [[.9.3]
Ld (Bl) Q Ld (Bg) Q Ld (Bg) Thus, Blng. ]

Definition 1.9.4. Indesed family (By),cq (A # 0) of base changeable sets will be named
chronologically affined if and only if any two base changeable sets B,,Bs (where o, 5 € A)
are chronologically affined.

Definition 1.9.5. Let (B,),c 4 (A # 0) be any indexed family of of base changeable sets. Base

changeable set B will be named by evolutional union of the family (B.),c 4 if and only if:

(EU,) B.CB for an arbitrary o € A.
(EU,) If BagB’ for any o € A, then ng”.

Assertion 1.9.8. Any indezed family (Ba),cq (A # 0) of base changeable sets may have no
more than one evolutional union.

Proof. Indeed, let B and B be the evolutional union of the family (Ba),c4 of base changeable
sets. Then, by Definition [[.9.5] we have BgB and BgB. Thus, in accordance with Assertion

1.9.3] we receive B = B. O
L9.3]

Taking into account Assertion [[.9.8] (about the uniqueness of evolutional union), we will
denote the evolutional union B of the family (B,),. 4 of base changeable sets by the following

way: -
B=|]J B..
acA

In particular, in the case A = {1,...n} (n € N), we use the following denotation:

e
BiU--UB,:=|JBi:= ] Ba
k=1 acA
Remark 1.9.1. From the definitions [1.9.5] and [[.9.2] it follows, that, in the case, where B =

%

U Ba, the family (B,),. 4 of base changeable sets must be chronologically affined, moreover
acA

Tm(B) = Tm (B,) (Va € A).

Let T = (T,<) be any be any linearly ordered set and A be any non-empty family of
indexes. Suppose, that for any index o € A the system of abstract trajectories R, from T to
M, is defined. In this case we name the family (R,),. 4 of systems of abstract trajectories as
T-chronologically affined. Then, the set | J,. 4, Ra is the system of abstract trajectories from

T to U,c4 Ma. Hence, by Theorem the base changeable set At (T, J,. 4 Ra) must exist.
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Further, according to this Theorem, we have Tm (At (T,R,)) = T (for an arbitrary o € A).
Therefore by definitions [1.9.1|and [[.9.4] the indexed family (At (T, Rq)),c4 of base changeable
sets is Chronologically affined.

Assertion 1.9.9. Let (Rq),c 4 be T-chronologically affined family of systems of abstract trajec-
<_
tories. Then, there exist the evolutional union \J . 4 At (T, Ra), and besides:

UAtTR ( UR)

acA acA

Proof. Let R, be a system of abstract trajectories from T to M, for any index o € A. Denote:

B, = At(T,Rs) (a€A), B:=At (’]r, U Ra> .

acA

a) Since R C Uz Rp (for an arbitrary o € A), then, according to Assertion , we
have:
B, gB (Va e A).
b) Suppose, that BagB’ (Va € A). Then, using assertions |I.7.6| and |I.9.6|, for any index
a € A we obtain:

Ra CLI(At(T,Ra)) =LI(B,) CLI(B).
Consequently, |J,c4Ra € LiI(B'). Hence, in accordance with Assertion we receive,
B = At (T,U,cs Ra )gB’

Now, the equality B = U B, follows from the items a) and b), by means of Definition
acA

Lo.5 O
Corollary 1.9.1. For any chronologically affined family of base changeable sets (By),cq (A #

0) the evolutional union |J . 4 Ba exists, moreover:

<—
U Ba= At ("JI‘, | La (B@) ,

acA acA
where T = Tm (B,) (a € A).

Proof. Chose any fixed index ay € A. Denote, T := Tm (B,,). Since (B,),c 4 is chronolog-
ically affined family of base changeable sets, then Tm (B,) = T (for an arbitrary a € A).
According to Assertion (item 4)), for an arbitrary a € A the set Ld(B,) is a sys-
tem of abstract trajectories from T = Tm (B,) to Bs(B,). Therefore, (ILd (B.)),c4 is T-
chronologically affined family of systems of abstract trajectories. And, according to Theorem
1.7.1, B, = At (Tm (B,),Ld (B )) = A(t_(T Ld(B,)) (for any a € A). Hence, by Assertion

[.9.9 the evolutional union U aed Ba = Ugea At (T, Ld (B,)) must exist, moreover:
= —
UB. = U AT Ld(B.)) =At(T, ] Ld(Bs
acA acA acA

(_
Corollary 1.9.2. If B= J,c4Ba then:

= |J Bs (B.): %Z_ﬁ: U;{L

acA acA
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Proof. The desired result follows from Corollary and Theorem [[.6.1] Note, that for proving
the equality Bs(B) = [ e 4 Bs (Ba) it is useful Formula ([.30)), which follows from Theorem|[.6.1]
and holds for any base changeable set. O

Denotation 1.9.1. In this paper card (A) means the cardinality of the set A.

Assertion 1.9.10 (on properties of evolutional union). Let (B;);cq; 53y and (Ba),cq (A # 0) be
two chronologically affined families of base changeable sets. The operation of evolutional union
possesses the following properties:

— —
1. By UBy =By UB;.
F
2. If A= {ao}, then |, c 4 Ba = Bay-
3. If the set of indexes A is divided into disjoint union of non-empty index sets A, (v € G),

(that is A=|] 5A,) then
— — [
Us.=U | U s
acA veG \a€cA,

In particular, in the case card (A) > 2, for an arbitrary oy € A we have the following

equality:
— —
UB.=B.,0| |J B.|. (1.36)
acA aEA\{Ozo}

and in the case A = {1,2,3} we obtain the equality:

(Bl U 132> UB; =B, U (32 U 83> — B, U By U Bs. (1.37)

%
4. If for some base changeable set B', we have BagB’ (for any o € A), then | c4 BagB’.

5. If for some ag € A the inclusion Bag[)’ao is performed for all o € A, then we have
<_
Uwea Ba = Bay- In particular B UB=8 for any base changeable set B.

<_
Proof. 1. By definition we have, B; G By = Uie{m} B, = B, G B;.
2. The second property easily follows from Definition [[.9.5

3. Consider any fixed index a; € A. Denote, T := Tm (B,,). Since (B,),c 4 is chronologi-
cally affined family of base changeable sets, then we have, Tm (B,) =T (Va € A). According

— — — [
to Remark [1.9.1) the evolutional unions J,c 4 Bas Upeu. Ba (Vy € G) and | U B. | are
! v€G \ acA,

correctly defined. Then, applying Corollary Assertion [[.9.9/and Theorem [[.7.1] we receive:

DBa:At <T,ULd(Ba)):At T.\J | Ld(Ba) | =

acA acA Y€G acA,
— — —
=JAt [T |JLdB.) | = [ U A(T.Ld(B.) | =
v€G acA, veG \acA,
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0(0e

v€G \acA,

In particular, in the case card (A) > 2, using item 2 of this Assertion, for any fixed index
ag € A, we obtain:

— . =
U B.|U | 8

()
=
I
T
=
[

acA ae{ao}u(A\{ao}) ae{ao} a€(A\{ao})
%
=B.,U| |J B.].
acA\{ao}

that is, we have got the equality (I.36). The equality (I.37)) follows from the equality (I.36] in
particular case A = {1,2,3}, where the commutativity of the evolutional union operation is
taken into account.

4. The fourth item of this Assertion readily follows from Definition [[.9.5]
5. Let B, gBao Vae .A) for some fixed oy € A. Then, in accordance with the previous item

of this Assertlon we get, UQGA agBao From the other hand, according to Definition [[.9.5
Bo = Bay- O

%
we have, Bo, G UQGA B,. Thus, by Assertion [[.9.3| (item 2), we obtain, | J

acA

Let (Bag)acn. ges (AB # 0) be any two-parametric indexed family of base changeable
sets. The family (BQB)QEA’ﬁeB will be named as chronologically affined, if and only if base
changeable sets B,, 3,,Ba4,p, are chronologically affined for arbitrary indexes a1, a0 € A, 1, 52 €
B. Let (Bag)yen seg (A:B # () be chronologically affined family of base changeable sets.
Then for arbitrary fixed ag € A, By € B, the one-parametric families of base changeable
sets (Bags)sep and (Bag,) are chronologically affined. Hence according to Corollary [[.9.1}

<_
the evolutional unions Uny« = Ugeg Baos and Ui g, = U,eca Bag, must exist. Besides this,
according to Remark the base changeable sets U, . and U, g, are chronologically affined
with the base changeable set B,, 3,- Hence, taking into account the chronological affinity of the
family (Bag),ca, sess We see, that the families of base changeable sets (U« ),cp and (U, 5>B€B
are chronologically affined also ThlS means, that we can define the double evolutional unions

Uncallins = Uscn Ujpes Bas and UscgUes = Upep Unen Bas. Now, we aim to prove, that
double evolutional union does not depend on the order of application of evolutional union

operations. Indeed, let us consider any fixed indexes oy € A, 5y € B. Denote, T := Tm (B,,z,)-
Then, applying Theorem and Assertion [[.9.9] we receive:

UUBaﬁ_U UAt’]T]Ld 25)) ( U JLd( a5>

achA

acA BEB acA BEB acA BeB
—
= At (’]I‘, U YLd (Ba5)> = J | At (T, Ld (Bsp)) =
BEB acA BEB acA
—
=J U Bas
BeB acA

Taking into account the last fact, we will use the following denotations for double evolutional

union: - —
U Bas = UBus = U Bs

achA, BeB acA BB BseEB acA
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By a similar way the notion of chronological affinity can be introduced for many-parametric
indexed family of base changeable sets (Ba,..a,) where n € N, A; # 0, i €
{1,---,n}. The base changeable set:

ai1€Aq,..., an€Ap?

— — —
U Bua= U U B,
a1 €AL,..., an€An a1 €A1 an €A,

will be named by evolutional union of the family (Bal‘..an)aleAl ,,,,, ancA, Similarly to the case
of two-parametric family it can be proved, that the result in the right-hand side of the last
equality does not depend of the order of placing of evolutional union signs.

Definition 1.9.6. Let, (B.),c 4 (A # 0) be any chronologically affined family of base changeable
sets.  Base changeable set B will be named by super-evolutional union of the family (B,)
of and only if the following conditions are performed:

(sEU,) B.5B (Vo € A).
(sEU,) If B.CB (Vo € A), then BB

ac A’

The next Corollary follows from Definition and Assertion [[.9.3] (item 2).

Corollary 1.9.3. Any indexed family (Ba),ca (A # 0) of base changeable sets may have no
more than one super-evolutional union.

Super-evolutional union B of the family (B,),. 4 of base changeable sets will be denoted by
the following way:
B=\/ B..

acA

<—n
In particular, in the case A = {1,..n} (n € N), we use the denotation \/,_, B, or or, simply,
— —
By V-V B,:

& e o —
\/ Bi:=BV---VB,:=\/ B..
k=1
The next assertion may be interpreted as some analog of the theorem, confirming, that any

bounded set of real numbers always have the least upper bound.

Assertion 1.9.11. Suppose, that for chronologically affined family of base changeable sets
(Ba)weu (A # 0) there exists the base changeable set B, such, that for any index o € A it

1$ true the inclusion Bagg. Then the super-evolutional union \/ . 4 B ewists, moreover, the

lowi lity is true:
following equality is true - -
\/ B, = U B,.

acA acA
Proof. Denote:
%
B = U B.,.
acA
Now, we aim to prove, that:
Vae A (Ld(B,) CLd(B)). (1.38)

Let us assume the contrary. Then there exist index 5 € A and fate line L € Ld (Bg) such, that
L ¢ Ld(B).
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%
By Definition [[.9.5, we have Bﬂg Uwea Ba = B. Hence, according to Assertion [1.9.6, we get
L € LI(B). Therefore, since L ¢ Ld(B), the chain L, € LI(B) must exist such, that L C L.
Since BagB (Va € A), then, by Assertion |[[.9.2} for an arbitrary a € A we have BagB. Hence,

V. -
according to Assertion [[.9.10| (item 4), we get B = (J,c4 B.GB. Taking into account, that
BCB and Ly € LI(B), applying Assertion [L9.6 we obtain L, € LI (E).

Thus, we have proved, that the chain L, € LI (E) exists such, that . C L;. This means,
that L ¢ Ld <l§) From the other hand, since ngg and L € Ld(Bg), then, by Definition

1.9.3] the correlation L € LLd (E) must be performed.

The obtained contradiction proves the correlation ([.38). By Definition from the
correlation ([.38]) it follows, that

Va e A (Bag8> )

Hence, the base changeable set B satisfies Condition (SEU;) of Definition [[.9.6]
Therefore, it remains to prove, that Condition (SEUs;) of Definition also is satisfied
for B.  Suppose, that for some base changeable set B’ the correlation B, B’ is true for all

a € A. Then, according to Assertion [[.9.2] we have, B, C B’ (Va € A). Hence, by Assertion
o S
[.9.10| (item 4), we obtain, B = {J BagB’. O

acA

%
Corollary 1.9.4. If the super-evolutional union \/
sponding evolutional union, that is:

wen Ba exists, then it coincides with corre-

()

<_
\/ B, = B,.
acA acA

<_
Proof. Indeed, suppose, that super-evolutional union \/ ., B, exists for the chronologically
affined family of base changeable sets (B,),c4 (A # 0). Then the base changeable set B =

%
V wea Ba satisfies the conditions of Assertion [1.9.11 [l

In the following example it will be shown, that, unlike evolutional union, the super-
evolutional union of chronologically affined family of base changeable sets sometimes may not
exist.

Ezxzample 1.9.2. Let the systems of abstract trajectories Ry = {ro}, R1 = {71} be the same as
in Example In Example [[.9.1|it had been shown, that, for base changeable sets

BO = At (Rorda RO) ; Bl = At (Rorda Rl)

the evolutional inclusion BogBl holds. Hence, by Assertion [[.9.10, item 5, By G B = B.

(—
From the other hand, the evolutional union By V B; doesn’t exist. Indeed, assume the contrary.
Lo

Then, according to Corollary we have, By v By = By U By = By. But, in Example
it had been shown, that By gl’j’l. Thus, by Definition By can not be super-evolutional

«—
union of By and B;. The obtained contradiction proves, that super-evolutional union By V B;
does not exist.
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Definition 1.9.7. An chronologically affined family of base changeable sets (Ba),cq (A # 0)
will be named as evolutionarily saturated, if and only if the following inclusion holds:

| La(B.) CLd (U B > (1.39)
acA acA

Remark 1.9.2. From definitions [[.9.7] and [[.9.3] it follows, that chronologically affined famlly of
base changeable sets (Ba),c 4 (A # 0) is evolutlonarlly saturated if and only if Bs U B,

acA
(Vg e A).

%
Assertion 1.9.12. The super-evolutional union \/ ., Ba of chronologically affined family of
base changeable sets (Ba),c4 (A # 0) exists if and only if this family is evolutionarily saturated.

%
Proof. Suppose, that the super-evolutional union B = \/ ., B, exists. Then, by Definition
, B.CB (Va € A). Hence, by Definition [[.9.3, we get Ld(B,) C Ld(B) (Va € A), ie

— —
Uaead (B.) € Ld(B). But, according to Corollary [[.9.4) we have B = \/ ., Bo = U c4 Ba-
%
Therefore, |, 4 Ld (B,) C Ld (UaeA Ba>
Inversely, suppose, that the chronologically affined family of base changeable sets (Ba),c 4
%

(A # 0) is evolutionarily saturated, that is the equality (I.39) holds. Denote, B = J .4 Ba-
According to (I.39), we have, Ld (B,) C Ld(B) (Va € A). Hence, by Definition we get,

Bag[)’ (Va € A). Therefore, in accordance with Assertion [[.9.11] the super-evolutional union

%
V ea Ba exists. O

Lemma 1.9.1 (on properties of evolutional saturation). Let (Ba),c4 (A # 0) be any chrono-
logically affined indexed family of base changeable sets.

1. If there exists base changeable set g, such, that for any index o € A the inclusion Bagg,
is performed, then the family (By),c 4 5 evolutionarily saturated.

2. If B, = B (Ya € A), then the family (Ba),c 4 s evolulionarily saturated.
3. If Bs (B,) NBs (Bg) = 0 for B, # Bg, then the family (Ba),c 4 s evolutionarily saturated.

4. 1If the family (Ba),c4 18 evolutionarily saturated and Ay € A, Ay # 0, then the subfamily
(Ba)aeA is evolutionarily saturated also.

Proof. 1. Suppose that BQE}B (Va € A). Then, according to Assertion [[.9.11] the super-

evolutional union \/ wen Ba exists. Hence, in accordance with Assertion [[.9.12) the family
(Ba) e 4 is evolutionarily saturated.
2. If B, = B (Vo € A), then, by Assertion we have B, C B (Va € A). Hence, according

to the previous item, the family (B,), 4 is evolutionarily saturated.

e
3. Suppose, that Bs (B,) NBs (Bg) = 0 for B, # Bg. Denote, B := |J,. 4 Ba. Let us chose
any L € |J,c4Ld (B.). Then, there exists the index oy € A Such that L € Ld (B,,). Since,
e

by Definition [[.9.5] Baog Uaea Ba = B, then, by Assertion [[.9.6, we have L € LI(B). Now, we
aim to prove, that L € Ld(B). Suppose the contrary. Then there exists a chain L; € LI(B)
(L; € Bs(B)) such, that L C L;. Let us consider any elementary-time state w € L;. Since
L is a fate line of B,,, then, according to Assertion and Remark we have L # ().
Hence at least one elementary-time state wy € L exists. Since L C Lq, then wy € Ly. Since
w,wp € Ly, where Lq is a chain of B, then at least one of the conditions wo%w or w%wo
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must be satisfied. Hence, by Corollary [[.9.2] the index oy € A must exist such, that wy + w or

a1

w < wo. But, since the relation <= is defined on the set Bs (Ba, ), the both correlations (wo ¢ w

a1 BD‘I a1

or w wp), lead to the correlation w,wy € Bs (B,,). Hence, we have, wy € Bs (B,,) NBs (B, )-

ay
And, taking into account the fact, that Bs (B,) N Bs (Bg) = 0 for B, # Bs, we receive the
equality B,, = B,,. Hence, w,wy € Bs (B,,). Thus, any element w € L; belongs to Bs (B,,).
Consequently, Ly C Bs (B,,). Now, we are going to prove, that for arbitrary wy,ws € Ly,

the correlation wq ?wl holds if and only if ws < wy. If wi,wy € Ly and wy < wq, then, by
(e7s) a@Q
Corollary [1.9.2, we have wy %wl. Inversely, suppose, that wo %wl (where wy,ws € Ly). Since

%
B = e Ba then, by Corollary [.9.2, an index a; € A exists such, that w, ¢ w;. Since the

a1

relation < is defined on the set Bs (B, ), then w,wy € Bs (B,,). And, taking into account

Ba,

that the condition Bs (B,) N Bs (Bz) = () must hold for B, # Bgs, we get B,, = B,,. Hence,

. . . . Bs Bs
we obtain wsy < wq, which was necessary to prove. Thus, the binary relations <E and é_ are
[e70) «@Q

coinciding on the set L;. Hence, since L; is the chain in B (with regard to the relation i—ﬁ),

then L; also forms the chain in B,, (with regard to the relation <]Bi) Thus the assumption,
«Q
that L ¢ LLd(B) leads to the existence of chain L; C Bs (B,,) in B,, such, that L C L;, which
contradicts to the fact, that L € Ld(B,,). Consequently, L € Ld(B). Therefore, any fate
line L € U, 4Ld (B,) belongs to Ld(B). This means, that the family of base changeable sets
(Ba) 4e4 is evolutionarily saturated (by Definition [[.9.7).
4. Suppose, that the family <l<3_a)a6_A is evolutionarily saturated. Then, by Assertion [[.9.12]

the super-evolutional union B = \/ . 4 B, must exist. Hence, by Definition [[.9.6] for any index
a € A; C A we have, BagB. Consequently, according to the first item of this Lemma, the

subfamily (B.),c4, is evolutionarily saturated. O

From Assertion and Definition [[.9.6] taking into account Corollary [.9.4] Assertion
and Lemma [[.9.T] we obtain the following assertion.

Assertion 1.9.13 (on properties of super-evolutional union). Let (B;);c(1 53y and (Ba) e 4 (A #
0) be two evolutionarily saturated families of base changeable sets. The operation of super-
evolutional union possesses the following properties:

+— +—
1. Bl\/BQIBQ\/Bl.
%
2. If A= {ap}, then \/ o 4 Boa = Ba,.
3. If the set of indexes A is divided into disjoint union of non-empty indezx sets A, (v € G),

(that is A=|] g A,) then:
— — [
VBa=UI|VB] (1.40)
acA YEG aEAy

In particular, in the case card (A) > 2, for an arbitrary ag € A we have the following

equality:
— —
\/B.=B.,0| \ B.]|. (1.41)
acA ac€A\{ao}
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and in the case A = {1,2,3} we obtain the equality:
+— — — +— — —
<81 Y Bg> UBs =B, U (62 Y 53> — B,V B,V Bs. (1.42)

%
4. If for some base changeable set B', we have BagB’ (for any o € A), then \/ ,c4 BagB’.

5. If for some ag € A the inclusion BagBao is performed for all o € A, then we have
<_
V wea Ba = Ba,. In particular B VB=8 for any base changeable set B.

It turns out, that in Item 3 of Assertion [[.9.13| (more precisely, in the equalities (I.40)),(I.41])
and ([.42))) the sign of the evolutional union can not be replaced by the sign of super-evolutional

union. Moreover, in Item 4 the evolutional inclusion can not be replaced by the super-
evolutional inclusion. The next example shows that, despite the fact that any subfamily of
evolutionarily saturated family (B,),. 4 of base changeable sets itself is evolutionarily saturated,

<_
the family of kind (Bao, (\/a6 A\fao} Ba>> for ap € A may be not evolutionarily saturated (that

— /&
is in the general case super-evolutional union B,, V <\/Ote A\{ao} Ba) may do not exist, while

the super-evolutional union \/ ., B, exists).

Ezxzample 1.9.3. Let us consider the linearly ordered set T = (T, <), where T = {0, 1,2, 3} and
< is the standard linear order on the set of natural numbers. Now, we define the trajectories
ri (1 € {1,---,4}) from T to the set M = {0,1,2} by means of the following tables.

(tln@) | [tlre@® ] [t]m@®) ] [t )]
0 1 0 0 0 0 0 0

1 0 1 1 1 0 1 0

2 0 2 0 2 1 2 0

3 0 3 1 3 2 3 1
Table 1. Table 2. Table 3. Table 4.

Any singleton set of kind R; = {r;}, (i € {1,--- ,4}) is the system of abstract trajectories
from T to the set M;, where My = My = My = {0,1}, M3 = M = {0,1,2}. Denote:

Bi = At(T,R;) = At (T, {r})  (ie{l, -4}

The family (Bi)?zl of base changeable sets is chronologically affined. And we are going
4

%
to prove, that this family is evolutionarily saturated. Denote, B := [J,_, B;. According to
Assertion |[.9.9, we obtain:

s-Us-|

In accordance with Definition m (item (EU;)) we have:

4

Bc|UBi =B (iefl,...4}) (1.44)

t (T, {ri}) = At (T, {r1,72,73,74}) . (1.43)

i CT,;

Now we need to prove the inclusion:

UJLd ) C Ld(B). (1.45)
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Since any system of abstract trajectories R; (i € {1,...,4}) consists of only one trajectory r;,
then all R; (i € {1,...,4}) are systems of individual trajectories. Hence, by Theorem [[.7.2]

Ld(B;) =Ld (At (T,R;)) =R;={r:} (1e€{l,...,4}). (1.46)
Taking into account ([.43) and Assertion we have:
ri € LL(AL (T, {ry,re,r3,ra})) = LUB) (1€ {1,...,4}).

Since any trajectory 7; is defined on all set T = {0, 1,2, 3}, where according to equality ,
T = Tm(B), then it can not be “expanded” in B by means of including into its domain new
time points ¢ € Tm(B). Consequently 7, € Ld(B) (i € {1,...,4}). Hence, J._,Ld (B;) =
Ui, {r:} € Ld(B), and the inclusion has been proved now.

Therefore, by Definition m the family (B;);_, = (At (T, {r;}))i_, of base changeable sets
is evolutlonarlly saturated. Consequently, accordmg to Assertlon m the super-evolutional

4
union \/,_, B;, exists, moreover by Corollary [[.9.4] we get \/Z B = Ul , B; = B. Hence:
B.CB (1e{1,...,4}). (1.47)
Let us denote: ;
NI — —
Bo = \/Bz = Bl \/Bg \/Bg7
i=1

and let us prove, that By [Z B
According to Theorem [1.6.1} for an arbitrary i € {1,...,4} the following equalities are true:

Bs (B;) = Bs (At (T, {r;})) = ri; (1.48)
%:{(Wg,wl)ewﬂ( m (w;) < tm (ws))}. (1.49)
Denote:
wi = (0,0), wy:=(1,0), wy:=(2,0), wy:=(3,0),
ws = (0,1), wg:=(1,1), wr:=(3,1), wg:=(21),
Wo (= (3,2) .

W = {Wl,WQ, P ,Wg}.
Then, taking into account the equalities (I.48)),(I.49)), we obtain:

Bﬁ (Bl> =T = {W5,W2,W37W4}; Bﬁ (BQ> == {W17W67W37W7};

(Bs) = {wi, wa, ws, wobs  Bs (By) = {wi, wa, Wy, wrl (1.50)
£ = diag (Bs (B1)) U{(wa, W) , (ws, Ws), (W, wa)} U
U{(wa, W5) , (Wa, W2) , (Wg, W3)}
(where diag(K) = {(w,w) |w € K}, for any set K);
£ = diag (Bs (52)) U {(ws. w1), (ws, w1) . (wa, we)} U
. U{(wr, w1), (W7, We), (W7, W3)} (L.51)
<B—z = diag (Bs (Bs)) U {(w2, w1), (Ws, W1), (Ws, W2) } U
} U{(wo, W) , (W, W) , (wo, W) }
<B—j = diag (Bs (By)) U {(wq,w1), (W3, w1), (W3, Wa)}U
U{(wr, w1), (w7, w2), (W7, w3)}.
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Consequently, according to Corollary [1.9.4] Corollary and Property [.6.1|[9), we get:
S 3
Bs (Bo) =Bs | | JB: | = Bs (B) = {w1,..., wo} = W; (1.52)
i=1 i=1

Bs (By) = {bs (w) |w € Bs (By)} = {0,1,2} = M,

(Wo, W1), (Wg, W1), (Ws, Wa), (Wg, W1), (Wg, Wa), (Wg, Wg)} (1.53)

Now, we consider the set Ly = {w,wy, w3} C Bs(By). From the correlations ([.53)) it
follows, that for w;,,w; € Lo (i,j € {1,2,3}) the condition W) W holds if and only if
0

i < j. Consequently (since < is the standard linear order for natural numbers) the set Ly =
{w1, Wy, w3} is a chain of By. Our next aim is to prove, that L, is a fate line of By. Assume
the contrary. Then the chain L; such, that Ly C L; must exist in the set Bs (By). According
to Assertion Lo and L; are abstract trajectories from Tm (By) = T = {0,1,2,3} to
Bs (By) = {0,1,2}. Since ®© (Ly) = {0, 1,2}, the strict inclusion Ly C L; is possible only under
condition ® (L) = {0,1,2,3} = T. Hence, only the next three cases are possible: L;(3) = 0,
L1(3) =1, L1(3) = 2. But, from the other hand:

Case 1 (L1(3) = 0) is impossible, because in this case wi,wy € Ly (w1 € Ly C Ly), where,

according to ([.53)), wy <4 wy and wy <~ wy.
Bo Bo
Case 2 (L1(3) = 1) is impossible, because in this case wo, w7 € Ly (wy € Ly C Ly), where,

according to ([.53)), wo </ w7 and w; < wo.
Bo BO

Case 3 (L1(3) = 2) is impossible, because in this case w3, wg € Ly (w3 € Ly C L;), where,

according to ([.53)), w3 </ wg and wg <~ ws.
Bo BO
Hence, any of considered cases is impossible. Therefore, the assumption, made above, is

wrong. This means, that is Ly € Ld (By). But, Lo ¢ Ld(B), because, according to (I.46) and
(L.45)), we have ry € {ry} = Ld (Bs) C Ld(B), while r4 D Ly.

3

Thus, Ly € Ld(By) and Ly ¢ Ld(B). This means, that \/,_; B, = By gB. Hence, in the

item 4 of Assertion|[.9.13] the sign “g” can not be replaced by the sign “g” (because, according
«—3 «—3

to (1.47), B, 5B (i € {1,2,3}), but \/,_, B; E)B) Besides this, the family ( \/,_, B;, [3’4) of

1.9.2 That is why,

two base changeable sets is not evolutionarily saturated, due to Remark

3 —
the super-evolutional union (\/ i1 Bl-) V B, does not exist, while the super-evolutional union

4 . . . . 4 &3\«
V. Bi, exists. And, in accordance with Assertion [[.9.13] we have, \/,_, B, = (\/i1 BZ) U Bj.

9.3 On Existence of Evolutional Extensions of Base Changeable Sets.

Theorem 1.9.1. Let B be a base changeable set and R be a system of abstract trajectories from
Tm(B) to M.
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Then the base changeable set B = BU At (Tm(B), R) is an evolutional extension of B such,
that R C LI (B).

Proof. To verify the correctness of this Theorem it is sufficient to use Assertion [[.7.6] Definition
9.5 and Assertion [[9.6 ]

Definition 1.9.8. System of abstract trajectories R from T to M will be named by:
e Evolutionarily saturated, if and only if R C Ld (At (T,R)).
o Evolutionarily saturated relatively a base changeable set B, if and only if:
1) Tm(B) =T;
2) Ld(B)UR C Ld (B U At (T, R)) .

Assertion 1.9.14.

1. If the system of abstract trajectories R is evolutionarily saturated relatively a base change-
able set B, then it is evolutionarily saturated.

2. 1If the system of abstract trajectories R from T to M is evolutionarily saturated and, while
(U,er ) NBs(B) = 0 where B is the base changeable set such, that Tm(B) = T, then R

15 evolutionarily saturated relatively B.

Proof. 1. Let the system of abstract trajectories R from T to M be evolutionarily saturated

relatively the base changeable set B. Then, by Definition [[.9.8 we have Tm(B) = T.
According to Assertion [[.7.6] any trajectory r € R belongs to LI (At(T,R)). Assume,

that r is not fate line of At (T,R). Then there exists a chain L € LI (At (T,R)) such, that

r C L. Since, by Definition [[.9.5, At (T, R) gB U At (T, R), then by Assertion [1.9.6, we get
Lell (B U At (T,R)). Therefore, there exists the chain L € LI <B U At (T,R)> such, that

r C L in the base changeable set B U At (T,R). Consequently r ¢ Ld (B U At (’]I‘,R)). But,
the system of abstract trajectories R is evolutionarily saturated relatively 3. Hence, from the
other hand, by Definition |[.9.8] the correlation r € ILd (B U At (T, R)) must be fulfilled for the

trajectory r € R. The contradiction, obtained above, shows, that r € Ld (At (T, R)) (Vr € R).
Thus, the system of abstract trajectories R is evolutionarily saturated.

2. Let the system of abstract trajectories R from T to M be evolutionarily saturated with
the additional condition (J,cr r) NBs(B) = 0, where Tm(B) = T. Then, by Theorem 6.1, we

get Bs (At (T, R))NBs(B) = (U, cx 7) NBs(B) = 0. Hence, according to Lemma (item 3),
the family of two base changeable sets (B, At (T, R)) is evolutionarily saturated. Therefore, by

Definition [[.9.7, Ld (At (T,R)) U Ld(B) C Ld <B U At (T,R)). Since, the system of abstract
trajectories R is evolutionarily saturated, then, by Definition we have R C Ld (At (T, R)).
Consequently, R ULd(B) C Ld (At (T, R)) ULd(B) C Ld (B U At (T, R)) . This, by Definition

1.9.8) means. that the system of abstract trajectories R is evolutionarily saturated relatively
B. O

Theorem 1.9.2. Let B be a base changeable set and R be a system of abstract trajectories from
Tm(B) to M, evolutionarily saturated relatively B.

Then the base changeable set B = B U At (Tm(B),R) is a super-evolutional extension of B
such, that R C ILd <g>
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Proof. Denote, B = B U At (Tm(B),R). According to Assertion m

B=BU At (’]I‘m(b’), U {r}) ~BU U B., (L54)

where B, = At (Tm(B),{r}) (reR).

Since for an arbitrary r € R the one-trajectory system R, = {r} is the system of individ-
ual trajectories (in the sense of Definition , then, according to Theorem we have
Ld (B,) = {r} (Vr € R). Hence, taking into account Definition and Equality (I.54), we
obtain:

Ld(B) U | JLd(B,) =Ld(B)U | J {r} =Ld(B)UR C

reR reR

CLd (B U At (Tm(B), R)) — Ld (E) ~Ld <B U U BT> . (L55)

reR

%
That is why, by Assertion [[.9.12) the super-evolutional union \/ ., B, exists, where A =
R [{a}, Bay = B and ay is any index, satisfying ap ¢ R (for example we can chose any index
ap from the nonempty set 2% \ R). According to Corollary and Equality (1.54) we get:

— — L o ~
\/ Bo=|JB.=8B,u|JB =BU|]B =B

acA acA reER reR

Consequently, by Definition [[.9.6] we have B = Baogg. Therefore B is the super-evolutional
extension of B. Moreover, according to ([.55)), we obtain, R C Ld(B) UR C Ld (E) m

Main results of this Section were published in [9].

10 Multi-figurativeness and Unification of Perception. General Defi-
nition of Changeable Set

10.1 General Definition of Changeable Set

Base changeable sets can be treated as mathematical abstractions of physical processes models
(in macro level) in the case, when the observations are conducted from one, fixed point (one,
fixed frame of reference). But, real, physical nature is multi-figurative, because in physics (in
particular in special relativity theory) “picture of the world” can significantly vary, according to
the frame of reference. Therefore, we obtain not one but many base changeable sets (connected
with everyone frame of reference of the physical model under consideration). Any of these base
changeable sets can be interpreted as individual image (or area of perception) of the physical
reality. Also it can be naturally assumed, that there is a natural unification between any two
areas of perception (that is frames of reference), this means, that it must be defined some rule,
which specifies how the object or process from one frame of reference must be looked out in
other frame. More precisely, using certain rules, we identify some object or process from one
frame of reference with the other object or process from other frame, saying that it is the same
object, but visible from another frame of reference. In the classical mechanics such “unification
of perception” is defined by the Galilean group of transformations, and in the special relativity
theory (for inertial reference frames) this unification is determined by the group of Lorentz-
Poincare. It should be noted that in the both cases the unification of perception is made not
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at the level of objects and processes, but at the level of elementary-time states tied to certain
points in 4-dimensional space-time. This means that in the both cases there is assumed, that
any elementary-time state, “visible” from some frame of reference, is “visible” from another
frames. On author opinion, this assumption is too strong for abstract theory. Moreover in
relativity theory for non-inertial reference frames the last assumption is not true. That is
why, in the definition below, the unification of perception is made on the level of objects and
processes. We recall, that in Section [§it had been introduced the concept of changeable system
(subset of the set Bs(B), generated by base changeable set B) as an abstract analog of the
notion of physical object or process.

Definition 1.10.1. Let % = (B, | a € A) be any incﬁixed family of base changeable sets (where
A # () is some set of indexes). System of mappings U = (s | o, 5 € A) of kind:

Ugg : 2858 9Bs(Bs) (o, € A)
1s referred to as unification of perception on B if and only if the following conditions are

satisfied:

1. Yy A=A for any o € A and A C Bs (B,).
(Here and further we denote by 3, A the action of the mapping 4z, to the set A C Bs (B,,),
that is ﬂgaA = ﬂga(fb.)

2. Any mapping g, is a monotonous mapping of sets, ie for any o, € A and A,B C
Bs (B,) the condition A C B assures g, A C g, B.

3. For any o, B,v € A and A C Bs (B,,) the following inclusion holds:
U ptlsa A C 8L Al (1.56)

In this case the mappings Up, (o, 5 € A) we name by unification mappings, and the triple
of kind:

z=(AB %)
we name by changeable set.

The first condition of Definition [[.10.1] is quite obvious. The second condition is dictated
by the natural desire “to see” a subsystem of a given changeable system in a given frame of
reference (area of perception) as the subsystem of “the same” changeable system in other frame.

In the case of classical mechanics or special relativity theory for inertial reference frames the
third condition of Definition [[.10.1] may be transformed to the following (stronger) condition:

$a8lsa A = oA (o, 8,7 €A, ACBs(B,)) (L57)

The replacement of the equal sign by the sign inclusion is caused by the permission to “distort
the picture of reality” during “transition” to other frame of reference in the case of the our
abstract theory. We suppose, that during this “transition” some elementary-time states may

turn out to be “invisible” in other frame of reference. Further this idea will be explained more
detailed (see the Section [12] in particular, Theorem [[.12.1)).

10.2 Remarks on the Terminology and Denotations

F
Let Z = (.A, %, Ll) be a changeable set, where % = (B, | a € A) is an indexed family of base

— s
changeable sets and i = (U3, | o, B € A) is an unification of perception on B. Later we will
use the following terms and notations:
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1) The set A will be named the index set of the changeable set Z, and it will be denoted
by Znd (Z).

2) For any index a € Znd (Z) the pair (a, B,) will be named by reference framel] of the
changeable set Z.

3) The set of all reference frames of Z will be denoted by Lk (Z): ff

LE(Z):={(a,B,) |a €Ind(Z)}.

Typically, reference frames will be denoted by small Gothic letters ([, m, € p and so on).
4) For [ = (a, B,) € Lk (Z) we introduce the following denotations:

ind () :=a; " := B,.

Thus, for any reference frame [ € Lk (Z) the object [ is a base changeable set.
Further, when it does not cause confusion, for any reference frame [ € Lk (Z) in denotations:

Bs (1), Bs (1)), Tm (1), Tm (I") <", <,-,

>¢, >0t o 5 L), Ld () (L58)
the symbol “ *” will be omitted, and the following denotations will be used instead:

Bs ([) , Bs ([) , Tm ([) , Tm ([) , <1 <y,
>1, > Y, <77<B[—5a LI(L), Ld(1). (1.59)

5) For any reference frames [ m € Lk(Z) the mapping izam),inary Will be denoted by
(m<« [, Z) or by ([ - m, Z). Hence:

(m—1Z)=(—-m Z) = inam),inaq)-
In the case, when the base changeable Z set is known, the symbol Z in the above notations

will be omitted, and the denotations “(m<1[), ([ — m)” will be used instead. Moreover, in the

. . . B
case, when it does not cause confusion in the notations “<;, <;, >, >, <T, %f, " the symbol
[

“I” will be omitted, and the denotations “<, <, >, >, +, &, 1" will be used instead. Moreover,
for elementary-time states wy,ws € Bs(I) we usually use the denotations ws < w; or wy <I—w1

. . B B . . .
instead of the denotations wy < wy O wy <[—5w1 correspondingly (in the cases, when it does not

cause confusion).

Remark 1.10.1. From Definition of changeable set (Definition it directly follows, that for
any reference frame [ € Lk (Z) of any changeable set Z, Properties are holding, where we
use all abbreviated variants of notations, described in Subsection (but, with replacement of
the symbol “B” by the symbol “I” and the term “base changeable set” by the term “reference
frame”).

10.3 Elementary Properties of Changeable Sets

Using Definition [[.10.1]and notations, introduced in Subsection [10.2] we can write the following
basic properties of changeable sets.

7 Note, that the terms “area of perception” or “lik” may be considered as synonymous to the term “reference frame”. In order
to standardize terminology, in this paper we use only the term “reference frame”. In earlier papers |1}/3}/4L8] usually it was used the
term “area of perception” in the case of general changeable sets (the term “reference frame” was used only for the cases of kinematic
changeable sets and universal kinematics).

8 The designation "Lk (Z)" originates from the word “lik”, which is synonymous with the term “reference frame” (see footnote .
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Properties 1.10.1. In the properties [IH§ symbol Z denotes any changeable set and [,m,p €
Lk (2) are any reference frames of Z.

1. The sets Lk(Z) and Ind(Z) always are nonempty, moreover Ind(Z) =
{ind () | L€ Lk (Z)};

2. 1= (ind (I),1");
3 "= (((%s(l), <[—> , (Tm(l), <)) ,wl) ,<B[—5> is a base changeable set.

LoD A=(I—>0A=A, ACBs(l);

5. For arbitrary |, m € Lk (Z) the unification mapping (m <1, Z) is the mapping from 2B5()
into 2Bs(m) .

6. m«—NHA=((—-mA ACBs(),
7. If AC B CBs(l), then (m«1[) AC (m<«1[) B;
8 (pm)y(m«NHAC (p+ ) A, where A C Bs(l).

Usually in future we will use Properties|l.10.1]instead of using Definition [[.10.1|directly. The
following three assertions are elementary corollaries of Properties |[.10.1| and Definition [[.10.1}
In these assertions the symbol Z denotes any changeable set.

Assertion 1.10.1. Let, Z,, Z, be arbitrary changeable sets, moreover:
1. Lk(Z) = Lk (2,).

2. For arbitrary reference frames Lm € Lk(2Z1) = Lk(Zy) it is true the equality:
(m<1,2)) = (m«+ [ Z).

Then, Z, = 2,.

Proof. This assertion follows directly from Definition |[[.10.1] and denotations, introduced in
Subsection 10.21 O
Assertion 1.10.2. For any [, m € Lk (2) the following equality is true:

(m«00=0.
Proof. Denote B := (m<«[) () C Bs(m). By Properties and [4) we obtain:
(I«m)B=([+m) (m« 00 C{[«<01))=0.
Therefore, ([<m) B = (. Since ) C B, then, by Property [.10.1|(7)), we get:
(I+m)() C (l+m) B =10,
that is ([<~m) () = (. Hence, by Properties and [§)), we obtain:
D=mm) 0D (m+H{I+md=m« =B
O

Assertion 1.10.3. For any [,m € Lk(Z) and any family of changeable systems (Aq|a € A)
(Ao C Bs(I) for each a € A) the following inclusions take place:

1) (m<«1) ( DAAQ) C DA<m<—[)Aa;

2) ) Aa 2 ([+m) ( N (m«1) Aa);
acA acA

3) <m<—[><U Aa) S5 U (me i) A,

acA acA
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Note, that the set of indexes A in the last assertion is an arbitrary, and, in general, it does
not coincide with the set of indexes in Definition [ 101l

Proof. 1) Denote A := (), 4 Aa- Taking into account, that A C A,, o € A and using Property

we obtain:

meDAC (me DA, acA

Thus, (m« ) A C (), (m<1) A,
2) Denote: @ = [) (m«I[)A,. Then Q C (m«+[)A,, « € A Hence, by Properties
acA
and [4) we obtain:
(l+m)Q C ([+m)(m« A, C (<A, =A, acA

Hence ([<~m) Q C[),c4 Aa, that was necessary to prove.
) Denote: A :=J, .4 Aa- Taking into account, that A, C A, a € A and using Property

m. we obtain

m+—NHA, C(m+—NHA «acA
Hence, [J,c4 (m<0) Ay, € (m<1) A O

Main results of this Section were anonced in [1] and published in |8} Section 3|.

11 Examples of Changeable Sets

11.1 Precisely Visible Changeable Set, Generated by Systems of Base Changeable
Sets and Mappings

Ezample 1.11.1. Let B = (B,|« € A) be any non-empty (A # 0) indexed family of
base changeable sets such, that Bs(B,) and Bs(Bs) are equipotent for any «,8 € A,
that is card (Bs (B,)) = card (Bs(Bg)), «,8 € A, where card(M) is the cardinality of
the set M. Let us consider any indexed family of bijections (one-to-one correspondences)

= (Wsa| a, 8 € A) of kind W3, : Bs (B,) — Bs (Bs), satistying the following “pseudo-group”
conditions []:

Woalw) = w, acA weBs(B,); } (L60)

W’Yﬁ (WBO&((’U)) = W’ya(“), OZ,B,’Y S .A, w € Bs (BQ) .

Let us put:
Uso A = Wia(A) = {Wya(w) |w € A}, A CBs(B,).

<_
It is easy to see, that the family of mappings U = (U, |, € A) satisfies all conditions
of Definition [[.10.1 moreover, the third condition of this Definition can be replaced by more
strong condition ([.57). Thus the triple:

2o (B.7) = (4 5.10)

9 The family of bijections, satisfying conditions ([.60) can be easily constructed by the follovvi(n_g way.

Since A # (), we can chose any (fixed) index a9 € A. Also chose any family of bijections W = (Wa | a € A) of kind W, :
Bs (Ba) — Bs (Bao) (such family of bijections necessarily must exist, because of card (Bs (Bo)) = card (Bs (B[g)) , a,B € A).
Denote:

Woa (@) = W5 T Wa (@), @, €A weBs(Ba).

where W_l] is the mapping, inverse to Wgs. It is easy to verify, that the family of bijections (W5a| a,B € .A) satisfies condi-
tions
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is a changeable set. The changeable set Zpv (%,W) will be named a precisely visible

changeable set, generated by the system of base changeable sets B and the system of map-
pings

Using the results of Example [[.11.1] and denotations, introduced in Subsection [10.2] we
obtain the following properties of changeable set of kind Zpv (B, >

<_
Properties 1.11.1. Let Z = va(B,W) be a precisely visible changeable set, gener-

ated by system of base changeable sets % = (B, |a € A) and system of mappings W =
(Wga| a, B € A). Then:
1. Lk(Z) ={(a,B,) | € A};
2. Ind(Z) = A;
3. For any reference frame = (o, B,) € Lk (Z) (a € A) the following equalities hold:

( W) Bs(l) = Bs (Ba);
m (B,); Tm(l)=Tm(B,);

(e,
Bs(h)
m([)

<i SBM
=i B_p
[ Ba [ Ba,

4. For any reference frames | = (o, B,) € Lk (Z), m = (8,Bs) € Lk (Z) (o, € A) and any
set A C Bs(l) = Bs (B,) the following equality holds:

(M1, Z) A = Wia(A) = {(Wha(w) | w € A}

11.2 Changeable Sets, Generated by Multi-Image of Base Changeable Set

Multi-images of base changeable sets may be considered as examples of changeable sets. To
construct multi-images of base changeable sets we need introduce some new definitions and
prove theorem on multi-image for changeable sets.

Definition 1.11.1. The ordered triple (T, X,U) will be referred to as evolution projector for
base changeable set B if and only if:

1. T=(T,<) is linearly ordered set;

2. X is any set;

3. U is a mapping from Bs(B) into T x X (U :Bs(B) — T x X').

Theorem 1.11.1. Let (T, X,U) be any evolution projector for base changeable set B. Then
there exist only one base changeable set U [B,T|, satisfying the following conditions:

1. Tm (U [B,T]) =T;
2. Bs(U [B,T]) =U(Bs(B)) ={U(w) |w € Bs(B)};
3. Let W,y € Bs(U [B,T]) and tm (W) # tm (Wy). Then Wy and Wy are united by fate in

U [B,T] if and only if, there exist united by fate in B elementary-time states wy,ws € Bs(B)
such, that Wy = U (wy), @y = U (ws).

Proof. Proof of existence.

1. Let (T, X,U) be an evolution projector for base changeable set B (where T = (T, <)).
Let us define the binary relation <— on the set U(Bs(B)) = {U(w)|w € Bs(B)} C T x X.
Namely, for any @y, w0, € U(Bs(B)) we consider, that wy <— w; if and only if at least one of the
following conditions is performed:
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U[B]2) tm (w;) < tm (Ww7) and there exist united by fate in B elementary-time states wy,wy €
Bs(B) such, that w; = U (w;) (i =1,2).

From Conditions U[B]1), U[B]2) it follows, that the relation < satisfies Conditions of
Theorem Hence, by Theorem [[.6.2] only one base changeable set B, exists, satisfying the
following conditions:

Tm (B,) =T; Bs(B)) =U(Bs(B)); +— =<. (1.61)

Denote:
U [B,T| := B;.

From first two conditions it follows, that the base changeable set U [B, T] satisfies condi-
tions [LJ[2] of this Theorem. From the third condition (L.61)), taking into account Assertion [[.7.3
we obtain that third condition of this theotem for U [B, T| also is satisfied.

Proof of uniqueness.

Suppose, that the base changeable set By also satisfies Conditions [)2]5] of this Theorem,
that is:

1. Bs (By) = U(Bs(B));
2. Tm (B,) = T;

3. If Wy, wy € Bs (Bs) and tm (w01) # tm (ws), then w; and wy are united by fate in By if and
only if, there exist united by fate in B elementary-time states wy,ws € Bs(B) such, that
(:51 = U(wl), &2 = U(UJQ).

Then, according to conditions 1’,2" and conditions of this Theorem for U [B, T|, we have
Bs (By) = Bs (U [B,T]), Tm(B2) = Tm (U [B,T]). Moreover from Condition 3’ and third
condition of this Theorem, taking into account Property [.6.1|(7) and Assertion [[.7.3] we obtain

the equality ? = %. Hence, by Corollary [[.6.1} we obtain, By = U [B, T]. O

Definition 1.11.2. The base changeable set U [B,T]|, which satisfies the conditions 1,2,8 of
Theorem ([.11.1) will be named by the image of the base changeable set B relatively the
transforming mapping U and the time scale T.

Remark 1.11.1. According to conditions U[B]1), U|BJ2) in the proof of Theorem [I.11.1] for
any elementary-time states wy, wy € Bs(U [B,T]) the relation ws m&?l is true if and only

if W, = Wy or tm (W) < tm (w2) and there exists united by fate in B elementary-time states
W1,Ws € BE(B) SUCh, that @1 = U(W1)7 &2 = U(u)g).
Remark 1.11.2. In the case, when T = Tm(B) we use the denotation U [B] instead of the
denotation U [B, T]:

U[B] :=U|[B,Tm(B)].
Remark 1.11.3. Let B be any base changeable set and Iy : Bs(B) — Tm(B) x Bs(B)
be the mapping, given by the formula: Ipyp)(w) = w (w € Bs(B)). Then the triple
(Tm(B),‘Bs(B),HBs(B)), is, apparently, evolution projector for B. Moreover, if we substitute
Tm(B) and B into Theorem [[.11.1]instead of T and U [B, T| (correspondingly), we can see, that
all conditions of this Theorem are satisfied. Hence for the identity mapping Igss) (on Bs(B)),
we obtain:

Definition 1.11.3.
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1. The evolution projector (T,X,U) (where T = (T, <)) for base changeable set B will be
named as zn]ectwem if and only if the mapping U is injection from Bs(B) to T x X (that
is bijection from Bs(B) onto the set R(U) C T x X )[]

2. Any indexed family B = ((To, Xo, Us) | € A) (where A # () of injective evolution pro-
jectors for base changeable set we name by evolution multi-projector for B.

Theorem 1.11.2 (on multi-image for changeable sets). Let, B = ((Ty, Xa, Us) | @ € A) be
evolution multi-projector for base changeable set B. Then only one changeable set Z exists,
satisfying the following conditions:

1. LE(Z) = {(a, U [B,T.)) | a € A).

2. For any reference frames | = (o, U, [B,To]) € LE(Z), m = (5,Us[B,Ts]) € Lk(2)
(a, B € A) and any set A C Bs(l) = U,(Bs(B)) the following equality holds:

(m« 1 Z2)A=Uz (UTN(A)) = {Us (UL (w)) |w e A},

07

where US™ is the mapping, itnverse to U,.

Remark 1.11.4. Suppose, that a changeable set Z satisfies condition [I] of Theorem [.11.2] Then
for any reference frame [ = (o, U, [B, T,]) € Lk (Z), according to Property [.10.1}[2), we have,
ind(l) = o, I" = U, [B,T,], and hence, Bs(l) = Bs (I") = Bs (U, [B,T,]). Therefore, by
Theorem Bs([) = U,(Bs(B)). Thus, the condition [2| of Theorem is correctly
formulated.

Proof of Theorem[[.11.2 Let, P = (T, Xa, Us) | @ € A) be evolution multi-projector for base
changeable set B.

By Definition for any o € A the triple (T, X,, Uy ) is an injective evolution projector
for B. In accordance with Theorem we put:

By, =U,[B,T,] (ax€A).

Since (Tq, X,,Us,) is an injective evolution projector, then, by Definition [.11.3] the mapping
U, is one-to-one correspondence between Bs(B) and SR(U). Hence, the inverse mapping i
exists (for all a € A).

For any indexes a, 8 € A and any elementary-time state w € Bs (B,) we denote:
Wa(w) := Us (Uy Y (w)) (1.62)
(note, that, by Theorem [L11.1} Bs (B,) = U, (Bs(B))). Hence, Ws, is the mapping from
Bs (B,) into Bs (Bz) = Us (Bs(B)).

It 1s easy to verify, that the family of mappings W (Wsa| o, B € A) possesses the properties
. Therefore, using results of Subsection | we may denote:

Z = Zpv <<E, W) ,  where B = (Bo|ave A). (1.63)

Herewith, according to Property , we obtain:
Lk(Z)={(,By) |a € A} = {(a, U, [B,T,]) | @ € A}, (1.64)
and for arbitrary reference frames [ = (o, U, [B,T,]) € Lk (Z), m = (8,Us [B,T;s]) € Lk (Z)

(where a, 5 € A) and for any set A C Bs(l) = Bs (U, [B,T.]) = U.(B ( )), by Property
m. we obtain:

(m< 1, Z) A= Wso(A) = Us (UTY(A)). (1.65)

10 In previous works we used the term “bijective evolution projector” instead of “injective...”. But in the present paper we have

made some clarifications in terminology.
I Here R3(U) means the range of (arbitrary) mapping U.
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From (I.64)) and (I.65) it follows, that the changeable set Z satisfies conditions of Theorem
L1121

Suppose, that the changeable set Z; also satisfies conditions of Theorem Then,
by the condition [} Lk (Z) = Lk (Z;). Also, by the condition [2] for arbitrary reference frames
[Lm e Lk(Z2) = Lk(Z)) it is true the equality: (m<« [, Z) = (m< [, Z;). Hence, by Assertion
we get Z = Z;. Thus, changeable set, satisfying the conditions [I]j2] of Theorem
is unique. O

Definition 1.11.4. Let P = ((To, Xa,Uys) | @ € A) be an evolution multi-projector for base
changeable set B. Changeable set Z, satisfying conditions 1|3 of Theorem[I.11.2 will be referred
to as evolution multi-image of base changeable set B relatively the evolution multi-projector
B. This evolution multi-image will be denoted by Zim ['B, B]:

Zim [P, B = Z.

Remark 1.11.5. From Equality (I.63)) in the proof of Theorem [I.11.2]it follows that any change-
able set of kind Zim [, B] (P = ((Ts, Xa,Us) | @ € A)) may be represented in the form:

Zim ['B, B] = Zpv (%1;, W‘ﬁ) : where (1.66)

By=(BPlacA); W — (Wi a.8eA), and

B® =U,[B,Ts (acA);
W (w) = Us (U V(W) (a8 € A)

Let Z be any changeable set and [ € Lk (Z) be any reference frame of Z. We say, that
elementary-time states wy,wy € Bs([) are united by fate in the reference frame [ of changeable
set Z, if and only if thay are united by fate in the base changeable set [".

From theorems [[.11.2] and [[.11.1] taking into account Property [[.6.1[9)), Property [[.10.1|(L)
and Remark [[.10.1] we immediately deduce the following properties of multi-image for base

changeable set.

Properties 1.11.2. Let P = ((T,, Xy, Us) | € A), where T, = (Ty,<,) (o € A) be an
evolution multi-projector for base changeable set B and Z = Zim [P, B]. Then:

1. Lk (2) ={(a, Uy [B,T,)) | € A}.
2. Ind(Z) = A.

3. For any reference frame | = (o, U, (B, T,]) the following equalities hold:

Bs(l) = U, (Bs(B)) = {Us(w) |w € Bs(B)} ;
Bs(l) = {bs (Uy(w)) |w € Bs(B)};
Tm(l) = T,: Tm(l) =Ta; <=<,.

4. Let, 1 = (o, U, [B,T,]) € Lk(Z), where « € A. Suppose, that wy,ws € Bs(l) and
tm (Wy) # tm (We). Then wy and Wy are united by fate in | if and only if there exist united
by fate in B elementary-time states wi,ws € Bs(B) such, that Wy = U, (w1), we = Uy (wa).

Example 1.11.2. Let B be a base changeable set, and X — an arbitrary set such, that Bs(B) C
X. And let U be any set of bijections (one-to-one correspondences) of kind:

U:Tm(B) x X — Tm(B) x X (U eU)
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Such set of bijections U is named by transforming set of bijections relatively the base
changeable set B on X.

By Definition [[.II.I, any mapping U € U generates the evolution projector,
(Tm(B),X, UFBG(B)) , where Ujgg(p) is the restriction of the mapping U onto the set Bs(B) C
Tm(B) x X. Henceforth, where it does not cause confusion, we identify the mapping Ugss)

with the mapping U. Under this identification, we can consider, that (Tm(B),X, UnBs(B)) =
(Tm(B), X,U)). Hence, the indexed family:

is evolution multi-projector for B. In this particular case we obtain the changeable set:
Zim (U, B) = Zim [P [U], B] . (1.67)

Definition 1.11.5. Changeable set Zim (U, B) will be named multi-figurative image of the
base changeable set B relatively the transforming set of mappins U.

Ezxzample 1.11.3. Let B be a base changeable set such, that
Bs(B) CR?’, Tm(B) =R,y = (R, <),

where < is the standard linear order relation on the real numbers. Such base changeable set
B must exist, because, for example, we may denote B := At (R,.4, R), where R is a system
of abstract trajectories from R,.; to the subset M C R3. Let us consider Poincare group
U = P(1,3,c), defined on the 4-dimensional space-time R* = R x R®> O Tm(B) x Bs(B),
that is the group of affine transformations of the space R*, which are satisfying the following
conditions:

1. Any transformation P € P(1,3,c¢) leaves unchanged values of the Lorentz-Minkowski
pseudo-distance on R*:

M. (Pwy — Pwy) = M. (w1 —wa), (Vwy,wy € RY),  where;

3
M. (w) = Zw? —cAwi  and
1

j=
W—VTIZ(UJO—ZTJO, wy — Wy, Wy — Wy, ws—@:a)
(W = (w07w17w27w3) € R47 W= (’&707/&717@27@3) € R4) :

Here the number ¢ means any fixed positive real constant, which has the physical content
of the speed of light in vacuum.

2. Any transformation P € P(1,3,¢) has positive direction of time, that is Pwy, — Pw; €
M., (R3) for any wy, wo € R?* such, that wog — w; € M., (R?), where

Mc7+ (Rs) = {W = (UJQ,’LUl,wQ,'LU;g) € R* ’ wy > 0, M. (W) < O}

(Ct. [43]).

Poincare group U = P(1,3,¢) is transforming set of bijections relatively the base changeable
set B on R3. Hence, we obtain the changeable set Zim (P(1,3), B), which represents a math-
ematically strict model of the cinematics of special relativity theory in the inertial frames of
reference. Note that this model does not formally prohibit the existence of tachyon transfor-
mations, because elementary-time states wy,ws € Bs(B) C R x R? may exist such, that ws < w;
and M, (wy;ws) > 0.
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11.3 Other Examples of Changeable Sets

In all previous examples the unification mappings (m<[) between reference frames [[m €
Lk (Z) of a changeable set Z are defined by means of bijections (one-to-one correspondences)
between the sets of elementary-time states Bs(l) and Bs(m) (that is for any A C Bs(I) the
unification mapping (m < [) A can be represented in the form:

(me) A= MWa(@)}

w€eA

where the mapping Wy : Bs(I) — Bs(m) is bijection between Bs([) and Bs(m)). In all these
examples the third condition of Definition may be replaced by more strong condition
(L.57). But really the conditions of Definition are enough general. The last thesis will be
confirmed by the following examples.

<_
Ezample 1.11.4. Let B = (B, | o € A) be any indexed family of base changeable sets. Denote:

_JA, a=p
uBaA._{@’ s a,B€ A ACBs(B,).

%
It is easy to verify, that the family of mappings Y = (g, | o, 8 € A) satisfies all conditions of
Definition [[.10.1. Therefore, the triple

zn (B) = (4 5.9)
is a changeable set.

%
The changeable set Znv (B) will be named the fully invisible changeable set, generated

<_
by the system of base changeable sets B.
Note, that any base changeable set B can be identified with the changeable set of kind

Znv (%), where A = {1}, B; = B and B = (Bo | € A) = (By).

e
Ezample 1.11.5. Let, B = (B1,B2) = (Bo|a € A) (where A = {1,2}) be a family of two
base changeable sets. Choose any elementary-time state w € Bs (By). According to Property
[.6.1)(2), Bs (Bs) # 0. Therefore elementary-time state w € Bs (B) must exist. Denote:

UnA:=A4, ACBs(B); UpA:=A, ACBs(B);

uglA = ®7 A 7& B (Bl) 5 A g Bﬁ (Bl) ;
{w}> A=DBs (Bl)

0, wé A

L[lgA = )
Bs (Bl) , weE A

A - Bs (BQ>;

1. Since ;1,4 are identity mappings of sets, the first condition of Definition is
performed by a trivial way. For the same reason the second condition of this Definition also is
satisfied in the case o = .

2. Suppose, that o, 5 € A= {1,2}, A,B C Bs (B,), A C B. According to remark, made in
the previous item, it is enough to consider only the case o # 5. Thus, we have the next two
subcases.

2.a) a =1, f = 2. In the case A # Bs (B;) we obtain LU, A = 4 A = () C Ug, B, and in the
case A = Bs (B,), since A C B we have B = Bs (B;), and, therefore, 4z, A = g, B.
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2.b) o =2, 8 = 1. In the case w ¢ A we obtain g, A = s A = () C Ug,B. In the casew € A
from the condition A C B it follows, that w € B, so g, A = U2 A = Bs (B1) = 2B = g, B.

3. Let o, 8,7 € A= {1,2}, A C Bs (B,). We consider the following cases.

3.a) a = (. In this case LUz, A = A. Consequently:

Wiptlga A = UypA = o A.
3.b) f =. In this case L3S = S5, S C Bs (Bs). Hence:
pilg, A = g A = 8L, A.

3.c) a # B # . Since the set A is two-element, this case can be divided into the following
two subcases:
3.c.1) Let « =1, =2,y =1. Then in the case A # Bs (B;) we obtain:

U plga A = ol A = L) = 0 C U, A,
and in the case A = Bs (B;) we calculate:
$atla, A = ol A = tho{w} = Bs (By) = A = L, A.
3.c.2) Let, « =2, § =1, v = 2. Then in the case w ¢ A we have:
U pllga A = U dp A = U0 =0 C LA,
and in the case w € A we obtain:
o pilg A = Hoydlip A = U Bs (By) = {w} C A= ,A.
Consequently, the triple:
z=(ABY),
where I = (Uso | o, B € A) is a changeable set.

Ezxzample 1.11.6. Let A, By, By, w be the same as in Example[[.11.5] Also, similarly to previous
Example [[.11.5] ;7 and s, are the identical mappings of the sets. Now, we denote:

_fo. a-o |
uglA = {{w}7 A;é@’ AQBE(Bl),
,ulgA = @7 A Q Bs (Bg) .

1,2. Since, 447 and Ly, are the identical mappings of the sets, the first condition of Definition
is satisfied by a trivial way. The second condition of this Definition also is easy to verify.
3. In the cases a = = v, o # B = v, a = [ # ~ verification of the third condition
of Definition is the same, as in Example [[.11.5 Thus it remains to consider the case
a # [ # 7. Like the previous example we divide this case into the following two subcases:
3.1) Let, « =1, 8 =2, v = 1. Then:

o plga A = ol A = 0 C 8L, A.
3.2) Let,a =2, =1, v=2. Then:
$pllga A = U dlp A = Us 0 =0 C 8L, A
Thus, the triple:
Z, = (A, B, ﬁ) ,
is a changeable set.

Main results of this Section were published in [8, Subsection 3.4]. Theorem [I.11.2] (in the
present form) is published in [13].
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12 Visibility in Changeable Sets

12.1 Gradations of Visibility

Definition 1.12.1. Let Z be any changeable set, and [, m € Lk (Z) be any reference frames of
Z. We say, that a changeable system A C Bs(l) of the reference frame [ is:

1. visible (partially visible) from the reference frame m, if and only if (m<+ 1) A # (;

2. normally visible from the reference frame w, if and only if A # O and arbitrary nonempty
subsystem B C A of the changeable system A is visible from m (that isVB : () # B C A
(me1) B £0);

3. precisely visible from m, if and only if:

(a) A is normally visible from m;

(b) for any family {As |a € A} C 24 of changeable subsystems A such, that | |, 4 Aa = A
the following equality holds

meDA=| | (me1) A,
acA

where | |, 4 Ao denotes the disjoint union of the family of sets {A,|a € A}, that is
the union \J,c 4 Ao, with additional condition Aq N Ag =0, a # .

4. invisible from the reference frame m, if and only if (m<«+1[) A = (;

Remark 1.12.1. Tt is apparently, that the precise visibility of the changeable system A C Bs([)
(I € Lk (Z)) from the reference frame m € Lk (Z) involves the normal visibility of A from m,
and the normal visibility of any changeable system A C Bs(l) from m involves it’s visibility
(partial visibility) from m.

Assertion 1.12.1. For any changeable set Z the following properties of visibility of changeable
systems are true:

1. Empty changeable system O C Bs(l) always is invisible from any reference frame m €

Ck(2).

2. Any nonempty changeable system A C Bs(l), A # 0 always is precisely visible from its
own reference frame .

3. If a changeable system A C Bs(l) (where l € Lk (Z)) includes a subsystem B C A, which
is visible from reference frames m € Lk (Z), then the changeable system A also is visible
from m.

4. If a changeable system A C Bs([) is normally visible (precisely visible) from reference frame
m, then any nonempty subsystem B C A, B # 0 of changeable system A also is normally
visible (precisely visible) from m.

Proof. Statements of this Assertion follow from Assertion and Properties of
changeable sets. Statement [4] for the case of normal visibility is trivial. Thus, it remains to
prove Statement [4] for the case of precise visibility. Let a changeable system A C Bs([) be
precisely visible from the reference frame m. Consider any changeable system B such, that
() # B C A. Since precise visibility involves the normal visibility, B is normally visible from m.
Suppose, that B = | | . 4 B,. Using the equalities:

A=BU(A\B); A=||B,u(A\B),
acA
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and taking into account precise visibility of the changeable system A from m, we obtain:
m+—NDHA=m«)BU(m+)(A\B);

(meHA=| | (me1)ByU(m«1)(A\B).
acA

Consequently, (m«+ ) BU (m<« ) (A\ B) = ||, .4 (m« ) B, U (m<«1[)(A\ B). Hence:

acA
(me0)B=| | (m«1)B,.
acA

Thus, B is precisely visible from m. m
Definition 1.12.2. We say, that a reference frame | € Lk (Z) is:

1. wvisible (partially visible) from the reference frame m € Lk (Z) (denotation is | = m (Z)),
if and only if there exists at least one visible from the m changeable system A C Bs(l) (that
is FACBs(l) (m« 1) A#D).

2. normally vistble from the reference frame m € Lk (Z) (denotation is | =! m(Z2)), if and
only if any nonempty changeable system A C Bs(l) (A # () is normally visible from the
m.

3. precisely visible from m (denotation is | =!! m(Z2)), if and only if any nonempty change-
able system A C Bs(l) (A # () is precisely visible from the reference frame m.

4. invistble from the reference frame m, if and only if any changeable system A C Bs(l) is
invisible from the m.

In the case, when the changeable set Z is known in advance in the denotations [ > m (Z),
[~Im (Z), [ -l m (Z) the sequence of symbols “(Z)” will be omitted, and the denotations
[>=m, [ =!'m, [ =!! m will be used instead.

Remark 1.12.2. From Remark it follows, that for the reference frames [,m € Lk (Z) the
next propositions are true

o if [ =!! m, then [ ! m;

o if [ >=! m, then [ > m.

Thus, precise visibility involves the normal visibility and normal visibility involves visibility
(partial visibility). Example shows, that visibility does not involve the normal visibility.
Indeed, we may consider the case, when card (Bs (B;)) > 2. In this case for the reference frames
[, = (1,B), s = (2, B2) we have, that the changeable system Bs ([;) = Bs (B;) is visible from [y,
but it is not normally visible from [5, because any subset A C Bs ([;) = Bs (B;1) (A # Bs (By))
is invisible from [,. Thus, in the case card (Bs (B;)) > 2 we obtain [; > [, but not [; >! 5.

Example [[.11.6| shows, that normal visibility does not involve the precise visibility. In this
Example any nonempty changeable system A C Bs ([;) (I, = (1,5;)) is normally visible from
the reference frame [y = (2, B). But, in the case card (A) > 2 the changeable system A is not
precisely visible from [y, because in this case there exist nonempty sets A;, Ay C A such, that
A; U Ay = A, but the images of these sets ((Io < 1) Ay = U A1 = {w}, (o 11) Ay = Uy Ay =
{w}) are not disjoint. Thus, in the case card (Bs (B;)) > 2 we have [; >! [y, but not [; >!! I,.

Further it will be proved that in examples [[.11.1] [[.11.2f and [[.11.3| any reference frame of

the changeable sets Zpv (%, W) and Zim (U, B) is precisely visible from another frame (see
assertions |[.12.6) and [[.12.7| below).

The next three assertions immediately follow from definitions [[.12.2}[[.12.1] and Assertion
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Assertion 1.12.2. For any changeable set Z the next propositions are equivalent:

(Vil) Reference frame | € Lk (Z) is visible from reference frame m € Lk (Z) (I > m).
(Vi2) The set Bs(l) of all elementary-time states of | is visible from m.

Assertion 1.12.3. For an arbitrary changeable set Z the following propositions are equivalent:

(nVil) Reference frame | € Lk(Z) is normally visible from reference frame m € Lk(Z)
([>~!'m).

(nVi2) The set Bs(l) of all elementary-time states of | is normally visible from m.

(nVi3) Any nonempty changeable system A C Bs(l) is wvisible from m (¥ C Bs(l)
(A#£ D= (m«1) A#£0D)).

Assertion 1.12.4. Let Z — be an arbitrary changeable set. Then:

1. Any reference frame | € Lk(Z) is precisely wvisible from itself (that is VI €
Lk(Z) [=111).

2. The following propositions are equivalent:

(pVil) Reference frame | € Lk(Z) is precisely visible from reference frame m € Lk (Z)
(=1 m).

(pVi2) The set Bs(l) of all elementary-time states of | is precisely visible from m.

Assertion 1.12.5. For any changeable set Z the binary relation ! quasi orderm on the sel
Lk (Z) of all reference frames of Z.

Proof. Reflexivity of the relation >! follows from the first item of Assertion and from
Remark [[.12.2] Thus, we only need to prove the transitivity of the relation >!.

Suppose, that [ =! m and m =! p, where [[m,p € Lk(Z). Then, using Assertion
(equivalence between (nVil) and (nVi3)), for any nonempty changeable system A C Bs(I) we
obtain, (p<+[) A D (p<+m) (m<1[) A # (), thus, by Assertion [=!p. O

Remark 1.12.3. First item of Assertion together with Remark also bring about the
reflexivity of relations >!! and > on the set Lk (Z) (for any changeable set Z). But these
relations, in general, are not transitive. And the next examples explain the last statement.

Example 1.12.1. Let B be any base changeable set. We consider the family % = (B, | a €N)

of base changeable sets, which is defined as follows:

B, = B, a e N.
For a, 5 € N we define the mappings 3, : Bs (B,) — Bs (Bg) by the following way:

A, fe{a,a+1};
o Bs(B), f>a+1, A#0D; B
Uga A = 0. B>atl A—g: (A€ Bs(B,) =Bs(B), n eN) (1.68)
0, B <a,

(where the symbols <, > denote the usual order on the set of natural numbers).

F
We shell prove, that the system of mappings U = (LU, | a, 5 € N) is unification of percep-
tion.

12 About quasi order relation see footnote

74



Draft Introduction to Abstract Kinematics. (Ver 1.0) 75

%

The first two conditions of Definition [[.10.1|for the system of mappings il are performed by

a trivial way. Thus, we need to verify the third condition of this Definition. Let o, 3,7 € N
and A C Bs (B,) = Bs(B). Then in the case o < 3 <+, by (.68]), we obtain:

0, A= ;
WatlwA =LA A#0 Be{aatl}.ye{f st} (1.69)
Bs(B), A#0, and (8 >a+1lory>f+1).
Since ,,A € {A,Bs(B)} for a < v, in the first two cases of the formula (L.69)) the inclusion
g A C 8, A holds. In the third case of the formula (.69) we have v > a + 1, and
hence, $,,A = Bs(B). Thus, in this case, the last inclusion also is performed. If the condition
a < B < is not satisfied, we have a > /3 or 8 > «. Therefore, by the formula (I.68), we have,
g8, A = (). Consequently, in this case we also have the inclusion $,s85,A4 C 8L, A. Thus,
all conditions of Definition [[10.1] are satisfied.
4
Hence, the triple Z = (N, B, 11) is a changeable set. According to denotation system,

accepted in Subsection for this changeable set Z we have:

Lk (Z)={l,|n € N}, where
[, =(n,B,)=(n,B), neN,

and for [,,, [, € Lk (Z) the equality (I, + [,,,) = L., holds. Thus, by (L.68):
(1< 1,) A=A, ACBs(l,) =Bs(B), neN;

Bs(B), A#0

" A ACBs(l,) =Bs(B), neN;

<[n+2 — [n> A= {

The last equalities show, that [, =!! [,1; (n € N). But, in the case card(Bs(B)) > 2, [, is
normally visible, but not precisely visible from [, ;5. Thus, in the case card(Bs(B)) > 2 for
any n € N we have [,, =!! [,11, o1 >!! [,1o, although the correlation [, >!! [,.5 is not true.

Example 1.12.2. Let base changeable set B be such, that the set Bs(B) is infinite. Then there

exists the sequence (wy).-,; € Bs(B) of elementary-time states such, that w, # wy,, m # n.

Denote:
B, =8B, a€eN; <E::(l’a’a!ozGI\T);
(A, b=«
, =a+1, €A
g A = lwsh, f=a+l w (A C Bs (B,) = Bs(B), n € N) (1.70)
Q), B =a+ 1, wg ¢ A
0. B¢ {a,a+1}.

We shell prove, that the system of mappings <5._I, = (Upq | o, € N) is unification of perception.
The first two conditions of Definition for the system of mappings <1_1 are performed by
a trivial way. Thus, we need to verify the third condition of this Definition. Let o, 5,7 € N.
It should be noted, that from it follows, that g, = 0 for any o, € N. Thus,
according to , if one of the conditions o < g or < 7 is not performed, then we have
ails, A =0 CU,A A C Bs(B). Hence, we shell consider the case o < § < . In the case,
when a = § or 8 = ~, similarly to Example[[.11.5](items 3.a),3.b)), we obtain {545, A = £, A.
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Thus, it remains to consider only the case o < § < 7. In the cases > a+1or v > 3+ 1, by
, we obtain £ 583, A =0 C 4,,A, A € Bs(B). Hence, it remains only the case § = a +1
and v =+ 1. Ifwg ¢ A, then, by , Upo A = (), and we have, $l,585, A =0 C &, A. And
in the case wg € A, we obtain w, = w1 ¢ {wsz}. Thus, in this case:

thptlsaA = Uy {ws} =0 C oA

T
Consequently, the triple Z = <N, B, Ll> is a changeable set, satisfying:

Lk(Z)={l,|n €N}, where [, = (n,B,) = (n,B), n € N,
(1) =Y, m,n €N (I,,[, € Lk(Z)).

From ([.70]) it follows, that any n € N ([,;24[,) A =$,15,A =0, A C Bs(B)=Bs(l,), but,
under the condition, wy, 1,wni2 € A we have ([, L) A = {w,i1} # 0, (Lo L) A=
{wnio} # 0. Therefore, [, = l,11, lis1 = L2, although the reference frame [, invisible from
[n+2 ([n ?A [n+2)~

Now we turn to the investigation of visibility of reference frames in the changeable sets of

F

kind Zpv <B,W> and Zim [B, B]. We are going to prove, that in these changeable sets any

reference frame is precisely visible from each another.

Assertion 1.12.6. Let B = (Balaoe A) (A#0) be indexed family of base changeable sets

such, that card (Bs (B,)) = card (Bs (Bs)) (for any o, 5 € A) and W= (Wsal o, B € A) be
indexed family of bijections of kind Wg, : Bs (B,) — Bs (Bg), satisfying conditions (1.60) and

Z = Zpy (%,W) .

Then the correlation l; >=!! Iy is performed for any reference frames Iy, ly € Lk (Z2).

%
Proof. Consider any reference frames [1,ly € Lk (Z), where Z = Zpv <B,f/[_/>. According to
Property 1.11.1 reference frames [y, [, can be represented in the form:
[1:(aa80¢)7 [2: (BvBﬁ)v
where a, 5 € A. And, in accordance with Properties [I.11.1{(4}f3), unification mapping between
[, and [y is represented in the form:

(b= ) A=Ws(A) = {(Wpa(w) |lwe A} (VACBs(l;) =Bs(B,)),

where Wpg,, : Bs (B,) — Bs (B3) is an bijection between Bs (B,) = Bs (I;) and Bs (Bz) = Bs ([,).
Hence, any non-empty changeable system VA C Bs (I;) is visible from [,. Hence, by Definition
1.12.1|(item [2) Bs ([;) is normally visible from [5. Since the mapping W3, is an bijection between
Bs (I;) and Bs (), for any disjoint system of changeable systems (Ag| 5 € ZA) (As C Bs(ly),

BePR and AgNA, =0for B #~), wehave (<L) | || Ag | = | (o< 1) As. Therefore,

BER BER
by Definition [[.12.1] (item [3), Bs (I), is precisely visible from I,. Thus, by Assertion [[.12.4]
[ =11, O

Assertion 1.12.7. Let B be an evolution multi-projector for base changeable set B and
Z=Zim[p,B].

Then the correlation l; =!! Iy is performed for any reference frames Iy, ly € Lk (Z).
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Proof. Assertion [[.12.7] follows from Assertion [[.12.6| and Equality ([.66|) in Remark [[.11.5 [

Corollary 1.12.1. Let U be transforming set of bijections relatively the base changeable set B
on X and
Z=Z2im(U,B).

Then the correlation l; =!! Iy is performed for any reference frames Iy, ly € Lk (Z).

Proof. Corollary [I.12.1] follows from Assertion [[.12.7| and Equality (I.67)). O

From Corollary [[.12.1] it follows that in changeable set, considered in Example [[.11.3] any
reference frame is precisely visible from each another.

Definition 1.12.3. We say, that a changeable set Z is visible (normally visible, precisely
vistble) if and only if for any [, m € Lk (Z) it satisfied the condition | = m ([ =!m, [ =l m)
correspondingly.

From Remark it follows, that any normally visible changeable set is visible. Exam-
ple|[.11.5]shows, that the inverse assertion is not true. Indeed, we may consider the case, when
in this Example card (Bs (1)) > 2. As it has been shown in Remark [[.12.2] in this case for
the reference frames [; = (1,B;), [ = (2,B2) we have, [; = [, but not [; >! [. Since in this
Example w € Bs (Bz), we obtain ([; < [3) Bs (By) = U;2Bs (B2) = Bs (B;1) # 0. Hence, [ > [;.
Thus [; > [y, [ = [, but not [; >! [, And, taking into account, that Lk (Z;) = {l, 2}, we
obtain, that the changeable set Z; in Example is visible, but not normally visible. In
the subsection (Corollary it will be shown, that the changeable set Z is precisely
visible if and only if it is normally visible.

Using the notion of precisely visible changeable set, introduced in Definition [[.12.3] we obtain

the following three corollaries from Assertions [[.12.6] [[.12.7] and Corollary [[.12.1

Corollary 1.12.2. Let B = (Ba|laoe A) (A#0) be indexed family of base changeable sets
such, that card (Bs (B,)) = card (Bs (Bs)) (for any o, 5 € A) and W= (Wsa| o, 8 € A) be
indezed family of bijections of kind W, : Bs (B,) — Bs (Bg), satisfying conditions (1.60). Then
the changeable set Z = Zpv (%, W) 15 precisely visible.

Corollary 1.12.3. Let *B be be an evolution multi-projector for base changeable set B. Then
the changeable set Z = Zim ['B, B] is precisely visible.

Corollary 1.12.4. Let U be transforming set of bijections relatively the base changeable set B
on X. Then the changeable set Z = Zim (U, B) is precisely visible.

12.2 Visibility Classes

Assertion 1.12.8. For any reference frames [, m € Lk (Z) of any changeable set Z the following
propositions are equivalent:

(D 1 ~'mand m ! [;
(IT) (=" m and m =!I L.

Proof. Since precise visibility always involves normal visibility, it is enough only to prove the
implication (I)=-(II). Hence, suppose, that [ m € Lk (Z), [ >! m and m >! [.

1) First we shall prove, that for any A, B C Bs(I), the equality AN B = () is true
if and only if (m« AN (m«[)B = 0. Suppose, that AN B = (). Then, according
to second item of Assertion ) = ANB D (I+m)((m«< ) AN (m<«[)B). Since
m >! [and (I<m)((m« 1) AN (m<1[) B) = (), then, by the definition of normal visibility,
(m<+[) AN(m+«[) B = (), what is necessary to prove. Conversely, let (m«+[) AN(m+«+[) B = 0.
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Then, by first item of Assertion (m« ) (ANB) C (m+ AN (m«I[)B = (. Since
(m<« ) (AN B) =0 and [ =! m, then, by the definition of normal visibility, AN B = ().

2) Let, A C Bs(l) and A = [ | .4 Aa (where A, € A, a€ A A, NAg =0, a # (). By
Item 3) of Assertion (m+0)ADJ,cq(m<s1)A,. Since the family of sets (A, | o € A)
is disjoint, by first item of this proof, the family of sets ((m<«1[) A, | a € A) also is disjoint,
that is (m<« ) A D | |,c4 (m<«[) A,. Assume, that the last inclusion is strict (ie (m<«[) A #
L peq (m<10) A,). Then the set B = ({m<1I) A)\ (Woeq (m<1) A,) is nonempty. Hence, by

definition of normal visibility, the set B = ([<-m) B also is nonempty. Since B C (m«[) A,
by Properties we have, B = ([« m)B C (I« m)(m«)A C ([« ) A = A. Since
the set B = ((m«10) A) \ (e (m<1) A,) is disjoint with with any of the sets (m<«[) A,
(v € A), the set (m« 1) B = (m« 1) (I« m)B C (m«m)B = B also is disjoint with with
any of (m+ 0 A, (o« € A) (ie (m« ) BN {m«I[)A, =0, a € A). Hence, by the first item
of this proof, BN A, =0, a € A. Thus, we can conclude, that there exist the nonempty set
B C A such, that BN A, =0, a € A, which contradicts the equality A =| | ., As. Thus, the
assumption above is wrong, and, consequently, we obtain (m<-1) A= || ., (m<«[) A,.

Thus, any set A C Bs([) is precisely visible from the reference frame m, ie [ =!! m. Similarly,
we obtain, that m >!! [. O

The next corollary immediately follows from Assertion
Corollary 1.12.5. Changeable set Z is precisely visible if and only if it is normally visible.

Taking into account Corollary [[.12.5] the notion “normally visible changeable set” will be
not used henceforth.

Definition 1.12.4. We say, that reference frames [, m € Lk (Z) are equivalent respectively
the precise visibility (or, abbreviated, precisely-equivalent) if and only if it is satisfied the
condition (II) (or, equivalently, the condition (1)) of Assertion|l.12.8,

The fact, that reference frames [,m € Lk (Z) are precisely-equivalent will be denoted by the
following way:
=lm(Z2).

And in the case, when changeable set Z known in advance we shall use the denotation [ =!'m
instead.

Assertion 1.12.9. Relation =! is relation of equivalence on the set Lk (Z).

Proof. For [, m € Lk (Z) condition [ =!I m is equivalent to the condition (I) of Assertion [[.12.8]
Thus, since (by Assertion [[.12.5]) the relation >! is quasi order on Lk (Z), the desired result
follows from [40, page. 21]. O

Definition 1.12.5. Equivalence classes, generated by the relation =! will be referred to as
precise vistbility classes of the changeable set Z.

Thus, for any changeable set, the set of all its reference frames can be splited on the precise
visibility classes. Within an arbitrary precise visibility class any reference frame is precisely
visible from other. It is evident, that changeable set Z is precisely visible if and only if Lk (Z)
contains only one precise visibility class.

It turns out, that, using the relation of visibility “>”, we can divide the set Lk (Z) by
equivalence classes also.

Definition 1.12.6. Let Z be a changeable set.
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(a) We say, that reference frames [, m € Lk (Z) are directly connected by visibility (deno-
tation is | <= m (Z), or [ <> m in the case, when changeable set Z known in advance) if
and only if at least one of the following conditions is satisfied:

[m or m>1L

(b) We say, that reference frames L, m € Lk (Z) are connected by visibility (denotation is
(Em (Z), or [=m in the case, when changeable set Z known in advance) if and only if
there exists a sequence ly,ly, - 1, € Lk(Z) (v € N) such, that:

lh = [, [, =m, and 1; <= 1;_4 (VZ € L_V)

Assertion 1.12.10. Relation = is relation of equivalence on the set Lk (Z).

Proof. Since the relation of visibility, according to Remark [[.L12.3] is reflexive, the relation <>
is reflexive and symmetric on Lk (Z). The relation = is transitive closure of the relation <>
in the sense of |43, page 69|, [44, page. 32]. Thus, by [43| assertions 5.8, 5.9 and theorem 5.8],
= is equivalence relation on Lk (Z). O

Definition 1.12.7. Equivalence classes in the set Lk (Z), generated by the relation = will be
named by wvisibility classes of the changeable set Z.

But it may occur, that in the changeable set only one visibility class exist.

Definition 1.12.8. We say, that a changeable set Z is connected wvisible if and only if for
any L m € Lk (Z) it is true the correlation [=m.

It is evident, that any visible changeable set is connected visible. Analyzing the examples
[.12.7] and [.12.2] it is easy to verify that the inverse proposition, in general, is false.

So, we see, that in the case, when a changeable set Z is not connected visible the set of
all it’s reference frames is splitted by “parallel worlds” (visibility classes) and any visibility
class is “fully invisible” from other visibility classes. As formal example of changeable set with

<_
many visibility classes it can be considered the changeable set Znv (B) (see Example [[.11.4

< <
with card() > 2. In the changeable set Znv (B) any reference frame forms the separated
visibility class.

Precise visibility classes also can be interpreted as “parallel worlds”. But these “parallel
worlds” may be partially visible from other “parallel worlds”.

12.3 Precisely Visible Changeable Sets

In the classical mechanics and special relativity theory (for inertial reference frames) it is sup-

posed, that any elementary-time state (or “physical event”) is visible in any frame of reference.

Hence, the precisely visible changeable sets are to be important for physics. In this subsec-

tion we investigate precisely visible changeable sets in more details. The changeable sets of
%

kind Zpv | B, W), Zim ['B, B] and Zim (U, B), introduced in examples [[.11.1}1.11.2] [[.11.3/and

Definition [[.11.4] evidently are precisely visible.

Remark 1.12.4. Tt should be noted, that by Assertion |[.12.8 and definition of the relation =!,
for any changeable set Z the following propositions are equivalent:

(I) Z is precisely visible changeable set;
(IT) for any L, m € Lk (Z) it is performed the condition [ >!! m;
(IIT) for any L, m € Lk (Z) it is performed the condition | =! m

(IV) for any L, m € Lk (Z) it is performed the condition | =!m.
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Note also that in the first item of the proof of Assertion [[.12.8|it was proved, the following
lemma.

Lemma 1.12.1. Let Z be a precisely visible changeable set. Then for any [, m € Lk (Z) and
A, B C Bs(l) the equality (m<+ ) AN (m<«1) B =10 is true if and only if AN B = 0.

Theorem 1.12.1. Changeable set Z is precisely visible if and only if for any L, m,p € Lk (Z)
the followind equality 1s true:

(pm) (m<0) = (p<1). (L.71)

Proof. Sufficiency. Suppose, that for any [[m,p € Lk (Z) the equality (I.71)) holds. Chose
any reference frames [, m € Lk (Z) and any changeable system A C Bs([) such, that A # 0.

Then, by (L.71)),
A=(I+HA=(l<m)(m«1[) A

Therefore, by Assertion [[.10.2) (m<«[) A # (). Thus, by Assertion [.12.3] [ =! m (for any
reference frames [, m € Lk (Z)). Hence, by Remark [[.12.4] the changeable set Z is precisely

visible.

Necessity. Conversely, suppose, that the changeable set Z is precisely visible. Consider any
reference frames [,m,p € Lk (Z) and any changeable system A C Bs(l). By Property [[.10.1](8)
(pm) (m<«0) AC (p«1[) A. Denote:

By i=(p 1) A\ (pm) (m ) A.

Then, B; C (p+ ) Aand BiN(p<+m) (m<[) A= (. Denote B := ([+m) (m<« p) B;. Using
Properties we obtain:
B={(l<m)(m<«p)B; C (I« m)(m<+p)(p+HAC
CeA=A
(pm)y(m« ) B=(p+m)(m«1[)(I«<m)(m<+p)B; C
Hence, since B; N {(p<+m) (m«+ ) A =, we have (p<m) (m<+[) BN (p+m) (m<+ ) A= 0.
Consequently, using Lemma|[[.12.1) we obtain BNA = (). Since B C A and BNA = (), we obtain

B = (. Thus, ([+m) (m<«p) B; = B = (). Therefore, taking into account, that, by Remark
[.12.4)p =! m and m >! [, we obtain (by definition of normal visibility) B; = 0. O

o
Note, that, for the changeable set Z = (.A, B, il) from Definition [[.10.1} the condition
(1.71)) is equivalent to the condition ([.57]).

Assertion 1.12.11. Let Z be a precisely visible changeable set. Then for any reference frames
[Lm € Lk(Z), any family of changeable systems (Ausla € A) (A, C Bs(l), o € A) and any
changeable systems A, B € Bs(l) the following assertions are true:

. (m<—[><ﬂ Aa) =N (meD)Ay;

acA acA
C(me 1) (A\ B) = (me 1) A\ (m< 1) B;
3. (m<+[)Bs(l) = Bs(m);

~

NS

fomen (U a)= U meya
acA acA
5. If a changeable system A C Bs(l) is a singleton (i.e. card(A) = 1), then the changeable

system (m<«—I[) A also is a singleton.
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Proof. 1) Using Assertion [[.10.3] item 2), Properties [[.10.1{and Theorem [[.12.1| (equality (L.71)))

we obtain:

(m 1) (ﬂ A ) (m<=1) (I+m) (ﬂ (m<—[>Aa> =

acA acA
= (m<m) (ﬂ (m <) Aa) = () (m«1D) A,
acA acA

Hence, (m < [) (Noea Aa) 2 Naea (M4 [) Ay, The inverse inclusion is contained in Assertion
110.3, item 1).

2) Since A\ B C A, then by Property [L10.1{(7) we have, (m+«1[) (A\ B) C (m+«I) A. Since
(A\ B)N B =, then, by Lemma [[.12.1) (m<« ) (A\ B) N (m+<[) B = (). Hence:

(m 1) (A\ B) C (me 1) A\ (m< 1) B. (1.72)

Using the correlation (L.72)) to the sets (m<«1[) A, (m <« [) B, with unification mapping ([« m),

applying the formula (.71) and Properties we obtain:
(I~m) ((m« 1) A\ (m« 1) B) C
C+m)ym« DA\ ([+m)(m«HB=(«)A\{[<)B=A\B.
Hence, by Property [[.10.1{(7) (m<«[) ([+m) (m«+ ) A\ (m<«[) B) C (m+[)(A\ B). And

applying the formula ([.71) and Property [[.10.1}{), we obtain the inverse inclusion to ([.72).
3) By definition of unification mapping,

(m ¢ 1) Bs(1) C Bs(m). (1.73)

Similarly, ([<—m)Bs(m) C Bs([). Applying to the last inclusion unification mapping (m<—1[),
and using Properties as well as correlation ([.71)) we obtain the inverse inclusion to (I.73)).

4) Note, that: [J,cq Aa = Bs(l) \ (Naca Bs(1) \ As)). Hence, using items , and (3| of
this Assertion we obtain:

(m+1) <UA) ((m 1) Bs (1)) \ (ﬂ ((m<—[>IB%5([)\(m<—[>Aa)> -

acA acA

= Bs(m) \ (ﬂ (Bs(m) \ (m <) Aa)> = J (m«n A,
acA acA

5) Let A C Bs([), and A = {w} is a singleton. By Remark [.12.4] [ >! m and, since A # 0,
by definition of normal visibility, we have (m<«1[) A # (). Suppose, that the set B = (m+«+1[) A
contains more, than one element. Then, there exist sets By, B, C B such, that By, By # () and
B = Bl LJ BQ. Denote: Al = ([%m) B17 A2 = ([%m) BQ. Since Bl,BQ # (Z), then, by the
definition of normal visibility, A, Ay # (). Since B = B; L By, then, by the definition of precise
visibility, (I<~m) B = ([« m) B; U (I<~m) By = A; Ll Ay. Hence, taking into account, that
B = (m+«[) A and using the equality ([.71)), we obtain:

AU Ay = (l+m)B=(l+m)(m«<[) A=A

Thus, we see, that the set A can be divided into two nonempty disjoint sets, which contradicts
the fact, that the set A is a singleton. Therefore, the set (m < [) A is nonempty, and it can not
contain more, than one element, hence, it is a singleton. O

Definition 1.12.9. Let Z be a precisely visible changeable set, ,m € Lk (Z) and w € Bs(l).
Elementary-time state w' € Bs(m) such, that {w'} = (m<1) {w} will be referred to as visible
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image of elementary-time state w € Bs(l) in the reference frame m and it will be denoted by
(lm<I)w:
W ={Im+lw.

By Assertion [.12.11] item [ any elementary-time state w € Bs(l) always has a visible
image w’ = (!m<«[)w in a precisely visible changeable set. Hence, by Definition [[.12.9] for
any elementary-time state w € Bs([) in the reference frame [ € Lk (Z) of precisely visible
changeable set Z the following equality holds:

m—D{w}={{lm+«Hw} (meLlk(2)) (1.74)
Using the equality A = | | ., {w}, definition of precise visibility and equality (1.74) we obtain
the following theorem:.

Theorem 1.12.2. For any nonempty changeable system A C Bs() in reference frame | €
Lk (2) of precisely visible changeable set Z the following equality is true:

mehA=| [ {lmebol={(mehwlweA} (meLk(Z)). (L.75)

Corollary 1.12.6. Let Z be a precisely visible changeable set and [,m € Lk (Z) be any its
reference frames.

Then for any changeable system A C Bs([) the sets A and (m<—[) A are equipotent. In the
case A # () the mapping:
flw)={m+ 1w, w € Bs(I) (1.76)

is bijection between the sets A and (m<1[) A.
In particular the sets Bs(I) and Bs(m) = (m<«[) Bs(l) are equipotent and the mapping (1.76])

18 bijection between these sets.

Proof. In the case A = () the statement of the Corollary follows from Assertion In the
case A # () from Theorem (pay attention to the sign of disjoint union in equality ([.75]))
it follows, that the mapping is bijection between the sets A and (m<«I[) A. And from
Assertion (item [3)) it follows, that Bs(m) = (m<[)Bs(l) Hence, the sets Bs([) and
Bs(m) are equipotent and the mapping is bijection between these sets. ]

Using Property I.10.1, as well as theorems [[.12.2[ and |[.12.1| we receive the following

properties of precise unification mappings in precisely visible changeable sets.

Properties 1.12.1. Let Z be any precisely visible changeable set, and [,m,p € Lk(Z) be
arbitrary reference frames of Z. Then:

1.VweBs(l) (+w=w;
22.VACBs() (im«NHA={{{m«NHw|weA};
3 VweBs(l) (Ipem)({m—NHw={_p+NHw.

From corollaries [[.12.3[ and [[.12.4]it follows, that the changeable sets of kind Zim [J3, B] and
Zim (U, B) are precisely visible. Therefore, we deliver the following corollary of Theorem|[.11.2¢

Corollary 1.12.7. If Z = Zim [B, B], where P = ((To, Xa, Us) | € A). Then for any refer-
ence frames | = (o, U, [B,T,]) € Lk (2), m = (8,Us [B,Tg]) € Lk (Z) (o, € A) the following
equality 1s performed:

(Im« 1, Z2)w="Us (UMW) (weBs(l) = U, (Bs(B))).

Main results of this Section were published in [4].
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Part II
Kinematic Changeable Sets and their Properties

13 Introduction to Second Part

Due to the OPERA experiments conducted within 2011-2012 years [46|, quite a lot physical
works appeared, in which authors are trying to modify the special relativity theory to agree
its conclusions with the hypothesis of existence of objects moving at velocity, greater than the
velocity of light. Despite the fact that the superluminal results of OPERA experiments (2011-
2012) were not confirmed later, the problem of constructing a theory of super-light movement,
posed in the papers [3334], remains actual within more than 50 last years [35]. At the present
time existence of a few kinematic theories of tachyon motion generates the problem of con-
struction new mathematical structures, which would allow to simulate of evolution of physical
systems in a framework of different laws of kinematics. Under the lack of experimental verifica-
tion of conclusions for tachyon kinematics theories, such mathematical structures may at least
guarantee the correctness of receiving these conclusions in accordance with the postulates of
these theories. This part of the paper is devoted to building of these mathematical structures.
Investigations in this direction may be also interesting for astrophysics, because there exists
the hypothesis, that in large scale of the Universe, physical laws (in particular, the laws of
kinematics) may be different from the laws, acting in the neighborhood of our solar System.

On a physical level, the problem of investigation of kinematics with arbitrary space-time
coordinate transforms for inertial reference frames, was presented in the [47] for the case,
when the space of geometric variables is three-dimensional and Euclidean. The particular
case of coordinate transforms, considered in [47] are the (three-dimensional) classical Lorentz
transforms as well as generalized Lorentz transforms in the sense of E. Recami and V. Olkhovsky
[36-38.151,52| (for reference frames moving at a velocity greater than the velocity light). In
the papers [6,7] the general definition of linear coordinate transforms and generalized Lorentz
transforms is given for the case, where the space of geometric variables is any real Hilbert space.

It should be noted, that mathematical apparatus of the papers [6,7,36/38,47| is not based on
the theory of changeable sets, which greatly reduces its generality. In particular, mathematical
apparatus of these papers allows only studying of universal coordinate transforms (that is
coordinate transforms, which are uniquely determined by the geometrically-time position of the
considered object). The present part of the paper is based on the general theory of changeable
sets, developed in the previous part. In this part the definitions of the actual and universal
coordinate transform in kinematic changeable sets are given. We prove, that in classical Galilean
and Lorentz-Poincare kinematics the universal coordinate transform always exists. Also we
construct the class of kinematics, in which every particle in every time point can have its own
“velocity of light” and prove, that, in these kinematics, universal coordinate transform does not
exist.
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14 Changeable Sets and Kinematics.

14.1 Mathematical Objects for Constructing of Geometric Environments of
Changeable Sets.

This subsection is purely technical in nature. In this subsection we don’t introduce any es-
sentially new notions. But we try to include the most frequently used mathematical spaces,
which at least somehow related to geometry, into single mathematical structure, which will be
convenient for further construction of abstract kinematics.

Definition I1.14.1. The ordered triple L = (K, ®, ®) will be named by linear structure over
non-empty set X if and only if:

1. K= (K, +x, xXk) s a field.

2. ®: X x X X is a binary operation over X;

3. ®@: K x X~ X is a binary operation, acting from K x X into X.

4. The ordered triple (X,®,®) is a linear space over the field K.

In the case, when K € {R,C}, the linear structure L. will be named as numerical linear
structure over X.

Let L = (K, ®,®) be a linear structure over X. In this case the linear space over the field
K, generated by L will be denoted by £p (X,L) (£p(X,L) = (X,d,®)).

Next definition is based on the conception, that the majority of the most frequently used
mathematical objects (including functions, relations, algebraic operations, ordered pairs or
compositions) are sets.

Definition I1.14.2. An ordered composition of siz sets Q = (X, T, L, p, |-l , (-, -)) will be named
by coordinate space, if and only if the following conditions are satisfied:

X A0
. TUL # 0.
IfT #0, then T is topology over X.
. If L.#0, then L is numerical linear structure over X.
CAfL A0 and T # 0, then the pair (£p (X,1L),T) is a linear topological space.
Afp#£ 0, then:
[6L1) p is the metrics over X;
612) T #0 and the topology T is generated by the metrics p.
7.1If ||| # 0, then:
1) L#0 and || is the norm on the linear space £p (X,L);
[12) p#0 and the metrics p is generated by the norm ||-||.
8 1If (-,-) # 0, then:

BL1) ||l # 0 (and hence, according to [7}1), L #0);
BL2) (-,-) is the inner product on the linear space £p (X,L);

BL3) the norm ||-|| is generated by the inner product (-,-).

Sy G AN W D~
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Notes on denotations. Let Q = (X,7,L,p, |||, (-,-)) be a coordinate space, where in the
case L # () we have, that L = (K, ®, ®) is a numerical linear structure over X. Further we will
use the following denotations:

1. Zk(Q) := X (the set Zk(Q) will be named the set of coordinate values of Q).
2. Tp(Q):=T  (Tp(Q) will be referred to as topology of Q).

3. Ls(Q) =L (Ls(9Q) will be named the linear structure of Q).

K, Ls(Q)#0
0, Ls(Q)=0

5. For the elements z1,...,x, € Zk(Q), A1,..., A\, € Ps(Q) (n € N) we will use the denota-
tion, (Ax1 + -+ A\Tn)q =M @21 D - DA, @ 2.

4. Ps(Q) = { (Bs(Q) will be referred to as field of scalars of Q).

6. dig :=p (diq will be named the distance on Q).

7 lqg =l (-]l will be named the norm on Q).

oo

- ()a =) ((+,-)q will be referred to as inner product on Q).

Elements of kind x € Zk(Q) will be named as coordinates of the coordinate space 9, also,
in the case Ls(Q) # () we will name these elements as vectors (vector coordinates) of Q.
Where it does not cause confusion the symbol “Q” in the denotations (Ayxq 4 - - - 4+ A\, dig,
[-lqs (- -)q Will be released, and we will use the abbreviated denotations A\jz1 4 - -+ A2y, di,
I-Il, (+,-) correspondingly.

14.2 Kinematic Changeable Sets.

Definition I1.14.3. 1. The pair Go = (Q, k) we name by geometric environment of base
changeable set B, if and only if:

a) 9 is a coordinate space;

b) k: Bs(B) — Zk(Q) is a mapping from Bs(B) into Zk(Q).

In this case the pair € = (B, Go) = (B, (Q,k)) we name by base kinematic changeable
set, or, abbreviated, by base kinematic set.

2. Let Z be any changeable set. An indexed family of pairs G = ((Qu ki) |l € Lk (Z)) will
be named by geometric environment of the changeable set Z, if and only if for any
reference frame | € Lk (Z) the ordered pair (Q, ki) is geometric environment of the base
changeable set 1°, generated by the reference frame |, i.e. if and only if the pair (1", (Qy, ki))
is a base kinematic changeable set for an arbitrary | € Lk (Z).

In this case we name the pair € = (Z,G) by kinematic changeable set, or, abbreviated,
by kinematic set.

Note, that in this paper we consider only kinematic sets with constant (unchanging over
time) geometry. These kinematic sets are sufficient for construction of abstract kinematics in
inertial reference frames. If we make a some modification of Definition [[T.14.3] we will be able to
define also kinematic sets with variable (over time) geometry (i.e., in principle, this is, possible
to do).
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14.2.1 System of Denotations for Base Kinematic Sets.

Let, € = (B,Gy) be any base kinematic set (where Gy = (9Q,k)). Henceforth we use the
following system of denotations.
a) Denotations, induced from the theory of base changeable sets:

Bs (€°) :=Bs(B); Bs (€°) :=Bs(B); <« =+

¢b
Bs _ Bs, A ) b) .
g = ?’ LI (Q: ) = LI(B); Ld (Qﬁ ) = Ld(B)
Tm (¢°) := Tm(B); Tm (€°) ;== Tm(B); <e = <p;
<go:=<p; Zevi =25 Sebi=>5 .

b) Denotations, induced from the denotations for coordinate spaces:
Zk E@’; =Zk(Q); Tp(€") :=Tp(Q); Ls(€") :=Ls(Q);
Ps (€) :=Ps (Q);  die := dig; Flleo =1l
('7 ) gb = ('7 ')Q :
Also in the case Ls (€°) # 0 for arbitrary ai,...,a, € Zk (€°), Ay,... A, € Ps (€°) we use

the denotation, (Aja; + -+ + Aytn) g = (A1a1 + -+ + Ann) -
¢) Own designations for base kinematic sets:

BE(¢®) :=8; BG(¢"):=9;  qel(z):=k(z) (v €Bs(C)).
Note, that for any elementary state x € Bs (Qb) the function qg(-) puts in accordance its
coordinate qe»(z) € Zk (€°).
d) Abbreviated version of denotations
e We use all abbreviated variants of denotations, described in Subsection (but, with the

replacement of the symbol “B” by the symbol “€*” and the term “base changeable set” by
the term “base kinematic set”.

e In the cases, when the base kinematic set €° is known in advance, we will use the denota-
tions di, |||, (,-), q(x) instead of the denotations digs, ||-||gs, (-, *) ev, geo () (correspond-

ingly).

14.2.2 System of Denotations for Kinematic Sets.

Let, € = (Z,G), where G = ((Q, k() |l € Lk (Z)) be any kinematic set.

a) The changeable set BE (€) := Z will be named the evolution base of the kinematic set
.

b) The sets Znd(€) := Ind(Z) = Ind (BE(C)); Lk(€) := Lk(Z) = Lk (BE (¢)) will be
named by the set of indexes and the the set of all reference frames of kinematic set €
(correspondingly).

c¢) For any reference frame [ € Lk (€) = Lk (Z) we keep all denotations, introduced for reference
frames of changeable sets (it concerns the denotations: ind ([), Bs([), < Bs(I), %, Tm(l),
Tm(l), LI (1), Ld (1), <, <, >y, >1).

d) For arbitrary reference frames [, m € Lk (€) it is induced the denotation for unification

mapping:
(m1 &) :=(m«1[ 2Z).

In particular in the case, when the changeable set Z is precisely visible (in this case we
say, that the kinematic set € is precisely visible), we introduce the denotation:

(lm—1C) =(Im«[2Z).
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e) For any reference frame [ € Lk (€) we introduce the denotation

Clh= (", (Quk)).

By Definition [[1.14.3] the pair € | [ is a base kinematic set (for arbitrary reference frame
[ € LE(€)). The base kinematic set € [ [ will be named the image of kinematic set
¢ in the reference frame [.

f) For any reference frame [ € Lk (€) we introduce the following denotations:

Zk([; €) :=Zk (€ [ [) = Zk (Q(); Ls(l; €):=Ls(C [) = Ls (Qi);
Tp(t €)= Tp(€ 1) =Tp(Q); Ps(l; €):=Ps (€[ 1) = Ps (Q);
e == 1-ller = 1Ml 5 di; (; €) := diep = dig;;
(e = )ep = (5 )ay BE(l) :=BE(C [ ) =1I";

BG([; €) :=BG(C [ [) = Q..

Also for reference frames [ € Lk (€) such, that Ls(l) # () and for arbitrary as,...,a, €
Zk(5 €), A, A € Ps(l; €) we will use the denotation, (May+ -+ \uan) ¢ =
(M@ + -+ Auan) o,

g) For any reference frame [ € Lk (€) we use the following denotation:

qQu (l’, €) = QQ“ (ﬁ) = k[(ﬁ), T € Bs ([) .

h) Abbreviated versions of denotations:

e In the cases, when the kinematic set € is known in advance, we will use the denotations
(m<<10), {m«1), Zk(I), Ls(1), diy, (-, ), Tp(1), Bs(D), |||, BG([), q; (z) instead of the de-
notations (m<1[, €), (Im« 1, &), Zk([; €), Ls(l; €), di( (; €), (-, )¢ Tr(l; €), Ps(l; €),
H~H[7€, BG(I; €), q(x; €) (correspondingly).

e In the cases, when the reference frame [ € Lk (€) is known in advance, we will use the
denotations di, |||, (-, -), q(z), Aya1+- - -+ A,a, instead of the denotations diy, |||, (+,") 1,
i (z), (May+ -+ Auan) ¢ (correspondingly). Also we use all abbreviated variants of
denotations, introduced for reference frames of changeable sets and described in Subsection
10.2] (see text under item 5)).

Assertion I1.14.1. Let &, &, be arbitrary kinematic sets, and besides:
1. Lk (€)) = Lk (Ey).
2. For any reference frame | € Lk (&) = Lk (€y) it is true the equality, & [ =&, [ L.

3. For arbitrary reference frames [, m € Lk (€1) = Lk (&) it holds the equality, (m <[, &) =
(m 1 ¢2>

Then, € = &,.

Proof. Tet, € = (21,G1), & = (2,G,), where ¢ = ((QfV,#") [1€ Lk (2), G2 -
((DEQ), k:[(2)> |le Lk (Zg)> be the kinematic sets, satisfying the conditions of Assertion |[I.14.1}

Then, under these assumptions, the changeable sets Z; and Z5 are satisfying the conditions of
Assertion Hence, 2, = 2Z,.

By the condition of Assertion, which we are to prove, for any reference frame [ € Lk (2Z) =
Lk (25) it holds the equality €; [ [ = &€, [ [. Hence, by the denotations, accepted in the
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subsection [14.2.2, we have, <[A, (Qfl),kfl)>) =C | [=¢|[= <[A, (5352), k{(z)))' Therefore,
(2" KY) = (2 k) (Vi€ £k (2)) = Lk (22)). Consequently:

G, = ((Qf”,kf”) L€ Lk (zl))
= ((a 5?) 11 £k (22)) = 6a

Thus, €, = (21,G) = (22,G2) = €. O
Corollary 11.14.1. Let €, €, be arbitrary kinematic sets, and besides:
1. Lk (&) = Lk ().
2. For any reference frame | € Lk (&) = Lk (&) they hold the equalities:
BG(; €;) =BG (I; &)
qi(z, €1) = qi(z, €) (Vo e Bs(l)).
3. For arbitrary reference frames [,m € Lk (€;) = Lk (Cy) it is true the equality, (m 1, &;) =
(m<+ [ &y).
Then, €, = &,.

Proof. Let, €, and &€, be the kinematic sets, satisfying the conditions of the Corollary. Then,
by the system of denotations, accepted in the subsection [14.2.2] for any reference frame [ €
Lk (€1) = Lk (&y), we obtain:

¢ [ 1= (BE(I),(BG(,&1),q:(:; &1))) =
= (BE(I),(BG([,&2),q:(; &))) =& [ L.

Thus, by Assertion [[I.14.1] we have, €; = ;. O]

Remark 11.14.1. From the system of denotations, accepted in the subsection [14.2] it follows,
that for any kinematic set €, Properties [.10.1] and Corollary are kept to be true, and in
the case, when the kinematic set € is precisely visible, Properties also remain true (but
everywhere in these properties we should replace the symbol Z by the symbol € and the term
“changeable set” by the term “kinematic set”).

Main results of this Section were anonced in [11] and published in |10, sections 3,4,5|.

15 Coordinate Transforms in Kinematic Sets.

Let, € be any kinematic set. For any reference frame [ € Lk (€) we introduce the following
denotations:

Mk(l; €) := Tm(l) x Zk(1).
QY (w; @) := (tm (W), qi(bs (w))) € ME(L;€), w € Bs().

The set ME([; €) we name by the Minkowski set of reference frame [ in kinematic set €. The
value Q" (w; @) will be named by the Minkowski coordinates of the elementary-time state
w € Bs (I) in the reference frame .

In the cases, when the kinematic set € is known in advance, we use the denotations Mk(),
Q" (w) instead of the denotations Mk(I; €), Q" (w; €) (correspondingly).
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Definition I1.15.1. Let € be any precisely visible kinematic set and [,m € Lk (&) be arbitrary
reference frames of €.

1. The mapping Q™ <Y (-, &) : Bs(l) s Mk(m), represented by the formula:
QM (w; @) = Q™ ((ImeDw), weBs(l

we name actual coordinate transform from [ to m.
Hence, for any w € Bs (1) the value Q™Y (w; €) coincides with Minkowski coordinates of
the elementary-time state w in the (another) reference frame m € Lk (€).

2. We name the mapping Q : Mk(I) — Mk(m) by universal coordinate transform from |
to m if and only if:

e Q is bijection (one-to-one mapping) between Mk(I) and Mk(m).

e For any elementary-time state w € Bs() the following equality is performed:
Q" (w; €)= Q(QY(w))-

3. We say, that reference frames [, m € Lk (€) allow universal coordinate transform, if
and only if at least one universal coordinate transform Q : Mk(l) — Mk(m) from [ to m
exists.

In the case, where reference frames [, m € Lk (€) allow universal coordinate transform, we
use the denotation:
[Zm,
¢
In the case, when the kinematic set € is known in advance, we use the abbreviated deno-
tation =m.

4. Indexed family of mappings (ém’[> © 15 named by universal coordinate transform
[meLk(C

for the kinematic set € if and only if:

e For arbitrary l,m € Lk (€) the mapping @m’[ s universal coordinate transform from |

to m.
e For any l,m,p € Lk (C) and w € ME(I) the following equalities are true:
Qulw) =i Qo (@) = pa(w), (L)
5. We say, that the kinematic set € allows universal coordinate transform, if and only
if there exists at least one universal coordinate transform <©m7[> © for €.
[melk(C

Remark 11.15.1. In the cases, when the kinematic set € is known in advance, we use the
abbreviated denotation Q™ "(w) instead of the denotation Q™ <" (w; €).

Assertion I1.15.1. Let € be any precisely visible kinematic set. Then:
1. For an arbitrary | € Lk (€) the identity mapping on Mk(I):
]1[[] (W) =W, W € Mk‘([)
15 universal coordinate transform from | to L.

2. If Q is universal coordinate transform from [ to m (Lm € Lk(€)), then QY is univer-
sal coordinate transform from m to | (the mapping Q™Y inverse to Q, exists, because,

according to Definition |I1.15.1] (item 2), Q is bijection from Mk(I) onto Mk(m)).
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3. If @(‘“’[) is universal coordinate transform from | to m, and é(p’m) is universal coordinate
transform from m to p (L, m,p € Lk (C)), then the composition of the mappings QF™ and
Q™Y that is the mapping:

G0 () = o) (@(mﬂ) (W)> . w e MK(1).

15 universal coordinate transform from [ to p.

4. The binary relation = is equivalence relation on the set Lk () of all reference frames

of €.

Proof. 1. Consider any [ € Lk (€). It is evident, that Iy is bijection from Mk(l) to M(l). Using

Definition [[I.15.]] (item 1) and Property [.12.1][1]), for any elementary-time state w € Bs([) we
obtain:

QU (w) = QU1 1+ hw) =
= QY w) =Ty (Q" (w)) .
Therefore, by Definition [I1.15.1] (item 2), I}y is universal coordinate transform from [ to I.

2. Let @ be universal coordinate transform from [ to m (I,m € Lk (€)). Then, for any
w € Bs([), according to Definition [II.15.1] (items 1 and 2), we have:

QI ({1 m e w) = Q" (w) =
=Q(Q"w).
Hence: _
QY (w) = (Q™ (({me1w)).
Therefore, for any wy € Bs(m) ((! [<—m)w; € Bs(l)), in accordance with Properties

we obtain:

= QM (Q™ ((Im«1) (| [+=m)w;)) =
= QM Q™ (tmemwy)) =
= QF(Q™ (wy))

That is, by Definition [I[I.15.1] (item 1):
Q™ (w,) = QY (Q<m> (w1))

Thus, by Definition [[1.15.1 (item 2), QY is universal coordinate transform from m to .
3. Let Q™Y be universal coordinate transform from [ to m, and Q™™ be universal coordinate

transform from m to p (I, m,p € Lk (€)). Denote: Q¥ (w) := Q™ (@(m’[) (W)), w € MEk([).

It is clear, that the mapping QP is bijection between Mk([) and Mk(p). At the same time,
using Definition [II.15.1] (items 1,2) and applying Properties|[.12.1] for any w € Bs(I) we deduce:

QP (w) = QP ({lpNw) =
QP ((lpem) ({m—w) =
=QF ™ ((Im+w) =
= QP (Q™ (({mNw)) =
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— @(p,m) (Q<m<—[> (w)) _
— Qi (@(m,o QW (M)) = QP (QP(w)) .

Consequently, by Definition [[1.15.1 (item 2), @(”’[) is universal coordinate transform from [ to
p.
4. Ttem 4 of Assertion [[I.15.1] immediately follows from the items 1,2 and 3. O]

Assertion I1.15.2. For an arbitrary precisely visible kinematic set € the following propositions
are equivalent:

1. € allows universal coordinate transform.

2. For arbitrary reference frames l,m € Lk (&) it is true the correlation | =m (that is arbi-
trary two reference frames [, m € Lk (€) allow universal coordinate transform,).

3. There ezists a reference frame | € Lk (&) such, that for any reference frame m € Lk (&) it
18 true the correlation = m.

Proof. 1. The implication 1 = 2 follows from Definition (items 3 and 4).

2. According to Property , the set Lk () is nonempty. Therefore, to verify the
truth of the implication 2 = 3 it is sufficient to chose any reference frame [ € Lk (C).

3. Consequently, it remains to prove the implication 3 = 1. Suppose, there exists a
reference frame [ € Lk (€) such, that for any reference frame m € Lk (€) the correlation [=m
is performed. Hence, for any reference frame m € Lk (€), there exists an universal coordinate
transform Q™Y : Mk([) — Mk(m). For arbitrary reference frames m,p € Lk (¢) we denote:

Qnn(w) = QY (@) (). (11.2)
w € MEk(m).

In accordance with Assertion [[1.15.1] (items 2 and 3), the mapping Qp.n : Mk(m) — Mk(p) is
universal coordinate transform from m to p (for arbitrary m,p € Lk (€)). Moreover, by the
equality (I1.2]), for arbitrary m,p, ¢ € Lk (€) and w € Mk(m) we obtain:

Onan(w) = QY (@)™ (w)) = w;
Qe (me<w>) Q" (@) (@ (@) (w))) =
QmI) [- 1] > QEm( ).

Thus, according to Definition [[1.15.1| (item 4), the family of mappings (ijp,m> Lr© is uni-
m,peLk(C

versal coordinate transform for the kinematic set €. Hence, by Definition [II.15.1] (item 5),

kinematic set € allows universal coordinate transform. O

Examples of kinematic sets, which allow universal coordinate transform will be presented
in Section [19] In Section it will be proved the existence of kinematic sets, which do not
allow universal coordinate transform. Therefore (by Assertion there exist kinematic set
¢, in which some reference frames [,m € Lk (€) do not allow universal coordinate transform.
The next aim is to prove necessary and sufficient condition for existence of universal coordinate
transform between reference frames of precisely visible kinematic set. Below we introduce the
necessary notions to do this.

Let, €° be any base kinematic set. For any subset A C Bs (Qb) we introduce the denotations:

trjes [A] : = Q(€)(4) =
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—{Ql*N(w)|we a} c Mk (e7). (IL3)

The set trjgo [A] will be named by the trajectory of the subset A C Bs (Cb). For any base
kinematic set €° we denote:
Trj (€°) = trjee [Bs (€°)] =
={Ql*)(w)|weBs ()} < Mk (¢9),
Trj (€°) := Mk (€°) \ Trj (€°).

The set Trj (QZ[’) will be named by the (gemeral) trajectory of base kinematic set €°, and

the set Trj (@b) will be named as complement of (general) trajectory of €°. Respectively,
for any reference frame [ € Lk (€) of any kinematic set € we can define the trajectory of any
subset A C Bs([l), as well as (general) trajectory and complement of (general) trajectory for
the reference frame I[:

v, [A, Q:] = t’t]‘@[ [A {Q ’ w e A}
Trj(t; €) = Trj(€ [ 1) =

- (20w ), Y
Tei(t; €) += Tej(€ | 1) = MA() \ Tri(t: )

(In the cases, when the kinematic set € is known in advance, we use the abbreviated deno-
tations ttj;[A], Trj(l), Trj(l) instead of the denotations ttj;[A; €], Trj(l; €), Trj(l; €) (corre-
spondingly).)

The set Trj(I) will be named by the (general) trajectory for the reference frame [, and
the set Trj(l) will be named by complement of (general) trajectory of the reference frame
[ in the kinematic set €.

Theorem I1.15.1. Let € be a precisely visible kinematic set and l,m € Lk () be any fized
reference frames of €.

The reference frames [, m allow universal coordinate transform (i.e. |=wm) if and only if the
following conditions are satisfied:

1. card (T—r.]([)) = card (T—rj(m)), where card(M) means the cardinality of a set M.
2. For arbitrary elementary-time states wy, ws € Bs(I) the equality Q™ <" (w;) = Q™Y (wy)
is performed if and only if QW (wy) = QW (wy).

Proof. 1. Suppose, that [[m € Lk (€) and [=m. Then, by Definition [lI.15.1} there exists the

bijection Q : Mk(l) — Mk(m) such, that for any elementary-time state w € Bs(l) the following
equality holds:

Q" Y(w) =Q (Q"(w)). (IL5)
1.a) Using the definition of general trajectory for reference frame (see ([1.4])), Proper-
ties [.12.1|(1)i3), Definition (item [1) and equality (II.5), we deduce:
Trj(m {Q w)|w € Bs(m)} =
= {Q<‘“> <!m<—[><' [+m)w)|w € Bs(m)} =
={Q™ (lm+Dw) |w €Bs(l)} =
= {Q“”_[> (wi) |wi € Bs(I)} =

— {@ (Q (w1)) | wi € Bs( )} Q(Trj(1)).
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According to the equalities 1) taking into account, that @ is bijection between Mk(l) and
MEk(m), we obtain:

Txj(m) = Mk(m) \ Trj(m) =
= Qk(0) \ Q(Tri() =
= QUK() \ Trj(1) = Q(TE3(1).

Since Q is bijection, we have proved, that card (Tm(m)) = card (']I‘_I'J([))
1.b) Let, wy,wy € Bs(l) and QW (wy) = QM (wy). Then, according to (I1.5):

Q™" (w1) = Q (QW (wy)) =
=Q(QY (w2)) = Q™ (wy).

Inversely, if we suppose, that Q™Y (w;) = Q™" (wy), then, by , @(Q“> w

Q (QY (w2)), and since Q is bijection, we have, Q® (w;) = QW (w,).
2. Conversely: suppose, that for reference frames [,m € Lk (€) the conditions 1,2 of this
Theorem are satisfied. For w = Q" (w) € Trj([), where w € Bs(I) we put:

Qo(w) = Q™ (w). (IL.6)

From the definition of general trajectory for reference frame (II.4) and the second condition

of this Theorem it follows, that the formula defines the mapping Qo : Trj(l) — Mk(m)
by a correct way. We aim to prove, that thls mapping is bijection between Trj(l) and Trj(m).

According to Definition [[1.15.1] (item [1)) and equalities (I1.4), for arbitrary w = Q" (w) € Trj(I)
(w € Bs(l)), we receive:

Qo(w) = Q" Y(w) =
= Q™ (| m<I)w) € Trj(m). (I1.7)
Moreover, using Properties [[.12.1}, for any w; = Q™ (w;) € Trj(m) (w; € Bs(m)) we get:

wi = Q™ (wi) =
= Q™ ((Im«0) (I lem)w) =

= QMY (1 e=mwy) = Qo (QV (1 T+—m)wy)), (11.8)
where QU ((I l+—m)w;) € Trj(l).

From the correlations ([1.7) and . it follows, that Qg is the mapping from 'I[‘rj([) on Trj(m).
From the second condltlon of this Theorem we obtain, that for arbitrary w,w’ € Trj([) such,

that w # w’ it is true the correlation Qo( ) # Qo(w "). Hence, the mapping Qo is a bijection
between Trj(l) and Trj(m).

By the conditions of Theorem, the sets Trj(l) and Trj(m) are equipotent. Thus, there exists
a bijection Q; : Trj(l) — Trj(m) between Trj(l) and Trj(m). According to the definition of
general trajectory for reference frame (see )7 we have, Trj(l) U Trj(l) = Mk(l) (where the
symbol “LJ” denotes disjoint union of sets). Hence for w € MEk(l) we can put:

- {Qo(w), w € Trj(l)

Q(w) = Ou(w). w e Trj(1). (11.9)

Since (in accordance with the statements, proved above) Qo is bijection between Trj(l) and
Trj(m) as well as @ is bijection between Trj(I) and Trj(m), we must conclude, that Q is
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bijection between Mk(I) = Trj(I) U Trj(l) and Mk(m) = Trj(m) U Trj(m). Moreover, for any
w € Bs(I), by definitions of the mappings @ and @, we get:

Q(QY (W) = Qo (QY (w)) = Q™" (w).

Thus, by the Definition [I1.15.1| (item , @ is universal coordinate transform from [ to m. [

Remark 11.15.2. Universal coordinate transform between two reference frames of kinematic set
(if it exists) is not uniquely defined for the general case. Indeed, suppose, that two reference
frames [,m € Lk (€) of kinematic set € satisfy the following conditions:

[=2m and card (Trj(l)) = card (Trj (m)) > 2.

Then there exist many bijections between Trj (I) and Trj (m). So universal coordinate transform
in (I1.9) is not uniquely defined.

Main results of this Section are published in [10, Section 6].

In the next three sections (16} we prove Theorem on multi-image for kinematic sets
as well as we introduce and investigate generalized Lorentz-Poincare transformations (in the
sense of E. Recami and V. Olkhovsky), which are necessary to build mathematically strict
model of kinematics of special relativity and its extension to the tachyon kinematics, which
allows super-light motion for inertial reference frames.

16 Theorem on Multi-image for Kinematic Sets

Definition I1.16.1.

1. The ordered composition of five sets (T, X, U,Q, k) is named by kinematic projector for
base changeable set B if and only if:

1.1. (T, X,U) is evolution projector for B.

1.2. Q s a coordinate space.

1.3. k is a mapping from X into Zk(Q).

> [n the case, where (T, X,U) is injective evolution projector for B, the kinematic pro-
jector (T, X, U, Q, k) is named by injective.

2. Any indexed family P = ((Ta, Xa, Un, Qa, ko) | € A)  (where A # () of injective kine-
matic projectors for base changeable set B we name by kinematic multi-projector for

B.

Remark 11.16.1. Henceforward we will consider only injective kinematic projectors. That is why
we will use the term “kinematic projector” instead of the term “injective kinematic projector”.

Let P = (T, Xay Uns Qas ko) | @ € A) be any kinematic multi-projector for 5. Denote:

P = (T, Xs, Us) | € A).

By the definitions [I1.16.1] and [I.11.3] Bl is (injective) evolution multi-projector for B.

Theorem I1.16.1. Let P = (T, Xu, Un, Qa, ko) | @ € A) be a kinematic multi-projector for
a base changeable set B. Then:
A) Only one kinematic set € exists, salisfying the following conditions:

1. BE (€) = Zim [P, B].
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2. For any reference frame | = (o, U, [B,T,]) € Lk (€) (where a € A) the following equalities
are performed:

2.1) BG() = Qu;  2.2) qu(z) = ka(z) (2 € Bs(D)).

B) Kinematic set €, satisfying the conditions 1,2 is precisely visible.

Proof. Let B = ((To, Xa, Ua, Qa, ko) | @ € A) (where T, = (T4, <,), a € A) be a kinematic
multi-projector for B.
A) Put:
Z .= Zim [, 5] .

Then, according to Theorem [.TT.2}
Lk(Z)={(a,Uy[B,T,]) | € A}.
Consider any fixed reference frame [ = (o, U, [B, T,|) € Lk (Z) (where a € A). Denote:
Q¥ .=Q,.

The ordered five-elements composition (Tq, Xy, Uy, Qa, ko) is a kinematic projector. Hence,
by Definition the triple (Ty, X,, Us) = ((Ta, <o), Xa, Uy) is evolution projector for B.
Consequently, by the definition of evolution projector (Definition [.11.1)), U, is the mapping of
kind U, : Bs(B) — T, x X,. Therefore, by Property [.11.2{[3), we obtain:

Bs([) = {bs (Uy(w)) |w € Bs(B)} C A,.
For an arbitrary = € Bs(l) we denote:
KO (2) == k().

According to the definition of a kinematic projector (Definition [I1.16.1)) k, is the mapping from

X, into Zk (Q,) = Zk (Q"). Hence, k1 is the mapping from Bs(I) into Zk (QY).
Hence, by the Definition [[.14.3) (item [2)), the pair

¢= (2, ((QY, kY |1e Lk (2))) (I1.10)

is a kinematic set. Herewith, taking into account the system of denotations, accepted in the

subsection [14.2.2] we get:
BE(€) = Z = Zim [P, B]

and for any reference frame [ = (o, U, [B, T,]) € Lk (€), where o € A we have:
BG(I) = QY = Q,;
qi(z) = kD(z) = ko(z)  (z € Bs(l)).

Thus, the kinematic set € satisfies conditions 1,2 of the item A) of Theorem [[I.16.1]

Now, we are going to prove, that kinematic set €, satisfying conditions 1,2 of the item A) of
Theorem is unique. Assume, that the kinematic set €; also satisfies the conditions 1,2
of the item A) of Theorem [[.16.1] Then, by Condition 1 of the item A) of Theorem [[1.16.1]
BE (¢€) = Z = BE (¢;). Hence,

Lk(C) =Lk (Z) = Lk(&),
moreover, for any reference frames [, m € Lk (€) = Lk (€;) we have:

ML) =m+[Z)=(m+[,&).
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Further, by Condition 2 of the item A) of Theorem [[I.16.1] for any reference frame [ =
(o, Uy [B,T,]) € Lk (€) = Lk (€1) we deliver:

BG([; €) =9, =BG([; &); qi(z, €) = ko(z) = qi (z, &) (x € Bs(l)).

Therefore, by Corollary [[[.14.1] € = ;.
B) Recall, that the notion of precise visibility, for kinematic sets is introduced in item d) of

the subsection [14.2.2l So, since the changeable set Z is precisely visible (according to Corollary
1.12.3]), then the kinematic set €, represented, by the formula ([1.10}), also is precisely visible. [

Definition 11.16.2. Let, P = ((To, Xa, Ua, Qa, ko) | @ € A) be a kinematic multi-projector for
a base changeable set B. The kinematic set €, satisfying conditions 1,2 of Theorem
will be named by kinematic multi-image of base changeable set B relatively the kinematic
multi-projector P. This kinematic set will be denoted via Kim [, B]:

Kim [P, B] :=¢.
Applying Properties [.11.2] Corollary [.12.7] and Theorem [[I.16.1] we obtain the following

properties for kinematic multi-image of base changeable set.

Properties 11.16.1. Let, P = ((To, Xo, Ua, Qa, ko) | @ € A) be a kinematic multi-projector
for B (where T, = (T4, <.), a € A). Suppose, that € = Kim [P, B]. Then:

1. LE(€) = {(a, Uy [B,Ta]) | o € A},
2. Tnd (€) = A.

Bs(1) = {bs (Ualw)) | w € Bs(B)}
Tm(l) =T,; Tm(l) =Ty
Zk(l) = Zk (BG(I)) = Zk (Q.,) ;
ME(l) = Tm(l) x Zk(I) = T, x Zk (Q,);
0(z) = ka(z) (2 € Bs(l);
QY (w) = (tm (w), qu(bs (w))) = (tm (w) , ka(bs (w))) ~ (w € Bs(1)).

4. Let, | = (a,U, [B,T,]) € Lk(C), where a € A. Suppose, that wy,wy € Bs(l) and
tm (wy) # tm (We). Then wy and Wy are united by fate in | if and only if there exist united
by fate in B elementary-time states wy,ws € Bs(B) such, that &1 = U, (w1), we = Uy, (w2).

5. For any reference frames | = (a,U,[B,T,]) € Lk(€), m = (5,Us[B,Tg]) € Lk (€)
(a, B € A) the following equality holds:

(Im« 1, Qw="Us (UMW) (weBs(l)=U, (Bs(B))).

Let, 9 be a coordinate space, B be a base changeable set such, that Bs(B) C Zk(Q) (such
base changeable set B exists, because, for example, we may put B := At (T, R), where R is a
system of abstract trajectories from the linear ordered set T to a set M C Zk(Q), where the
definition of At (T, R) can be found in Example [[.6.3] (see also Theorem [[.6.1))). Let U be any
transforming set of bijections relatively the B on Zk(Q) (in the sense of Example [[.11.2)). Then,
any mapping U € U is the mapping of kind, U : Tm(B) x Zk(Q) +— Tm(B) x Zk(9Q), where
Bs(B) C Tm(B) x Bs(B) C Tm(B) x Zk(LQ). Hence, the set of bijections U generates the
kinematic multi-projector U= ((’]Trn(B), Zk(9Q),U, Q, ]IZk(Q)) |U € U) for B, where Izyq) is
the identity mapping on Zk(£). Denote:

fim (U, B, Q) = Kim [@, B} . (IL11)

96



Draft Introduction to Abstract Kinematics. (Ver 1.0) 97

Theorem I1.16.2. The kinematic set € = Rim (U, B, Q) allows universal coordinate transform.

Moreover, Lk (€) = (U, U [B]) | U € U), and the system of mappings (@‘“")[megk(@ "

Qui(w) =V (UF(w)),  w € Mk(l) = Tm(B) x Zk(Q) (11.12)
(I=(U,U[B]) € Lk(€), m=(V,V[B]) € Lk (<))
18 universal coordinate transform for €.

Proof. Let, Q be a coordinate space and U be transforming set of bijections relatively the
base changeable set B (Bs(B) C Zk(Q)) on Zk(LQ). Denote € := Kim (U, B,9). Then, € =

Kim @,B , where U= ((’]Tm([)’),Zk(D),U,D,HZk(Q)) |U € U). Hence, according to Prop-

erty [[L.16.1(1), £k (€) = {(U,U[B]) | U € U}. And, by Property [[1.16.1)(3), for an arbitrary
reference frame [ = (U, U [B]) € Lk (€) we have: Bs([) = {bs(U(w)) |w € Bs(B)} C Zk(Q).
Herewith, by Theorem qi(z, €) =z (Vo € Bs(l)). Hence:

QM (w; ) = (tm (w) , qi(bs (w))) = (tm (W), bs(w)) =w (L€ Lk(C), w € Bs(l)).

Using the last equality and Property [[[.16.1)F]), for arbitrary reference frames [ = (U, U [B]) €
Lk(C), m=(V,V[B]) € Lk(€) (U,V € U) we obtain:

Q™ (w; @) = QM ((ImNw) = (ImHw=
=V (UT@) =V (U (QY(w)) = @nit (Q"(w).

It is not hard to verify, that the system of mappings (va,l) h© satisfies conditions (I.1)).
LmeLk(C
Therefore, by Definition [[I.15.1f (item , we see, that (ém,[) Lr© is universal coordinate
[lmeLlk(C
transform for €. O

Main results of this Section were anonced in [11] and published in |13, Subsection 6.3].

17 Generalized Lorentz Transformations in the Sense of E. Recami
and V. Olkhovsky for Hilbert Space

The fact that the existence of superlight motions is consistent with the kinematics of Einstein’s
special theory of relativity at the present time may be considered as generally known. In [48|49|
this fact is proved by means of mathematical logic. It is interesting, that the last fact also
can be proved by another way. In Example the kinematics, which permit superlight
transformations, was built explicitly using the theory of changeable sets (this example was also
published in [4, p. 128, example 2.3| and |3, p. 41, example 10.3]). Although the existence
of tachyons can not be considered as experimentally verified fact, the theory of tachyons and
superluminal motions is intensively developing more than 50 years [33[135], and it is very actual
in our time. In first studies for this direction the theory of tachyons was considered in the
framework of classical Lorentz transformations, and superluminal motion for the frames of
reference was forbidden. Then, in the papers of E. Recami and V.S. Olkhovsky (in collaboration
R. Mignani) [51,/52|, the extended Lorentz transformations for reference frames moving with
the velocity, greater, then the velocity of light ¢ were proposed (see also [36]). A little later,
similar formulas were obtained in [53]. The ideas of E. Recami are still relevant in our time.
In particular B. Cox and J. Hill in the paper [38] have rediscovered the formulas of Recami-
Olkhovsky’s extended Lorentz transformations and published a new and elegant way to deduce
of them. Recami-Olkhovsky’s extended Lorentz transformations are investigated in the paper
[37]. Application of the Recami-Olkhovsky’s extended Lorentz transformations to the problem
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of spinless tachyon localization can be found in [50|. It should be emphasized that in the
papers |36-38| extended Lorentz transformations are examined only in the case, when two
inertial frames are moving along the common z-axis. In the paper [6] the Recami’s extended
Lorentz transformations are obtained for arbitrary orientation of axes in the case, where the
space of geometrical coordinates may be any real Hilbert space of any dimension, including
infinity. In the paper [7] we investigate algebraic properties of extended Lorentz transformations
in the sense of E. Recami and V. Olkhovsky for Hilbert space, introduced in [6]. Also some
properties of these transformations were established in [8,/13].

This section contains results, connected with extended Lorentz transformations in the sense
of E. Recami and V. Olkhovsky, which are necessary to build mathematically strict model of

kinematics of special relativity and its tachyon extensions. Main results of this Section were
published in [6,8,/13].

17.1 Abstract Coordinate Transforms in Minkowski Space Time over Hilbert
Space and their Properties

Let (9, ||, (-,-)) be a real Hilbert space, where the ||| is the norm and (-,-) is the inner
product over the space $). Further we assume automatically the condition dim ($)) > 0. Under
this condition, the space §) contains at least one nonzero vector. Denote by M ($)) the Hilbert
space

M@®)=RxH={(t,x) [teR, x € H},

equipped by the following inner product and norm:

(W1, W2) vy = tite + (21, 22)
2 :
1wl aey =5+ lla (Wi = (ti,z:) € M(9), i € {1,2}).

The space M ($)) we name by the Minkowski space over the Hilbert space $. In the space
M (9) we select the subspaces

(I1.13)

$o = {(t,0) |t € R} }
= 1{(0,2) [z € H},

1

with O being zero vector. Then

M (ﬁ) :f)O @‘617

where @ means the orthogonal sum of the subspaces. The space ), is isomorphic to the real

field R and the space $); is isomorphic to the space $. Hence, the space $) may be identified

with the subspace $); of the space M (£)), and M ($)) may be considered as the extension of

the space $. That is why, futher we will use the same denotations for inner product and norm

in the spaces ) and M ($)) (that is ||-||, (-, ), without the index “M (£))” in subscript).
Denote by ey the vector

e =(1,0) e M (9).

We introduce the following orthogonal projectors by the subspaces $, and $;:
Tw = tey = (1,0) € Ho, W= (t,z) € M(5); } (1L14)
w

(recall, that an operator P € L ($) is named orthogonal projector if P> = P* = P, where P*
is the adjoint operator to the operator P). Also we denote by T the following linear operator

T(w)=t=tm(w), w=(t,z) € M(H)
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from M (9) to R. Then the following equality apparently holds:

Tw="T(w)e,, weM(H). (I1.15)
And any vector w € M ($)) can be uniquely represented as
w=tey+x =T (w)ey+ Xw, (I1.16)

where z = Xw € $;, t =T (w) € R.
Denote by L (£)) the space of linear continuous operators over the space $).

Definition I1.17.1. The operator S € L (M ($)) is referred to as linear coordinate trans-
form operator if and only if there exist the continuous inverse operator S~ € L (M ($)) {&]}.

It is clear, that product (composition) of any two linear coordinate transform operators is a
linear coordinate transform operator and the operator, inverse to linear coordinate transform
operator again is a linear coordinate transform operator. Thus the set of all linear coordinate
transform operators is the group of operators over the space M ().

Definition I1.17.2. The linear coordinate transform operator S € L (M ($9)) is called v-
determined if and only if T (S~1eg) # 0. The vector

XS_leo
T (S~ 'eg)
1s named the velocity of the v-determined linear coordinate transform operator S.

The definition |[[[.17.2] is consistent with the physical understanding of the speed of ref-
erence frame. Indeed suppose, that the v-determined linear coordinate transform operator
S € L(M($)) maps the coordinates of any point in the fixed frame of reference [ to coordi-
nates of this point in another frame [, moving with constant velocity relative to the frame [.

Consider any stationary relative the frame I’ point w, = x¢ +tey (where xy € £ is fixed vector,
and variable ¢ runs over all real axis R). Then the point w; in the frame [ will look like as

w; = S~ 'w}, and using we obtain:
wy=S""wo +tS ey =T (S m) eg + XS ag + ¢ (T (S ep) €0 + XS ep) =
=T (S7" (wo + teg)) €0 + XS~ (2o + tey) .
Thus, for any t;,t, € R such, that t; # t5 we deliver:

V(S) = € 9

Xwy, — Xwy, _ XS (xo + taeg — (2o + t1€0)) —V(S)
T (W) =T (we,) T (S7H (o +taen) — S (20 + tr1€9)) '

Thus, any stationary relative the frame [' point is moving relative the frame [ with constant
velocity V (5).
For any vector V € ); we introduce the following subspaces:
$H1[V] =span {V};
D Vl=me0:[V]={rchH| (z,V) =0},
where span M denotes the linear span of the set M C M ($)). The orthogonal projectors for
the subspaces $; [V] and $, [V] will be denoted by X, [V], Xi [V]:

TV, V£0
X, [V]w = i’ a
0, V=0

Xy [V] =X X [V].

, WeEM(D); (IL17)

13 In the case, where the mapping S is linear (or aphine) operator, acting in some linear space, we use the conventional denotation
S~ instead of S[= for inverce mapping.
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It is not hard to verify, that for an arbitrary V' € $; the following equalities are performed:

T+X= I X, [V]+ X+ [V]= X; )
T+X, [V]+X{[V]= T
TX =XT = O; X, [VIXi [V =Xy [V ] 1[V]= 0 L1
TX,[V]=X,[V]T = 0 TX; [V]=X{ [V]T= O (IL.18)
XX, [V] =X, [V]X = X, [V]; XX [V =X [VIX = Xi[V],
X, [\V] = Xi[V]: Xi [V =Xq [V] (VA e R\{0}),

where I = I\ and O are identity and zero operators in the space £ (M (£))) correspondingly:
Iw = Iymw = w; Ow=0 (Vwe M(9)).

Lemma I1.17.1. Let S € L(M($)) be a linear coordinate transform operator such, that
the both operators S ans S™' are v-determined. Then S is bijection between the subspaces
Ho® N[V ()] and Ho® H1 [V (S™Y)]. Moreover for any w = teg + AV (S) € H & H: [V (9)]
the following equality is true:

S (teg + AV (S)) =as ((t—ABs)eg+ (t = A)V(S7"))  (Vt,A€R),

where
1 1

B T(Seo)T(Sfleg) =1- agig—1 '

Proof. Let S, S~! be V determined linear coordinate transform operators. Then, by definition

[1.17.2] and equalities ([I.15)), (TL.18), for any ¢, A € R we obtain:

XS_1e0
S (teg + AV (S)) = tSeg + ASV (S) = tSey + AST(S—_leO) =

S_leo — TS_IG()) =

as =T (Sep), Pfs=1

A
— tSeq + —T(S_leo)s(
A _ _
=tSeg + ms (S 1e0 - T (S 1e0) eo) =

A _
= tSGO + m (eo — T (S leo) Seo) =
A

=(t—A) (TSeo + XSe0> +

€y =

A
T (S—'eg)
A
T (S~1eg)
XSeO A
=(t—\)T (Sep) (eo + T(Seo)) + T(S—leo)eo -
A

= (=N T (Seo) (e0+V (S™) + gray @0 =

=T (Sey) <(t— A (1 — T(Seo);(s_le(]))) e+ (t — A)V(Sl)> =
=ag((t—Ms)eg+(E—NV(S™)).

€y =

=(t—X) (T (Sep) eo + XSep) + ey =
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Hence, the operator S maps the subspace £y @ $1 [V (S)] into the subspace £y & H1 [V (S71)].
In the case V (S) # 0 the subspace £y @& $H1 [V (5)] is two-dimensional (dim (o & H1 [V (5)]) =
2). And since S is bijection on M (£)), dimension of the image S (£ @ H1 [V (S)]) C $Ho &
1 [V (S| also must be equal 2. And since dim (9o @ H; [V (S7H)]) < 2, we have, that
S(H0®H[V(9)]) = H @ H [V(S™H] and dim (5B H; [V (S7')]) = 2. Thus, in the case
V (S) # 0, the lemma is proved.

Above we have proved, that if V(S) # 0, then dim (£, ® $H, [V (S7!)]) = 2, and, con-
sequently, V (S™!) # 0. And, conversely, if V (S7') # 0, then V(S) = V ((S‘l)_1> £ 0.
Thus, in the case V (S) = 0, we have V (S™') = 0. Therefore, in this case H, ® H; [V (9)] =
$Ho @ H1 [V (S7Y)] = 9o, and, consequently, one-dimensional subspace ) is invariant subspace
of the operator S. And, since S is one-to-one mapping, we deliver that S () = $o, and,
hence, S ($ D H1 [V (S5)]) = Ho @ H1 [V (S™1)]. Thus, in the case V (S) = 0, the lemma also is
proved. O

17.2 General Lorentz Group in Hilbert Space

Everywhere in this paper ¢ will be a fixed positive real constant, which has the physical content
of the speed of light in vacuum. Denote by M. (-) Lorentz-Minkowski pseudo-metric on the

space M (9):

M, (w) = [ Xw|* — T2 (w), weM(®). (I1.19)

Pseudo-metric (I1.19)) is generated by the quasi-inner product:
(w1, wa)), = (Xwy, Xwa) — AT (w1) T (W2), Wi, wy € M($) (I1.20)
M, (w) = ((w,w)),, weM®). (I1.21)

It is clear, that quasi-inner product ((wy,ws)), (W1, we € M ($)) is bilinear form relatively the
variables wy, wy. Hence (by (IL.21])), for any wy, wy € M ($) it holds the equality:

(w1, wa)), = % (M, (w1 + wa) — M. (w1) — M, (wa)). (11.22)

Denotation I1.17.1. Denote by O (9, c) the set of all linear coordinate transform operators

over M ($)), leaving unchanged values of the functional , that is the set of all linear
coordinate transform operators L € L (M ($)) such, that:

M, (Lw) = M. (w)  (Vw € M (9)). (I1.23)

Using the equality (I1.22)) it is easy to verify, that any operator L € O (£, ¢) leaves unchanged
the values of the quasi-inner product ([1.20):

((Lwi, Lwa)), = ((wi,Wa))., Wi, wa € M(9) (11.24)

It is not hard to see, that product of any two operators from O (), ¢) belongs to O (), ¢)
and the mapping, inverse to any operator from O (), ¢) also belongs to the set O (), ¢). Hence:

Assertion I1.17.1. The set O ($,c) is the group of operators over the space M ($).

According to [45] we name this group by the general Lorentz group over the space M (£)).
Note, that generalization of the classical Lorentz group for the case of real Hilbert space was also
investigated in [55-57]. In these papers a somewhat different (but logically equivalent) approach
to the definition of Lorentz group over Hilbert space is proposed. Namely, in these papers the
“time” dimension is not “attached” to the given Hilbert space $) (by means of construction the
space M (£))), but this dimension is selected in the space $) by an arbitrary way. So, the last
construction is correct only in the case dim ($)) > 2. In our approach, we, apparently, need not
this restriction.
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Assertion I1.17.2. Any general Lorentz transform operator L € O ($),c) is v-determined and
V(L) <e.

Proof. Indeed,
Mc (eo) = ||X60H2 — 027-2 (eo) =0- C2 -1 = —CQ.

As it was mentioned above, L™! € O ($,¢) for L € O (9, ¢). Therefore, by ([1.23),

M. (L 'ey) = [ XL "eo||” — T (L") = =

Hence, |T (L te)| = %\/HXL—leOH2 + ¢2 > 0. Thus the linear coordinate transform operator
L is v-determined, moreover:

_ XL o] IX L e

V(L)|| = =c
” ( )H ’T(Lileo)‘ \/HXLfleo”Q_i_CQ

<ec. (I1.25)

]

The aim of the next assertion is to emphasize some characteristic properties of the general
Lorentz transforms, which may serve as a basis for another definition of the general Lorentz
group. And these properties also will become the motivation for definition of the set of extended
Lorentz transforms, which allow superlight speed of reference frames.

Assertion I1.17.3. Any linear coordinate transform operator L € L (M ($)) belongs to
O (9, ¢) if and only if the following conditions are satisfied:

1. Both linear coordinate transform operators L and L™ are v-determined;

2. M (Lw) = M. (w) (Vw € $o @ H:1 [V (L)));

3. if Tw =X, [V (L) w=0, then TLw =X, [V (L )] Lw =0 (Yw € M (§));
b | X V(D)) w]| = [|XE (LD Lwl], (Yw € M (5)).

Proof. 1. Let L € O (9, ¢).

1.1. By Assertion [[.17.2] L is v-determined. Since O ($),c¢) is the group of operators,
L' e D (9,c), and so L™ also is v-determined.

1.2. Performance of the second condition follows from the equality ([I.23).

1.3. Suppose, that w € M () and Tw = X; [V (L)]w = 0. Then, for any vector w,, =
teo + AV (L) € .60 @D 5731 [V (L)] we obtain:

{{uwn o w)),, = (X, Xw) = AT (w02) T (w) = AV (L), Xw) = e (T, e ) =
= AV (L), Xw) = XXV (L), w) = A(V(L),w) =0
Consequently, by the equality ([I.24):
(Lwes, Lw)). =0 (VEAER).
Hence, using the lemma we deliver:
({ar ((t=MBr)eo+ (t—=A)V (L"), Lw)) =0 (Vt,\ € R),
where (because L, L™! are v-determined), a; = T (Leg) # 0, ap1 #0, B, =1 — —— £ 1.

C!LCML,1
Since ; # 1, the set of pairs {(t — A8, t — \) | t, A € R} coincides with R%.  Thus, since
ar # 0, we obtain:

((teg + AV (L7Y) . Lw)) =0 (VL A€R).
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In particular for t; = —c%, A1 =0 and t, =0, Ay = 1 we have:
1 1
0= <<—§e0,LW>>C T (—geo) T (Lw) = T (Iw)
TLw =T (Lw)ep = 0; (11.26)
0=((V (L), Lw)), = (V (L), Lw);
((L)Lw) vy or 1
Xi [V(LTY] Lw =< V@ VLT, V)AL (11.27)
0, V(L) =0

Thus, by (11.26), (I1.27), TLw = X, [V (L )] Lw = 0.

1.4. Let w € M ($). Then, by (I1.24) and (II.18):

X3 [V (L) || = <<XL (D] w, Xy [V (L)]w)), =
= ((LX Jw, LX5 [V (L) w)), =
= (((T+x: ()] + [ < N]) EXE Y (L)) w, LX5 Y (L))w)) =
= ((TLXE YV ()] w, LXE D (D] w)) +

+ (X [V (L )} LXL Jw, LXy [V (D)]w)), +

+(XT V(L] LXS V(L)) w, LXT [V (L) w)), . (11.28)
By (I , TXL V(L)]w= [ (L)] X [V (L)]w = 0. So using the previous item, we con-
clude, that TLXE [V (D) w =X, [V (L™ )] LX: [V (L)]w = 0. Hence, from ([1.28) it follows,

that:
X VO w = (Xt V(L] LX V(D] w, IX{ V(L)) w)), =
— (XE V()] X D (D)) w, IXE [V ()] w) =
— (X [V (LY LXE V(D) w, X¢ [V (L] LXE [V (D) w) =
= [IX v (L] LX) w]|”. (11.29)

Note, that by ([1.18), LXi [V (L)]w = L(W Tw — X1 [V (L)] W) = Lw — Lw, where

= Tw+ X, [V(L)]w € @ H [V(L)]. By lemma [IL17.1] Lw € $H, & H, [V (L)
Therefore, by (IL18), X:[V (LY Lw = X:EV L] (T +X V(L )]) Lw = 0, and
XV (LY LXTV(D)]w=X{ V(L™ (Lw — Lw) = X{ [V (L™)] Lw. Hence, by ([L.29):

Xt v @w|* =Xt [V (£)]

weEM(9).

Thus, all conditions 1-4 for any linear coordinate transform operator L € O (£, ¢) are satis-
fied.

2. Suppose, that linear coordinate transform operator L € £ (M ($))) satisfies the conditions
1-4. Chose any w € M (£)). Vector w can be represented in the form

W = W; + Wo, Wwhere

wi=T (W) e+ Xi[V(L)]weH®H[VL)], we=Xr[V(L)]weH [V(L)]. (IL30)
Note, that by (I1.30) and (I1.18), Twy = X; [V (L)] ws = 0. Therefore, by the condition 3:

TLws, =X, [V (L7Y)] Lw; = 0. (IL31)

103



Draft Introduction to Abstract Kinematics. (Ver 1.0) 104

So:
M. (Lw) = M. (Lw, + Lws) = | XLw, + XLws|* — ¢ (T (Lw1) + T (Lw,))* =
(T (Lw) +0) =
= [|[XLw; + Lwy|* — AT? (Lwy) . (IL32)
Since w1 € o @ H1 [V (L)], by lemma Lw; € £, @ 9 [V (L1)]. Hence, by (I1.31),
(XLw, Lws) = (Lwy, X Lwy) = <LW1, (T + X) LW2> — (Lwy, Lw,) =
= ((T+ X V(L)) wr, Lwa ) = (L, (T4 X0 [V (7)) L) = 0.

Thus, |XLw; + Lws||> = |XLw||* + ||[Lw2|*>. And using the equalities (I1.32),(IL31)), condi-
tions 2,4, taking into account, that wy € $9 @ H1 [V (L)] we obtain:

- HXLW1 + X Lwy + TLw,

M. (Lw) = M, (Lwi) + [ Lws® = M. (Lwy) + | X5 [V (L7)] Lws || =
— M. (1) + || X [V ()] wa|* = M. (T (w) @0 + Xy [V (L)] w) + H(Xf v (L)])QWH _
= [Xa V@) w]” = AT (w) + | XE V(L] W]’ =M (w)  (Vw € M ($)).
Consequently, L € O (9, ¢). a

17.3 Generalized Lorentz Transforms for Finite Speeds

Denotation I1.17.2. Denote by O%giy (9, ¢) the set of all linear coordinate transform opera-
tors L € L (M (9)), satisfying conditions:

r. Both linear coordinate transform operators L and L~ are v-determined;

Z. (Me (Lw))* = (M. (w))* (Yw € $0 & 1 [V (L))

3. if Tw=X,[V(L)]w=0, then TLw =X, [V (L) Lw=0 (Vw € M (9));
4. X V(D) w]| = [| X [V (L] Lwl], (vw € M (£)).

In comparison with conditions 1-4 of Assertion [[I.17.3] only Condition 2 is modified. It is
evidently, that the Condition 2 of Assertion [I1.17.3|implies Condition 2’. Thus:

D (.6, C) Q D‘Ifin (57), C) . (1133)

And, as it will be proved below, in Theorem this small modification of the second
condition leads to permission of superlight speed for reference frames (that is to the possibility
of [V (L)|| > cfor L € D%y, (9, ¢)). This, means, that the inclusion, inverse to can not
be true.

From condition 3" it follows, that for any operator L € O%g, (9, ¢)

L(®mL[V(L)]) S Ho [V (LT)]. (11.34)

Indeed, for any w € 1, [V (L)] we have, Tw = X, [V (L)] w = 0. Thus, by condition 3/, T Lw =
X, [V (L) Lw = 0, and, by equalities (IL.18), Lw = (T FX V(LY + X[V (L—l)]) Lw —

X V(LY Lw € $110 [V (L)
Denote by 4L () the set of all unitary operators over the space £;. That is the set of all
linear operators J : 1 — 9, (J € L($1)), such, that:

|Jz|| = ||z|| (Vx € $1) and J$H; = H1.
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For any operator .J € $(($);) we introduce the operator J € £ (M ($)):
Jw:=Tw+ JXw="T (w)eg+ JXw, weM($). (11.35)
From ([I1.35]) it follows, that:
VJ e U($) J e (M (H)), (11.36)

where (M ($)) is the set of all unitary operators over the space M (£)).

Theorem I1.17.1. Operator L € L (M ($)) belongs to the class OFgin (9, ¢) if and only if
there exist number s € {—1,1}, vector V € 91, ||V|| # ¢ and operator J € (1) such, that for
any w € M () vector Lw can be represented by the formula:

s (T(w) — @)

V2
‘1_\\2\\

C

s(T(w)V =Xy [V]w)

Lw = e+ J + X7 [V]w |, (11.37)

moreover,

Note, that in the case[] § = R3, M () = R x R* = R*, V = (0,v,0,0) (where v € R,
|v| > ¢), and
J(0,2,y,2) = (0,—2,y,2), x,y,2€R
we obtain transforms |36 formula (43)|, [37, formula (12)] and |38, formulas (3.17)-(3.18)] as
particular cases of the formula from Therem Under the additional conditions
V]| < ¢, dim (§) = 3, s = 1 the formula is equivalent to the formula (28b) from [54] page
43]. That is why, in this case we obtain the classical Lorentz transforms for inertial reference

frame in the most general form (with arbitrary orientation of axes).
To prove Theorem [[[.17.1| we need the following lemma.

Lemma I1.17.2. If for operator L € L (M (9)) there exist number s € {—1,1}, vector V € §;,
\V|| # ¢ and operator J € L ($1) such, that for any w € M ($)) vector Lw can be represented
by the formula , then L is a linear coordinate transform operator, moreover

L~ =Lg [sign (c— ||V s, V] J1, where

(V,w)
C—2> w)V =X, [V

(T(w) - & )
/‘1_nz_2||2 o ”Zz”

and operator J=! is determined by formula .

Proof. Let the operator L € L (M (£))) satisfy the conditions of the lemma. We need to prove,
that the operator L have the inverse L=!. By (I1.37), operator L can be represented in the
form:

Lo[s,V]w = + X; [V]w (11.38)

L=JLg[s,V].

Since J is unitary operator over M (§)), it is sufficient to prove that the inverse operator exist
for the operator Lg [s, V]. Tt is obvious that

—_—

Jh=J-1. (11.39)

4 We consider R? (d € N) as a Hilbert space with the inner product (z,y) = zjd':1 zjy; (& = (x1,---,24) € RY, y =
(1, ,ya) € RY)
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Hence, the lemma will be fully proved, if we will be be able to verify the equality:
Lo [s, V] Lo [sign (¢ —||V|) s, V] =1 (I1.40)

(then the equallity Ly [sign (¢ — ||[V]|) s, V] Lo [s, V] = I will be follow by applying the equality
(I1.40) to the operator L [s', V], where s’ = sign (¢ — ||V]|) s).
In the case V = 0, using ([1.38) and ([1.17)), we obtain:

Lo[s,V]w = sT (w)ey + X [V]w=sT (w)eg + (X — X, [V])w = sT (w) ey + Xw.

Thus, in this case equality ([1.40) is clear.
So, one can be restricted by the case V' # 0. Applying equalities ([1.38) and ([1.17) we
deliver:

) IVH V—I—XL

/ _ve? _vy?
T2 T2

Denote s’ :=sign (¢ — ||V||) s. Then for an arbitrary w € M (£)) we have.
Lo [s, V] Lg [sign (¢ — [|[V]]) s, V]w =Lg [s,V]W, where w =1Lg[s',V]w. (I1.42)

By (I1.41)), we obtain:

LO [S,V]W—

w, weM(H) (I1.41)

T (@) =T (Lol V]w) = :

/ 2 _ iV w 11.43

vy = ST IVIE = (Viw)), (IL.43)
Xy [V]w =Xy [V]w. )

Applying equality ([1.41] H.41 for vector w and using ([1.43)), we deduce:

~\ <Vw> 8 T(N) VW2>
LO [S,V]W — > ( 4 >V XL
1 _ / _vi?
2
s Viw)\
02 c? c
: ) ( ).,
‘1 v
s (s (T (w)— B2) — s (T (w) — 29
1 - vi”
c2
_ v Vaw) (1 _ VI
_TW (1 Z ) VI (1 z ) L e —
= $s > ey + ss —=V + X7 [V]w=
1 L ] — M
(V,w) i
= (T (w) 7V |+ X7 [Viw=w.
IV
Thus, using ([1.42), we obtain ([I.40). O]
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Proof of Theorem [I[.17.1. 1. Suppose, that L € D%, (H,¢). Then, L is linear coordinate
transform operator, which satisfies the conditions 1'-4’. Denote:

V=V(L). (I1.44)

First we prove the formula (I1.37)) in the case V # 0. By equalities ([1.18]),(I1.15) and (I1.17)),
for any w € M ($)) we have:

Lw:L<T+X1[v1+xf[V])W:L(T(W)eO+X1[V]w>+LXHV]W:

_ w) e <V>W> 1 W
_L(T( )eo + ||VH2V)+LX1 V]w.

Hence, by lemma

Lw = ay, ((T(W) V. w) BL) eo + (T (w) — V- W>) )% (L1)> +

VP VP
+ LX7 [Vlw  (weM(H))  (11.45)

Now, introduce the linear operator J; on the subspace $;, [V] = 91, [V (L)]. Denote:
Jix =Lz, x€9H[V]. (I1.46)

According to the formula (I1.34), operator J; maps the subspace $;, [V] into the subspace
11 [V(L7Y)]. By the formula ([1.34) and condition 4, for any = € 1, [V] we obtain:

e = Lall = [XE [V (L)) Lal| = K¢ V(D)o = [XEVIa] = o). (1L47)

Hence, J; is isometric operator from the subspace £, [V] to 11 [V (L™!)]. Now the aim is to
prove, that operator J; is unitary operator from $;, [V] to £, [V (L™!)], that is

Ji9L V] =9 V(L] (11.48)

Let us consider any vector y € $;, [V (L™1)]. Since L is linear coordinate transform operator,
there exist vector = L~1y. By equalities ([I.18)) vector x can be represented as:

r = (T X, [V]) z+ X+ [V]z, (11.49)
where ('f‘ + X, [V]) TE€ENMOHM[V]=909 VL), X{[V]x € H1.[V]. Therefore, Lx =
L (T + X [V}) x + LX{ [V]z. Hence:

L (T X, [V]) v+ IXE V] =Le=LL y=yeH, [V(L)]. (IL.50)
where, by lemma and formula ([I1.34)

L(T+X,[V]) o €55 [V (L7)];
LXy [Vl e [V(LTY)]. (IL.51)
Since $HoBH1 [V (L H]@H11 [V (L7Y)] = M (), from the equalities ([1.50)),([L.51]) we conclude,

that R
LXy[V]zr=y, and L <T + X4 [V]) r=0.
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Since L is linear coordinate transform operator, from the equality L (’/I\‘ + X, [V]) x = 01it

follows, that (T X, [V]) z = 0. Hence, by (IL49), z = Xi [V]z € H1. [V], and, by definition
of the operator J;, we deliver:

Jix=Lx =vy.

Thus, we have proved, that for any y € $;, [V (L™!)] there exists the element z € £, [V] such,
that Jiz = y. This means, that the operator J; : $1, [V] = $11 [V (L7')] truly is unitary.
Applying the operator J; we can write:

LX; [V]iw = L1 X5 [V]w, weM($). (11.52)
Next, using the lemma [[I.17.1] for any ¢, A € R we obtain:
L(teg+ AV (L)) =ar ((t—XBr)eo+ (t— AV (L)) . (11.53)
Using the formuals and we deliver:
M. (teg + AV (L) = A [V (D)||* = 2 = N |V||* = 2%
M. (L (teo + AV (L)) = a] M, ((t_)\ﬁL) e+ (t—=AN)V (L™ ))
—af (t= N[V (L[ =t - A8)*) = af

where 7, = [[V(LY|J>. Since teg + AV(L) € $H ® H:[V(L)], by the condition 2/,
(Mc (L (teg + AV (L))))* = (M, (teg + AV (L)), t, A € R. Thus:

((t — )\)2")/L — C2 (t — )\6[/)2) s

(A = 2152)2: (af ((t—)\)zﬂyL—c (t — \Br) )) hence:
MV =2 = +a? ((t - R /\BL)Q) (t, A € R).

And after simple transformations the last formula takes the form:
NV|? =t = xai (£ (v — ) —2tA (v, — B1) + N (v — B})) (VLA ER).

Equating coefficients near the same powers of \, we obtain two systems of equations:

af (yp —¢?) = —¢ af (v —c?) = ¢
v — 2B, =0 v — B, =0
a (vr = p) = |V|I* af (v —B2) = = |VII*.
By means of simple transformations, these two systems can be reduced to the form:
of (1- 1) =1 of (1- ) = =1
2
=Vl v =V
_ v B = HVH2
L 2 .

The first system has (real) solutions only for ||[V|| < ¢, and the second system has solutions
only for ||V|| > ¢. Thus, the solutions exist only for ||[V|| # ¢. Solving the last systems and
taking into account, that y, = ||V (L™)||%, in the both cases we obtain:

@I =IvIE VI #£e), (IL.54)

CYL:—; BL =

where s € {—1,1}.
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Substituting the values of LXji [V]w from the formula ([1.52)) and the values of ap,3;, from
the formula (I1.54) into (I1.45), we deliver:

; Vo) IV V)Y g
Lw= —un—— T (w) — € T (w) — 5 | V(L
M << NI ) (0= ) v )>+

+ L XT [V]w =
s(Tw)v) -y @) )
: 2 X V] w. (IL.55)
1 -k 1-
Introduce the following operator on the subspace $;:
V,x _
— <||VH2>V(L D4+ X [V]z, x€ 9. (I1.56)
Slnce J1 maps subspace  $;, [V (L)] Subspace 1 [V(LTY)], we have,
(V(L7Y), JiX{[V]z) = 0. Hence, using and (I[1.17), for =z € $H; we
obtam '
(V,z) J_ ’ il 2
| H—( +JX — +||XE V| =
2
2
- [$Sev| It wiel? = v +Hxl Ja|[* = [l

Thus, operator J is 1sometr1c on ;.
For = AV € 91 [V] by (IL56) we have J(AV) = AV (L~'). Hence:

IO [VI=9m[V(LT)]. (I1.57)
And for z € 1, [V] according to (I1.56) we obtain:

Jr=J Xy [Vlz=Jiz (v€$H[V]). (I1.58)
Hence, by ([L.48):
IO [VI=J5u V=9 [V(LT)]. (11.59)

From (I1.57)) and (IL1.59)) it follows, that
Ji=J®mV]eH V) 2m V(L] en. V(L] =90
Thus, J$H1 = H1. And so operator J is unitary on £, that is

Je(9n).

In accordance with (IL56), JV = V(L™'). Hence, using (IL55)), (IL58) and (IL17), we
deliver the formula (I1.37). So, for the case V' # 0 formula (I1.37) is proved

Now consider the case V = 0, that is V (L) = 0. In this case, by the formula (I1.17):
X, [V]=X;[00=0, X{[V]=X. (I1.60)

Since, by condition 1/, transforms L and L' are v-determined, by lemma [[1.17.1], the following
equality must hold:

tLeg = L (teg + AV (L)) =ayr ((t—ABr)eo+ (¢t —A)V(L7'))  (Vt,A€R), (11.61)

109



Draft Introduction to Abstract Kinematics. (Ver 1.0) 110

with ap =T (Leg) #0, . =1 — - # 1. Since the left-hand side of the equality (I1.61

does not depend of A, the coefficient of the variable A in the right-hand side of the equality
must be zero. Hence, BLeo + V(L) =0, and so

apop,

BL=0, V(L") =0. (11.62)

Thus, the formula (II.61]) takes the form Ley = apeg. And, applying the condition 2’ to the
vector ey € Hy D H1 [V (L)], we obtain o, = s, where s € {—1,1}. Consequently:

Ley = sey, where s € {—1,1}. (I1.63)
Using (TL.60)),([I.63) for any vector w € M (£)) we obtain:
Lw = L(T (w)ey + Xw) = sT (W) ey + LXw = sT (w) ey + JX; [V]w, (I1.64)
where
Jr=Lr, z1€H =XM@®) =X [VIM®) =9.][V]. (11.65)

By condition 3" and formula (I1.60)), the subspace $); = {W eM($H) | Tw= 0} is invariant for

the operator L. Hence, the operator J from maps the subspace §); into the subspace
1.

According to the formula ([1.62), V(L™!) = 0. Consequently, by the formula (II.60)
X{[V] =Xi V()] = XF[V(L7Y)] = X. So, by the condition 4’ operator J is isometric
on the subspace $;. Now, we have to prove, that operator J is unitary. Consider any vector
y € $,. Denote z := L~'y. Then, by , Lz = sT (x)eyg + JXx = y € $;. Hence,
T (x) =0 and JXx = y. This means, that y € J$);. Therefore, we have seen, that J$; = 9,
and the operator J really is unitary on the $; = $;, [V]. Thus for the case V' = 0 the formula
also is proved.

IT. Inversely, suppose, that the operarot L € £ (M ()) can be represented in the form
(TL.37). Then, by the lemma [[1.17.2] L is a linear coordinate transform operator.

1. By the formula we deliver:

Leg = xv (e + JV), where yy = ————= #0;

C

s(-1) g (e )
c? S1en (C —
= €y = & €0

L (eo + V) = 3
‘1 _ v Xv
L'ey = ,XV (e + V) .
sign (¢ — [|V]])
Hence T (Ley) = xv # 0, T (L7'ey) = SIgn(C_“V”) # 0. Thus, linear coordinate transform

operators L and L~! are v-determined, moreover:

XLile()
T (L_leo)

2. In accordance with (I1.37)), for w = teg + AV € 0 & H:1 [V] = Ho & H:1 [V (L)], we obtain:

2
S (t — )\—”‘6/2” ) s(t —
—= eO +

1_ v vy
c? c2

V(L) = =V; V(L) = = JV. (11.66)
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Hence, since J is isometric operator, we obtain:

1_M

c2

= (X [V

2 2
vy
s(t—\)JV N (t - )

vi? 12
1 1

2

9 2
V 2
=N VI - (t—A”CJ' ) -
4 2

2
174 4
IVII* 82 = 26X [V ]|* + A [V [|* = (cQtz—QtM|VH2—I—)\2%>>) =

4
VI = 20A V2 4 X2 I\VHZ—c2t2+2t/\HVH2_)\QH‘;H )) )

C

2
2 2
VP (1 v ) ) (1 I )t>> _
C C

—22)" = (M, (w))%.

Thus, the condition 2’ for the operator L also is satisfied.
3. Suppose, that w € M ($), Tw = Xy [V (L)]w = 0. Then, 7 (w) = 0, and (since
V(L) =V, by (I1.66))), we have, (V,w) =0, X{ [V]w = (X - X[V (L)])w = Xw = w. So, by

([L.37):

Lw = JX{ [V]w = Jw.

And, taking into account, that J is unitary operator on £, using (I1.66)) and (I1.17) we obtain:

Xi V(L] Lw =X, [JV] Jw = { VP

TLw=TJw = 0;
VYISV, JV#0
, JV =0

V, V40
:J{OV2 V%O}zjxlmw:o.

Hence, we have checked the condition 3’ for the operator L.
4. Using the unitarity of the operator J ((Jz,Jy) = (z,y), x,y € $H1) and equalities

(I1.17)),(I1.18)) one obtains the following:

JXy [V]w {

VP
0, V-0

i

XDV, V40
o, V=0
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(JV,JXw)
= ||V|| JV V# O [7v|]? JV JV #0
0, V=0 0, JV =0
JXEV]w=J(X - X, [V])w = JXw — X, [JV] JXw =
— XJXw — X, [JV] JXw = X+ [JV] JXw.
So, by the formula (I1.37) for any w € M (§) we deliver:

Xy V(L] Lw = Xf [JV] Lw =

} =Xy [JV] JXw;

LS (T (W) JV = X, [JV] TXw)

_ vz
02

= X [JV] +JXL[Viw | =

_ vz
C2

_XL [JV] JX{ [V]w = X{ [JV] XL [JV] JXw =
= X; [JV] JXw = JXf V]w
X5 [V (L7)] Lw|| = [[7X5 [VIw|| = || Xi mwll-

Thus, all conditions 1’-4" for the linear coordinate transform operator L are satisfied. Hence
L € OFgin (9, 0). m

17.4 Generalized Lorentz Transforms for Infinite Speeds

Now we investigate the behavior of coordinate transform operatos from the class O%¢iy, (9, ¢),
when the norm of the rate of reference frame (||V||) tends to infinity. For this purpose we
denote by B (1) the set:

By (91) ={z € /| [lz]| = 1}

and substitute:
V =Asn, where A >0, A#¢; n€B;($) (I1.67)

into the formula (I1.37). Then we are going to take the limit while A — oco.
Note, that, by two lower equalities of ([I.18]), we have:

X [Asn] = X [n]; X7 [Asn] = X7 [n]. (11.68)

Hence, substitution the velocity ([1.67)) to the formula (I1.37)) lead us to the following represen-
tation for operators L € O%gy, (9, ¢) (with V (L) # 0):

Lw=W,.[s,n, J]w:=

_ (ST( ) — in W>)e0+J )\T(W)n—s)fl [n] w
-3 i

c? c?

+ X mjw]|, weM((®), (I1L.69)

where s € {—1,1}, J € 44($1), n € B; (H1), A > 0.
Taking in ([1.69) limit while A — oo, we get the following linear operators in the space
M (9):

Woen, JJw= lim W,[s,n, J]w=

A—+00

(n, w)

=—"eg+J (T (W)n+Xj[n]w)  (weM(9)), (I1.70)

where limit exists in the sense of norm of the space M (). Note, that limit in (I1.70) does not
depend of the number s. It is not hard to verify, that W, . [n, J] € L (M (£)).
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Now we introduce the following class of linear bounded operators in the space M ($)):
0% (9,¢) ={We . n,J] [ neB (), Je(H)}. (I1.71)
Lemma I1.17.3. For any n € By (1) and J € L ($1) the following equalities holds:
TWee 0, 1] = Waeo[0,J]; Waoo[n, 1] J = Wao o [J7'n, J] (IL.72)

where the operator J is defined in , and I} = Iy, denotes the identity operator on the
subspace $1.

Proof. The first equality (I1.72)) immediately follows from ([1.35)) and (IL.70f). Hence, we prove
only the second equality (I1.72). Using (I1.35)) and (II.70) we obtain for any w € M ($):

(n, T (w)eg+ JXw)

W0, 1h] Jw = W, [0, 1] (T (w) eg + JXw) = — : oot
+ T (T (w)eg + JXw)n + X7 [n] (T (w) eg + JXw) =
= —@eo +cT (w)n + Xi [n] JXw =
(770, w)

— _7% + T (w)n + X{ [n] JXw. (I1.73)

Note, that, by definition of class OF, (9,¢), n # 0. So, applying (I1.17)),(II.18]), and using the
fact that the operator J maps $; into £);, we obtain:

X7 [n] JXw = (X — X; [n]) JXw = XJXw — (n, JXw)n =
=XJXw —(XJ 'n,w)n=JXw— (J 'n,w)n =
=J (XW — <J’1n,w> J’ln) =J (X - X3 [J’ln]) w = JX7 [J’ln] w.
Thus, according to , we deduce:

_ -1
W [0, T,] Jw = _Tnw)

-1
— _@eo +J (CT (w) J'n + }(1L [J_ln] W) =W, [J_ln7 J} w.

eo+ T (w)n+ JX{ [J 'n]w=

Lemma I1.17.4. For any vector n € By (1) it is true the following equality:
Woo,c [Il, ]Il] Woo,c [—n, Hl} = ]I

Proof. Consider an arbitrary vector n € By (£);). For vector w € M ($)), using (I1.70]), (II.68]),
(I1.18)), we get:

<—Il, W>

Wee [, LIWe o[-0, L] w = W . [n, 1] (— e — T (w)n + X{ [-n] W> =

=W [n, 1] ((n, W>eo — T (w)n + X{ [n] w) =

C

[

- <n, <<n’w> ey — T (w)n + Xi [n] W>>

eo+
&

+CT(<“’W>eO — T (w)n + Xi [n] w) n+

Cc
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+ X7 [n] (<n’cw>e0—c’7'(vv)n—|—X1L [n] W) =
_ CT(ZV)GO + c<n’cw>n b X )X ] w = w.

From lemmas |[1.17.4} [[1.17.3| and formula (II.39)), we deduce the following theorem.

Theorem I1.17.2. Any operator Wy . [n, J| € O (9,¢) is a linear coordinate transform
operator, moreover:
(Woo,e [, JD_I = W [—JII, Jﬁl} :

Proof. For any operator W . [n,J] € 9T, (9,¢) (where n € B; (1), J € 4 ($1)) using
lemmas [[1.17.4] [[1.17.3| and formula (I1.39), we obtain:

-1 — p—

(Weace[n, )™ = (TWeae 0, 1)) = (Waoe [0, 1)) T = W [0, 1] T =
= W [(J7) 7 (om) T = W [, J ]
[l

Operators, which belong to the class DT, (9, ¢) will be named generalized Lorentz trans-
forms for infinite speeds of reference frames.

Remark 11.17.1. Note, that any generalized Lorentz transform operator W, .[n,J] €
OF o (9, ¢) (with infinite speed) is not v-determined, because, by (I1.70), T (W [n, J]€y) =
0.

Denotation 11.17.3. Denote:
DT (f), C) = Dgfin (f), C) U DTOO (f), C) .

Coordinate transforms, which belong to the class OF (9, c) will be named generalized tachyon
Lorentz transforms (in the Sense of E. Recami and V. Olkhovsky) for Hilbert Space
9.

17.5 General Representation for Tachyon Lorentz Transforms

The aim of this subsection is to give general representation for operators, from the class
OF (9, ¢), which would be true for finite as well as for infinite velocities of reference frames.
Since any velocity vector V' € 1, ||V ¢ {0, ¢} can be represented by the form (I1.67)), where

n

v
:Sm, A= HVH (HEBl (f)l), )\>O)

the formula (I1.69) may be considered as general representation for operators from D%, (9, ¢),
with nonzero velocity, that is any operator L € O%g, (9,¢), such, that V(L) # 0 can be
represented in the form (I1.69).

Now we consider the case V (L) = 0. By the formula (II.37), we have, that any operator
L € O%¢in (9, ¢) with zero velocity V (L) can be represented in the form:

Lw = sT (w)ey+ J (X; [0]w) = sT (w) e+ J (Xw) (weM(H)) (I1.74)

From the other hand, substituting A = 0 (s € {—1,1}, J € (1), n € By ($;)) into the
formula (I1.69), we can define the following operators:

W [s,n, J]w:=sT (w) e+ J (—sX; [n] w+ X; [n] w) =
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=sT (w)eyg+ J(—sl; ¢ [n]) Xw (w e M ($)), (I1.75)

where I, [n]z =X, [n]x+0X; [n]z, z€§H, 0 {-1,1}.

Since, —sl; _s [n] € 4 ($,), the set of operators, which can be defined by the formula (IL.75)
coincides with the set of operators, which can be defined by the formula (I1.74)).

Hence, we have seen, that (in the both cases V (L) # 0 and V (L) = 0) it is true the following
assertion:

Assertion I1.17.4. Operator L € L (M (9)) belongs to the class OFgin (9, ¢) if and only if it
can be represented by the formula:

L = W)\7C [S,Il, J] s

where A > 0, s € {—1,1}, J € ($H1), n € By (1) and operator W .[s,n, J] is defined in
. Velocity of the linear coordinate transform operator L is determined by the formula
V(L) = Asn.

Note, that we can extend the definition of operator-valued function W) .[s,n, J], which
appears in the representation (I1.69)) for A € [0, co]\{c}. Indeed, let A € [0, 00]\{c}, s € {—1,1},
J € 4($H1), n € By ($H;). Denote:

AT (w)n—sXq|

STW—AD,W njw
( ()‘322 >)e0—i—J M Ximlw], A<

W)\,c [S,Il, J]W: /’ 27 ‘1_272

W n,J] = 2%, 4 J(c¢T (w)n+ X [n]w), \=oo.

c

Using Assertion [L1.17.4] formulas ([1.71)), (I1.70) and denotation [I1.17.3] we obtain the following

assertion.

Assertion I1.17.5. Operator L € L (M (9)) belongs to the class OF (9, c) if and only if there
exist numbers s € {—1,1}, A € [0,00] \ {c} vector n € By (1) and operator J € L(91) such,
that operator L can be represented by the form:

(11.76)

L=W,_.[s,n,J].
Operator W . [s,n, J] is v-determined if and only if X < oo, and in this case
V(L) = Asn.

At first glans Assertion gives general representation for operators, from the class
DT (9, c) for finite as well as for infinite velocities of reference frames. But, in reality, the
definition of operator W . [s,n, J] in (IL.76) is different for the cases A < oo and A = co. So,
our aim is not reached yet.

Now we introduce the new parameter:

0= ——° (IL77)

(IL.78)
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Since function f(\) = —sign <1 - lfé> ,/‘1 — H% , is decreasing on [0, +00), it maps the

interval [0, 00) into the interval = (—1, 1], and any value A > 0 can be uniquely determined by
the parameter 6 € (—1,1]. Using simple calculation, one can ensure, that parameter A can be
determined by the parameter 6 by means of the formula:

1-016|
= C s
1+0]0]

0e(—1,1], (IL.79)

and the case A = ¢ corresponds the case 6 = 0.
By means of substitution the value of parameter A from the formula (I1.79)) to the correlation
(11.69)), we obtain the following representation of the operators L € D%, (9, ¢):

Lw = WC1_9\9\ c [S, n, J} W =

[EIE
_ (Sgpo O)T (w) — 1 (0) <n’c W>> eo+
+ J (cor (0) T (W) n — sipg (6) Xy [n] w + X; [n] w), (I1.80)
(weM(®),se{-11}, Jed(H), neB;(H), 0 (-1,1]\{0}),
where
()= g pO=5Et  BER00) (1L81)

Note, that the case # = 0 must be excluded, because in this case we have A = ¢, and the norm of
velocity V (L) is equal to the speed of light ¢ (note, that in the case ||V (L)|| = ¢ the transforms
, and, hence, are undefined). From the equality it follows, that in the case
0 € (0,1) we have, A = ||V (L)|| € (0,¢). So, in this case, the norm of the velocity of reference
frame ||V (L)|| frame is less then the speed of light ¢. Similarly, in the case 6 € (—1,0), we have
A € (¢,+00). Hence, in this case the norm of frame velocity is greater, then c.

It is easy to verify, that for any 6§ € R\ {0} the following equalities are true:

1/ 1Y er(0) . 1-010] )
e L I Rt ==
1
¥o (9) + ¢1 (9) = W; %o (9) 2! (9) =0, (11.82)
o (0)” — 1 (0)” = sign¥;
w0 (—0) =1 (0); p1(—0) = o (0);
o (071) = signf o (0) ; 1 (071) = —sign b, (0). )
Denote:
Up.[s,n, J] = Wcl%mvc [s,n, J],
se{-1,1}, neBi (), JeuU(H), 0Oe(-1,1],0#0. (11.83)

From ([1.81)) it follows, that for # = —1 the functions ¢q (#) and ¢; (f) also are defined:

@o(-1)=0, @ (-1)=1
And substitution = —1 to the formula (I1.80)) leads us to the following linear operators:
U_ils,n,J :=Wg,[s,n, J] = Wy,.[n,J], (11.84)

116



Draft Introduction to Abstract Kinematics. (Ver 1.0) 117

which do not depend on the number s € {—1, 1}, because terms, which contain variable s are
zero (where the operators W . [n, J] are defined in (I1.70))).

Hence, for # = —1 we obtain the generalized Lorentz transforms for infinite speeds
W [n, J], which, by remark [[.17.1] are not v-determined.

Thus, above we have proved the following theorem.

Theorem I1.17.3. Operator L € L (M ($)) belongs to the class OF (9, ¢) if and only if there
exist numbers s € {—1,1}, 0 € [—1,1]\ {0}, vector n € By (1) and operator J € $L($,) such,
that for any w € M ($)) vector Lw can be represented by the formula:

+ J (cpr (0) T (w)n — 5o (0) Xy [n] w + X [n] w) . (I1.85)

Lw="Ug.[s,n, J]w= (sgpo O)T (w) — 1 (6) M) e+

Linear coordinate transform operator L = Uy [s,n, J] is v-determined if and only if 0 # —1,

and in this case:
1—0|0|

1+0]6]

n.

V(L)=cs

Now, we are going to reformulate Theorem in more convenient (for some further
considerations) form.

Note, that, paremeter # in Theorem [[I.17.3|belongs to the set [—1, 1]\ {0}, while the functions
wo (0) and ¢ (0), are defined in formula for any # € R\ {0}. So we can extend the

definition of operator family {Uy.[s,n, J|}, presented in formulas (II.83) or (I1.85) for the
values of parameter 6 benonging to the set R\ {0}:

Unelovm Tl = (50 0T () = 1 (6) 0 et

+J (co1 (0) T (W) n — s (0) Xy [n] w + X; [n] w) (11.86)

(QER\{O}? s € {_171}7 neBl(le)a JEﬂ(ﬁl))
Hence, applying two lower equalities of (I1.82)) and two lower equalities of ([1.18)), we deliver:

Up.[s,n, J]w = (s sign 6 ¢, (9_1) T (w) — (—sign@gpl (9_1)) @) e+
+J (c(—signfep; (071)) T (w)n — ssignf e (67') Xy [n] w + X5 [n] w) =
= ((s sign6) o (071) T (w) — 1 (671) {(=signfn) ’W>) e+ =

c
+J (cpr (071) T (w) (—signfn) — (ssign6) ¢o (67") Xy [n] w4+ X [n]w) =
= Up-1 . [ssignf, —signén, J].
Thus:
Ug.[s,n,J] = Up-1 . [ssignf, —signfn, J| (11.87)
(se{-1,1}, 0 e R\ {0}, ne€ B, (), J € U(H)).

For |6] > 1 we have 0 < |#~!| < 1. Hence, taking into account the formula (I1.87)), we see, that
substitution the values |#] > 1 does not lead outside of the class of transformations, defined
by the formula (I1.85)) for 6 € [—1,1] \ {0}. Besides this, for |f] > 1, according to the formula

(11.87)) and theorem [[1.17.3 we receive:
V(Ugels,n, J]) =V (Up-1,[ssignd, —signOn, J]) =
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1— 010"
146116

Thus, we obtain the following corollary of Theorem [[1.17.3}

Corollary I1.17.1. Operator L € L (M ($)) belongs to the class OF (9, ¢) if and only if there
exist numbers s € {—1,1}, 0 € R\ {0}, vector n € By (1) and operator J € L ($1) such, that
for any w € M ($)) vector Lw can be represented by the formula:

1ol
1+00)

= cssignd (—signfn) = cs

Lw="Up.[s,n,J]w= (sgpo 0)T (w) — 1 (0) M) e+

+ J (cpr (0) T (w)n — spp (0) Xy [n] w + X5 [n] w) .

Linear coordinate transform operator L = Uy [s,n, J] is v-determined if and only if 8 # —1,
and in this case:
1 -0 |9|

V (Up.[s,n, J]) = 1+9|9[

17.6 Representations of Some Subclasses of Generalized Lorentz Transforms

From Assertion [[1.17.5[ and Corollary [[I.17.1] we obtain the following two equivalent represen-
tations of the class of operators OF (9, ¢):

OF (H,¢) ={Wi.[s,n,J] |se{-1,1}, A€ [0,00]\ {c}, n € By (H1), J € U(H1)};
(11.88)

OF(9,¢) = {Up.[s.n,J] [s € {-1,1}, 6 e R\ {0}, n€ B, (%)), J € (H)}.  (IL8Y)

Recall, that in Subsection we have introduced the class of operators O ($),¢), and in
Subsection [17.3](see (I1.33))) we have seen that O (9, ¢) C DT, (9, ¢). Hence, class of operators
O (9, ¢) is a subclass of OF (9, ¢). The next aim is give the representation of the class O (9, ¢),
similar to , . First of all, for this aim we should prove the following lemma.

Lemma I1.17.5. Operator L € L(M (9)) belongs to the class O (9,c¢) if and only if the
following two conditions are satisfied:

1. L € 9% ($9,¢0);
2. L is v-determined and ||V (L)|| < c.

Proof. 1) Let L € O ($,c). Then, according to (I1.33), L € D%y ($H,¢). And, according
to denotation [[1.17.3), L € OF ($,c). Moreover, by Assertion [[1.17.2) L is v-determined and
V(L) <e.

2) Inversely, suppose, that L € OF (9, ¢) and L is v-determined with

V(L) <e (11.90)

Then, in accordance with Remark [[.17.1 L ¢ O% (9,¢). Hence, L € OFg, (9,¢). So,
according to Theorem there exist the number s € {—1,1} vector V € $); and operator
J € ($1) such, that for any vector w € M ($)) the action of the operator L in regard to
the vector w can be represented in the form (I1.37), where V' = V (L), and, according to
([[L90), IV < c. Since ||V < ¢, then, by the formula for any vector w = teg + uV =
teg + 1V (L) € $Ho® H:1 [V (L)] we obtain:
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Because J is unitary operator, we have ||JV|| = ||V]|. Hence:

M. (Lw) = || XLwl|* = AT? (Lw) =

2
. 1 2 2 2 ||V||2
=T (¢ WIVIP - (t s

C

= @2 |VI° = & = | Xw® = T (w) = M (w),,

where w is arbitrary vector from the subspace $y @ 1 [V (L)]. And, since L € OFg, (9, 0),

according to Assertion [I1.17.3] and Denotation [[1.17.2] we have L € O (9, ¢). O
Applying Lemma [[1.17.5| and equality (I1.88)) we obtain the following equality:

O(H,¢) ={Wi.[s,n,J] € OFT(H,¢) |0< A< ¢} =
={Wicls.n,J] [s€{-11}, A€[0,c), ne By (%), J € ()},  (IL91L)

which gives the representation of the class of operators O ($),¢). Using Lemma [[1.17.5] and
Theorem [[1.17.3| we obtain the following equivalent representation of O (), ¢):

O (9,¢) ={Up[s,n,J] € OT(H,¢) [0<O <1} =
={Up.[s,n,J] [s€{-1,1},0€ (0,1, n€ B (), J e U(H)}. (1192

And Lemmal [[I.17.5|together with equality (I1.89)) gives the following representation of O (), ¢):

O ($,¢) = {Ug.[s,1,J] € OT (H,¢) [0 < 0 < o0} =
= {Ug.[s,n,J] |s€{-1,1}, 0 € (0,00), n€ By (91), J € U(H)}.  (IL93)

According to Denotation we have OF (9, ¢) := OFgin (H,0) UODT (H,¢). Union
in the last equality is disjoint, since, by Denotation any linear coordinate transform
operator L € OFg, ($,¢) is v-determined, while any linear coordinate transform operator
Ly € 9% (9, ¢) must be not v-determined (in accordance with Remark [[I.17.1)). So:

D‘Zﬁn (f_), C) N D‘Zoo (f_), C) == Q) (1194)
Hence, using Assertion [[1.17.5| and Theorem [[I.17.3] we obtain the following equalities:
OF%in (9,¢) ={W).[s,n,J] € OFT(H,¢) : A < o0} =

={Up.[s,n,J] € OF(9,¢) |0 # —1}; (11.95)
OF o (H,¢) ={W,.[s,n,J] € OFT(H,¢): A =00} =
={Up.[s,n,J] € OF(H,¢) |0 =—1}. (11.96)

For the case ) = R? in the paper [45] apart from General Lorentz Group, it is introduced the
full Lorentz group. According to [45], full Lorentz group is a subgroup of the general General
Lorentz Group, which consists of general Lorentz transforms with positive direction of time
(that is such Lorentz transforms, which leave invariant the class of positive time-like vectors).
By analogy with [45], we can introduce the full Lorentz group in the general situation of real
Hilbert space.

Definition 11.17.3. Let $ be a real Hilbert space. Vector w € M () we name by:
e positive, if and only if T(w) > 0;
e c-timelike, if and only if M. (w) < 0.
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Denote by M., ($) the set of all positive c-timelike vectors of the space M ($):
M. (9)={weM(®) | T(w)>0, M.(w) <0}. (11.97)
Introduce the following class of operators:
0, (9,0) = {L €D (H,¢) | Iw € Moy () (Fw € M., (5))}. (11.98)

Assertion I1.17.6. O, (9, ¢) is a group of operators over the Minkowski space M (§)) over the
Hilbert space $).

Proof. 1. Let Li,Ly € O, (9,¢) and L = LiLs. Then, according to (I1.98) and Assertion
LeO(H,c)and Lw € M. (9H) (Vwe M. (9)). S, LeD, (9 c).

2. Suppose, that L € O, ($,¢). Since (by Assertion [IL.17.1) O (9,c¢) is the group of
operators over the space M (§)) and O, (9,¢) C O ($,¢), we have L' € O ($,¢). Consider
any vector w € M., ($). By definition of M. () (see (I1.97)), we have:

T(w) >0, M.(w) < 0.

Since M.(w) < 0 and L' € O(9,¢), then according to Denotation [I1.17.1, we have
M, (L~'w) < 0. Hence:

T (L7'w) = e /=M. (L-'w) + [XL-1w|[? 0.

So, one and only one of the inequalities 7 (L™ 'w) > 0 or 7 (L™ 'w) < 0 is performed. Assume,
that 7 (L~ 'w) < 0. Then the vector w = —L~'w will belong to M, ($), while T (Lw) =
T(—w) = =T (w) < 0. Thus w € M. (9), while Lw ¢ M, ($), which is impossible,
because L € O, (9, c). This contradiction proves, that 7 (L~'w) > 0. Hence, we have proved,
that M. (L™'w) < 0 and 7 (L~'w) > 0. Thus, by ([1.97), L~'w € M. () (for any vector
W € M. (9)). So, according to ([L9§), L' € O, (§,¢) (for any operator L € O (£, ¢)).
Thus, we have proved, that LiL, € O, ($,¢) and L™ € O, ($,¢) (for any L, Ly, L, €
O, (9, ¢)), what was needed to prove. O

It is not hard to verify, that in the case $ = R3 group O, (£, ¢) coincides with the full
Lorentz group, introduced in [45].

The next assertion gives the representation of the class O, (9, ¢) in the terms of operators
of kind W, . [s,n, J].

Assertion I1.17.7. The following equality s true:

O+ (9,¢) ={Wy.[s,n, J] € O(H,¢)|s=1} =
={Wi.[s,n,J] € DT (H,¢) |s=1,0< A<} =

={W,.[Ln, J]|A€[0,c),ne B (), J €U(H)}. (I1.99)

Proof. Tt is sufficient to prove only the equality:
O+ (9,¢c) ={Wi.[Ln,J]|A€[0,¢c), ne B (), JeU(H1)}, (I1.100)
because other parts of the equality follow from equality and equalities ([1.88),

(TT.91).

1. Suppose, that operator L can be represented by the form:
L= W)\,c [1, n, J] y

where A € [0,¢), n € By (91), J € 4($1). Chose any vector w € M, ($). Then, according to

(I1.97)), we have:
T(w)>0, M.(w)<D0. (I1.101)
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Since A € [0,¢), then, according to (I1.91), L = W, .[1,n,J] € O (9,¢). So, using (I1.101)) in
accordance with Denotation [LI.17.1] we obtain:

M. (Lw) = M. (w) < 0. (I1.102)

Next, applying (I1.101)) and (IL.76)), we get:
T(w) = 5 (n,w)

T(Lw) =T (Wi.[l,n, J]w) =

A 1 - %]
wﬁl_ W“"‘XDW_JHJ— JH——HXMZ
) m(—;\ ) wf_ o = (ﬁ) (X — T (w)) -
- _} %)—Tg—;\V) - ‘1%_%;, HXWI\!TIC—F T (I1.103)

From (I1.102) and (II.103)) it follows that Lw € M., ($) (for any vector w € M. (9)).
Therefore, according to (I1.98]), we obtain L € O, (9, ¢).

2. Inversely, assume, that L € O, ($,¢). Then, in accordance with (I1.98), L € O (9, ¢)
and:

VW € Mot (9) (Lw € M1 (5). (IL.104)
Since L € O (9, ¢), then, by (I1.91)), operator L can be represented in the form:
L=W,.[s,n,J], (I1.105)

where s € {—1,1}, A € [0,¢), n € By ($;) and J € $(($;). It is easy to see, that ey € M. (9).

Hence, According to (I1.104), Ley € M. ($). Therefore, by (11.97), T (Ley) > 0. So, in

accordance with (I1.76)), we obtain:
0<T (Lep) =T (Wycls,n,J]ey) =

(sT (e0) — 5 (n, ep)) AT (eg) n — sX; [n] eg

=T e+ J +Xi[nje | | =
1- %] - %]
c? c?
=T | ——e+7J A || =—
11— 2| 11— 2| 1= %

Last inequality proves, that s > 0. So, since s € {—1,1}, we conclude, that s = 1. And,

according to (IL.105), L = W, .[1,n, J] (where A € [0,¢), n € By ($;) and J € {($1)).
100

Thus equality ([1.100) is completely proved. O]

Let A € [0,¢), n € By (9), and J € U($;). Then, according to (IL.83), operator
W, .[1,n,J] can be represented in the form:

1—2
Wiellin, J]=Ug .[l,n,J], where O = —F—=, 0 €(0,1].

c2
Inversely, any operator of kind Uy, [1,n,J], where 6 € (0,1], n € By ($1), and J € 4 (9,),
according to (I1.83]), may be represented in the form:

1—0?
Upc[l,n, J] =Wy c[LinJ], where oy = T Aoy € 10,¢).
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Hence, the following equality is true:

{WA,C [1,11, J] | A E [O,C), ne B, (ﬁl)a J € u(ﬁl)} =
- {Ue,c [17n7 ‘]] | S (07 1] , nE By (‘61)7 J € ﬂ(ﬁl)}
Using the last equality together with equalities ([1.99) and (I1.92]), we obtain the following
representation of the class O, (9, ¢) in the terms of operators of kind Uy . [s,n, J]:
9. (9,¢) ={Up.[L,n, J] [0 € (0,1], n€B; (1), J € U(H)} =
={Up,[s,n,J] € OFT(H,¢) |s=1,0< <1} =
={Up.[s,n,J] € O(H,¢) |s=1}. (I1.106)
From the equality (II.87) it follows, that Uy, [1,n,J] = Ug-1.[1, —n,J] for any 6 € (0,0),
n € By (9), and J € U ($H1). So, we can replace condition # € (0,1] in the formula (IL.106]) by
the condition 6 € (0,00). Hence, we obtain the following equality:
L (9,0) ={Uy.[1,n,J] |0 € (0,00), n € By (H1), J€U(H)} =
={Up.[s,n,J] € OFT(H,¢) |s=1, 0> 0}. (I1.107)
Formula ([1.99)) serves as motivation for introduction of the following subclass of operators
from OF (9, c):
OF, (9,¢) :={Wy.[s,n, J] € OFT(H,¢) |s=1} =
={W,.[Lin,J] [A€[0,00]\{c}, neBy(9H:1), J€i(H)}. (I1.108)
Using (I1.83)), (IL.84) and (II.87), we can obtain the following representation of the class

OF. (9, ¢) in the terms of operators of kind Uy, [s,n, J]:
OF, (9,¢) :={Ug,[s,n,J] € OF(H,¢) |s=1, 0| <1} =
={Up.[1,n,J] |0 €[-1,1]\ {0}, ne By (H1), J€U(H)} =
={Ug.[sgn. (0+1),n,J] [ € R\ {0}, ne By (), Jet(H)}, (IL.109)

sign (§), £#0
{1, £=0 (€ eR).

As a contraposition to the class D%, ($),¢), we may introduse the following class:
OF_(9,¢) :={Wils,n, J € OF(H,¢) |s=—1} =
={Wiy.[-Ln J] | A€ [0,00]\{c},ne By (9H), Jel(H)}. (I1.110)

Using (I1.83)), (I1.84) and (II.87), we can obtain the following representation of the class
OF_ (9, ¢) in the terms of operators of kind Uy [s,n, J]:

OF_(9,¢) :={Up.[s,n,J] € OFT(H,¢) |s=—1, |0 <1} =
={Up.[-1,n, J] |0 €[-1,1]\{0}, neB; (H1), JeU(H)} =
= {Ug. [—sgn, (0 +1),n,J] [ €R\ {0}, n€ By (1), J€U(H)}. (IL.111)
Assertion I1.17.8. The following equality is true:
OF, (9H,0)NOT_(H,¢) =0% (9,0).

Proof. Let L € 9%, ($,¢) N OT_ (9, c). Then, according to ([1.109) and (IT.111]), operator L
may be represented in the form L = Uy [1,n, J] = Uy, .[—1,1ny, J1], where 6,0, € [—1,1]\ {0},
n,n; € By (), J,J; € 4($1). Therefore, according to ([1.86)), we have:

Leo= (0 )T (e0) = 1 (0) = )

C

where sgn, (§) =
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+J (0901 (0) T (e)n — g (0) X, [n] ey + X7 [n] eo) —
= o (0) eg + cpp (0) J (n);

Leg = <—¢0 (01) T (e0) — 1 (61) <“1’Ce°>) eo+

+ J (cer (61) T (e0) m1 + g (61) Xy [n1] € + X1 [ny] e) =
= —po (61) €0 + cio1 (61) J (m1) .

From the last two equalities it follows, that:

wo (0) =T (Leg) = —po (61) -

And, since ¢o () > 0 (V9 € [—1,1]\ {0}), we obtain ¢y (6) = o (01) = 0. The last equality is
possible only if § = —1. So, according to ([1.96]), we have:

L=Uy.[l,n,J]=U_.[l,n,J] € OF, (9,¢).

Thus, OF, (H,¢) NOT_(H,¢) COT, (9,¢).

From the other hand, if L € D% ($,c), then, according to and ([1.89), L can be
represented in the form L = U_; .[s,n, J]|, where s € {—1,1}, n € By (1), J € 4 ($1). And,
according to (IL.86), L =U_;.[s,n,J] =U_;.[1,n,J] = U_;.[—1,n,J]. Thus, in accordance
with (I1.109) and (LI.111)), we have, L € OF, (£,¢)NOT_ ($,c). Hence, we obtain the inverse
inclusion OF ., (9,¢) COT, (H,¢) NOT_ (9, ¢). O

Main results of this Section were published in [6]8]/13].

18 Algebraic Properties of Tachyon Lorentz Transforms

The aim of this section is to investigate some algebraic properties of introduced in previous
section classes of generalized Lorentz transforms O%, (9,¢) and OF ($),c) over real Hilbert
space $). Namely, we investigate the group properties of these classes.

Let us introduce the denotation:
Ey.[s,n] :=Up,.[s,n, 1] (me By (H), 6 e R\{0}, se{-1,1}), (I1.112)

where I; := I, is the identity operator on the space $;. The operators of kind Ey . [s, n] will
be named by elementary generalized Lorentz transforms.

Let $ be a real Hilbert space, and let §; be introduced in subspace of the Minkowski
space M (%)), isomorphic to $). Recall, that in (II.35) we had introduced the unitary operator

J € U (M ($)) for any unitary on subspace £, operator J € L (H;):
Jw=Tw+ JXw="T(w)ey+ JXw, weMI() (I1.35¢ dubl)
It is easy to see, that for any operators J, J; € 4 ($);) the following equalities are performed:
Th=Jd;  Jl'=(J0), (IL.113)

Recall that, according to (I1.89)), any generalized Lorentz transform L € D% ($),¢) can be
represented in the form L = Uy, [s,n, J|, where s € {—1,1}, § € R\ {0}, n € B ($),
J € ().

Lemma I1.18.1. For arbitrary generalized Lorentz transform Uy, [s,n,J] € OFT (H,¢) (s €
{-1,1}, 6 e R\ {0}, n € By (1), J € 4($1)) the following equalities are true:

ngﬁ [s,n] =Ug,.[s,n,J]; Eg.[s, n] J = Uy, [3, J 1n, J] ) (I1.114)
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Proof. The first equality (I1.114]) follows from ([[1.86)), (I1.112]) and (I1.35). Hence, we are going

to prove the second one. For any, w € M (£)) we put:
w o= Jw =T (w)eo + JXw.
Applying (I1.86) and ([1.112]) we obtain:

EG,C [5, Il] jW = E@,c [87 1’1] W= (8@0 (0) T(W/) ¥ (0) @) et
+op1 (0) T (W)n — sgo (0) Xy [n]w' + X7 [n] w' =
_ (3% (O)T (T (w) eo + JXw) — 1 (6)

+cep1 (0)T (T (w)eg+ JXw)n — spg (0) Xy [n] (T (w) eg + JXw) +
+Xi [n] (T (w) eg + JXw) =

~ (5O T ) = 10 22 e

+cp1 (0) T (w)n — s@g (0) Xy [n] JXw + X{ [n] JXw.  (I1.115)

Since J is unitary operator, mapping $; into $;, we get:

(n, JXw) = (J 'n,Xw) =(XJ 'n,w) = (J 'n,w). (I1.116)

Further, using (L1.17)),(LL.18), (II.116), we deliver:

X [n] JXw = (n, JXw)n,= (J 'n,w)n =
=J(J'n,w)J 'n=JX; [J 'n] w; (11.117)

Xi n] JXw = (X — X; [n]) JXw = XJXw — JX; [J 'n] w=
=J(Xw—X; [/ 'n]w) = JX5 [J 'n]w. (11.118)

Substituting the right-hand sides of the equalities (I1.116)), (I1.117), (II.118)) into the equal-
ity (IL.115) instead of the expressions (n, JXw), X; [n] JXw, Xi [n] JXw and applying the
equality ([1.86[), we deduce:

C

B[ T = (50 (0) T () = 1 ) -2 Y e
+epr (0) T (w)n — s () JXy [J-'n] w+ JXy [J7'n] w =
~ (50O T =1 02 Yo
+ J (cpr (0) T (W) J 'n— 500 (0) Xy [J 'n] w+ X1 [J 'n] w) =
=Up.[s,J 'n, J]w (YweM(9)). 0

Corollary I1.18.1. Let Uy, [s,n,J] € OFT(H,¢) (s € {-1,1}, 6 € R\ {0}, n € By (1),
J Gﬂ(ﬁl)) and J; Eﬂ(ﬁl)

Then J1 U, [s,n,J|,Ug,.[s,n, ] Ji € OF (9, c), and besides:

J1Ug. [s,1,J] = U, [s,n, Jy.J]; (11.119)
Uy [s,n,J] ]y = Up, [5,J7 0, J 1] . (11.120)

124



Draft Introduction to Abstract Kinematics. (Ver 1.0) 125

Proof. The equality (I1.119) follows from (I1.113) and Lemma [[I1.18.1} So, we are to prove the
equality ([1.120)). Applying Lemma [[I.18.1 and equality (I1.119) we obtain:

Uy, [s,n,J] J, = JEg, [s,n] J; = JUs, [s,J7'n, Ji] = Uy, [s,J7 0, J 1] . O

From Lemma [[T.18.1] and Corollary [[T.18.1] we can conclude, that the question about belong-
ing of product (composition) of arbitrary generalized Lorentz transforms into the initial class
OF (9, ¢) can be can be reduced to the question about belonging into the initial class OF (), ¢)
of product of elementary generalized Lorentz transforms. In the next sections we are going to
study just the last question.

18.1 Composition of Generalized Lorentz Transforms with Parallel Directions of
Motion

At first, we aim to investigate composition of elementary generalized Lorentz transforms with
the same directing vectors.
Let us introduce the following denotations:

1
Sn):= 5 (sign& + 1) (signn+1) — 1

L, &§&n>0
= : .neR\{0}; 11.121
{—L £ <0orn <0 £ \ {0} ( )

I,,[n] z:=0X;[n]z+pX; ]z =0 (m,z)n+ Xy [0z, x€H
(ne By (H), o,pe{-1,1}). (I1.122)
It is apparently, that I, [n] € & () (for arbitrary n € By ($;) and o, p € {—1,1}).

Lemma I1.18.2. Let Ey.[s,n|,Ep, .[s1,n] Mm € By (H1), 0,6, € R\ {0}, s,5 € {—-1,1})
be any elementary generalized Lorentz transforms with the same directing vector n. Then:

Ey.[s,n]Ey .[s1,n] =TU §',—ss'm,I_1 1 [n]], wheres = & (ss1,61).

00, > e [
Proof. Consider any fixed vector w € M ($)). Denote:
w' = Eg, . [s1,n] W.

Applying formulas (I1.86)),([1.112)) and equalities (I1.18)) we obtain:

Ey.[s,n|Eg, . [s1,n]w=Eg.[s,n]w =

— (S% O)T (W) —¢1(0) <n,cw’)> e+
+cp1 (0) T (W)n — sy (0) Xy [n] w' + X5 [n] w'; (I1.123)

W = (s 00T () = 1 60 ™ et

+cpp (01) T (W)n — 5100 (1) Xy [n] w + X7 [n] w;

(n, w)

T (W) = s100 (61) T (w) — 1 (61) P (11.124)
Xy ] w = cpr (61) T (W) n — s1¢0 (61) Xy [n] w; (I1.125)
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(n, w') = (Xi [0]n, w') = (0, X; [n] w') =
= (0, c1 (1) T (W) — 51600 (61) Xy [n] w) =
]

=cp1 (1) T (w) (n,1n) — 51900 (61) (X1 [n] n, w) =
= cp1 (0h) T (W) — s100 (61) (n, W) ; (11.126)
X7 [n]w' = X5 [n]w. (I1.127)

Substitution the values 7 (w'), X; [n]w’, (n,w’), Xi [n]w’ from (I1.124)),(I1.125),(II.126)

and ([I.127)) into (I1.123) gives:

Eoc s, n]Eg ¢ [s1,n]w = (5900 (0) <51900 (01) T (W) — 1 (61) (ncw>> _

C

() LT (%) — 510 (61) (n, w>>eo+

+ cp1 (0) (51%00 (01) T (w) — 1 (61) <n,cw>) n—
— 590 (0) (cpr (01) T (W) n — 199 (61) Xt [n] w) + X [n] w =

_ (<551¢0 () 00 (62) — 01 (8) 01 (62)) T (w) +

Cc

+ s (ss11 (0) o (61) — 0o (0) @1 (61)) T (w) n+
+ (881()00 (0) @o (91) — ¥ (6) V1 (91>> X1 [n] W+ }(1L [n] Ww. (11128)

Using the definitions of the functions ¢y (+), ¢1 () (see formula (I1.81))) we get:
ss100 (0) o (61) — 1 (0) 1 (61) =

1/71 1/ 1 1/1 1/ 1
=51y Qm @é(@ﬂ*ﬁ)“Ga‘@a(@J‘ﬁ)—
1/ /1 1 1

=3 (o (i o+ e+ ) -

1 1 1 1
(wm”a‘wﬁ%»—

+ 5 (85101 () @0 (01) — @0 (0) @1 (1)) o, W>>eo+

|
A
i) o (d )
—5 9>> ssy=—1 | Fo\a ) ssp=1, 61 <0~
—®o (‘9‘91) , 881 = -1
= G (s51,61) o (007°) = s'pq (0), (11.129)
where s’ = & (ss1,61); ¢ = 00;°". Similarly we obtain:
ss1¢1 (0) o (01) — o (0) 1 (01) = s'p1 (0). (11.130)

Substituting the right-hand sides of the equalities ([I.129)),(II.130) instead of the correspond-
ing expressions in the formula (I1.128)), we conclude:

B [5.0] Boclossnl w = (0 ) 7 0) 50 () 2270 ) e
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+cs8' 01 (0)T (w)n + 8wy (0) Xy [n]w + X{ [n] w
Taking into account formula (I1.18)), we can rewrite the last equality in the form:

Eyc[s,n]Eg, o [os1, 0] w = (8’900 ()T (w) + 1 (0) —<SS/ICI’ W>) eot

+ ey (0) T (w) (ss'n) 4 "o (6') Xy [ss'n] w + X [ss'n] w =
= Upgpo, s', —ss'n,1_1 1 [n]] w. u

Now we consider the composition of elementary generalized Lorentz transforms Ey . [s, n] and
Ey, . [s1,1n;] with the parallel direction vectors n || n; (that is under the condition n = ony,
where o € {—1,1}).

Lemma II1.18.3. Let Ey.[s,n],Ep, .[s1,0n] (n € By (), 0,6, € R\ {0}, 0,55 €
{=1,1}) be elementary generalized Lorentz transforms with parallel directions of motion. Then
the following equality holds:

Ey.[s,n] Ey, . [s1,0n] = Uee;ossl,c los',—oss'n, 1141 [n]],

where s' = & (oss1, 01).

Proof. Consider any elementary generalized Lorentz transforms with parallel directions of mo-
tion, Eg . [s,n],Ey, . [s1,0n] € OF (9, ¢). Applying the formulas (II.86]),(II.112) and equalities
(I1.18)) we obtain:

Eo, ¢ [s1,0m]w = (81<P0 (01) T (w) — 1 (6) (anc, W>) eo+
+ a1 (01) T (w) om — 5100 (61) X,
— (s )T () = 100 72" ) et
X, [n]w+ X [n]w=
n, W))
eo—|—
c
+ 0 (cp1 (61) T (W)n — 0510 (61) Xy [n] w + 0X{ [n] w) =
=0Up, c[os1,0, 1, [n]] w (we M(9)).
Taking into account, that (I, , [n])”' n = n, and using Lemma we get:

X, [on]w + X{ [on]w =
W

Eg, . [s1,0mn] = 0 Uy, . [0s1, 0,11, [n]] = 0Eg, . [os1,0] 1, [n]
(ne By (H), 6 e R\ {0}, 0,5 € {-1,1}). (I1.131)

Therefore, applying Lemma [[1.18.2| and Lemma [[I.18.1) we deduce:
Eo.|s,n|Eg, . [s1,0n] = 0By, [s,n] B, . [0s1,n] T, [n] =

= 0Ugyoom [¢', —ss'm, 14 1 [n]] ]IIN,J n] =

= 11_171 [n] (aE —ossy  [8', —s5'n] IE:,. [n]) : where s’ = & (0ss1,64) .
(IL.132)
According to the equalities (I1.122) and (L.18), I, [n] = I;,[—ss'n], hence, the equality

(I1.132]) may be rewritten in the form

Eo.[s,n] Eg, . [s1,0n] = H—l,l [n] <UE o551 [0(05"), —55'n] ]Iflvg [—ss'n]) .
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And, using the equality (II.131]), we obtain:

Ey.[s,n|Eg, .[s1,0n] = ]Ii?l [n] (E%fml Jos' —ass'n]) =

= Upgomn los', —oss'n, 111 [n]]. 0

The next assertion shows, that composition of any generalized Lorentz transforms with
parallel directions of motion always is generalized Lorentz transform.

Assertion I1.18.1. Suppose, that, Uy [s,n, J]|, Up, .[s1,0Jn, 1] € OF (9, c).
Then Uy, . [s1,0Jn, J1] Uy, [s,n, J] € OF (9, c), and besides:

Uy, o [s1,0Jn, J1] Ug[s,n, J] = Ugp-oss . [05", —s15'n, Jy JI_q 1 [n]],

where 8 = & (0s18,0).

Proof. In accordance with Lemma

Upels,n,J| =Eg.[s,Jn]J
Uy, [s1,0Jn, 1] = J1Eg, o [s1, 0] .

Hence, using Lemma [[1.18.3] we get:

U, [s1,0Jn, J1) Ug, [s,1, J] = J1Eg, c [s1,0Jn] B [s, Jn] J =
= L’EUgle—Usls7c [0s', —os18' (0Jn), 111 [oJn]] J =

= :]\-;_Uglefo'sls,c o8, —s18'Jn, 111 [Jn]] J,

where s = & (0s15,0). Applying Corollary [I1.18.1| to the right-hand side of last formula, we
obtain:

U91,C [517 O'JII, Jl} Ue,c [57 n, J] = :]leglg—o—sls’c [O'S/7 —815/n7 ]1_171 [Jn] J} =
= U019_(’S157c [05/7 _515/n7 JI]I—LI [Jn] J] . (11133)

Using equality ([1.122)) and unitarity of the operator J, for all x € $; we get:

I, [Jn]Jz=—X,[Jn]Jz+ X{ [Jn] Jo =
=—-X, [Jn]Jz + (X - X, [/n]) Jx =
= —(Jn,Jz) Jn+ XJx — (Jn, Jz) Jn =
=—(n,z) Jn+ Jr — (n,z) Jn =
=J(—(n,x)n+Xzr— (n,r)n) =
=J(=Xy[n]z+ (X =Xy [n])z) = JI; [n]z.

Consequently, according to ([1.133]), we have:
Uy, o [s1,0Jn, J1]Ug.[s,n, J| = Ug g-os1s . (05", —s15m, J1JI_1 1 [n]] . u

Remark 11.18.1. Coordinate transform operators Uy .. [s, n, J] and Uy, .. [s1,0Jn, J;] in Assertion
I1.18.1]indeed have parallel directions of motion. To explain the last statement, let us consider,

for example, the case § # —1. Then, by Theorem [[1.17.3] the coordinate transform Uy [s,n, J]
—0[0
1+0/0

coordinate transform operator (Ug, [s,n, J]) ™" also is v-determined with V ((Ug, [s,m, J])_l) =

is v-determined, and besides V (U, [s,n, J|) = cs n. Hence, according to formula ([1.66

JV (Uy,[s,n, J]) = csiZIZI Jn. Suppose, that (v-determined) coordinate transform operator
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U, [s,n, J] maps coordinates of any point in fixed reference frameE] l into coordinates of
this point in other reference frame I’, moving relatively the frame I with a constant velocity

V(Up.[s,n,J]) = csilZIZ}n. Then the frame I moves relatively the frame I’ with velocity

V ((Ug,[s,m, J])_l) =cs ig}g} Jn. Hence, the directing vector of motion of the reference frame
[ relatively the frame I’ is parallel to the vector Jn. Thus, the reference frame 1", connected
with the coordinate transform Uy, . [s1,0Jn, J;1] has directing vector of motion o.Jn, which is

parallel to the vector Jn.

Corollary I1.18.2. Let $) be a real Hilbert space such, that dim ($) = 1. Then for any operators
L,L, € OF (9, c) we have L1 L € OF (9, c).

Proof. Suppose, that L,L; € OT($),c), where $) is a real Hilbert space with dim ($)) = 1.
Then, according to (I1.89), operators L,L; may be represened in the form:

L:UG,C [S,l’l, J]a L1:U91,c [Sl7n1a<]1]7

where s,51 € {—1,1}, 0,6, € R\ {0}, n,n; € By ($1), J,J1 € ($H;). Since dim ($;) =
dim ($)) = 1, there exist number o € {—1,1} such, that n; = on. Since J is unitary operator
in one-dimensional space £);, there must exist number ¢’ € {—1, 1} such, that /Jn = ¢'n. Hence:

n, =on=oc'Jn=oJn,

where 0 = o0’ € {—1,1}. Hence, Uy, .[s1,n1,J1] = Uy, .[s1,0Jn,J1]. And, according to
Assertion I1.18.1} L1 L = Uy, . [s1,0Jn, J;] Up.[s,n, J] € OFT (9, c). O

The next corollary proves, that the operation of taking inverse operator does not lead outside
the class of generalized Lorentz transforms OF (9, c).

Corollary 11.18.3. Let, Uy, [s,n,J] € OF (9,¢). Then Uy, [s,n,J]" " € OF($,¢) with:
U [s,n,J] " = Ug . [s6,50m, T 1], (I1.134)

where sp = &(s,0).

Proof. Chose any U [s,n, J] € OF (£, c). Denote:

01 :=60°, s1:=0:=59=6(s,0),
Ji = J L

According to Assertion [[I.18.1}
Uy, . [s1,0Jn, J1]Ug [s,n, J] = Uy g-os15 . [08", —s18'n, J1 JI_ 1 [n]] =
= Ugsg-soss o [505, —Sos'n, J ' JL_y1 1 [n]] = Uy [sp8", —spsm, 111 [n]],
where s = & (0s15,0) = & (s9595,0) = S(s,60) = s9. Hence:

Uel,c [81, oJn, Jl]Ue,c [87 n, J} = Ul,c [8989, —S¢Se1, Lm [11]] =
= ULC [1, —1n, ]1_171 [HH .

Using ([I.86), ([1.122) and (II.18), it is not hard to verify, that for arbitrary w € M () it
holds the equality Uy .[1,—n,I_;; [n]]w = w. Therefore, U;.[1,—n,I_;; [n]] = I. Thus,
U, [s1,0Jn,J1] Uy, [s,n, J| = L. Consequently:

Ugels,n, J) 7" = Ug, . [s1,07n, J1] = Ugs . [s6, 500, J 7] . O

15 In this remark we understand the reference frames I and 1’ in a usual physical sense.
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Remark 11.18.2. By means of application (L1.86)), (II.121)), (II.18) and (I1.82 two bottom equal-
ities), the equality ([I.134) may be rewritten in the form:

Uy, [s,n, J]_l = Uy, [gg, s$5pJn, J’l} ,  where 5y = ssign6. (I1.135)

Indeed, let s € {—1,1}, 0 € R\ {0}, n € B; () and J € $($;). Denote, sy := &(s,0),
Sp 1= ssignd.

1) In the case s = 1 we have, sy = &(1,6) = signf, 5y := sign6. So, according to ([L.134),
in this case we obtain:

Uy, [s,n, Jrl = Ups . [397 sgJn, J_l} = Uy, [sign 0, signfJn, J_l} —
— Uy, [0, 5500, T 7] .
2) In the case s = —1 we have, sy = &(—1,0) = —1, 5y := —sign 0. Hence, applying
and , we deduce:
U [s,n,J] ' =Up.[-1,—Jn,J '] =
=Ug-1)-1, [(—1)sign (67"), —sign (67") (=Jn),J '] =

Corollary shows, that class of operators OF (), ¢) is invariant with respect to the
operation of taking inverse. Classes of operators O (9, ¢) and O, (£, ¢) also are invariant with
respect to this operation (by assertions [II.17.1{and [I1.17.6| respectively). But, it turns out, that
the class OF, (£, ¢) is not invariant with respect to the operation of taking inverse.

Corollary I1.18.4. If L € 9T, (9,¢) \ (D4 (9,¢) U OFT, (H,¢)) then L™ ¢ OFT, (9, ¢).

Proof. Let L € O%, (9,¢) \ (O+(H,¢) UOT(H,¢)). Then L € OF, (H,¢) and L ¢
O, (9,¢) U OF (9,¢). Since L € OF, (9, ¢), then, by ([I.109), operator L can be repre-

sented in the form:

L = U97c [1,11, J],

where 0 € [—1,1]\ {0}, n € B ($), J € 4 ($1). Since L ¢ O, (9,¢) U OF (9, ¢), then,
according to (I1.107) and (L1.96)), & < 0 and € # —1. Hence, by equality (I1.135)), we get:

L™t = (Ug[1,n,J]))~" = Uy, [—1,—Jn, J7'].

Thus, by ([I.111), L=' € OFT_ ($H,c¢). And, since § # —1, then, by ([L95), L™' =
Up.[-1,—Jn, J '] € OFgin(H,¢). So, by (1.94), we have L™t ¢ OFT (H,c). Thus,
L' e OF (9,c) and L™ ¢ O, ($,c). Hence, by Assertion [IL.17.8] L™ ¢ OF, (9,¢). O

Any operator of kind L = W, .[1,n, J], where ¢ < A < oo, n € By ($;) and J € ($),

satisfies condition L € OFT, ($,¢) \ (D4 (H,¢) U OF (9,¢)). Indeed, according to (II1.108])

L € 9%, (9,¢). According to ([1.95), L € O%gy, (H,¢), and so, by (IL.94), we get L ¢
OF . (9,¢). Since ¢ < A < oo then, by Assertion [II.17.4) we have ||V (L)|| = |A\|] > ¢. So,

by Assertion [I1.17.2] we obtain L ¢ O ($,c). And, by ([1.98), we get, L ¢ O, ($),¢). Thus,
we have L € 9%, (9,¢), L ¢ OF (9,¢) and L ¢ O, (9,c). Hence, the class of operators

OF, (9,¢) \ (D4 (H,¢) U OF, ($,¢)) is not empty. Therefore Corollary [I1.18.4] leads to the

next corollary.

Corollary I1.18.5. Class of operators 9%, ($),¢) does not form a group of operators over the
space M ().

The next corollary immediatelly follows from Corollary and Corollary

Corollary I1.18.6. Let $) be a real Hilbert space such, that dim () = 1. Then class of
operators OF (9, c) is a group of operators over the space M (9).
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18.2 Composition of Generalized Lorentz Transforms with Orthogonal Directions
of Motion

Lemma I1.18.4. Let, Ey.[s,n],Eg, .[s1,n1] € OF(9,¢) be elementary generalized Lorentz
transforms with orthogonal directing vectors, that is (n,n;) = 0. Then for any vector w €
M (9) the following equality is performed:

Egc[s,n]Eg, [s1,m]w = (881% (0) o (01) T (w) —

- (500 @01 00 ™ g 0) W>>)eo+

C

C

t e (0) (so (0T (w) — g1 (6) B2 W>) n-

— (spo (0) + 1) Xy [n] w+
+ ey (01) T (w)ny — 5100 (01) Xy [0y w + X5 [y w. (I1.136)

Proof. Chose any fixed vector w € M (£)). Denote:

w' = Eg, . [s1,n1] w.

Then, using the formulas (I1.86]),(IT.112)), (IT.18) and taking into account the fact, that (n,n;) =
0, we get:

EG,C [37 n]E91,C [817 nl] W = EQ,C [S, n] W, =

= (5000 T =0 2 ) et

+ e (0) T (W) n — s (0) Xy [n] w' + X{ [n] w; (I1.137)

w = <S1S00 (01) T (W) — 1 (1) (nl_c,w>) €+
+epr (01) T (w) i — s1po (61) X [m] w+ X [ma] w;

<n17 W>

T(W/) = S1¥0 (91) T(W) — Y1 ((91) - 3 (11138)

X, [n]w' = X [n] (TW' + XW') =X, [n] Xw' =
= X [n] (cgol (01) T (w)ny — s1¢0 (01) Xy [n1] w + Xf [n] W) =
= cp1 (01) T (w) Xy [n] gy — 51600 (61) Xy [0] Xy 0] wt
+ X, [n] X5 [n] w. (I1.139)
Since (n,n;) = 0, we have:
X;[n]n; = (n,n;)n = 0; X1 [n] Xy [n] = Oy
X, ] X5 [n;] = X; [n] (X — X; [my]) = X; [n] X = X, [n].
Hence, according to , we obtain:
X; [n]w' = X [n] w; (I1.140)
(n,w') = (X; [n]n,w) = (n,X; [n] W) = (n,X; [n]w) =
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= (Xi [n]n,w) = (n,w). (11.141)

Further, applying ([1.140)), we deliver:
X{mw = (X—-X;[n)w =Xw —X;[n]w=
= CP1 (01> T (W) n; — S19¥o (01) X1 [1’11] W+
+X51 ] w — X [n] w. (11.142)

Substitution of the values T (w'), X;[n]w, (n,w'), Xi[n]w' from the formulas

(IT.138), (TT.140)), (IT. 141)),(IT.142) into ([1.137), provides:

E67C [87 n]Eel,C [51; nl] W = EG,C [87 Il] Wl =

C

C

+ cip1 (0) (81800 (01) T (W) — 1 (6) <n1,w>) n-—
— S8¥o (9) X1 [n] W+ CcP1 (91) T(W) n; — S$1¥o0 (01) X1 [1’11] W+ )(1l [1’11] W — X1 [1’1] W =

_ <881(P0 (0) ©o (91) T (W) _ (3900 (9) ©1 (91) <rllc,W> + 1 (9) <Il, W> ) ) ep+

C

001 6) (s 00 T () = 1 0) 2 ) -
— 5o (0) Xy [n]w+ cpy (61) T (W) n;—
— 51900 (01) Xy [ny] w 4+ X7 [n4] w — X [n] w,
that was necessary to be proved. O

Lemma II1.18.5. Let, Ey.[s,n],Eg, .[s1,n1] € OFT(9,¢) be elementary generalized Lorentz
transforms with orthogonal directing vectors, ((n,ny) = 0). Then:

1. The coordinate transform Eg . [s,n] Eg, . [s1,101] is v-determined if and only if 6,6, # —1,
moreover, in the case 0,60, # —1 it is performed the equality:

1 — sign 6, sign 6
V(Eg.|s,n|Eg . |s1,n =cy/1+ — : 11.143
1V (Baclonl B bl \/ Z0)  AOR0) (D)

2. For 0,6, # —1 the inequality ||V (Eg.[s,n] Eg, . [s1,m])|| < ¢ holds if and only if 6,6, > 0.
Proof. 1. Using the Corollary [I1.18.3] Lemma [[1.18.1f and equality ([I.122)), we obtain:
EG,C [87 n]_l = U9,C [57 n, Hl]_l == UGS,C [597 Sp1l, HII:| == UQS,C [897 Sp1l, I[l] = EGS,C [897 5,91’1] ;

Eo, c [51, nl]fl = Eg1 . [(31)91 , (51)g, nl] ’
where sy = &(s,0), (s1)y, = & (51,01) -

Hence:

(EG,C [S, 1’1] E91,c [81, nl])il - E91,c [51, nl]il Ee,c [Sa n]il =

= Eeil,c [(51)91 s (51)91 nl] Egs,c [89, 5911] . (11144)
Now we substitute the vector w = ey, into ([1.144]) and apply the equality (I1.136)):

(Eo,c [s,n] Eg,  [s1, nﬂ)_l e = Eg1 . [(51)91 , (1), nl] Eg: ¢ [s0, som] eg =

132



Draft Introduction to Abstract Kinematics. (Ver 1.0) 133

= (51), S00 (07") 0 (0°) T (e0) €0+
+ c1 (07") sopo (6°) T (eo) (s1)g, M1 + cp1 (0°) T (o) (som) =
= (81), So0 (07") @0 (0°) €9
+ cs9 (51)g, 1 (07") w0 (0°) 01 + csppr (0°) m. (IT.145)

From the equality (I1.145) it follows, that 7 ((Eg.[s,n]Eg,, [sl,nl})_leo) =
(51)g, S000 (07") o (0°) (where (s1), ,s9 € {—1,1}). Therefore, the inequality
T (Eoc[s,n|Eg, . [s1,m]€ey) # 0 is true if and only if ¢o(07") o (6°) # 0, ie. if
and only if 60,6, # —1. Consequently, by Definition [[I.I7.2] the coordinate transform
Ey . [s,n|Ey, . [s1,1n1] is v-determined if and only if 0, 6, # —1.

Now we consider the case 6,60; # —1. By Definition applying the equality ,

we obtain:

V (EG,C [Sa n] E91,C [817 nl]) =

X (Eg.[s,n]Eg, . [s1,n1])" Leg

T ((E@ c[s,n] Eg, [s1,m])" ! eo)

_ ¢s6 (31)91 01 (071) o (0°) ny + csgr (0°)n
(51)g, S0%0 (07") w0 (0%)

_p (07") w0 (0°)ny + & (s1,01) 1 (0°) 1

- o (01") o (6°)

Since (n,n;) = 0, we have:

(1 (87) 0 (6))° + (1 (6))°

w5 (071) 5 (6°)
According to two lower equalities from (I1.82)) for s € {—1,1} it holds |po (0%)| = |¢o (0)],
|01 (6°)] = |1 (0)]. Hence:

|V (Eg[s,0] Eg,  [s1,n1])]| = c\/

||V (EQ,C [87 Il] E91,c [817 nl]) || = C\/

From here, using equalities ([1.82)), we deduce:

02 (01) —sign6; 3 () — signb
V (Eg.|s,n|Eg . |s1,n =c + =
Y oo B o \/ A0 AORO)

1 —signf ign 6
:c\/l+ sign sign

w5 (01) @5 (0) w5 (1)

2. Let 07 01 7é —
a) In the case 0,60, > 0 (signf = sign 6y = 1), according to ([I.143)), we deliver:

o
w5 (0) @5 (01)

b) Similarly, in the cases # < 0, 8; > 0 (signf = —1, signy = 1) and 6, < 0 (signf; = —1),
using the equalities ([1.82) we, correspondingly, obtain:

<c.

|V (Ege[s,0] Eg,  [51,11])|| = c\/1 _

1% (Ee,c [s,1] Ey, . [s1,m])|| = C\/l + — > ¢

w5 (0) @5 (01)
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B sign 6 B
@5 (01) w5 (0) @5 (61)

[ a0 @O -sme) [ @O +R0)
“V“‘ 2 0) 2 (0 vh+¢mw%wn>' -

|V (Eo [s,n] Eg, o [s1,m1])]| = c\/l +

Lemma I1.18.6. Suppose, that for elementary generalized Lorentz transforms
Ey.[s,n],Eg, [s1,01] € OFT (9, ¢) (n,ny) = 0 it is performed the equality:

Ey.[s,0] Eg, . [s1,1m1] = Up . [s',0, ],
where s' € {—1,1}, 0’ € [-1,1]\ {0}, n’ € By (1), J' € U ($1). Then the following statements

are true:

1. signb =6&(6,61);
2. o (0) = |0 (0) o (01)];
3. if 6,00 # —1, then s = ssysign (vo () po (01));
4 = o3 (0) 2 (6:) — & (6,01);
If, in addition, 0,60, # 1, then:
5 pf = 3P0 (0) 1 (61)ni + 1 (O)n 3900( )1 (01) 1 + 91 (0)n
o1 (¢") Vi (0)Q2(6,) -6 0,01)
6. Jm = ¥ (9) 900 (01)n+ oy (01) ny

\/900 900 (1) — & (0,61) '
Proof. 1. Suppose, that 6,0, # —1. Then, by Lemma [[I.I85] the coordinate trans-

form Ugp, [s',0',J] = Eg.[s,n]Ep [s1,n1] is v-determined, moreover the inequality
|V (Ug . [s',0', J))|| < cis true if and only if 6,6, > 0. According to Theorem [[1.17.3 and
Corollary [[1.17.1} we have ||V (Ugy . [¢', 0, J'])|| = ‘hg,}g," In’|| = ‘;z:}z:l . From this we can

see, that the inequality ¢ > 0 is true if and only if ||V (Ugy .[¢',n, J'])|| < ¢, that is if and
only if #,60; > 0. In the case § = —1 or #; = —1, according to Lemma T.18.5 the coordinate
transform Ug . [s', 0, J'] is not v-determined. But, by Theorem [[I.17.3] this is possible only if
0’ = —1. Thus, in the case § = —1 or #; = —1 the equality sign# = & (0, 6,) also remains to
be true.

2,3. According to the conditions of Lemma and Theorem for any w € M ($) it is
performed the equality:

/ / ! / / / nl?
Ey.[s,n]Ey . [s1,n1]w =Upy . [¢, 0, J]w= (s 0o (0T (w) — 1 (0) < CW>) e+

+J (epr () T (w)n' — s'po (0) Xy [0'] w + X5 [n'] w) . (I1.146)

Matching the coefficients near the vector ey in right-hand sides of the equalities ([[.136)) and
(I1.146|) we deduce the equality:

ss10 (0) o (602) T () — (5800 (6) @1 (61) <n1;W> +o1(0) <an>> _

C

S T W) — o (@) P e Mm(s). (I1.147)

C

Hence, if we substitute the vector wg = ey to the last equality, we obtain:

ss1¢0 (0) ¢o (01) = 5'o 0);
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Therefore, the equality (I1.147) leads to:

so (6) 1 (01) <nléw>

that is:
(s@o (0) o1 (1) m1 + @1 (0)m, w) = (1 (() 0, W), weM(®H).
That is why:
seo (0) 1 (61)n1 + 1 (0)n = 1 (6) 1.
Thus, we have proved the equalities:
s'ss100 (0) @0 (61) = o ()
s (0) o1 (01)ny 4+ 1 () n =1 (0") 1’ (I1.148)
By conditions of Lemma, ¢ € [—1,1] \ {0}, hence ¢, (¢') = 1;?;,'?' > 0. Consequently, the
first equality stipulates the equality:
0o (0') = lo ()] = |0 (6) o (61)] -

And, taking into account the condition 6,60; # —1 (that is g (6) o (61) # 0), we get the
equality:

s'ss1 = sign (o () ¢o (01))-

4. Using the equalities H.82, as well as first and second items of this Lemma, we obtain,
o1 (0) = Q2 (0) — sign@ = 3 (0) @2 (01) — &S (0,0,). Since, by conditions of Lemma, ¢ &
[—1,1]\ {0}, then ¢y (¢") = 2 2‘96,‘“ > 0. Hence, 1 (8') = \/©3 (0) 92 (01) — & (0,6,).

5. Let 0 # 1 and 0, # 1. It is easy to verify, that in this case \/©2 (0) ©2 (61) — & (6,6,) > 0.
So, the five statement of this Lemma follows from its four statement together with the equality
(TT149).

6. Substituting the vector w = e into the equalities ([I.136)), (II.146) and taking into
account the equalities (n,eg) = (n;,e9) = 0 and X; [n] ey = X; [n] ey = 0, we receive:

Ey . [s,n|Eg, . [s1,1n1] €0 = 55100 (0) o (01) €0 + cs1¢1 (0) wo (1) n+ cpq (01)ny;  (11.149)
Ey.[s,n|Eq, .[s1,n1] e = (s’g@o (0T (eo) — 1 (0") <n',ce0)> e+
+ J (c1 (0")T (eo)n' — s’ (0") X1 [n] €9 +
+X7 [ eg) = s'po(0) ey + cpr (6) J'n’ (11.150)
Matching the right-hand sides of the equalities (1I.149)) we (LI.150)) deduce:
s'po (0') eg + cpr (8') J'n' = ss1900 (0) o (61) €0 + cs1¢01 (0) o (61) n + ¢y (61) 0.

Hence, taking into account the first equality of ([1.148) and the statement 4 of this Lemma, we
have:

cor (0') J'n' = cs1p1 (0) @o (61) 0+ cpy (01) ny;
Jy' = 311 (0) po (1) n+ 1 (01)ny _ 511 (9) 900 (91)n+ o1 (01) My

Theorem I1.18.1. Let Egy.[s,n],Ey, . [s1,n1] € OFT(9,¢) be elementary generalized Lorentz
transforms with orthogonal directing vectors ((n,n;) = 0). The product of the transforms

Ey.[s,n] and Ey, .[s1,n1] belongs to the class OF ($9,c¢) if and only if one of the following
conditions 1s satisfied:
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1)9,01>07 2)9:107”01:17 3)9:91:—1

Proof. The proof of Theorem will be divided into the following cases.

Case 1: 6,60, > 0. In this case, according to Theorem[I1.17.3] ||V (Eq . [s,n])|| = ¢ ‘ L—LZIZI <c
and V(Eg, .[s1,m]) < c¢. Hence, by Lemma [1.17.5] Eg.[s,n],Eg, .[s1,n1] € O(9,c).
Since (in accordance with Assertion [II.17.1) the set of operators O ($),¢) is a group, then
E9,c [37 Il] E91,c [517 111] € D (‘67 C) g D(’Z ('67 C).

Case 2: § =1 or #; = 1. Suppose, that # = 1. Then the coordinate transform Ey_. [s, n] is
represented in the form:

Eg.[s,n]w =E; [s,n]w = sT (w)ey — sX; [n]w + X{ [n]w =
=5 (T (w)eg — Xy [n]w+ sX; [n]w) =
=s (T (w)eg+ 144 [n] (Xl [n] w + X5 [n] w)) .
Hence, using the formula ([L.33)), we get:
Eo.[s,n]w=s (1, [n])” (T (w)eo+Xi[n]w+ Xy [n]w) = s (i, [n])~ w.
Therefore, E; . [s,n] = s(I_;4[n])”. Similarly we can deduce, E;.[s,n;] = s(I_;4[ny])".

According to (I1.113) and ([1.122), we have ((I_;,[n;])™)* = ((I-q [nl])Q)N =1, =L That is
why, using Lemma [[[.18.1 we obtain:

Epels,n] = s ([ [n])” = s ((I-r, [0])™ (Lo [m])7) (Lo )™ =
= (]I—Ls [n] I n|)” E. [s,n;] = U, 5,1y, I ] I [ny]] .

Thus, in the case § = 1 transforms Ey . [s, n] and Eg, . [s1, ny] have (in reality) parallel directions
of motion. Hence, by Assertion we have:

Eg.[s,n]Eg, . [s1,n1] = Uy [s,Iing, 4 5 [n]1; 5 [0;]] Ug, o [s1,101,1;] € OFT(H,¢).

Similarly for #; = 1 we have Eg, . [s1,n1] = Uy [s1,n,14 5, 1] 14 [n]]. Since (n,n;) =0,
then I, n;]I_; [n]n = —s;n. Consequently, in accordance with Assertion [[I1.18.1] we get:

Ee,c [5, n]E91,c [81, 111] =
=Up.[s,—s1l 1 ]I 1, m]n, L] Upfs1,n, 1, m]I 4, [n]] € OFT(9,¢).

Case 3: 0§ = 0; = —1. Since o (—1) = 0, 1 (—1) = 1, then if this case the operators
Ey . [s,n] and Eg, . [s1,n;] may be represented in the form:

(0, w) eo + T (w)n + X7 [n]w,

Ey.[s,n]w = —

<n1’ W>

E91,C [51, 1’11] W= — ey +cT (W) n; + Xf_ [nl] w.

Hence, taking into account, that (n,n;) = 0, for arbitrary vector w € M (£)) we receive:

E@,C [87 n]Eel,C [817 nl] W =

<n, —Meo + T (w)ny + Xi [ng] w>

C
C

<n1> W>

+cT (— eo + cT (w)n; + X5 [ny] W) n+

# ] (= e 47 (w)m 4 X ) =
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A X)) X ) (T () XE ) =
(x{ [ncl] n,vv>eO — (ny,w)n+ XE ] (¢ (w)my + XF [g]w) . (IL151)

Thus, using (I1.18)), we have:
Xi[m]n=Xn-X;[n;jn=n- (n;,n)n; = n,
Xi{ [n]n; =n;.

Substituting the last equalities into ([I.151]), we obtain:

(n, w)

% +¢T (w)n; — (ny, w) n+
+Xi M X{ [ny]w (weM(H)). (I1.152)

(emphasize that, since (n,n;) = 0, then X; [n] X; [n;] = O, and therefore, according to (IL.18),
operators Xi [n] = X — X, [n] and X7 [n;] = X — X [n;] are commuting).
Denote:

Eo.[s,n|Eg . [s1,m]w = —

Tom® = (n,2)n; — (ny, 2)n+ X{ 0] Xy [n]z, =9,
By means of the operator Jynn,, using correlations (II.18]), we can rewrite the equality ([1.152))
as follows:

(n,w

. >e0 + T (€T (W)n+ Xy [n]w)  (we M($)). (IL153)

Ey.[s,n|Eg .[s1,nm]w = —

Now, we are going to prove, that Jnn, € $($1). Since (n,n;) = 0 and operators X3 [n],
Xi [n;] are commuting, then for any x € $; vectors n,n; and Xji [n;] Xi [n] x are pairwise
orthogonal. That is why, by definition of operator Jy n,, for all z € §; we have the equality:

||\7n,n1$||2 = <1’l,l’>2 + <n17 + H)<L 1’11 XL xH

According to ([1.18)), we have:

Xi ] Xq [ny] = (X = Xy [n]) (X = X [ng]) =
=X — XX1 [1’11] — X1 [n] X + X1 [Il] X1 [nl] =X - X1 [nﬂ - X1 [Il] . (11154)

Hence, for an arbitrary Vx € $; we get:

| Tl = (0,2 + {0y, ) + || X3 ] X 0] 2]|° =
:H r)n nl,a:)nl—i—XL[ ]XL[ ]xH -
:H n]z + X; [n ]x+X1l[n1]X1L[n]a:H =
= [1X, [n] & + X [ny]) @ + (X = X, [n] = X4 [n]) o = [ Xa* = ||«

Therefore, the operator Jnn, is isometric. Using the definition of the operator Jy,n,, commu-
tation of the operators Xi [n] and X} [n] as well as the equality ( ([1.154), it is not hard to
verify, that Jnn, Tnyn® = JninJnm® =2 (x € $1). Consequently the operator Jnn, has the
inverse operator Jn, n on £;. Thus, jn,nl € U ($H1).

That is why, according to the equality , we have, Eg.[s,n]Eg, .[s1,n1] =
Ui (L0, Jum] € OF (9, 0).

Case 4: 6; < 0,6 ¢ {—1,1}. Let us assume, that in this case the coordinate transform
Ey . [s,n] Eg, . [s1,1n1] belongs to the class OF (9,¢). Then, by Theorem there exist
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numbers s’ € {—1,1}, ¢ € [-1,1] \ {0}, vector n’ € By (91) and operator J' € 4($;) such,
that Eg . [s,n] Eglc[sl,nl] = Up,.[s',n',J]. From here, by Lemma [[1.18.6] we have n' =
sp0(0)p1(01)n1+01(0)
VPR (0)03(01)—6 (0, 91)
we obtain:

Consequently, taking into account, that (n,n;) = 0 and applying (II.82)),

mﬂ:¢%@%%HMW):
2(0) 2 (01) — © (0,01
(Ww%%%MO((@ﬂmﬁz

:\/90
A7) - S 6.0)

:¢%@wwmﬁ><<wﬁwm:w 264 (6) — 1 — sign
@5 (0) 5 (61) +1 w5 (0) w5 (01) +1

Since 6 ¢ {—1,1}, then ¢, (0) = 1;@'9' #0, o1 (0) = 1;@'9‘ # 0. Hence, in the case § < 0
from the equality (I1.155) we get:

[ @) 1 (1) 203 (0)
””‘¢“ﬁmm%@wl‘¢”¢2 2 > 1,

and in the case 6 > 0 we receive:

: 25 (0) — 2 27 (6)
. w*%w%@w4’w+%w%@wlﬂ'
Thus, in the both cases we have, that ||n’|| > 1, which contradicts to the condition n’ € By ($).
The last contradiction proves, that the product of the operators Egy . [s,n| Eg, . [s1,1n;] can not
belong to OF (9, ¢).

Case 5: 0 <0, 6, ¢ {—1,1}. Let us assume, that in this case the coordinate transform
Ey.[s,n|Ey, . [s1,n;] belongs to the class OF (9, ¢). Then, by Theorem there exist
numbers s’ € {—1,1}, ¢ € [—1,1] \ {0}, vector n’ € B, ($) and operator J € () such,
that Eg.[s,n] Eg, . [s1,n;] = Up . [s', 0, J]. From here, by Lemma [[I.18.6] we have, J'n’' =
5101(0) o (01)n+p1 (61)m

VP3(0)3 (61)—6(6,01)
similarly to the previous case we obtain:

Con w%(el)w%(ﬁ)ﬂo%(@l) B 202 (61) — 1 — sign 6,
W“‘J 2 (0) 2 (01) — @m‘¢” RORO) +L (I1.156)

Since 0; ¢ {—1,1}, then ¢y (61) # 0, @1 (1) # 0. Hence in the case 6; < 0 from the equality
(I1.156|) we get:

AT 290(2) (91) —1- (_1) _ 290(2) (91)
”“w‘¢“‘%wmam+1‘Wﬁ*%wm«m+1>L

and in the case #; > 0 we receive:

2@2 (91) —2 2@2 (91)
Ju'|| =4 /1+ 0 =4/1+ L > 1.
7l J RO E) +] RO A G)+]
Thus, in the both cases we have, that ||J'n’|| > 1. But, since J’ is unitary operator and

n' € B ($1), the equality ||J/'n’[| = 1 must hold. The last contradiction proves, that in this
case we have, that Eg.[s,n] Ey, .[s1,n1] ¢ OF (9, ¢) also. O

+

(IL.155)

. Consequently, taking into account, that (n,n;) = 0 and applying (I1.82)),
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The next corollary immediately follows from Theorem [[1.18.1}

Corollary I1.18.7. Let $ be a real Hilbert space such, that dim () > 1. Then the class of
operators OF (9, ¢) does not form a group of operators over the space M ($).

Proof. Indeed, in the case dim ($)) > 1 there exist vectors n,n; € B; ($;) such, that
(n,n;) =0. O

Main results of this Section were published in [7].

19 Kinematic Sets, Generated by Special Relativity and its Tachyon
Extensions.

Let (9, ]|, (-,+)) be a Hilbert space over the Real field. Space $) generates the coordinate

space 9 = (9, Ts, Ly, ps, |1, (-, -)), where pg and Ty are metrics and topology, generated by
the norm ||-|| on the space §), as well as Ly is the natural linear structure of the space ).

Recall that in Subsection [I7.1] (page we have denoted by L () the space of (homoge-
neous) linear continuous operators over the space $). Denote by L* (£)) the space of all operators
of affine transformations over the space §), that is £* () = {Ajy| A € L(9), a € H}, where
A[a]x =Ar+a, xefn.

Denote via Pk (£)) the set of all operators S € L* (M (£)), which has the continuous inverse
operator S™! € L* (M (£)). Operators S € Pk ($)) will be named as (affine) coordinate
transform operators.

Let, B be any base changeable set such, that Bs(B) C § = Zk <.§%> and Tm(B) = (R, <),
where < is the standard order in the field of real numbers R {[¥]}. Then Bs(B) CR x § =
M ($). Any set S C Pk (9) is the transforming set of bijections relatively the B on $) = Zk (.6)
(in the sense of Example [.11.2). Therefore, we can put:

fim (S, B; ) := fim (S,B,ﬁ) 7

where the kinematic set Kim (S,B,.ﬁ%) is defined in (I1.11). Now, we deduce the following
corollary from Theorem [[1.16.2]

Corollary 11.19.1. The kinematic set Kim (S, B; §) allows universal coordinate transform.

In Section [17] we have defined the operator of kind W .[s,n, J] for any fixed values ¢ €
(0,00), A € [0,00] \ {c}, s € {—1,1}, J € U($1), n € By (H1) (see formula (I1.76)). Now we
extend definition of this operator to the case ¢ = oco. Namely, in this case we put:

Wi [s,n, J]w:=sT (w)ey + J (()\T( ) —s{n,w))n + X5 [n] W) (Vw e M(9)),

where A € [0,00). Thus, for any fixed values ¢ € (0,00], A € [0,00] \ {c}, s € {—1,1},
J € U($H1), n € By (H) and w € M ($) we have:

Wc[s,n, J]w=

S w 2
(sT(w)— 22 >>0_|_J MIMLXL[] , A <00, €< 00;

DERE =
— ey +J (T (w)n+ X [n]w), A =50, ¢ < oo;
sT(w)eg + J (AT (w) —s(n,w))n+X{ njw), A<oo, c=o0.

(IL.157)

16 Such base changeable set B exists, because, for example, we may put B := At (R, R), where R is a system of abstract trajectories
from R to a set M C §.
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In the case $§ = R? operators of kind W) o, [s,n,J] (A < 0o) become Galilean transforms,
“started” from the origin at zero time point. It is not difficult prove, that W, . [s,n, J] =
lim. .o Wi [s,n,J], where the convergence is understood in the sense of uniform operator
topology.

Assertion I1.19.1. For any fized A € [0,00), s € {—1,1}, J € U($H1), n € By (1) operator
Wi 8,1, J] is a linear coordinate transform operator (that is Wy « [s,n, J| has the inverse

operator W o [s,10,.J]"" € L(M($))). Moreover:
Wi [s,m,J] ' = Wy [s,Jn, J 7]

Proof. 1t is easy to verify, that W) « [s,n,J] € L(M ($)). Now, we are going to prove the
equality:
Wi [5,10, J] W) o [s,Jn, J 7] =1, (I1.158)

where I = I yg) is the identity operator on the space M (§)). Chose any w € M ($)). According
to (I1.157) we have:
Wi s, n, JJW) o [s, Jn, J_l} w=W, [s,n,J]w, where (I1.159)
W=W,x[s,Jn,J ' |w=sT(w)ey+
+J7 (AT (w) — s (Jn,w)) Jn + X{ [Jn]w).

Next, applying ([1.14)), (I1.17) and taking into account that J is the unitary operator on the
subspace $; C M (), we obtain:

T (W) =sT(w);
(n,w) = (AT (w) —s(Jn,w)) (n,n) + <n, J'X{ [Jn] W> =
= (AT (w) —s(Jn,w)) + <Jn, Xi [Jn] w> = (AT (w) —s{(Jn,w));

Xi [n]w=(X-X;[n))w=
= J ' (AT (w) = s(Jn,w)) Jn+ X; [/n]w) — (n,W)n =
=J ' ((0, W) Jn+Xi [Jn]w) — (n,W)n = J 'X; [/n]w.
Herefrom, using (II.159)), (I1.157)) and we deduce:
Wi ls,n, J] W « [3, Jn, J’l] W=
= sT(W)eg + J (AT (W) — s (n,w))n+ Xi [n] W) = s (sT(w)) eo+
+J (A (sT(w)) = s (AT (w) — s (Jn,w)))n+ J "Xy [Jn]w) =
= T(w)ey + (Jn,w) Jn + X+ [Jn]w = Tw + X, [Jn] w + X+ [Jn] w = w.

Equality (I1.158) is proved. Applying the equality ([1.158) to the operator W o, [s, Jn, J 1],
we obtain the equality: Wy o [s,Jn, J'|W, o [s,n,J] = L. Thus, W, [s,n, J]_l =
W[50, 1] € £(M(5) a

Let J € U($1), s € {—1,1}, n € By (). Denote:
J(s’n) = J]I,SJ [Il] y (11160)

where operator [_g; [n] is defined by (I1.122). Using operator (I1.160]) we rewrite representation
(L1.157)) of operator W « [s, 1, J] in more convenient (for some considerations) form. Applying

the equality (I_,; [n])> = T as well as the equalities ([1.157), (I1.122) and (I1.17) for any
A€ [0,00), s €{—1,1}, J € U ($H1), n € B; (H;) and w € M ($)) we obtain:

W [s,0, J]w = sT(w)eg + Jisml_s1 ] (AT (w) — s (n, w)) n + X;i [n] w) =
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= sT(w)eg + Jisn) (0, w) — AsT (w))n + X [n] w) =
= sT(W)eg + Jism (0, W) = AsT(W))n+ Xw — (n,w) n) =
= sT(wW)eg + Jisn) (Xw — AsT (w)n

Hence, for any A € [0,00), s € {—1,1}, J € 4($1), n € By

N ~~—

$1) and w € M ($) we have:

Wi [s,n, J]w = sT(w)eg + Jsn) (Xw — AsT (w)n) ; (IT.161)
T (Wi [s,n, J]w) =sT (w); (I1.162)
XWiiools,n, JJw = Jsn) (Xw — AsT (w)n). (IT1.163)

Denote by O (), 00) the following class of operators:
O (9,00) :={Wi[s,n, J] |A€]0,00), s€{-1,1}, J€U(H1), ne B, (H1)}.

Using (I1.161)), (11.162), (I1.163) for any operators L = W) [s,n,J] € O($,00), L; =
Wi oo [51,101, J1] € O(9,00) (where A\, \; € [0,00), 5,51 € {—1,1}, J,J; € U($H1), n,n; €
B, ($1)) and arbitrary w € M () we get:

LiLw =W,  [s1,01, 1] Wi [s,n, J]w =
= 51 (8T (W)) €0 + (J1) (4, ny) (Jism) (Xw = AsT (w)n) — Aysy (sT (w))my) =

=ss1T (w)eg + (Jl)(sml) J(s.m) <XW — AsT (w)n — A\1s18T (w) J(;ln)m) =

=ss51T (w)eg+ (Jl)(sl,nl) J(s.m) <XW — 551 T (w) </\51n — AlJ(;}n)n1)> =

= s51T (w)eg + (Jg)(ssmz) (Xw — Aass1 T (W)ng) = Wy, o [$51, 02, Jo] W,
where
)\5111—)\1]71 n;
(s,m)
)\2 = ‘ )\sln — )\1J(;1n)n1 3 ny = A2 ) >\2 7é 0 : JQ = (Jl)(sl,nl) J(s,n)H—ssl,l [1’12] .
’ n, /\2 =0

It is easy to see, that Ay € [0,00), ny € By ($;) and Jo € U ($;). That is why the product of
operators Wy,  [s1,11, J1] W) « [$, 1, J| may be represented in the form:

W)\l,oo [81, np, Jl] W/\,oo [8, n, J] = W/\Q,oo [881, o, J2] y (11164)

where Ay € [0,00), ss; € {—1,1}, ny € By (91), J2 € 4(9H1).
Thus we have seen, that for any operators Ly, L € O ($),00) the operator L;L belongs to
O ($,00). The last result togrther with Assertion [II.19.1{1leads to the following conclusion:

Corollary 11.19.2. The set of operators O ($,00) is a group of operators over the Minkowski
space M ($)) over the Hilbert space $).

By analogy with (I1.99) we may introduce the class of operators O, (£),00) (in the case,
where the velocity of light is equal to infinity):

D4 (9,00) ={Wi.[s,n,J] € O(H,00) |s=1}.
Applying Assertion [[1.19.1] and formula (I1.164)) it is easy to obtain the following corollary.

Corollary 11.19.3. The set of operators O ($),00) is a group of operators over M (9).

Chose any fixed values ¢ € (0,00], A € [0,00] \ {c}, s € {—1,1}, J € U($1), n € By ()
and a € M (). Introduce the following operator:

Wic[s,n, J;alw := W, . [s,n, J| (w + a). (I1.165)
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Corollary I1.19.4. Let ¢ € (0,00], A € [0,00] \ {c}, s € {—1,1}, J € (1), n € By (),
and a € M ($)). Then:
W, .[s,n, J;a] € Pk(9).

Proof. Tt is sufficient to prove, that for ¢ € (0,00], A € [0,00] \ {c}, s € {—1,1}, J € 4 (9)
and n € By (9,) the operator W, . [s,n, J| has the continuous inverse W, .[s,n,J| €
L (M (£)), because the existence of inverse operator Wy [s,n, J] " € £ (M (£)) leads to the
existence of operator Wy . [s,n, J;a] ™' € £ (M ($))) (for any a € M ($)) in accordance with
the formula:

Wicls,n, J;a] 'w=W,,.[s,n,J] 'w—a (Vwe M(9)).

For the case ¢ < oo the highlighted statement had been proved in Section (see Corol-
lary [I1.18.3)). While in the case ¢ = oo this statement was proved in Assertion [[1.19.1 O

For 0 < ¢ < 0o we introduce the following classes of (affine) coordinate transform operators:

PLT(H,¢) :={Wicls,n, J;a] | se {—1,1}, A € [0,00] \ {c},
necB;(H), JeUH), ac M(H)};
PT, (9,¢) :={W,.[s,n,J;a] € PT(9,¢) | s = 1};
B (H,¢c) ={Wi.[s,n, J;a] € PT(H,¢) | A < c};
PBi (9, ¢) :={Wic[s,n, J;a] € B (H,¢) |s=1}.

(It is apparently, that PT (£, 00) = P (H, 00), PT, (9, 00) = P+ (9,00)). It is not hard to
see, that:

PT(H,¢) ={Waicls,n, J;a] | Wy[s,n, J| € OFT(H,¢c), ac M(9)};
{,]35_,_ (53,0) = {WAC[Sana J;a] |W>\c[37 ]Egg-‘r (‘6 C)a aGM(S{))}; (II 166)
’B(ﬁ@ {WAc[s,n,J;a]\W,\c[an]ED(ﬁ c),aGM(ﬁ)}; .
Py (59,€) = (W[50, Ja] | Wa [s,m, 7] € O, (5,6), a € M(5)}.

Applying representations (I1.166) for classes of operators (9, c) and B, ($,c) as well as

Assertion [I1.17.1) Assertion [[I1.17.6] Corollary [[[.19.2] Corollary [[1.19.3| and formula (II.165)),

we obtain the following conclusion:

Corollary I1.19.5. For arbitrary ¢ € (0,00] classes of operators B (9,c) and P (9,¢) are
groups of operators in the space M ().

(Note, that B ($,¢), B+ (H,¢) C L (M(9)).)

Remark 11.19.1. In the case $ = R3, ¢ < oo the group of operators P, (9, ¢) coincides with
the famous Poincare group (for definition of Poincare group see, for example [58,59]). In the
case ) = R3, ¢ = oo the group of operators B, (9, 00) coincides with the Galilean group (for
definition of Galilean group see, for example [58-60]).

Also applying representations (I1.166) for classes of operators BT ($,c) and BT, (9, c)
as well as Corollary [[I1.18.5] Corollary [II.18.7] and formula (I1.165)), we deduce the following

conclusion:
Corollary 11.19.6. For arbitrary c € (0,00) the following assertions are true:
1. Class of operators P, (9, c) is not group of operators in the space M ($);
2. Class BT (9, c) is not group of operators in the space M ($)) in the case dim ($) > 1.
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Proof. Indeed, if we assume, that PT, (9, c) is group of operators over M (£)), then the set of
operators:

OF, (9,¢) = {Wi.[s,n, J;a] € P, (9,¢) |a=0}

will be subgroup of it, which is impossible, according to Corollary [I[.18.5] Thus, the first item
of Corollary has been proved. The proof of the second item is similar. n

Using the introduced above classes of operators, we may define the following kinematic sets:

RPTo (9, B, ¢) := Kim (PT (9, ¢) , B; 5)7
RPT (9, B, ¢) := Kim (PT, (9, ), B; H);
AP (9, B, c) == Kim (P (55 c),B; 53),
RP (9, B, ¢) := Kim (P (9, ¢) . B; 9) -

In the case dim($)) = 3, ¢ < oo the kinematic set K (9, B, c) represents the simplest
mathematically strict model of the kinematics of special relativity theory in inertial frames of
reference. Kinematic set 8 (£, B, ¢) is constructed on the basis of general Lorentz-Poincare
group, and it includes apart from usual reference frames (with positive direction of time),
which have understandable physical interpretation, also reference frames with negative direc-
tion of time. Kinematic sets BT (9, B, c) and RPT, (9, B, ¢) include apart from standard
(“tardyon”) reference frames also “tachyon” reference frames, which are moving relatively the
“tardyon” reference frames with velocity, greater than the velocity of light ¢. Kinematic set
RP (H,B,00) = KPT (9, B, 0) in the case dim($H) = 3, ¢ = oo represents the mathematically
strict model of the Galilean kinematics in the inertial frames of reference. The next corollary
follows from Corollary [[1.19.1]

Corollary 11.19.7. Kinematic sets RBT, (9, B,c), RKPT (9, B, ), KPo (9, B, ¢), KP (9, B, ¢)

allow universal coordinate transform.

Remark 11.19.2. From Corollary it follows, that the sets of operators (9, c) and
B (9, c) form the groups of operators over the space M (£)). At the same time, in Corollary
it is proved, that the classes of operators BT (9, ¢) and PT (9, ¢) (for dim (H) > 1)
do not form a group over M ($)). This means, that the kinematics KRBT ($,B,¢) and
RKPT (9, B, ¢), constructed on the basis of these classes, do not satisfy the relativity principle,
because, according to Theorem [[1.16.2] the subset of universal coordinate transforms (II.12),
providing transition from one reference frame to all other, is different for different frames. But,
in kinematics RPBT, (9, B, ¢) and KPT (9, B, ¢) the relativity principle is violated only in the su-
perluminal diapason, because the kinematics sets RPT, (9, B, ¢) and KPT (9, B, ¢) are formed
by the “addition” of new, superlight reference frames to the kinematics sets £, (9, B, ¢) and
RP (9, B, ), which satisfy the principle of relativity. It should be noted that the principle of
relativity is only one of the experimentally established facts. Therefore, it is possible that this
principle is not satisfied when we exit out of the light barrier. Possibility of revision of the
relativity principle is now discussed in the physical literature (see for example, [47,61-66]).

Main results of this Section were anonced in [11] and published in [12].
20 Kinematic Sets, which do not Allow Universal Coordinate Trans-
form.

In this section, it is constructed one interesting class of kinematic sets, in which every particle
at each time moment can can have its own “velocity of light”. On a physical level, the similar
models (with particle-dependent velocity of light) were considered in the papers [67H71].
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Let a set U; C (0, 0o] be such, that U; # () and (0, 0o] \ Vs # 0. Denote:
Ny, = H x Uy = {(z,c) |z €9, ceVs}; M (ﬁmf) =R x Hy;.

The set M (Sﬁmf) will be named by the Minkowski space with the set of forbidden velocities

U; over $). The set U; := [0, 00] \ Y; will be named as the set of allowed velocities for the
space M (myf).

For an arbitrary w = (¢, (z,¢)) € M (Hy,) we put w* := (t,x) € M (). Also for X € %},
se{-1,1}, J e 4(H1), n € By (H),ac M($) and w = (t, (z,¢)) € M (H,) we introduce
the denotation:

Wi, [s,1n, J;a]w = (tm (W) [s,n, J;a]w), (bs(Wy.[s,n, J;a]w"),¢c)). (I1.167)
Therefore, for any w = (¢, (z,¢)) € M ($),) we have the equality:
(Wi, [s,n, J;a]w)” = W, [s,n, J;a]w". (I1.168)

Assertion I1.20.1. For arbitrary X\ € ifﬁ/f, se{-1,1}, J e U(H1), n € B, (H1), ae M(9H)
the mapping W\, [s, 1, J; a] is bijection on M (ﬁmf).

Proof. Suppose, that Wiy [s,n, J;a]wy = Wy, [s,n, J;a]wy, where wy = (¢, (71,¢1)) €
M (ﬁmf); wy = (tg, (2,c2)) € M (f_)mf). Then,

(tm (W/\,Cl [S’ n, J; a] wi) ) (bS (WMH [S? n, J; a] WT) ) Cl)) -
— (tm (Wi, [s,m, Jia)w3), (bs (Wi, [s,m, J3a] wi) ,c2)

Consequently, ¢; = ¢o. Hence, we have proved the equalities:

tm (Wi, [5,m, J5a)w)) = tm (Wa, 5,0, ;] )
bs (Wi, [s,n,J;alw]) = bs (Wi, [s,n, J;a]w]).

Therefore, Wy, [s,n, J;alw] = W, ., [s,n,J;alw}. And, taking into account the fact, that
the mapping W, ., [s,n, J;a] is bijection on M (£)), we conclude, that, wi = w}, ie t; = 1,
r1 = xp. Hence, wy = (t1, (21, ¢1)) = (t2, (22, ¢2)) = wy. Thus, the mapping Wy, [s,n, J;a] is
one-to-one correspondence.

Now it remains to prove, that Wy [s,n, J; a] reflects the set M (fjmf) on M (f)mf). Con-

sider any w = (¢, (z,¢)) € M ($y,). Denote:
&= (tm (Waefsm, Jia) e ), (bs (Wiclsim, Jia) ™ wt) L))
Then,
ot = <tm <(WA,C (5,1, J; a]) " w) bs ((WA,C [s,n, J; a])l " w)) -
= (Wicls,n, J;a) .
Consequently, W [s,n, J; a] &* = w*. Hence,

Wi, [s,n, J;a]0 = (tm (W) . [s,n, J;a]0"), (bs (Wi [s,n, J;alw"),c)) =
= (tm (W), (bs(w"),¢)) = (¢, (z,¢)) = w.

Thus, Wy, [s,n, J; a] is bijection from M (ﬁ@f) onto M (i)mf). O
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Denote:
PT (9 7) = { Wi, [s,0. Jia] [ A€ Ty, s € {~1,1},
JEU(9), n€B; (), acM(9)};
PT, (9:05) := {Wxy, [s,1, J;a] € PT(H:7;) | s =1}.

Let, B be a base changeable set such, that Bs(B) C Hy,, Tm(B) = (R, <). Then we have,
Bs(B) C R x Hy, = M (ﬁmf). Hence, we deliver the following kinematic multi-projectors:

PT(:9)" = (R <), 99,8.9.q) |5 € BT (%))
PT, (909" = (R, <), 95,5.5,0) S € BT, (5:;9))), where
q@) =z (VI=(z,c) € Hy,) (I1.169)

for B. In accordance with Theorem |[[[.16.1| and Definition [[I1.16.2] we can denote:

RPT, (9, B; ;) := Kim [PT (5;0)", B] ;
ﬁm‘z (57), B; fIL:) = RKim [m‘z_y (57)7 QL:)A ,B] .

It turns out, that the kinematic sets BT, (9, B; Y;) and KPT (9, B; Vj), in the general case,
do not allow universal coordinate transform. More precisely, they allow universal coordinate
transform if and only if only one value of forbidden velocity ¢ € (0, o¢] is actually realized. In
the last case, kinematics in RPT, (9, B; V;) or APT (9, B; V) can be reduced to kinematics of
type RPT, (9, B, ¢) or KPT (9, B, ¢) (for ¢ < 00), and to Galilean kinematics (for ¢ = 00).

Theorem I1.20.1. Let the set of forbidden velocities U; be separated from zero (ie there exists
a number 1 > 0 such, that U; C [n, o0]).

Kinematic set RPT (9, B; ;) allows universal coordinate transform if and only if there don’t
exist elementary states T, = (x1,¢1), To = (T2, c2) € Bs(B) such, that ¢ # co.

To prove Theorem [L[.20.1| we need the following two lemmas.

Lemma I1.20.1. Chose any fized c1,c5 € (0,00], ¢1 # ¢, s € {—1,1} and J € & ($,).
Then, for any fized number ¢ € (0, min (cy, c2)) and arbitrary fized vectors wi, wy € M ($)
such, that wy # wo, there exist X € (0,e), n € By (1) and a € M (9), for which the following
equality holds:
W)\,q [57 n, J; a] W1 = W)\,cz [Sv n, J; a] Wa2.

Proof. Further, for convenience, we assume, that ¢; < ¢o. Obviously, this assumption does not
restrict the the generality of our conclusions.

1. At first, we are going to prove Lemma in the special case w; = 0, wo = w # 0. Consider
any, ¢ € (0,min (c1,c3)). According to the specifics of this case, we should find A € (0,¢),
n € By () and a € M ($), such, that:

Wi [s,n,J;a]0 =W, [s,n,J;a]w. (I1.170)
Taking into account ([1.165]), we can rewrite the last condition in the form:
Wi [s,n,JJa= W, [s,n,J](w+a). (I1.171)

Denote:
t:="T(w), x = Xw. (I1.172)

Then we can write, w = tey + .
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Consider any fixed vector ny € By ($1). Denote:

n = {i 770 (IL.173)

ny, z=0.

5

Then, we have:

v = e,
(nw) = {n,2) = || (IL.174)
Xinjw = Xw-(n,w)yn=z—|zln=2-2=0.

Vector a we seek in the form:
a=rTey+ pn, where 7,1 € R. (I1.175)

1.a) At first we consider the case ¢;, ¢y < 00.
Substituting the value of the vector a from ([1.175)) into the condition (II.171]) and applying
(LL.172)), (LL.174), (II.157), we obtain the following condition:

(-2 (2o (2) -

= (st 1= el +20)) 5 (3) vt

FO(E ) — s (2l - m)A (3> Jn,

where v(§) = £€>0,¢#1L (I1.176)

1
Vil
Taking into account orthogonality of the vector ey to the subspace $); and unitarity of the
operator J on the subspace £, we get the following system of equations:

(57— 20) 7 (2) = (st 7 = 2 (el +1) 7 (2) .
Or = s (&) = O+ 1) = s (el + )7 ()

By means of simple transformations, the system ([1.177) can be reduced to the form:

@) )5 )@ e
(0 (2) - (2)) = 0+ (2) - () 30 (2)

Replacing the expression 7 (fy (%) -y <§>) in the second equation of the system ([I1.178]) by

the right-hand side of the first equation of this system, we deliver the equation:

(240 () () - w100 (2)-n 2)

After simple transformations the last equation takes a form:

(el + p) (1 - A?) ( % (I1.179)
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Now, we introduce the denotations:

Py (y) :=sign (y)VIyl; P2y) =vylyl (Y ER). (11.180)
In the case y # 0 the function ®;(y) may be represented in the form, ®;(y) = —.

Iyl
In view of denotation (I1.180)) the equation (I1.179) becomes:

o (el + ) ol 4. (1 - A—)) = o (ulnl (1- A—)) |

Taking into account, that the function ®, is strictly monotone on R, we get the equation:
A2 A2
(el + 0 el 4 (15 ) =l (1- % ),
€3 €1
which after simple transformations is reduced to the form:

2 <q>2 (”‘””J) _ o, <£)> — @y (||l + 1) — ®2 (11). (I1.181)

C2

Since ¢; < ¢y, then for p < — [|z|| we have W > L. Therefore, taking into account, that the
function @, is strictly increasing on R, we may define the function:

s (flall + ) = @2 () _ | 2= (ol + )
n () e (E) () - ()

It is easy to verify, that ®5.,(u) — 0, p — —oo. Hence, there exists the number g < — ||z|
such, that @3, (10) € [0, €).

In the case z # 0 we have ®3.,(p) > 0 for all p such, that p < — ||z||. In the case x = 0, the
equation becomes the true equality for u = 0 and arbitrary A € R. That is why, if we

put:
= {/1’07 T 7& 0 . A= {<D3;I (/1’0)7 x 7& 0 (11182)

0, =0’ s, r=0,

P (1) = p<—|z|.

we will obtain the values p € R and A € (0,¢), for which the equality (I1.181)) holds.
Since 0 < A < € < min (¢, ¢2), then for values A, i1, determined by the formula ([1.182)), the
second equation from the system ([1.178)) takes the form:

1 1 At
AT . S e T - : (I1.183)
\/ _A \/ A A A 2
C2 6‘2 6‘2 C2 C2
2 1 2 1 2
where, considering that A > 0 and ¢; < co, we have A L 1 # 0. Hence, the

2 1
number 7 is uniquely determined by the equality ([1.183]). Then, the vector a we calculate
by the formula . And, substituting the delivered values of the parameters A € (0,¢),
n € By () and a € M () into ([I.171)), we guarantee the valid equality. In the case ¢z, co < 00
and w; = 0, Lemma is proved.
1.b) Thus, it remains to consider only the case ¢ = 00, ¢; < 00 (w; = 0, wo = w # 0).
Note, that the case ¢; = oo is impossible, because ¢; < cs.
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Substituting the value of the vector a from ([1.175)) into the condition (II.171]) and applying
(LL.172)), (LL.174), (II.157), we obtain the following condition:

(o 20 (2ot (2) -

=s(t+71)eg+ (A(t+7)—s(||z] +p) Jn.

Hence, taking into account orthogonality of the vector ey to the subspace $; and unitarity of
the operator J on the subspace ), we get the following system of equations:

(sm = 3m) 7 (3) ==+ 7) (IL.184)
07 =) 7 (2) = At +7) = s (ol + )

After simple transformations, the system ([1.184) may be reduced to the form:

<1_7()\> N 27( )_t I1.185
( ( ) (V|$||+M—m<§>>_>\t ( )

Replacing the expression 7 (1 — <i>> in the second equation of the system ([1.185) by the

[

right-hand side of the first equation of this system, we obtain the equation:

,u A
Nl (2) =l - (2)),
C1

which, by means of simple transformations takes a form:

(el + el +) = @1 (sl (1- %) ) (11.156)

1

where the function ®; is determined by the formula ([I1.180)). Taking into account, that the
function &, is strictly monotone on R, we get the equation:

)\2
(el + ) 1] + 4l =l (1= % )
1

which after simple transformations is reduced to the form:

a2a, (ﬂ) — By (2] + 1) — Ba (1) (IL187)

Therefore, taking into account, that the function ®o(y) = y|y| is strictly increasing on R, we
may define the function:

(1) = @“”ﬁ Mgﬁ_)%(“): MQEZ)J“)z? p< = el

Cc1

It is easy to verify, that ®55,(u) — 0, p — —oo. Hence, there exists the number py < — ||z||
such, that ®55, (o) € [0, ¢).

In the case x # 0 we have ®57 (1) > 0 for all pu such, that p < — ||z||. In the case x = 0, the
equation becomes the true equality for u = 0 and arbitrary A € R. That is why, if we

put:
p= {’“‘0’ vEO {%w (o), 70 (I1.188)

0, z=0 s x =0,
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we will obtain the values p € R and A € (0,¢), for which the equality (II.187)) is true.
Since 0 < A < & < min (¢, ¢2) = ¢y, then for values A, i1, determined by the formula (11.188]),
the second equation from the system ([1.185) may be rewritten in the form:

1 L

AT 11— | = ||| + » — = | — At, (I1.189)
T2 T2
1 1
where, considering that A\,c; > 0, we have, A | 1 — ;ﬂ # 0. Hence, the number 7 is
1-22

2
‘1

uniquely determined by the equality ([I.189). Then, the vector a we calculate by the formula
(I1.175). And, substituting the delivered values of the parameters A € (0,¢), n € By (9;) and
a e M(9) into (II.171), we obtain the valid equality. Hence, in the case ¢; < 00, ¢y = 0o and
wy; = 0, Lemma is proved.

2. We now turn to the general case, where wy,wy are arbitrary vectors of the space
M ($) such, that w; # ws. According to the result, proved in the first item of Lemma,
parameters A € (0,¢), n € By ($;) and a € M ($), exist such, that W, [s,n,J]a =
Wi, [s,1,J] (Wwog —wy +a). Denote, a := a — w;. Then, taking into account, (II.165)), we
receive the desired equality W ., [s,n, J;a] w; = W, ., [s,n, J; a] wa. ]

For y1,y2 € (0, 00], such, that y; # oo or ys # 00 we put:

1
-2, -2\ —3
(%) i s Y1, Y2 <00
o (y1,92) = § V21, Y < 00, s = 60 - (I1.190)

V2 ya, Y1 = 00, Yp < 00

Lemma I1.20.2. Suppose, that for some vector w € M ($)) it holds the equality
Wi [s,n,JJw =W, [s,n,J|w,

where ¢1,¢9 € (0,00], A € (0,00] \ {c1,¢0,0 (¢1,62)}, s € {—1,1}, J € U($H1), n € By (H1) with
c1 # Co. Then, T(w) = (n,w) = 0.

Proof of Lemma we divide into a few cases.
Case 1: ¢y, < 00, A < 0o. In this case, by the formula ([1.157), we get

Wi [s,n, JJw— Wy, [s,n, J]w=
(CG) e ()3 ) e)es

+(1(2) - (2)) oT e - smm, (IL191)

where the function v : [0,00) — R is determined by the formula (I1.176). By conditions of
Lemma, W, [s,n,J]w — Wy, [s,n,J]w = 0, where 0 is zero vector of the space M ().
Hence, the right-hand side of the equality is equal to zero vector. Therefore, taking
into account orthogonality of the vector ey to the subspace $; and unitarity of the operator J
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on the subspace £, we get the following equalities:

B @) TE- @) e =0

() 7(2)) o7 -stam =0

According to the conditions of Lemma, A > 0 and A # o (¢1,¢) =

. Consequently,

0 <i) -y (%) # 0. Thus, the equalities ([1.192) may be rewritten in the form:

R @)TE @) ) =0

T(w)—s(nw) =0.

The system (1.193]) is a system of linear homogeneous equations relatively the variables
T (w) and (n,w). Determinant of this system is:

R HRICRCORAD)
= (9(5)-9(2)) e
9(&) = (1—=&) (&) =sign (1= V[1-€ (€20, #1).

Since the function g(§) = sign (1 — &) /|1 — £2| is strictly decreasing on [0, 00), determinant
A of the system ([1.193) is nonzero. Hence, T (w) = (n,w) = 0, that was necessary to prove.

Case 2: ¢1,c9 < 00, A = .
In this case, by the formula (II.157]), we receive:

0=W,. [s,n,J]w—W,,[s,nJ]w=

_ <“C’1W> eo+ T (w) Jn — <— <“c’2‘”> co+ ¢ T (w) Jn) _
__ <C_11 _ 612) (n, W) eo+ (c1 — ) T (w) Jn.

And since ¢; # co, taking into account orthogonality of the vector ey to the subspace $; and
unitarity of the operator J on the subspace $);, we get the equality 7 (w) = (n,w) = 0.

Case 3: ¢; < 00, ¢g = 00.
By the conditions of Lemma A # c,. Hence, in this case we have A < co. And, according to

(I1.157]), we obtain:

0=W,.[s,n,J]w—W,[s,nJ]w=

()32 e

N (7 (i) )(xr( ) — s (n,w)) Jn. (11.194)

C1

By the conditions of Lemma, A > 0 and X # o (¢, ¢3) = v/2¢;. Thus, v <%> — 1 # 0. Hence,
taking into account orthogonality of the vector ey to the subspace $; and unitarity of the
operator J on the subspace $1, from the equality ([1.194)) we receive the system of equations:

[(66)-) 3 () m = o
A (n,w) =0.
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The system ([1.195) is a system of linear homogeneous equations relatively the variables T (w)
and (n,w). Determinant of this system is:

()5 2) - 62)-om).

Since, by the conditions of Lemma, A > 0 and ¢; < oo, then % # 0. That is why, A; # 0.
Thus, 7 (w) = (n,w) = 0.

Case 4: ¢ = 00, ¢y < o0 is considered similarly to the case 3.

Case ¢y, co = 00 is impossible, because, by the conditions of Lemma, ¢; # cs. O

Corollary I1.20.1. Let, ¢1,c5 € (0,00], ¢; # ¢o, s € {—1,1}, J € 4(H1), n € By (91).
Then for any w € M ($) and ¢ € (0,min (¢, c2)) there exist A € (0,¢) and a € M (9),
such, that
Wi [s,n,J;a]jw # W, ., [s,n, J;a]w,

Proof. Let us chose any a € M ($)) such, that:
T (w+a)#0. (I1.196)

Also we chose any number A € (0,¢) \ {0 (c1,¢c2)}. If we assume, that W, [s,n,J;a]w =
Wi, [$,1, J;a] w, then, according to (II.165]), we will obtain:

Wi [s,n,J] (w+a) = Wy, [s,n, J] (w+a).

Hence, by Lemma [[1.20.2) 7 (w+a) = 0, contrary to the correlation ([1.196)). Thus,
Wi [s,n, J;a]w # W), [s,n, J;a] w. u

Proof of Theorem [IT.20.1. 1. For any fixed vector n € By (£);) we are going to prove the
equality:

WO;%f [17 n, H—l,l [n] ’ 0] - ]I./Vl( (11197)

me)’
where HM(%f) is the the identity operator on M (ﬁmf), and operator I_; ; [n] is defined by

(LL.122)). Indeed, according to (II.167), (II.165) and (II.157) for an arbitrary element w =
(t,(x,c)) e M (ﬁmf), we have:

Wi, [1,1n,11; [n],0]w =
(tm (WO,C [1, n, H—l,l [Il“ w*) s (bS (WO,C [1, n, ]I—l,l [l’l]] w*) s C)) =
(tm (W), (bs(w"),c)) = (¢, (z,¢)) = w,

that was necessary to prove. From the equality ([1.197) it follows, that HM@%) € PT, (9:;T;).

Besides this, in accordance with Remark [[.11.3] IM(Yan )[B] = B. Hence, by Property [[1.16.1 H
i

we can define the reference frame:
[h = (HM(%f),]IM(%f)[BD — (]IM(%f),B> € Lk (RPT (9, B;;)).

Now, we fix any reference frame [ = (U,U[B]) € Lk(RPT($H,B;Y;)), where U =
W/\yﬁf [1, n, J; a] € SB(ZJF (ﬁ, mf)
According to Properties H.16.1, , we obtain:

Mk() = R x Zk (5) —RxH=M(®); (IL.198)
(M l)yw=U <]1[A‘41(]%f)w) =Uw =W,y [l,n J;aw (11.199)
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(Vw € Bs (Iy) = Bs(B) C M (Hy,) -

Using Property H.16.1 as well as equality ([1.169)), for an elementary-time state w =
(t,(x,c)) € Bs(I) we get:

QY (w) = (tm (w) ,albs ())) = (t,a((z,¢))) = (t,z) = " (11.200)
Hence, using Definition [I1.15.1] (item |1} and equality (I1.168)), we deduce:

Q' (w) = QY (1) w) = (W/\,Wf [1,n,J;a] w)* =
=W, .[l,n, J;a]w" (VweBs(lh) =Bs(B) C M (9Hy,)) - (I1.201)

2. By conditions of Theorem a number 1 > 0 exists such, that 2; C [, 00).

2.1. Suppose, that there exist elementary states fl = (z1,c1), Ty = (x2,c2) € Bs(B)
such, that ¢; # cy. Since, by Property -@D Bs(B) = {bs(w) |w € Bs(B)}, then there
exist elementary-time states of kind wy = (t1,71) = (tl,(xl,cl)) € Bs(B), wy = (tg,72) =
(t2, (z2,c2)) € Bs(B). Now, we consider two cases.

Case 2.1.1: wj # wj. Consider any fixed operator .J; € (). By Lemma [[1.20.1] there
exist A € (0,7), n; € By () and a; € M ($), such, that

Wia lLng, Jisajw) = Wy, o, [1,n1, Ji; a3 w3, (I1.202)
Let us introduce the reference frame:

[ == (U, Uy [B]) € Lk (RPT (9, 8;9;)), where
U1 = W)\l;‘l]f [1, nj, Jl, 3_1] € sz’» (ﬁ,‘l]f) .

According to ([1.201)), and ([1.202]), we receive:
Q<[1 <_[O> (wl) - W)\hcl [1a ng, Jla al] wik == W)q,cg [1a ng, Jla al] w; - Q<[1 F[O> (WQ) .

From the other hand, by the formula (I1.200), we obtain QU (w;) = w} # wi = Q') (wy).
Thus, for the elementary time states wy,wy we have QU< (w)) = QU< (wy), while
0>( 1) # QY (wy). Hence, by Theorem , the reference frames [y and [ do not al-
low universal coordinate transform. Therefore, in accordance with Assertion item 2,
the kinematic set BT (9, B; U;) do not allow universal coordinate transform in this case.
Case 2.1.2: w} = w;. Consider any fixed operator Jo € $4($;) and vector ny € By ($).
According to Corollary there exist Ay € (0,7) and ay, € M (), such, that

Wi,a [, ng, Josas] wi # W, ¢, [1, 09, Jo; ag] w3. (I1.203)
Let us consider the reference frame:
o : = (Uy, Uy[B]) € Lk (RPT (5, B;0;)), where
Us = W, [1, 02, /o, @3] € BT, (H;T;) .
According to ([L.201)), and ([L.203), we receive:
Q"0 (w1) = Wi, [1,mg, Jojas]w] # Wi, [1,mg, oy as]wy = Q) (wy).

From the other hand, by the formula (I1.200), we obtain: Q" (w;) = w* = wj = Q ) (wy).
Thus, for the elementary-time states wy,wo we have Q{210 (w)) 7& Q21 (ws), while
QM (w;) = Q" (w,). Hence, by Theorem the reference frames [y and [y do not allow
universal coordinate transform. Therefore, in accordance with Assertion item 2, the
kinematic set BT (9, B; V;) does not allow universal coordinate transform.
Thus, if the kinematic set BT (5, B; ;) allows universal coordinate transform, then there
not exist elementary states r; = (x1,¢1), To = (22, ¢) € Bs(B) such, that ¢; # co.
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2.2. Now we suppose, that in base changeable set B there not exist elementary states
71 = (x1,¢1), Ty = (w9,c2) € Bs(B) such, that ¢; # 5. Under this assumption a number
co € U; must exist such, that arbitrary elementary state z € Bs(B) can be represented in the
form: T = (x,¢), where x € §). Chose any reference frame:

[:= (U,U[B]) € Lk (RPT (9, B;V;)), where
U= W)\;Q]f [1, n,J, a] S ;BSJF (.ﬁ, mf) .

According to (I1.201), (II.200)), for arbitrary elementary-time state w = (¢, (z,¢c)) € Bs (Ip) =
Bs(B) we obtain:

Q([<—[0> (w) — W)\,Co [1’ n, J; a] wr = W)\,Co [1, n, J; a] (Q<[0>(w>) )

where W) ., [1,1, J; a] is a bijection from M ($)) onto M ($) (and, by ([T.198), W, [1,n, J; a]
is a bijection from Mk ([p) onto ME(l)). Hence, in accordance with Definition the
mapping W, [1,n, J;a] is universal coordinate transform from [y to [. Consequently, the
reference frames [y and [ allow universal coordinate transform, ie [y = [ (for any reference frame

[ € Lk(RPT(H,B;Y5))). Thus, by Assertion kinematic set RPT (9, B;Y;) allows

universal coordinate transform. O
Similarly to Theorem [[1.20.1]it can be proved the following theorem.

Theorem I1.20.2. Let the set of forbidden velocities B; C (0, 00] be separated from zero (ie
there exists a number n > 0 such, that s C [n, o] ).

Kinematic set RPT, (9, B;Vs) allows universal coordinate transform if and only if there
don’t exist elementary states T, = (x1,¢1), To = (T2, ¢2) € Bs(B) such, that ¢; # cs.

The main results of this Section were announced in the paper [11] and published in [12].

Part II1
Kinematic Changeable Sets with Given Universal
Coordinate Transforms

In this Part we are going to explain the theory of universal kinematics (that is kinematic
changeable sets with given universal coordinate transforms). Results, to be explained in this
Part, are published in the papers [13-15].

Sorry!

Now this Part of the paper is under development and it will be available in the next versions
of the preprint as soon as possible.
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