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This paper presents a non-traditional approach to theory of turbulence. Its objective is to prove that 
Newtonian mechanics is fully equipped for description of turbulent motions without help of experimentally 
obtained closures. Turbulence is one of the most fundamental problems in theoretical physics that is still 
unsolved. The term “unsolved “ here means that turbulence cannot be properly formulated, i.e. reduced to 
standard mathematical procedure such as solving differential equations. In other words, it is not just a 
computational problem: prior to computations, a consistent mathematical model must be found.  Although 
applicability of the Navier-Stokes equations as a model for fluid mechanics is not in question, the 
instability of their solutions for flows with supercritical Reynolds numbers raises a more general question: 
is Newtonian mechanics complete? 

The problem of turbulence (stressed later by the discovery of chaos) demonstrated that the Newton’s world 
is far more complex than those represented by classical models. It appears that the Lagrangian or 
Hamiltonian formulations do not suggest any tools for treating postinstability motions, and this is a major 
flaw of the classical approach to Newtonian mechanics. The explanation of that limitation is proposed in 
this paper: the classical formalism based upon the Newton’s laws exploits additional mathematical 
restrictions (such as space–time differentiability, and the Lipchitz conditions) that are not required by the 
Newton’s laws. The only purpose for these restrictions is to apply a powerful technique of classical 
mathematical analysis. However, in many cases such restrictions are incompatible with physical reality, 
and the most obvious case of such incompatibility is the Euler’s model of inviscid fluid in which absence of 
shear stresses are not compensated by a release of additional degrees of freedom as required by the 
principles of mechanics.  

 
It has been recently demonstrated, [3], that according to the principle of release of constraints, absence of 
shear stresses in the Euler equations must be compensated by additional degrees of freedom, and that led to 
a Reynolds-type enlarged Euler equations (EE equations) with a doublevalued velocity field that do not 
require any closures. In the first part of the paper, the theory is applied to turbulent mixing and illustrated 
by propagation of mixing zone triggered by a tangential jump of velocity. A comparison of the proposed 
solution with the Prandtl’s solution is performed and discussed. In the second part of the paper, a	 semi-
viscous	 version	 of	 the	 Navier-Stokes	 equations	 is	 introduced.	 The	model	 does	 not	 require	 any	
closures	since	the	number	of	equations	is	equal	to	the	number	of	unknowns.		
 

1. Introduction.  

During several centuries, inviscid incompressible fluid – the simplest model of a continuum - enjoyed an 
unprecedented success being considered as the most elegant branch of continuum mechanics. It stimulated 
progress in theory of conformal transformations, and theory of harmonic functions thereby transferring new 
mathematical techniques to theory of elasticity as well as to other types of continua. However more detailed 
studies of the solutions of Euler’s equations demonstrated fundamental inconsistencies of the model. The 
first inconsistency was associated with zero-drag-paradox proved by D’Alembert in 1752, [1]. Recent 
numerical study performed by Yudovich, [2], reports a general result that solutions of Euler’s equations 
inherently unstable and in a finite time they become stochastic. Such flaws of the Euler’s model triggered 
“escape” to Navier-Stokes equations of viscous fluid. However the viscose model has problems of its own: 
existence and uniqueness of solutions of the Navier-Stokes equations have not yet been proven, the 
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solutions loss stability at regions of supercritical Raynolds numbers, etc. On the top of that, neither Euler, 
nor Navier-Stokes equations are capable to describe turbulent motions. It is interesting to notice that 
although turbulence is usually associated with the Navier-Stokes rather than the Euler’s equations, actually 
in developed turbulence viscosity plays vanishingly small role, and that was the main motivation to revisit 
the Euler’s model.  
   The source of the problems with both Euler and Navier-Stokes equations was found and discussed in our 
recent publication, [3]. It has been demonstrated that according to the principle of release of constraints, 
absence of shear stresses must be compensated by additional degrees of freedom, and that leads to enlarged 
Euler’s equations (EE equations) with a doublevalued velocity field. Analysis of coupled 
mean/fluctuation EE equations showed that fluctuations stabilize the whole system 
generating elastic shear waves. This opens the way to apply EE equations for postinstability 
regions of the Navier –Stokes equations instead of the Reynolds equations, [4], and thereby 
to avoid a closure problem. 
   In this paper, thorough   derivation of the EE equations from the principle of virtual work is elaborated, 
and invariants such as first integrals, as well as characteristics speeds are formulated. Special attention is 
paid to a semi-viscous version of the Navier-Stokes equation that is also based upon doublevalued velocity 
field.  

2. Instability in dynamics. 

Any mathematical model of a continuum should be tested for three properties: existence, uniqueness and 
stability of its solutions. However, none of these properties are physical invariants since they depend upon 
the class of functions in which the solution is sought. As an example, consider a vertical, ideally flexible 
filament with a free lower end suspended in the gravity field. As shown in [5,11], the unique stable solution 
exists in the class of functions satisfying the Lipchitz condition. However despite its “nice” mathematical 
properties, this solution is in contradiction with experiments: the cumulative effect – snap of a whip – is 
lost. At the same time, the removal of the Lipchitz conditions leads to non-unique unstable solutions that 
perfectly describe the snap of a whip. Another example, [6], illustrates the	dependence	of	stability	of	the	
solution	upon	the	frame	of	reference:	consider	an	inviscid	stationary	flow	with	a	smooth	velocity	field	
vx = Asin z +C cos y, vy = Bsin x + Acos z, vz =C sin y +bcos x 	
Surprisingly,	 the	 trajectories	 of	 this	 flow	 are	 unstable	 (Lagrangian	 turbulence).	 It	means	 that	 this	
flow	is	stable	in	the	Eulerian	coordinates,	but	is	unstable	in	the	Lagrangian	coordinates.		
			It	is	important	to	distinguish	short-	and	long-term	instabilities.	Short-term	instability	occurs	when	
the	 system	 has	 alternative	 stable	 states	 (an	 inverted	 pendulum);	 it	 is	 characterized	 by	 bounded	
deviations	of	position	coordinates	whose	change	affects	the	energy	of	the	system,	and	therefore	this	
type	of	instability	does	not	require	a	model	modification.	The	long-term	instability	occurs	when	the	
system	 does	 not	 have	 an	 alternative	 stable	 state.	 Such	 instability	 can	 involve	 only	 ignorable	
coordinates	since	these	coordinates	do	not	affect	the	energy	of	the	system.	That	is	why	the	long-term	
instability,	from	physical	viewpoint,	can	be	associated	with	chaos,	and	from	mathematical	viewpoint	
–	with	 the	 loss	 of	 smoothness,	 or	with	 the	 loss	 of	 differentiability.	 And	 that	 is	why	 the	 long-term	
instability	requires	a	modification	of	the	model.	Since	the	Euler’s	model	of	inviscid	fluid	abounds	with	
chaotic	instabilities	with	no	alternative	stable	states,	modification	of	this	model	is	the	main	subject	of	
this	 paper.	 It	 should	 be	 recalled	 that	 the	 first	 step	 in	 this	 direction	 was	 made	 in	 our	 recent	
publication	[3].	
It	should	be	mentioned	that	the	long-term	instability	is	subdivided,	at	least,	in	two	different	groups:	
Lyapunov	 instability	 that	 is	 associated	 with	 unbounded	 growth	 of	 some	 selected	 modes,	 and	
Hadamard	instability	that	results	from	degeneration	of	a	hyperbolic	PDE	into	an	elliptic	PDE,	[5,11],	
while	 all	 the	modes	grow	unboundedly.	 	That	 is	why	 the	Hadamard	 instability	 is	based	upon	 local	
relationships	that	do	not	explicitly	depend	upon	boundary	conditions.	In	addition	to	that,	in	case	of	
Hadamard	 instability,	 an	 infinitesimal	 initial	 disturbance	 becomes	 finite	 in	 finite	 time	 period,	 [5],	
while	in	Lyapunov	instability	case	this	period	must	be	infinite.	
					In	 the	 Euler’s	 model	 of	 inviscid	 fluid,	 both	 type	 of	 long-term	 instability	 occurs:	 vortices	 are	
Lyapunov	 -unstable,	 [2],	 and	 tangential	 discontinuities	 of	 velocity	 are	 Hadamard-unstable,	 [3].	 As	
demonstrated	in	[3],	both	of	these	instabilities	are	suppressed	by	fluctuations	in	EE	model.			
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3.	Postinstability	model	of	inviscid	fluid.		
The	concept	of	multivaluedness	of	the	velocity	field	in	inviscid	fluid	was	introduced	in	[3]	as	a	way	of	
removing	inherent	instability	by	enlarging	the	class	of	functions	in	which	the	solutions	are	sought.	As	
shown	 there,	 exceptionally	 in	 inviscid	 fluid,	 multivaluedness	 of	 the	 velocity	 field	 does	 not	 cause	
unbounded	 stresses	 since	 the	 viscosity	 is	 zero.	 In	 this	 section	 we	 will	 elaborate	 a	 formalism	 of	
derivation	of	the	modified	model	using	the	principle	of	virtual	work.	
Let	us	define	a	postinstability	state	of	a	fluid	as	following	
v(r2 ) ≠ v(r1), if r2 = r1 		 	 	 	 	 	 	 	 (1)	
	where	v	is	the	velocity,	and	r	is	the	position	vector	of	a	point	in	space.	
This	means	that	two	different	particles	with	different	velocities	can	appear	at	the	same	point	of	space	
without	causing	unbounded	stresses.	Actually	this	is	an	idealization	of	the	condition					
v(r2 ) ≠ v(r1) if	 r2 → r1 		 	 	 	 	 	 	 (2)	
that	takes	place	in	turbulent	motion.	It	is	not	a	coincidence	that	the	same	condition	(2)	is	observed	in	
the	course	of	Hadamard’s	instability	of	tangential	jump	of	velocity	that	was	analyzed	and	discussed	in	
[3].	In	addition	to	that,	the	multivaluedness	(1)		can	be	imposed	by	boundary	conditions	with	sharp	
angles	or	cones	as	a	result	of	inviscid	fluid	slip	at	the	boundary.		
Let	us	express	the	condition	(1)	in	terms	of	variations	of	virtual	velocities	 v̂ 	
δv̂ ≠ 0 at δr = 0 	 				 	 	 	 	 	 	 	 (3)	
and	compare	it	with	the	condition	
δv̂ = 0 at δr = 0 	 	 	 	 	 	 	 	 	 (4)	 	
The	 last	condition	states	 that	 if	 the	position	of	a	point	of	 the	 fluid	 is	 fixed,	 the	 fluid	velocity	at	 this	
point	 is	also	 fixed,	and	 that	defines	a	 singlevalued	 function	 v(r) .	 In	 this	 context,	 the	condition	 (3)	
states	that	at	a	fixed	point	r	the	fluid	velocity	can	have	many	different	values	 v1, v2, ...vn ,	and	that	
defines	a	n-valued	function		
v(r,ξ), ξ =1,2,...n, vi = v(r,ξi )       (5)  

In	general,	the	maltivaluedness	parameters	 ξ are	non-necessarily	discrete	numbers:	they	can	form	a	
continuum	as	well	in	a	close	interval,	for	instance	
0 ≤ ξ ≤1 	 	 	 	 	 	 	 	 	 	 (6)	
For	derivation	of	 the	governing	equation	of	a	continuum,	we	will	start	with	 the	principle	of	virtual	
work	
(ρa

V
∫ −F) ⋅ δv̂dV = 0

	 	 	 	 	 	 	 	 	 (7)
	

	 	 	 	 	 	 	
	

where	 V	 is	 an	 arbitrary	 volume	 in	 space	 occupied	 by	 the	medium,	 v̂ is	 a	 virtual	 velocity,	 a	 is	 the	
acceleration,	and	ρ is	the	density.	
For	 a	 continuum	with	 a	 singlevalued	 velocity	 field,	 the	 condition	 (4)	 is	 true.	We	will	 express	 it	 in	
terms	of	the	velocity	tensor-	gradient	
δ∇v̂ = 0, 	 	 	 	 	 	 	 	 	 (8)	 	
Let	 us	 now	multiply	 the	 equality	 (8)	 by	 a	 Lagrange	multiplier	 represented	 by	 an	 arbitrary	 tensor	
(T )T 	of	the	same	rank	and	of	dimensionality	of	stress	
	 (T )T ⋅ ⋅δ∇v̂ = 0 	 	 	 	 	 	 	 	 	 (9)	

where	 (T )T denotes	the	transpose	of	T.	
Taking	into	account	the	identity	
∇⋅[(A)T ⋅r]= r ⋅∇ ⋅ (A)T + (A)T ⋅ ⋅(∇r)T 	 	 	 	 	 	 (10)	
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where	A	and	r	are	arbitrary	tensor	and	vector,	and	the	Gauss	theorem	
	 ∇⋅rdV = r

Σ
∫

V
∫ dS 	 	 	 	 	 	 	 	 (11)	 	

then	 integrating	 the	constraint	 (9)	over	 the	volume	V,	 and	adding	 term	by	 term	to	 the	equality	 (7)	
one	obtains	

						
(ρa - F

V
∫ −∇⋅T ) ⋅ δv̂dV + (F

Σ
∫ −T ⋅n) ⋅ δv̂dσ = 0

		 	 	 	 	 (12)			
	

	 	
	

whence	because	of	independence	of	variations	δv̂ 		
ρa =∇⋅ (devT − pE)+F

	 	 	 	 	 	 	 	 (13)	
(devT − pE) ⋅n = FS 	 	 	 	 	 	 	 	

	Here	Σ is	 the	surface	bounding	the	volume	V,	n	 is	 the	unit	normal	 to	this	surface,	andF,FS are	the	
volume	and	surface	external	forces,	and	E	is	the	unit	tensor.	
Eqs.	(13)	present	the	governing	equations	of	a	classical	continuum	with	the	corresponding	boundary	
conditions.	In	our	setting,	the	stress	tensor	T	plays	the	role	of	a	reaction	to	the	kinematical	constraint	
(8).	 In	 other	 words,	 the	 requirement	 of	 a	 singlevaluedness	 of	 the	 velocity	 field	 is	 equivalent	 to	
existence	of	the	stress	tensor.	
Let	us	now	derive	the	governing	equations	for	an	incompressible	inviscid	fluid	as	a	particular	case	of	
Eqs.	 (13).	 It	 turns	 out	 that	 this	 is	 not	 as	 trivial	 as	 it	 seems.	 First	 decompose	 the	 velocity	 tensor-
gradient	as	well	as	the	stress	tensor	into	spherical	and	deviatoric	parts	

∇v̂ = 1
3
(∇⋅ v̂)E + dev(∇v̂) 	 	 	 	 	 	 	 (14)	

T = −1
3
pE + dev(∇v̂) 	 	 	 	 	 	 	 	 (15)	 	

	 	 	 											 	 	 	 	 	
where	p	is	the	spherical	part	of	the	tensor	T	(pressure).	 	
Then	the	equality	(9)	can	be	also	decomposed	
pδ(∇⋅ v̂) = 0 	 	 	 	 	 	 	 	 (16)	
dev(T )T ⋅ ⋅δ(dev∇v̂) = 0 	 	 	 	 	 	 (17)	
	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
and	after	similar	transformations,	one	arrived	at	the	governing	equations	equivalent	to	Eqs.	(13)	
	 	 	 	
ρa =∇⋅ (−p)+F 	 	 	 	 	 	 	 (18)	

	 −pn = F
Σ
	 	 	 	 	 	 	 (19)	 	 	

Since	in	inviscid	fluid,	by	definition,	the	tangential	stresses	are	zero	
		devT = 0 											 	 	 	 	 	 (20)	 	 	 	
one	can	substitute	Eq.	(20)	into	Eqs.	(18)	and	(19)	and	arrive	at	the	Euler’s	equations	
ρa =∇⋅ (−p)+F 	 	 	 	 	 	 	 (21)	
−pn = F

Σ 	 	 	 	 	 	 	 	 (22)	 	
However,	these	equations	are	incomplete!	Indeed,	if	one	turns	to	the	equality	(17),	it	becomes	clear	
that	Eq.	 (20)	open	up	a	possibility	of	multivaluedness	of	 the	deviatoric	components	of	 the	velocity	
field	
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δ(dev∇v̂) ≠ 0 	 	 	 	 	 	 	 	 	 (23)	
At	the	same	time,	the	divergency	of	velocity	remains	singlevalued	since		 	 																	
δ(∇⋅ v̂) = 0 if p ≠ 0 	 	 	 	 	 	 	 	 (24)	
It	should	be	noticed	that	the	equality	(17)	actually	represents	the	principle	of	release	of	constraints:	
each	 constraint	 suppresses	 a	 certain	 degree	 of	 freedom,	 and	 if	 this	 constraint	 is	 removed,	 the	
corresponding	degree	of	 freedom	should	be	 released.	 In	our	case	 the	constraint	 is	 the	existence	of	
non-zero	 tangential	 stresses,	 and	 the	 suppressed	 degree	 of	 freedom	 is	 the	maltivaluedness	 of	 the	
deviatoric	 components	 of	 the	 velocity	 field;	 hence	 as	 soon	 as	 the	 tangential	 stresses	 vanish,	 the	
multivaluedness	reappears.		
The	 same	 result	 has	 been	 obtained	 in	 our	 previous	 publication	 [3]	 based	 upon	 requirement	 that	
stresses	in	a	continuum	must	be	bounded.		
Actually	incompleteness	of	the	Euler’s	equations	explains	their	inherent	instability.	
	4.	Enlarged	Euler’s	equations,	(EE	equations).	
The	result	formulated	above	was	interpreted	in	[3]	as	following:	an	inviscid	fluid	can	be	considered	
as	 a	 result	 of	 superposition	 of	n	 physically	 identical,	 but	 kinematically	 different	 continua,	 Fig.1.	 In	
case	 of	 incompressible	 fluid	 there	 are	 n+1	 governing	 equations	 with	 respect	 to	 n+1	 independent	
variables			
∂vi
∂t

+ vi∇vi =
1
ρ
(−∇p+F), i =1,2,...n 	 	 	 	 	 	 (25)	 	

coupled	via	the	mass	conservation	equation	

∇⋅ vi
i=1

n

∑ = 0 	 	 	 	 	 	 	 	 	 (26)	

Introducing	the	velocity	 v 	of	the	“center	of	inertia”	of	the	n	particles	superimposed	at	the	same	point	
of	 space	 (an	 analog	 of	 the	 classical	 velocity),	 and	 the	 fluctuations	 with	 respect	 to	 the	 “center	 of	
inertia”	 vi ,i =1,2,...n ,	one	obtains	the	following	decomposition	

vi = v+ vi 	 				 v = 1
n

vi
i=1

n

∑ 	 	 	 	 	 	 	 	 (27)	

Obviously	

vi
i=1

n

∑ = 0 	 	 	 	 	 	 	 	 	 	 (28)	

Exploring	these	decompositions,	Eqs.	(25)	and	(26)	can	be	presented	in	the	form	

∂v
∂t
+ v∇v+ vi

i=1

n

∑ ∇vi =
1
ρ
(−∇p+F) 	 	 	 	 	 	 	 (29)	 	

∂vi
∂t

+ v∇vi + vi∇v − vi
i=1

n

∑ ∇vi = 0, i =1,2,...n 	 	 	 	 	 (30)	 	

∇⋅ v
i=1

n

∑ = 0 	 	 	 	 	 	 	 	 	 	 (31)	 	

	 	 	 	 	 	 	 	 	 	 	
Eqs.(29),(30),and	(31)	form	a	closed	system	of	n+1	vector	and	one	scalar	equations	with	respect	to	
n+1	vector	and	one	scalar	unknowns.		
In	this	paper	as	in	[3],	we	will	concentrate	on	a	doublevalued	model.	
The	doublevalued	version	of	this	system,	with	the	notations	
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v = v ± v, v = 1
2
(v1 + v2 ), v = ±

1
2
(v1 - v2) 		 	 	 	 (32)	

	 	
is	simplified	to	the	following	

∂v
∂t
+ v∇v+ v∇v = 1

ρ
(−∇p+F) 	 	 	 	 	 	 	 (33)	 	

∂v
∂t
+ v∇v+ v∇v = 0 	 	 	 	 	 	 	 	 (34)	 	 	

∇⋅ v = 0 	 	 	 	 	 	 	 	 	 (35)	 	
	 	 	 	 	 	 	 	 	 																		 	 	
It	 slightly	 resembles	 the	 Reynolds	 equations,	 but	 there	 are	 several	 fundamental	 differences	
emphasized	 in	 [3]:	 Firstly	 the	 EE	 systems	 are	 closed,	 i.e.	 the	 number	 of	 unknowns	 is	 equal	 to	 the	
number	 of	 equations,	 and	 that	 eliminates	 the	 closure	 problem.	 Secondly	 the	 EE	 systems	 do	 not	
include	 the	 continuity	 equation	 for	 fluctuations.	These	differences	 follow	 from	 the	 fact	 that	
the	Reynolds	velocity	 field,	 strictly	 speaking,	 is	 single-valued	 since	 the	 stress	 tensor	of	 the	Navier-
Stokes	equations	does	not	have	zero	components.	In	other	words,	the	condition	(1)	for	the	Reynolds	
velocity	field	should	be	replaced	by	a	weaker	condition	(2)	

	 	
Figure	1.	Superposition	of	two	different	particles	at	the	same	point	of	space.		
	
5.	Integral	form	of	the	governing	equations.	
In	this	paper,	as	in	[3],	we	will	deal	only	with	the	doublevalued	model	since	all	the	specific	features	of	
the	 EE	 equations	 become	more	 transparent.	 In	 order	 to	 study	 propagation	 of	 tangential	 jumps	 of	
velocities	in	inviscid	model	of	turbulence,	we	will	formulate	the	governing	equations	(33)-(35)	in	the	
integral	form.	For	that	purpose	we	will	apply	the	laws	of	conservation	of	momentum	and	energy	first	
to	each	half-particle	separately	

( ρvi
V
∫ dV )t=t2 − ( ρvi

V
∫ dV )t=t1 = − ( pn

S
∫

t1

t2

∫ dS)dt, i =1,2.
	 	 	 	 (36)	 	

	

( ρ
vi ⋅ vi
2V

∫ dV )t=t2 − ( ρ
vi ⋅ vi
2V

∫ dV )t=t1 = − ( ρvi
S
∫

t1

t2

∫ ⋅ndS)dt, i =1,2. 	 	 	 (37)	 	

	

	

	

Vi 

Vj 
V
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After	returning	to	mean	and	fluctuation	velocities,	these	equations	take	the	form,	respectively	

( ρv
V
∫ dV )t=t2 − ( ρv

V
∫ dV )t=t1 = − ( pn

S
∫

t1

t2

∫ dS)dt,
	 	 	 	 	 (38)	

( ρv
V
∫ dV )t=t2 − ( ρv

V
∫ dV )t=t1 = 0 	 	 	 	 	 	 	 (39)	

and	

( ρ
v ⋅ v+ v ⋅ v

2V
∫ dV )t=t2 − ( ρ

v ⋅ v+ v ⋅ v
2V

∫ dV )t=t1 = − ( ρv
S
∫

t1

t2

∫ ⋅ndS)dt, 	 	 (40)	

( ρ
V
∫ v ⋅ vdV )t=t2 − ( ρv ⋅ vdV )t=t1 = 0

V
∫ 	 	 	 	 	 	 	 (41)	

	
	The	law	of	conservation	of	mass	can	be	written	in	the	following	form	

( ρdV
V
∫ )t=t2 − ( ρ

V
∫ dV )t=t1 = 0 	 	 	 	 	 	 	 (42)	 	

Here	V	is	an	arbitrary	volume	of	fluid	bounded	by	a	surface	S,	n	 is	a	unit	vector	of	the	normal	to	S,	
t1,t2 are	two	arbitrary	instants	of	time.	
Since	we	are	dealing	with	an	incompressible	inviscid	fluid,	the	thermal	energy	is	not	included	in	the	
conservations	 laws.	 It	 should	be	noticed	 that	pressure	and	density	 remain	singlevalued	and	 that	 is	
why	they	are	referred	to	the	whole	particle	rather	than	to	each	half-particle.	
If	all	the	variables	exist	and	they	are	differentiable	within	the	selected	volume	and	time	interval,	the	
differential	 form	 of	 the	 governing	 equations	 (33)-(35)	 can	 be	 derived	 from	 the	 conservation	 laws	
(36)-(38).	 However,	 Eqs.	 (33)-(35)	 cannot	 be	 applied	 to	 describe	 formation	 and	 propagation	 of	
velocity	jumps	that	can	occur	in	an	inviscid	fluid,	and	that	is	the	reason	to	turn	to	the	conservation	
laws	(36)-(38).	We	will	be	interested	in	behavior	of	tangential	jumps	of	velocities	since	only	that	type	
of	jumps	leads	to	turbulence.	In	a	singlevalued	model	represented	by	the	Euler’s	equations	tangential	
jumps	do	not	propagate:	 they	are	unstable,	 and	 their	postinstability	behavior	–	 turbulent	mixing	–	
cannot	be	described	without	additional	experiment-based	parameters	such	as	mixing	length.	We	will	
show	here	 that	 in	a	doublevalued	setting,	 the	 surface	of	 a	 tangential	 jump	splits	 into	 two	separate	
surfaces	 that	 move	 away	 from	 each	 other	 remaining	 stable	 and	 propagating	 a	 turbulent	 mixing	
region.		
6.	Conditions	of	dynamical	compatibility.	
We	start	with	the	law	of	mass	conservation	and	apply	Eq.	(42)	to	the	surface	S	at	its	
initial	position	prior	to	splitting	in	two	surfaces	moving	in	opposite	directions	
ρ(λ1 +λ2 ) = 0 at t = 0 	 	 	 	 	 	 	 	 (43)	 	

Here	λ1 and λ2 are	the	speeds	of	propagations	of	surfaces	of	discontinuities	S1	and	S2	
originated	from	the	split	of	the	surface	S.	Since	the	momentum	and	energy	conservation	laws	were	
applied	 to	 each	 half-particle	 separately,	 we	 can	 adopt	 classical	 derivation	 of	 the	 conditions	 of	
dynamical	 compatibility	at	 the	surface	of	 the	velocity	 jump	 following	 from	Eqs.	 (36)	and	(37).	 	We	
start	with	Eq.	(36)	and	apply	it	to	the	surface	S1	moving	upward	with	a	speed	λ1 	

	ρλ1(v1
+ − v1

− ) = −( p1
+ − p1

− )n1 	 	 	 	 	 	 	 	 (44)	

	ρλ1(v2
+ − v2

− ) = −( p2
+ − p2

− )n1 	 	 	 	 	 	 	 	 (45)	
Here	the	superscripts	denote	the	values	of	the	parameters	from	both	sides	of	the	surface	of	jump,	and	
subscripts	denote	the	number	of	a	half-particle.	
In	the	same	way,	Eq.	(37)	leads	to	the	following	
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ρλ1(
v+1 ⋅ v1

+

2
−
v1
− ⋅ v1

−

2
) = ( p1

+v1
+ − p−1v

−
1) ⋅n1 	 	 	 	 	 	 (46)	

ρλ1(
v+2 ⋅ v

+
2

2
−
v-2 ⋅ v

−
2

2
) = ( p+2v

+
2 − p

−
2v

−
2 ) ⋅n1 	 	 	 	 	 	 (47)	

Eqs.	(44)-(47)	can	be	expressed	via	the	mean/fluctuations	velocities	
ρλ1(v

+ − v− ) = −( p+ − p− )n1 	 	 	 	 	 	 	 	 (48)	

ρλ1( v
+ − v− ) = 0 	 	 	 	 	 	 	 	 (49)	

ρλ1(
v+ ⋅ v+ + v+ ⋅ v+

2
−
v− ⋅ v− + v− ⋅ v−

2
) = ( p+v+ − p−v−) ⋅n1 	 	 	 	 (50)	

ρλ1(v
+ ⋅ v− − v+ ⋅ v− ) = 0 	 	 	 	 	 	 	 	 (51)	

	
It	worth	noticing	that	the	first	four	conditions	hold	at	the	moving	surfaces,	respectively,	while	the	last	
condition	is	referred	to	the	original	surface	prior	to	its	split	in	two.	
7.Mixing.	
7.1.General	remarks.	
Mixing	 is	 one	 of	 the	 specific	 phenomena	 generated	 by	 turbulence.	 The	 classical	 approach	 to	 this	
phenomenon	 requires	 the	 introduction	 of	 additional	 experimentally	 based	 variables	 such	 as	
Prandtle’s	mixing	length.	In	order	to	clarify	the	“machinery”	of	mixing	in	a	doublevalued	EE	model	of	
incompressible	 inviscid	 fluid,	we	will	 start	with	a	qualitative	description	of	mixing	on	a	 local	 level	
that	involves	contact	of	two	particle	exchanging	with	their	half-particles,	Fig.2.		
	
	
	

	
	
Before	the	contact.	
	
	
	
After	the	contact.	
   
 
 
 
 
 Figure	 2.	 	 Mixing	 as	 a	 transition	 to	
doublevaluedness.	

	
As	shown	in	the	Fig	2,	before	the	contact,	two	particles	move	toward	each	other	with	the	velocities	
±v .	Their	half-particles	move	with	the	same	velocities,	so	the	velocity	field	is	singlevalued.	After	the	
contact,	the	particles	exchange	their	half’s	in	such	a	way	that	each	half-particle	continues	the	motion	
with	 the	same	velocity,	but	within	 the	 “body”	of	another	particle.	Therefore	 the	mixing	propagates	
with	 the	 speed	±v in	 both	 directions.	 However	 the	 velocity	 field	 becomes	 doublevalued:	 each	
particle	 has	 two	 half-particles	 moving	 in	 opposite	 directions	 with	 the	 same	 speed,	 and	 in	 our	
terminology,	these	are	the	fluctuation	velocities.	Obviously	the	mean	velocity	of	each	particle	in	the	
mixing	zone	is	zero.	The	qualitative	picture	is	similar	
in	 case	 of	 an	 oblique	 contact	when	 the	 particles	 have	 different	 velocities	 before	mixing:	 the	mean	
velocity	could	be	non-zero,	and	vertical	fluctuation	may	occur	in	addition	to	the	horizontal	ones.		
It	should	be	emphasized	that	the	doublevalued	model	permits	reflection	of	the	fluid	from	a	rigid	wall.	
Indeed,	the	boundary	conditions	can	be	formulated	as	following	
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v ⋅n = 0, ( v1 + v2 ) ⋅n = 0, i.e. v1 ⋅n = − v2 ⋅n 	 	 	 	 	 (52)	
where	n	is	the	unit	normal	to	the	rigid	wall.	As	follows	from	Fig.	2,	the	particle	approaching	the	wall	
is	“mixing”	with	a	virtual	particle	symmetric	with	respect	to	the	wall	and	moving	to	the	same	point	of	
contact.	
There	are,	at	 least,	 two	different	sources	of	mixing:	 instability	of	a	 tangential	 jump	of	velocity,	and	
sharp	 angles	 streamlined	 at	 the	 boundaries.	 In	 this	 paper,	 we	 will	 concentrate	 only	 on	 the	 first	
source.	
7.2.	Mixing	triggered	by	a	tangential	velocity	jump.	

Let us consider a surface of a tangential jump of velocity (v2 − v1) ⋅ τ  in a horizontal unidirectional flow 
of an inviscid incompressible fluid assuming that this surface is not penetrated by the mean velocity v  of 
the double-valued velocity field i.e. 

v ⋅n = vn = 0           (53)  

where n and τ  are the normal and tangent to the surface of discontinuity, respectively,. Fig.3 

Figure 3. . Mixing triggered by a tangential velocity jump. 

In classical (singlevatued) model, the surface S is unstable, and the mixing followed this instability is 
described with help of additional parameters (such as mixing length) found from experiments. As will be 
shown below, in the doublevalued setting, the surface S splits in two half’s that remain stable and move in 
opposite directions outlining the mixing zone.  

We will start out analysis with application of dynamical compatibility conditions at the surface of 
discontinuity S (see Eqs. (44)-(51). 

First	 we	 turn	 to	 Eq.	 (43)	 that	 follows	 from	 the	 law	 of	 mass	 conservation	 at	 the	 surface	 of	
discontinuity.	Since	the	speed	of	propagation	of	a	tangential	jump	of	velocity	is	equal	to	the	normal	
component	of	the	velocity	of	the	fluid,	i.e.	
λ = vn 	 	 	 	 	 	 	 	 	 	 (54)	
	Eq.(43)	takes	the	form	
		 v+n + v

−
n = 0 at t = 0 	 	 	 	 	 	 	 (55)	 	

where	 vn
+ , v−n 	are	normal	components	of	velocity	fluctuations	applied	to	different	half’s	of	the	surface	

S	 .Thus	the	surface	S	 splits	 in	 two	half’s	 that	propagate	 in	opposite	directions	with	 the	same	
characteristic	 speeds	± vn 	that	 do	 not	 depend	 upon	 the	 values	 of	 the	 parameters	 transferred.	 The	
same	 characteristic	 speeds	 were	 obtained	 in	 [3,11]	 for	 propagation	 of	 weak	 discontinuities	 of	
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tangential	component	of	velocities,	or	jumps	of	vortices.	Such	a	coincidence	takes	place	when	strong	
discontinuities	do	not	form	shock	waves.		
It	 should	 be	 noticed	 that	 similar	 split	 of	 the	 surface	 of	 a	 normal	 velocity	 jump	 can	 occur	 in	
compressible	singlevalued	models	when	the	conditions	of	dynamical	compatibility	do	not	hold;	in	this	
case	the	separated	surfaces	can	move	with	different	speeds,	and	the	moment	of	the	split	is	associated	
with	an	explosion.	Although	in	our	case	the	mechanism	of	the	separation	is	different,	but	as	follows	
from	 Eq.	 (55),	 the	 speed	 of	 propagation	 is	 characterized	 by	 a	 normal	 jump.	 The	 same	 jump	
characterizes	the	normal	component	of	the	fluctuations.		
As	 noticed	 above,	 the	 conditions	 of	 dynamical	 compatibility	 (39)-(42)	 that	 were	 derived	 for	 a	
doublevalued	model	are	valid	for	t>0	and

	cannot	be	applied	to	the	very	first	moment	of	contact	between	the	two	flows	of	fluid	because	at	this	
moment	 the	 surface	 S	 is	 still	 singlevalued,	 and	 its	 behavior	 is	 governed	 by	 the	 Euler	 equation.	 It	
should	 be	 recalled	 that	 	 the	 doublevalued	 EE	model	must	 be	 applied	only	 when	 the	 singlevalued	
model	being	applied	to	the	same	problem	fails.	If	this	failure	results	from	instability	(in	the	class	of	
singlevalued	functions),	the	information	about	the	onset	of	this	instability	must	be	included	into	Eqs.	
(43)-(51).	That	is	why	we	have	to	turn	to	the	classical	solution	of	the	tangential	jump	of	velocity	that	
was	discussed	in	[3].	As	shown	there,	the	solution	of	the	dynamics	of	the	surface	S	in	Fig.	3	subject	to	
initial	conditions	

U *0 =
1
λ0
e−λ0Si , at t = 0 	 	 	 	 	 (56)

	

	
	contains	the	fastest	growing	term	

U =
1
λ0
eλ0|Im "λ |Δt sinλ0S + ..., λ0 →∞ 	 	 	 	 (57)

	 	 	

where	U	is	the	vertical	displacement	of	S,	and	the	characteristic	roots	are	

!λ =
1
2
[(v2 + v1)± i(v2 - v1)]⋅ τ 	 	 	 	 	 	 	 (58)

	
Therefore	

| ∂U
∂t
|max=

1
2
(v2 − v1) ⋅ τ at t = 0

	 	 	 	 	 	 (59)	 	
and	 	 	 	 	 	

	λ1 = −λ2 =
1
2
(v2 − v1) ⋅ τ at t = 0 		 	 	 	 	 	 (60)	

Thus	Eq.	(60)	defines	the	characteristic	speed	of	separation	of	the	surface	of	the	tangential	 jump	of	
velocity	at	t=0.	
The	 next	 dynamical	 compatibility	 conditions	 must	 be	 applied	 to	 each	 of	 the	 moving	 surfaces	
separately.	We	will	start	with	Eqs.	(44)	and	(45)	that	express	conservation	of	momentum.	Projecting	
Eq.(44)	on	the	normal	n1 to	the	moving	upward	surface	 S1 ,	with	reference	to	Eqs.	(52)	and	(53),	one	
obtains	
1
2
ρ[ vn1

2 ]1 = −[ p]1 	 	 	 	 	 	 	 	 	 (61)	

Similar	condition	holds	for	another	moving	downward	surface	
1
2
ρ[ vn2

2 ]2 = −[ p]2 	 	 	 	 	 	 	 	 	 (62)	

Here	 the	 square	brackets	denotes	a	 jump	of	 the	 corresponding	variable.	As	 follows	 from	Eqs.	 (61)	
and	(62),	the	pressure	has	the	negative	change	when	it	crosses	over	each	moving	half	of	the	surface	S	
outward	the	mixing	zone,	i.e.	the	pressure	in	the	mixing	zone	is	lower	than	outside	of	this	zone.		
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Projections	of	Eq.	(44)	on	the	tangents	to	the	propagating	surfaces,	relates	the	tangential	jumps	of	the	
mean	and	fluctuation	components	of	the	velocity	and	the	initial	velocity	jump	on	each	moving	surface		
{(v + v) ⋅ τ}1 = v2 or v

τ1
+ v

τ1
= v2 	 	 	 	 	 	 	 (63)	 	

{(v − v) ⋅ τ}2 = v1 or v
τ2
− v

τ2
= v1 	 	 	 	 	 	 	 (64)	 	

This	equalities	demonstrate	that	the	initial	tangential	jump	of	velocity	that	leads	to	the	instability	of	
the	surface	S,	is	eliminated	by	occurrence	of	tangential	components	of	velocity	fluctuations,	and	that	
suppresses	 the	 instability	of	 the	same	motion	as	soon	as	we	move	 to	 the	doublevalued	model.	The	
stabilization	effect	of	the	fluctuations	was	discussed	in	details	in[3].		
Since	we	 consider	 inviscid	 incompressible	 fluid,	 the	 thermal	 energy	 is	not	 included,	 and	 therefore,	
the	law	of	conservation	of	energy	holds	as	soon	as	the	laws	of	mass	and	momentum	conservation	do.

	
	 	 	

	
The	dynamical	compatibility	equations	considered	above	have	not	defined	the	characteristic	speed	of	
propagation	 of	 the	 surfaces	 of	 discontinuities,	 and	 in	 order	 to	 complete	 the	 description	 of	 the	
propagation	of	an	initial	tangential	jump	of	velocity,	one	has	to	invoke	the	differential	equations	(33)-
(35).	 For	 that	 purpose,	 let	 us	 choose	 the	 system	 of	 Cartesian	 coordinates	 and	 direct	 X	 along	 the	
surface	S,	and	Y	normal	to	this	surface.	Before	projecting	Eqs.	(33)-35)	on	these	axes,	we	will	make	a	
simplifying	,	but	obvious	assumption	that	all	the	variables	do	not	depend	upon	x.	Then	we	arrive	at	a	

system	of	four	equations	with	respect	to	four	unknown		
v
τ1
, v

τ1
, vn1 , and p0 	

∂v
τ1

∂t
+ vn1

∂ v
τ1

∂y
= 0

	 	 	 	 	 	 	 	 	 (65)	

∂ v
τ1

∂t
+ vn1

∂v
τ1

∂y
= 0

	 	 	 	 	 	 	 	 	 (66)	

∂ vn1
∂t

= 0
	 	 	 	 	 	 	 	 	 															(67)	

vn1
∂ vn1
∂y

= −
1
ρ
∂p
∂y 	 	 	 	 	 	 	 	 	 (68)	

These	equations	are	defined	within	the	area	bounded	by	the	X	axis	and	the	surface					of	discontinuity	
propagating	upwards,	i.e.		
0 < y ≤ yS1 	 	 	 	 	 	 	 	 	 	 (70)	
They	are	to	be	solved	subject	to	the	following	initial/	boundary	condition			 	 	
v
τ1
+ v

τ1
= v2 at 0 < y ≤ yS1 	 	 	 	 	 	 	 (71)	

	 	 	 	 	 	 	 	 	 	 	

v
τ1
=
1
2
(v1 + v2 ) at t = 0, y = 0

	 	 	 	 	 	 	 (72)	
	 	 	 	 	

v
τ1
=
1
2
(v2 − v1) at t = 0, y = 0

	 	 	 	 	 	 	 (73)	
	 	 	 	 	 	 	 	

vn1 =
1
2
(v2 − v1) at t = 0, y = 0

	 	 	 	 	 	 	 (74)	

First	of	all,	the	pressure	p	can	be	expressed	via	 vn1 from	Eq.	(68)	



	 12	

p = p0 −ρ
vn1
2

2
	 	 	 	 	 	 	 	 	 	 (75)	

and	therefore,	Eq.	(68)	can	be	excluded	from	further	considerations.	
As	follows	from	Eq.	(67),	the	characteristic	speed	(74)	remains	constant	at	the	whole	mixing	zone,	i.e.	

vn1 =
1
2
(v2 − v1) = v0 = const. at 0 < y ≤ yS1 	 	 	 	 	 (76)	

Then	elimination	of	fluctuation	velocity	from	Eqs.	(65)	and	(66)	leads	to	a	trivial	hyperbolic	PDE	with	
respect	to	the	mean	velocity	
∂2v

τ1

∂t2
− v20

∂2v
τ1

∂t2
= 0, at 0 < y ≤ yS1 	 	 	 	 	 	 	 (77)	

By	similar	transformation,	the	same	equation	can	be	obtained	for	the	fluctuation	velocity	

	

∂2 v
τ1

∂t2
− v20

∂2 v
τ1

∂t2
= 0, at 0 < y ≤ yS1 	 	 	 	 	 	 	 (78)	

		Solutions	of	these	equations	have	the	form	of	travelling	waves	
v
τ1
= f (y − v0t) 	 	 	 	 	 	 	 	 	 (79)	

	
v
τ1
= f (y − v0t) 	 	 	 	 	 	 	 	 	 (80)

	
Here	we	consider	only	the	waves	propagating	upward,	since	the	problem	is		symmetric	with	respect	
of	X	,	and	the	lower	part	of	the	mixing	zone	(y<0)	do	not	have	to	be	treated	separately.	
The	functions	 f and f are	found	from	the	conditions	(72)	and	(73),	respectively	

f (y = v0t) =
1
2
(v1 + v2 ) 	 	 	 	 	 	 	 (81)

	

		 f (y = v0t) =
1
2
(v2 − v1) 	 	 		 	 	 	 	 (82)

	

Indeed,	as	follows	from	Eqs.	(76)	and	(67)		
∂v

τ1

∂y
= 0 at 0 < y ≤ yS1 	 	 	 	 	 	 (83)	 	 	 	

and	therefore,	with	reference	to	Eq.	(71)	
∂ v

τ1

∂y
= 0 at 0 < y ≤ yS1 	 	 	 	 	 	 	 (84)	 	 				

Thus	 the	 solution	 (77),	 (78)	 describes	 propagation	 of	 the	mixing	 zone	 upward	 with	 the	 constant	
characteristic	 speed	 (76)	 transporting	 constant	 mean	 and	 fluctuation	 components	 of	 the	 velocity	
field	(79)	and	(80)	respectively.	
Similar	solution	can	be	obtained	for	the	mixing	zone	propagating	downward.	 	 	
As follows from Eq. (75), the pressure in the whole mixing zone is constant 

p = p0 −ρ
v0
2

2
= p0 −

1
4
ρ(v2 − v1) 	 	 	 	 	 	 (85)	 	 	

but	it	is	lower	than	in	the	unperturbed	zone. 
7.3. Reflection from the boundaries. 
So far we have considered an unbounded propagation of the mixing zone. Let us now assume 
that the flow is bounded by smooth solid surfaces from above and below. We recall that the 
doublevalued model under consideration allows fluctuations to be reflected from solid 
smooth surface along the normal to this surface without loss of energy. This follows from the 
property that the divergence of fluctuation velocity is not bounded 
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 ∇⋅ v ≠ 0          (86) 
(see the comments to Eq. (52) and Fig. 2)). 
An analytical description of reflection of vertical fluctuations from the boundaries is similar 
to reflection of waves in a vibrating string from the fixed ends since the governing equations 
for both phenomena are identical, (see Eqs. (77) and (78)). The reflected fluctuations have the 
same value, but they do not transport any discontinuities any more. 
7.4. Interpretation of the solution.   
The solution looks very transparent (see Figure 4): the mixing zone propagates upward and 
downward with the constant speed equal to the half of the original velocity jump (see Eq. 
(76)); the mean velocity in the mixing zone is equal to that at the surface of contact (see Eq. 
(72)). The mean velocity field is accompanied by horizontal and vertical velocity fluctuations 
in the mixing zone: they are constant and equal to the half of the original velocity jump (see 
Eqs. (73) and (76)); in addition to that, the vertical fluctuations are reflected from the 
boundaries without loss of energy (see Eq. (52)).      

Y" V2"
"

V1"
"

X"

Y"

V$

"
"

!
vn

vn

 
 

Figure 4. Propagation of the mixing zone. 

Finally, the pressure in the mixing zone is reduced by the specific kinetic energy of vertical fluctuation (see 
Eq. (85)). 

Let us compare this solution with the classical solution given by Prandtl, [7,8]. Keeping our notations, the 
Prandtl solution is presented as 

v
τ1
=
1
2
(v1 + v2 )+

1
2
(v2 − v1)[

3
2
( y
b
)− 1
2
( y
b
)3]      (87) 
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b = 3
2
β2 (v2 − v1)t          (88) 

A formal comparison demonstrates that for large times the solution (87) for the mean velocity in the mixing 
zone becomes identical to the solution (79) if the experimentally found coefficient is the following 

β2 =
2
3

          (89) 

The rest of the parameters characterizing the mixing zone cannot be compared since Prandtl did not include 
velocity fluctuations and pressure in his model. 

Let us turn to a qualitative comparison of these solutions.  

The Prandtl model is based upon the Reynolds equations in which the physical viscosity is ignored. 
Nevertheless the parabolic type of these equations is artificially preserved by an experimentally based 
closure that includes the mixing length. That is why Prandtl could not consider the speed of propagation of 
the mixing zone as a characteristic one: he experimentally proved that this speed is constant. Despite 
several inconsistencies in the Prandtl model, it should be recognized as the first model of mixing that has 
many engineering applications. 

The governing equations of the doublevalued model proposed above are of a hyperbolic type, and 
therefore, it allows one to treat velocity jumps as strong discontinuities propagating with characteristic 
speeds. That creates a closed system of equations that does not require any experimentally based additions. 
Despite simplicity of the solution, it defines horizontal and vertical components of velocity fluctuations as 
well as the pressure in the mixing zone that the Prandtl solution did not define. However we have to 
emphasize that the solution proposed above is valid only for zero viscosity: strictly	 speaking,	 it	 can	be	
applied	only	to	superfluids	(liquid	helium,	and	some	of	Bose-Einstein	condensates).	Indeed	in	fluids	
with	non-zero	viscosity,	no	matter	how	small	it	is,	a	finite	tangential	jump	of	velocity	would	cause	an	
unbounded	 shear	 stress.	 That	 is	why	 for	 classical	 fluids	 no-slip	 condition	 at	 surfaces	 of	 tangential	
jumps	 of	 velocities	 (including	 rigid	 boundaries)	 must	 be	 enforced,	 and	 the	 doublevalued	 model	
should	 be	 applied	 only	 beyond	 the	 corresponding	 boundary	 layer	 (which	 width	 is	 inversely	
proportional	 to	 the	Raynolds	number),	while	a	connection	between	the	 laminar	motion	within	 this	
layer	and	the	turbulent	motion	beyond	it	is	to	be	implemented	by	utilizing	instability	of	the	boundary	
layer	 for	 the	 initial/boundary	 conditions	 of	 the	 turbulent	 flow	 (see	 Eqs.	 (56)-(60)).	 Therefore	 the 
comparison with experiments performed on a real fluid (that always has some viscosity) may show a 
discrepancy in the areas around tangential jumps. Nevertheless the values of idealized models are 
demonstrated by the discovery of sound and shock waves: these fundamental phenomena can exist only in 
ideal (inviscid) model of fluid since, strictly speaking, viscous models cannot have discontinuities of the 
velocity field. And this is another angle to view the difference between the proposed and the Prandtl’s 
solutions.  

7.5. Comments to logarithmic laws.  

An	explanation	of	a	sharp	difference	between	laminar	and	turbulent	velocity	profiles	of	shear	flows	
about	 an	unbounded	wall	was	 always	 a	 test	 of	 a	 theory	of	 turbulence.	 So	 far	 the	derivation	of	 the	
logarithmic	 profile	 of	 turbulent	 motions	 has	 been	 based	 upon	 experimentally	 found	 additional	
parameters	associated	with	the	mixing	length,	[7,8].	We	will	propose	here	a	qualitative	explanation	
of	this	law	in	context	of	the	propagation	of	a	mixing	zone	in	the	Prandtl’s	problem	discussed	above.	
Let	 us	 select	 horizontal	 and	 vertical	 Cartesian	 axes	 X	 and	 Y,	 respectively	 and	 consider	 a	 plane	
horizontal	 laminar	 flow	 about	 an	 unbounded	 wall,	 ignoring	 volume	 forces.	 In	 this	 case,	 any	 two	
vertical	 cross-sections	will	 be	 identical,	 and	 all	 the	 derivatives	with	 respect	 to	 x	 will	 be	 zero.	 The	
laminar	profile	of	velocity	is	given	by	the	straight	line,	[10]	



	 15	

vx =
σ0ρ

ν
y, p = p0 = const. 	 	 	 	 	 	 	 (90)	

	where	 	 vx ,ν,σ0 are	 horizontal	 velocity,	 kinematical	 viscosity,	 and	 shear	 stress	 at	 the	 wall,	
respectively.		
Assume	 now	 that	 the	 horizontal	 velocity	 increases	 such	 that	 the	 Reynolds	 number	 becomes	
supercritical,	and	therefore,	the	velocity	profile	(90)	becomes	unstable,	i.e.	any	small	disturbance	of	
the	velocities	grows	exponentially.	One	of	 the	most	visible	results	of	 this	 instability	 is	mixing.	First	
we	have	to	evaluate	the	thickness	of	the	boundary	layer	that	is	still	laminar.	Since	for	our	derivation,	
the	exact	value	of	thickness	of	this	layer	is	insignificant,	we	will	use	an	approximation,	[10],		
	

δ = αν
ρ
σ0

			 	 	 	 	 	 	 	 (91)	

Similar	 approximation	 can	 be	 applied	 for	 the	 velocity	 on	 the	 boundary	 between	 the	 laminar	 and	
turbulent	flows	

v0x = α
σ0
ρ

         (92) 

In these equations, α is a dimensionless coefficient that is insignificant for our discussion as well.  

 Next consider the area of the flow above the boundary layer 

y ≥ δ           (93) 

and assume that there is a tangential jump of velocity at the boundary between the laminar and turbulent 
flows as a result of instability. Then the mixing process will start that qualitatively is the same as that 
described in the previous sub-section, with the only difference that now the velocity v2 depends linearly 
upon y 

v2 = vx
0 +Δv +

σ0ρ

ν
y        (94) 

where Δv is the velocity jump. 

The solution of the transition to turbulence can be formally described by Eqs. (81) and (82)  

f (y = v0t) =
1
2
[v1 + v2 (y)] 	 	 	 	 	 	 	 (95)

	

	 	 	 	 	 	
	

		 f (y = v0t) =
1
2
[v2 (y)− v1] 	 	 	 	 	 	 	 (96)	

where	v2	is	given	by	Eq.	(94).	

Let	us	now	turn	to	the	measurement	problem.	Most	of	the	velocity	sensors	actually	measure	velocity	
via	the	pressure.	But	 in	presence	of	 fluctuations,	 the	pressure	 includes	not	only	the	contribution	of	
the	 mean	 velocity,	 but	 the	 fluctuations	 as	 well.	 That	 means	 that	 such	 sensors	 measure	 some	
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“effective”	mean	velocity	

v = v 2 + v2 	 	 	 	 	 	 	 	 	 (97)		

Substituting	in	Eq.	(97)	the	expressions	from	Eqs.	(95)	and	(96)	with	reference	to	Eq.	(94)	on	arrive	
at	a	profile	v (y) 	that	qualitatively	similar	to	a	 logarithmic	 law,	Fig.	5.	 It	should	be	noticed	that	 in	
many	particular	cases	the	logarithmic	law	is	replaced	by	more	accurate	power	laws	like	Darcy	law,	
[10].	

Thus	 it	 can	 be	 suggested	 that	 turbulence	 does	 not	 change	 the	 mean	 velocity	 profile:	 it	 rather	
stabilizes	 it	 by	 horizontal	 fluctuations.	 It	 is	 the	 “effective	 “mean,	 or	measured	 velocity	 profile	 that	
deviate	from	the	laminar	profile.	

It	should	be	emphasized	that	in	the	classical	models,	the	mean	and	the	“effective”	mean	velocities	are	
the	same.	 

  

Figure 5. Turbulent profiles of mean and “effective” mean velocities. 

8. Shock waves in compressible EE models. 

Let us apply governing equations in the integral form  (see Eqs. (36-42)) to the compressible EE model. For 
that purpose, select a surface S of jumps of the state variables normal to the mean velocity v  at a point A 
fixed in the fluid. Then the conservation of mass is 

ρ−v − =ρ+v + = J           (98) 
where J is density of the flow through the surface of discontinuity. 
The projections of the conservation of momentum onto the normal n to the surface S are 

p− +ρ−{(v − )2 + ( v− )2}= p+ +ρ+{(v+ )2 + ( v+ )2}                 (99) 

ρ−v − v− =ρ+v + v+          (100) 

As follows from Eq. (100) with reference to Eq. (98) 

v− = v+            (101) 
and therefore, Eq. (99)  reduces to 
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p̂− +ρ−(v − )2 = p̂+ +ρ+(v+ )2         (102) 
where 

p̂ = p+ρ v2                     (103) 
is pressure that includes the kinetic energy of fluctuations. 
Then combining Eq. (98) and Eq. (102) one obtains 

J 2 = p̂
+ − p̂−

1
ρ−
−
1
ρ+

                     (104) 

whence 

ρ̂+ > ρ̂− if p̂+ > p̂−

ρ̂+ < ρ̂− if p̂+ < p̂−
         (105) 

This means that, as in a laminar flow, in a turbulent flow density and pressure increase or 
decrease simultaneously when the flow crosses the discontinuity surface. 

Combining Eq. (105) and Eq. (98) one obtains the speeds of propagation of the shock wave 
with respect to fluid’s particles before and after the surface S 

λ− = v − = ρ+

ρ−
[ p̂]
[ρ]

        (106) 

λ+ = v + = ρ−

ρ+
[ p̂]
[ρ]

        (107)  

If [ p]→ 0, [ρ]→ 0,  then both speed of propagation tend to the characteristic speed 
(reported in [3]) 

λ =
dp
dρ

+ v2          (108) 

as in a laminar case. 
Invoking now the conservation of energy in the form 

k
k −1

p−

ρ−
+
1
2
(v − )2 = k

k −1
p+

ρ+
+
1
2
(v + )2, k = cp / cv         (109)  

and combining it with Eqs. (106), and (107), one arrives at the turbulent version of the Hugoniot adiabatic 
curve 

k
k −1

[ p
ρ
]+ ρ

−[ p̂]
ρ+[ρ]

−
ρ+[ p̂]
ρ−[ρ]

= 0                      (110) 

The contribution of the turbulent fluctuations is included into the pressure p̂   

(see Eq. (103)). 
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As in inviscid fluid, the tangential discontinuities as well as vortices do not form shock waves and 
propagate with the characteristic speed found in [3].     

9. Modified Navier-Stokes equations. 

Starting with this section, we move from Euler to Navier-Stokes equations. The rationale of 
that is the following: A	developed	turbulence	is	characterized	by	mean	and	fluctuation	velocities,	
while	 fluctuations	can	be	divided	 in	 two	classes:	small	and	 large	scale	 fluctuations.	The	small-scale	
fluctuations	( 1Re ≈ )	are	responsible	 for	dissipation	of	mechanical	energy,	and	practically	 they	do	
not	affect	the	general	picture	of	motion	since	their	amplitudes	are	small	compare	to	mean	velocities.	
The	 large-scale	 fluctuations	( ∞→Re )	are	sizable	with	 the	mean	velocities,	and	they	significantly	
contribute	to	the	motions.	These	properties	suggest	that	the	general	picture	of	turbulence	 is	better	
captured	 by	 the	 Euler	 rather	 than	 Navier-Stokes	 equation,	 and	 in	 particular,	 by	 EE	 equations,	
regardless	of	whether	the	underlying	pre-instability	 laminar	 flow	is	viscous	or	non-viscose.	The	EE	
equations	 (1-3)	 actually	 implement	 the	 approach	 described	 above.	However the EE model has the 
following limitation: it is exact only for zero viscosity 

ν = 0          (111)   

while for even an infinitesimal viscosity 

0 < ν→ 0         (112)   

the EE model can be considered only as an approximation.  

The explanation of this discontinuous dependence of the solution on the viscosity when it passes from 
positive value to zero is due to the change of the PDE from a parabolic to a hyperbolic type at the point 
(111) since at this point the highest order derivatives of the velocity vanish. But since most of the real 
fluids (except of superfluids) belong to the type (99), a viscous modification of EE equations seems useful. 
This means that a fluid flow is subdivided on three area, [10]: the first area is a laminar sub-layer that is 
characterized only by the physical viscosity; the second one is a transitional area characterized by both 
physical and turbulent viscosity; and finally, the third area is turbulent core characterized only by the 
turbulent viscosity. In our setting, the first area is described by the classical Navier-Stokes equations, the 
third area – by EE equations, and the second area is supposed to be modeled by modified Navier-Stokes 
equations that are characterized by a doublevalued velocity field, but preserve the contribution of the 
physical viscosity without violation of boundedness of stresses. The modification that combines the Navier-
Stokes and EE equations is the subject of the next sections. We will consider here both incompressible and 
compressible fluids. 

10. Semi-viscose incompressible fluid. 

a. Model derivation 

With reference to Section 4, we introduce a doublevalued velocity field 

2121 )()( xxifxvxv =≠ 	 	 	 	 	 (113)	 	 	 	
Such	 an	 idealization	means	 that	 two	 different	 particles	with	 different	 velocities	 can	 appear	 at	 the	
same	point	of	space	without	causing	any	physical	inconsistency,	and	that	is	possible	only	due	to	the	
absence	 of	 shear	 stresses,	 (this	 property	 will	 be	 verified	 later).	 Actually	 we	 arrive	 at	 two	
superimposed	 continua,	 and	 each	 of	 them	 can	 be	 described	 by	 slightly	 modified	 Navier-Stokes	
equations	(see	Fig.1).	In	case	of	incompressible	fluid	the	governing	equations	are	
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∂v1
∂t

+ v1∇v1 = ν∇⋅dev∇(v1 − v2)−
1
ρ
∇p+F 	 	 	 (114)	 	 						

	 	 	 	 	 	 	

∂v2
∂t

+ v2∇v2 = ν∇⋅dev∇(v2 − v1)−
1
ρ
∇p+F 	 	 	 (115)	 	 							

	 	 	 	 	 	

∇•(v1 + v2) = 0 	 	 	 	 	 	 	 (116)	 		
	 	 	 	 	 	 	 	 	 	
where	F	is	external	force	per	unit	mass,	and	ν is	kinematical	viscosity.	
It	should	be	emphasized	that	the	pressure	p,	the	density	 ρ as	well	as	the	divergence	of	velocity	must	
remain	single-valued	as	in	the	EE	model.	The	modified	Navier-Stokes	(MNS)	model	differs	from	the	
EE	model	by	additional	viscous	terms	that	represent	internal	friction	between	two	half-particles.	As	
will	be	shown	below,	this	 friction	does	not	affect	 the	center	of	mass	of	 the	entire	particle	and	does	
not	generate	a	shear	stress.	Indeed,	adding	up	Eqs.(114)	and	(115),	and	subtracting	them	from	one	
another	one	obtains	respectively	

	

∂v
∂t
+ v∇v+ v∇v = − 1

ρ
∇p+F

	 	 	 	 	 	 (117)																

	
∂v
∂t
+ v∇v+ v∇v = ν∇⋅dev∇v 	 	 	 	 	 														(118)	

Eq.	(116)	in	new	variables	can	be	rewritten	in	the	form	
∇•(v) = 0 	 	 	 	 	 	 	 	 			 (119)	
Thus	we	arrive	at	a	closed	system	of	two	vector	and	one	scalar	equations	with	respect	to	two	vectors,	
v, v and	one	scalar	p	unknowns.	Eq.	(117)	that	represents	dynamics	of	the	mean	velocity	is	exactly	
the	same	as	Eq.	 (33)	of	 the	EE	model:	 it	does	not	 include	viscose	 terms,	and	 therefore,	 it	 is	 free	of	
shear	 stresses.	 That	 protects	 the	model	 from	unbounded	 stresses	 at	 tangential	 jumps	of	 the	mean	
velocity,	 thereby	 justifying	 the	 introduction	 of	 the	 doublevalued	 velocity	 field.	 However	 since	 the	
mean	and	fluctuation	velocities	are	coupled,	 the	 latter	restrict	propagation	of	discontinuities	of	 the	
mean	velocities.		We	will		consider	this	effect	in	more	details	below			 		
 

b. General properties of the model.  

By general properties of the model we understand such its properties that do not depend upon initial/ 
boundary conditions explicitly. The most important property of this kind is a type (hyperbolic/parabolic) of 
the PDE under consideration. Since the type of PDE is closely associated with existence and propagation of 
discontinuities of the model’s variables, we will start with analysis the velocity field around a tangential 
jump of a mean velocity vortex. For that purpose project Eqs. (117) and (118) onto the Cartesian 
coordinates X , and Y, assuming that Y coincides with the normal to the surface of discontinuity. We will 
write these projections in terms of jumps of the first derivatives when the corresponding variable crosses 
the surface of discontinuity. Obviously in this case only the derivatives with respect to y will survive since 
the jumps of the derivatives with respect to x and z must be zero as	 follows	 from	 the	 conditions	 of	
kinematical	compatibility	at	the	surface	of	discontinuity,	

0]/[0]/[ ≠∂∂=∂∂ τifn 	 	 	 	 	 							(120)	

and	vice	versa.		
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Then	we	arrive	at	a	system	of	four	equations	with	respect	to	four	unknown			
v
τ
, v

τ
, vn , and p0 	

∂v
τ

∂t
+ vn

∂ v
τ

∂y
= 0

	 	 	 	 	 	 		(121)	

∂ v
τ

∂t
+ vn

∂v
τ

∂y
= ν

∂2 v
τ

∂y2 	 	 	 	 	 (122)	

∂ vn
∂t

= 0
	 	 	 	 		 	 	 (123)	

vn
∂ vn
∂y

= −
1
ρ
∂p
∂y 	 	 	 	 	 	 	(124)

 

			As	follows	from	Eq.	(122),			 	 	 	 	 	 	

[
∂ v

τ

∂t
]= −λ[

∂v
τ

∂y
]= 0

	 	 	 	 	(125)	

where	λ	is	the	characteristic	speed	of	propagation	of	a	discontinuity;	the	condition	(125)	protects	the	
right	side	of	Eq.(122)	from	being	unbounded.	Turning	now	to	Eq.(121),	one	observes	that		

[
∂v

τ

∂t
]= −λ[

∂v
τ

∂y
]= 0

	 	 	 	 	(126)	

Hence	

λ = 0 if [
∂v

τ

∂y
]≠ 0

	 	 	 	 	 				(127)	

Thus	 the	 incompressible	 version	 of	 the	 MNS	 model	 is	 of	 a	 hyperbolic	 type	 when	 the	 fluctuation	
velocity	are	zero,	and	of	a	parabolic	type	otherwise.	

 
	
 

11. Semi-viscose compressible fluid 

a. Model derivation. 

For	 the	 compressible	 doublevalued	 velocity	 field	 model,	 the	 MNS	 equations	 governing	 turbulent	
motions	can	be	written	as	an	extension	of	Eqs.	(93),(94)	with	the	change	of	the	continuity	equation	
(95)	
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∂v
∂t
+ v∇v+ v∇v = 1

ρ
(−∇p+F) 	 	 	 	 	 	 (160)																																																																																																						

∂ρ
∂t
+∇•(ρv) = 0, p = f (ρ,T ) 	 	 	 	 	 	 (161)														

Here	T	 is	the	temperature	that	 is	an	additional	unknown	variable.	For	the	closure	we	will	need	the	
heat	balance	equation	

ρ
di
dt
=
dp
dt
+ 2ρν S 2 		 	 	 	 	 	 	 	 				(162)	

Here	i	is	the	enthalpy	

i = JcpT 	 	 	 	 	 	 	 	 	 				(163)	

where	J	is	the	mechanical	equivalent	of	heat,	and	cp	is	the	specific	heat,	
S is	the	deviator	of	the	stress	tensor	

Sij =
∂ vi
∂x j

+
∂ v j
∂xi

at i ≠ j, Sii = 0 	 	 	 	 	 				(164)	

b.	General	properties.	
The	 MNS	 model	 of	 compressible	 fluid,	 in	 addition	 to	 the	 properties	 of	 the	 incompressible	 model	
considered	in	the	previous	section,	 is	characterized	by	a	system	of	hyperbolic	waves	that	transport	
normal	 jumps	 of	 parameters	 with	 the	 possibility	 of	 shock	 waves	 as	 in	 the	 Euler’s	 equations.	 The	
possibility	of	these	waves	exists	since	the	viscous	components	of	stresses	are	defined	by	the	deviator	
of	the	tensor	of	velocity	gradient	(see	Eqs.	(164)),	and	therefore,	the	normal	components	of	velocities	
are	 not	 affected	 by	 the	 viscosity	 directly,	 (see	 Eq.(123)).	 It	 should	 be	 noticed	 that	 an	 important	
property	 of	 the	 proposed	 model	 is	 the	 coupling	 of	 the	 governing	 equations	 of	 motion	 with	 the	
thermal	 balance.	 Indeed	 as	 suggested	 in	 [10],	 introduction	 of	 an	 additional	 intermediate	 zone	
between	a	laminar	boundary	layer	and	inviscid	turbulence	is	especially	important	for	analysis	of	heat	
transfer.	Obviously	the	doublevaluedness	of	the	velocity	field	affects	not	only	heat	transfer	processes,	
but	also	such	 fundamental	 invariants	as	speed	of	sound,[3],	as	well	as	shock	waves	characteristics.	
However,	an	analysis	of	thermal	processes	and	shock	waves	propagation	in	turbulent	flows	is	out	of	
scope	of	this	paper.			
12. Discussion and conclusion.  

The objective of this work is to prove that Newtonian mechanics is fully equipped for description of 
turbulent motions without help of experimentally obtained closures. Turbulence	 is	 one	 of	 the	 most	
fundamental	 problems	 in	 theoretical	 physics	 that	 is	 still	 unsolved.	 Although	 applicability	 of	 the	
Navier-Stokes	 equations	 as	 a	model	 for	 fluid	mechanics	 is	 not	 in	 question,	 the	 instability	 of	 their	
solutions	 for	 flows	 with	 supercritical	 Reynolds	 numbers	 raises	 a	 more	 general	 question:	 is	
Newtonian	mechanics	complete?	
The problem of turbulence (stressed later by the discovery of chaos) demonstrated that the Newton’s world 
is far more complex than those represented by classical models. It appears that the Lagrangian or 
Hamiltonian formulations do not suggest any tools for treating postinstability motions, and this is a major 
flaw of the classical approach to Newtonian mechanics. The explanation of that limitation was proposed in 
[9]: the classical formalism based upon the Newton’s laws exploits additional mathematical restrictions 
(such as space–time differentiability, and the Lipschitz conditions) that are not required by the Newton’s 
laws. The only purpose for these restrictions is to apply a powerful technique of classical mathematical 
analysis. However, in many cases such restrictions are incompatible with physical reality, and the most 
obvious case of such incompatibility is the Euler’s model of inviscid fluid in which absence of shear 
stresses is not compensated by a release of additional degrees of freedom as required by the principles of 
mechanics. This paper is concentrated on elimination of this incompatibility by introduction of non-
differentiable (multivalued) velocity field. It is started with a detailed derivation of the EE equations from 
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the principle of virtual work, followed by introduction of integral form of the governing equations, and 
analysis of propagation of velocity jumps. The theory is applied to turbulent mixing and illustrated by 
propagation of mixing zone triggered by a tangential jump of velocity. A comparison of the proposed 
solution with the Prandtl’s solution is performed and discussed. In the second part of	 this	 paper,	 the	
properties	of	extended	Euler	equations	(EE	equations)	characterized	by	a	doublevalued	velocity	field	
started	 in	 [3],	 are	generalized	 to	 the	Navier-Stokes	equations	 for	 the	 regions	of	 turbulent	motions.	
The	 modified	 Navier-Stokes	 (MNS)	 equations	 differ	 from	 the	 EE	 equations	 by	 additional	 viscous	
terms	in	the	governing	equations	of	fluctuations,	but	not	in	the	equations	for	the	mean	velocities,	and	
that	 protects	 the	MNS	model	 from	unbounded	 stresses	 since	 the	 shear	 stresses	 are	 still	 zero.	 The	
model	 does	 not	 require	 any	 closures	 since	 the	 number	 of	 equations	 is	 equal	 to	 the	 number	 of	
unknowns.		
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