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This paper is to address using what a fluctuation of a metric tensor leads to, in pre Planckian 

physics, namely 

2tt

t E
g




   . If so then, we pick the conditions for an equality, with 

a small 
ttg  , to come up with restraints initial temperature, particle count and entropy 

affected by initial degrees of freedom in early Universe cosmology.  This leads to an initial 

graviton production due to a minimum magnetic field, as established in our analysis. Which 

we relate to the inflaton as it initially would be configured and evaluated; 
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1.   Introduction . Finding  

This article starts with updating what was done in [1] , which is symbolized by, if 

the scale factor is very small,  metric variance [2,3]  
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In [4] this lead to  
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We assume  
ttg is a small perturbation and look at 
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This would put a requirement upon a very large initial temperature 
initialT and so 

then, if   
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And if we can write as given in [ 2,3]  

                       (4)

( ) ~volume initial surface area PlanckV V t A r l                             (5) 

The volume in the pre Planckian regime would be extremely small, i.e. if we are 

using the convention that Eq. (4) holds, then it argues for a very large sg
beyond 

the value of 102, as given in [5] . In any case, our boundary between the Pre 

Planckian regime and Planckian, as far as the use of Eq. (4) yields a preliminary 

value of , for a radii less than or equal to Planck Length , of non zero value, with  

                         20 3710 ( ) ~ ( ) 10
Pr l

S initial n particle count


                        (6) 

This is also assuming a 
initial initialt t Plank time     , i.e. at or smaller 

than the usual Planck time interval. 
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2.   Counter pose hypothesis, by String Theory, for Eq. (6) 

 The author is aware of the String theory minimum length and minimum time 

which is different from the usual Planck lengths, but are avoiding these, mainly 

due to a change in the assumed entropy formulae to read as the square root of the 

above results, namely  [ 6,7,8 ]  

            10 1610 ( ) ~ ( ) 10
P

String Theory
r l

S initial n particle count


                  (7) 

The above is still non zero, but it cannot be exactly posited as in the Pre Planckian 

regime of Space-time, since the minimum length may be larger than Planck 

Length, i.e. as of the sort given in [8]  

3.   Questions as to refining both Eq. (6) and Eq. (7) for more precise 

Entropy bounds  

If  from Giovannini  [9] we can write 

                                            2~ ( ) 1ttg a t                                                        (8)        

 Refining the inputs from Eq.(8) means more study as to the possibility of a non 

zero minimum scale factor [10]  , as well as the nature of   as specified by 

Giovannini [9] . We hope that this can be done as to give quantifiable estimates 

and may link the non zero initial entropy to either Loop quantum gravity 

“quantum bounce” considerations [ 11]  and/or  other models which may presage 

modification of the sort of initial singularities of the sort given in  [ 12  ]. 

Furthermore if the non zero scale factor is correct, it may give us opportunities as 

to fine tune the parameters given in [10] below.  
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Where the following is possibly linkable to minimum frequencies linked to E 

and M fields [10]  , and possibly relic Gravitons are generated if 
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This can be contrasted with looking at what happens if     [13] 
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So as talked about with [14] setting a minimum energy density given by  
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And with the following substitution of  
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Then to first order we would be looking at Eq. (12) re written as leading to 
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And if Eq. (15) holds,  
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we would have by [15] 
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Eq. (17) would be key to the entire business. i.e. using this, we would have if  
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Then  
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Then if we go to Eq. (10) we have a threshold magnetic field for the production 

of gravitons which looks like if we apply the minimum scale factor condition 

[16], that  
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i.e. we get graviton production if the last line of Eq. (20) is satisfied, which 

means that the initial value of the inflaton, in this case is crucially important. 

With that initial inflaton value determined in part by Eq. (11)  

 

4.   Conclusion: the inflaton minimum helps determine a lower bound 

for a cosmological initial production of gravitons 

The last line , of Eq. (20) helps establish a minimum magnetic field for the 

production of relic gravitons, with a magnetic field established through Eq. (10) 

and subsequently modified by Eq. (20). 

 

 This adds substance to what was brought up by Beckwith in [16] namely that we 

have a minimum scale factor of 
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But Eq. (21) and Eq. (20) interplay and also give more substances to the use of 

Eq. (19) with our guess of Eq. (18) for the determination of the initial graviton 

frequency, which has to be at least of the order of say 10^45 Hertz due to the 

fantastically small initial bubble of space time considered. 
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In doing so, we need to consider initial conditions so considered that Eq. (20) and 

Eq. (21) should be consistent with the inflaton and ‘gravity’s breath’ document 

by Corda, [17]. In addition Freeze’s statement of initial conditions for inflation, 

as given by [18] should be adhered to. It is also extremely important that the LIGO 

results, even if this is of relic gravitational waves, as seen by Abbott in [19,20,21] 

not be contravened. 

 

We conclude also with the hope that interpolating between the results of Eq. 

(19), Eq. (20) and Eq. (21) will also in time confer answers as to the initial 

evaluative conditions for gravity as given in [22] by Corda. This also may in 

time with further analysis tie in with minimum values of entropy by further 

analysis of Eq. (4) in further future analysis of this problem. 
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