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Definition 1. Let (NTR, ,#)  be a set together with two binary operations   and # . Then NTR  

is called a neutrosophic triplet ring if the following conditions are holds. 

1) (NTR, )  is a commutative neutrosophic triplet group with respect to  . 

2) (NTR,#)  is a semineutrosophic triplet monoid with respect to # . 

3) #( ) ( # ) ( # )a b c a b a c   and  ( )#a ( # ) ( # )b c b a c a    for all , ,a b c NTR . 

Example 1. Consider 
10Z .  Let 

10{0,2,4,6,8}NTR Z  .  Define two operations   and #  on 

NTR  by the following way respectively: 

1. (mod10)a b a b    for all , ba NTR . 

2. # max( , )a b a b  for all , ba NTR . 

  Then clearly (NT , )R   is a commutative neutrosophic triplet group with respect to 

multiplication modulo 10 , as NTR is well defined and associative. Also 

(0,0,0),(2,6,8),(4,6,4),(6,6,6)  and (8,6,2) are neutrosophic triplets in NTR  with respect to 

multiplication modulo 10 . Clearly a b b a    for all ,a b NTR .  

   Now ( ,#)R  is a semineutrosophic triplet monoid  with respect to # . Since 

max(0,0) 0,max(0,2) 2,max(2,4) 4,max(4,6) 6     and max(6,8) 8 , that is for every 

a NTR , there exist at least one ( )neut a  in NTR .  

Finally  #  is distributive over  . For instance 

2#(4 6) (2#4) (2#6)     

2#(4 6) (2#4) (2#6)    

2#4 max(2,4) max(2,6)   

max(2,4) 4 6   

4 4 , and so on. 



Thus for all , b,ca NTR ,  #  is distributive over   . Therefore ( , ,#)NTR   is a neutrosophic 

triplet ring. 

Definition. Let (NT , ,#)R   be a neutrosophic triplet ring and let 0 a NTR  . If there exist a 

non-zero neutrosophic triplet b NTR  such that # 0b a  . Then b  is called left neutrosophic 

triplet zero divisors of a . Similarly a neutrosophic triplet b NTR  is called a right neutrosophic 

triplet zero divisor if # 0a b  . 

A neutrosophic triplet zero divisor is one which is left neutrosophic triplet zero divisor as well as 

right neutrosophic triplet zero divisor. 

Theorem. Let NTR  be a neutrosophic triplet ring and ,a b NTR . If # # 0b a a b  , then 

1. ( )# ( ) neut(b)#neut(a) 0neut a neut b    and 

2. ( )# ( ) anti(b)#anti(a) 0anti a anti b   . 

Proof 1. Let NTR  be a neutrosophic triplet ring and ,a b NTR  such that b is a neutrosophic 

triplet zero divisor of a . Then # # 0a b b a  . Now consider 

( )# ( ) ( # )neut a neut b neut a b  

Or 

(0)neut , since # 0a b  . 

Or 

0 , as (0) 0neut  . 

Also 

(b)#neut(a) neut(b#a)neut   

neut(0) , as b#a 0  

(0) 0neut  . 

Hence ( )# ( ) neut(b)#neut(a) 0neut a neut b   . 

2. The proof is similar to 1. 

Definition.  Let (𝑁𝑇𝑅,∗,#) be a neutrosophic triplet ring and let S be a subset of 𝑁𝑇𝑅. Then S  

is called a neutrosophic triplet subring of NTR if (𝑆,∗,#) is a neutrosphic triplet ring. 



Definition. Let (𝑁𝑇𝑅,∗,#) be a neutrosophic triplet ring and I  is a subset of NTR . Then I  is 

called a neutrosophic triplet ideal of NTR  if the following conditions are satisfied. 

1. (𝐼,∗)is a neutrosophic triplet subgroup of (𝑁𝑇𝑅, #), and 

2. For all x I  and r NTR , #x r I  and #r x I . 

Theorem. Every neutrosophic triplet ideal is trivially a neutrosophic triplet subring but the 

converse is not true in general. 

Remark. Let (𝑁𝑇𝑅,∗, #) is a neutrosophic triplet ring and let a NTR . Then the following are 

true. 

1. ( )neut a  and ( )anti a  is not unique in NTR  with respect to  . 

2. ( )neut a  and ( )anti a  is not unique in NTR  with respect to # . 

Theorem. Let (𝑁𝑇𝑅,∗, #) is a neutrosophic triplet ring . Then for any element a  in a 

neutrosophic triplet ring NTR , one has 0# #0 0a a  . 

Definition. Let NTR  is a neutrosophic triplet ring and let a NTR . Then a is called nilpotent 

neutrosophic triplet if 0na  , for some positive integer 1n  . 

Theorem. Let NTR  is a neutrosophic triplet ring and let a NTR . If a is a nilpotent 

neutrosophic triplet. Then the following are true. 

1. ( ( )) 0nneut a   and 

2. ( ( )) 0nanti a  . 

Proof: 1:  

Suppose that a  is a nilpotent neutrosophic triplet in a neutrosophic triplet ring NTR . Then by 

definition 0na   for some positive integer 1n  . Now we consider Left hand side of 1: 

Since                                       1( ( )) ( ( ))#( ( ))n nneut a neut a neut a   

    1( # )nneut a a   

( )nneut a  

                       (0)neut , by definition. 

0 . 

This completes the proof. 



2: The proof of 2 is similar to 1. 

Integral Neutrosophic triplet domain 

Definition: Let (𝑁𝑇𝑅,∗, #) be a neutrosophic triplet ring. Then NTR is called a commutative 

neutrosophic triplet ring if # #a b b a  for all ,a b NTR . 

Definition: A commutative neutrosophic triplet ring NTR  is called integral neutrosophic triplet 

domain if for all ,a b NTR , # 0a b   implies 0a   or 0b  . 

Theorem: Let NTR  be an integral neutrosophic triplet domain. Then the following  are true. 

1. ( )# ( ) 0neut a neut b   implies ( ) 0neut a   or ( ) 0neut b   and 

2. anti( )#anti( ) 0a b   implies anti( ) 0a   or anti( ) 0b   for all ,a b NTR . 

Proof: 1. 

Suppose that NTR is an integral neutrosophic triplet domain. Then for all ,a b NTR , # 0a b   

implies 0a   or 0b  . Consider ( )# ( )neut a neut b . Then 

( )# ( ) ( # )neut a neut b neut a b  

( # )neut a b  

                    (0)neut , as # 0a b  . 

( )# ( ) 0neut a neut b   

Which implies that either ( ) 0neut a   or ( ) 0neut b  . 

2:  The proof is similar to 1. 

Proposition: A commutative neutrosophic triplet ring 𝑁𝑇𝐹 is an integral neutrosophic triplet 

domain if and only if whenever 𝑎, 𝑏,𝑐 ∈ 𝑁𝑇𝑅 such that 𝑎 # 𝑏 = 𝑎 # c and 𝑎 ≠ 0, then 𝑏 = 𝑐. 

Proof: Suppose that NTR is an integral neutrosophic triplet domain and let 𝑎, 𝑏, 𝑐 ∈ 𝑁𝑇𝑅. Since 

𝑎 ≠ 0 and 𝑎 ∈ 𝑁𝑇𝑅. 𝑎 is not zero divisor then 𝑎 is cancellable i.e., 

𝑎 # 𝑏 = 𝑎 # c ⇒ 𝑎 # 𝑏 − 𝑎 # c = 0 ⇒ 𝑎 # (𝑏 − 𝑐) = 0 

Since 𝑎 ≠ 0, 𝑏 − 𝑐 = 0 ⇒ 𝑏 = 𝑐. 

⇐ Let 𝑎 ∈ 𝑁𝑇𝑅, such that 𝑎 ≠ 0, then by hypothesis 𝑎 is cancellable. 𝑎 is not a zero divisor. 

NTR is an integral neutrosophic triplet domain. 



Neutrosophic Triplet Ring Homomorphism. 

Definition: Let (𝑁𝑇𝑅1,∗,#) and (𝑁𝑇𝑅2,⨁, ⨂) be  two neutrosophic triplet rings. Let 

1 2:f NTR NTR  be a mapping. Then f is called neutrosophic triplet ring homomorphism if the 

following conditions are true. 

1. 𝑓(𝑎 ∗ 𝑏) = 𝑓(𝑎)⨁𝑓(𝑏). 

2. 𝑓(𝑎#𝑏) = 𝑓(𝑎)⨂𝑓(𝑏), for all 𝑎, 𝑏 ∈ 𝑁𝑇𝑅1. 

3. 𝑓(𝑛𝑒𝑢𝑡(𝑎)) = 𝑛𝑒𝑢𝑡(𝑓(𝑎)). 

4. 𝑓(𝑎𝑛𝑡𝑖(𝑎)) = 𝑎𝑛𝑡𝑖(𝑓(𝑎)). 

 

Neutrosophic Triplet Field 

 

Definition. Let (𝑁𝑇𝑅,∗,#) be a neutrosophic triplet set together with two binary operations ∗ 

and #. Then (𝑁𝑇𝑅,∗,#) is called neutrosophic triplet field if the following conditions are holds. 

1. (𝑁𝑇𝑅,∗) is a commutative neutrosophic triplet group with respect to  . 

2. (𝑁𝑇𝑅,#) is a neutrosophic triplet group with respect to # . 

3.  # ( # ) ( # )a b c a b a c    and ( )# ( # ) ( # )b c a b a c a    for all a,b,c NTF . 

Example. Let X  be a set and ( )P X  be the power set of X . Then ( ( ), , )P X    is a 

neutrosophic triplet field if (A) Aneut   and ( )anti A A  for all ( )A P X . 

Proposition. A neutrosophic triplet field 𝑁𝑇𝐹 has no neutrosophic triplet zero divisors. 

Proof. Suppose that a neutrosophic triplet field 𝑁𝑇𝐹 has neutrosophic triplet zero divisor say 

0 ,a b . Then by definition of neutrosophic triplet zero divisor, # 0a b  . This implies either 

0a   or 0b   which clearly contradicts our supposition. Hence this shows that a neutrosophic 

triplet field 𝑁𝑇𝐹 has no zero divisors. 

Proposition. A neutrosophic triplet field 𝑁𝑇𝐹 has always ( ) 'anti a s  for all a NTF . 

Proof. The proof is straightforward. 

Theorem. If 𝑁𝑇𝐹 is a field and 𝑎 ∈ 𝑁𝑇𝐹. Then #0 0a  . 

Proof. Since ( #0) ( #0) #(0 0)a a a   , by commutative law. 

Also 0 0 0  . Thus ( #0) (a#0) a#0a    which implies #0 0a  . 



Theorem. Every finite integral neutrosophic triplet domain 𝑁𝑇𝐷 is a neutrosophic triplet field 

𝑁𝑇𝐹. 

Proof. Let 𝑁𝑇𝐷 be a finite integral neutrosophic triplet domain. 𝑁𝑇𝐷 is commutative ring with 

unity. To show that 𝐷 is a neutrosophic triplet field 𝑁𝑇𝐹, it is enough to show that every non-

zero element of 𝑁𝑇𝐷 is a unit. Let the elements of 𝑁𝑇𝐷 be labelled as  

𝑟0 (= 0𝑁𝑇𝐷 ) and 𝑟1 (= 1𝑁𝑇𝐷), 𝑟2 , , , , , 𝑟𝑛. 

Let 𝑟𝑖 ∈ 𝑁𝑇𝐷 such that 𝑟𝑖 ≠ 0𝑁𝑇𝐷 = 𝑟0 . Thus consider the elements  

𝑟𝑖#𝑟0 , 𝑟𝑖#𝑟1, , , , , , , , 𝑟𝑖#𝑟𝑛 ∈ 𝑁𝑇𝐷 and are distinct (∵ 𝑖𝑓 𝑟𝑖#𝑟𝑠 = 𝑟𝑖#𝑟𝑘 ⇒ 𝑟𝑠 = 𝑟𝑘 ). 

Now since 1𝑁𝑇𝐷 ∈ 𝑁𝑇𝐷, therefore there must be some 𝑗 such that 𝑟𝑖#𝑟𝑗 = 𝑟𝑗#𝑟𝑖 ⇒ 𝑟𝑗 is inverse 

of 𝑟𝑖 i.e. 𝑟𝑖 is invertible or 𝑟𝑖 is a unit. Thus 𝑁𝑇𝐷 is a neutrosophic triplet field NTF. 

Theorem. Every neurosophic triplet field 𝑁𝑇𝐹 is an integral neutrosophic triplet domain 𝑁𝑇𝐷. 

Proof. Let 𝑁𝑇𝐹 be a neutrosophic triplet field. Then 𝑁𝑇𝐹 is a commutative neutrosophic triplet 

ring with unity. To show that 𝑁𝑇𝐹 is an integral neutrosophic triplet domain 𝑁𝑇𝐷, it is enough 

to show that every non-zero element is not a zero-divisor.  

Now suppose that 𝑎, 𝑏 ∈ 𝑁𝑇𝐹 such that 𝑎 ≠ 0 𝑎𝑛𝑑 𝑎#𝑏 = 0. Consider 𝑎#𝑏 = 0, since 𝑎 ≠ 0 ∈

𝑁𝑇𝐹. 𝑎#𝑏 = 𝑎#0 (∵  𝑎#0 = 0) ⇒ 𝑎#𝑏 − 𝑎#0 = 0 ⇒ 𝑎#(𝑏 − 0) = 0 ⇒ 𝑎 ≠ 0,𝑏 − 0 = 0 ⇒

 𝑏 = 0. 𝑎 is not a zero-divisor. 

Theorem. If 𝑓: 𝑁𝑇𝑅1 → 𝑁𝑇𝑅2 is a neutrosophic triplet ring homomorphism then 

(1) If 𝑆 is a neutrosophic triplet subring of 𝑁𝑇𝑅1, then 𝑓(𝑆) is a neutrosophic triplet subring of 

𝑁𝑇𝑅2.  

(2) If 𝑈 is a neutrosophic triplet ring of 𝑁𝑇𝑅2, then 𝑓−1(𝑈) is a neutrosophic triplet subring of 

𝑁𝑇𝑅1. 

(3) If 𝐼 is a neutrosophic triplet ideal of 𝑁𝑇𝑅2, then 𝑓−1(𝐼) is a neutrosophic triplet ideal of 

𝑁𝑇𝑅1. 

(4) If 𝑓 is onto, then 𝑓(𝐼) is a neutrosophic triplet ideal of 𝑁𝑇𝑅2. 

(𝐼 𝑖𝑠 𝑛𝑒𝑢𝑡𝑟𝑜𝑠𝑜𝑝ℎ𝑖𝑐 𝑡𝑟𝑖𝑝𝑙𝑒𝑡 𝑖𝑑𝑒𝑎𝑙 𝑜𝑓 𝑁𝑇𝑅1). 

Proof. Given that 𝑓: 𝑁𝑇𝑅1 → 𝑁𝑇𝑅2 is a neutrosophic triplet ring homomorphism. 

(1) If 𝑆 is a neutrosophic triplet subring of 𝑁𝑇𝑅1, we need to show that 𝑓(𝑆) is a neutrosophic 

triplet subring of 𝑁𝑇𝑅2. To do this, 𝑓(𝑆) ≠ ∅, (∵ 𝑆 𝑖𝑠 𝑎 𝑛𝑒𝑢𝑡𝑟𝑜𝑠𝑜𝑝ℎ𝑖𝑐 𝑡𝑟𝑖𝑝𝑙𝑒𝑡 𝑠𝑢𝑏𝑟𝑖𝑛𝑔) and 



𝑓(0𝑁𝑇𝑅1 ) = 0𝑆. Also let 𝑎, 𝑏 ∈ 𝑓(𝑆) ⇒ ∃ 𝑎,́ 𝑏́ ∈ 𝑆 such that 𝑓(𝑎́) = 𝑎 𝑎𝑛𝑑 𝑓(𝑏́) = 𝑏. Since 𝑆 is 

neutrosophic triplet subring so for 𝑎,́ 𝑏́ ∈ 𝑆 ⇒ 𝑎́ − 𝑏́ ∈ 𝑆 𝑎𝑛𝑑 𝑎́#𝑏́ ∈ 𝑆. 

Consider 𝑓(𝑎́ − 𝑏́) = 𝑓 (𝑎́ ∗ (−𝑏́)) = 𝑓(𝑎́)⨁𝑓(−𝑏́) = 𝑓(𝑎́) − 𝑓(𝑏́), (∵ 𝑓(−𝑏́) = −𝑓(𝑏́)), 

i.e., 𝑓(𝑎́ − 𝑏́) = 𝑓(𝑎́) − 𝑓(𝑏́) = 𝑎 − 𝑏 ∈ 𝑓(𝑆). 

Also 𝑓(𝑎́#𝑏́) = 𝑓(𝑎́)⨂𝑓(𝑏́) = 𝑎⨂𝑏 ∈ 𝑓(𝑆). 

𝑓(𝑆) is a neutrosophic triplet subring of 𝑁𝑇𝑅2. 

(2) If 𝑈 is a neutrosophic triplet subring of 𝑁𝑇𝑅2, then 𝑓−1(𝑈) is a neutrosophic triplet subring 

of 𝑁𝑇𝑅1, so 𝑓−1(𝑈) = {𝑟 ∈ 𝑈│𝑟 ∈ 𝑁𝑇𝑅1 & 𝑓(𝑟) ∈ 𝑈}. Clearly 𝑓−1(𝑈) ≠ ∅, ∵ 𝑈 is a 

neutrosophic triplet subring. Let 𝑎, 𝑏 ∈ 𝑓−1 (𝑈) ⇒ 𝑓(𝑎), 𝑓(𝑏) ∈ 𝑈. Since 𝑈 is a neutrosophic 

triplet subring of 𝑁𝑇𝑅2 ⇒ 𝑓(𝑎) − 𝑓(𝑏) ∈ 𝑈 𝑎𝑛𝑑 𝑓(𝑎)#𝑓(𝑏) ∈ 𝑈. 

Now 𝑓(𝑎) − 𝑓(𝑏) = 𝑓(𝑎 − 𝑏) ∈ 𝑈 ⇒ 𝑎 − 𝑏 ∈ 𝑓−1 (𝑈).  

And 𝑓(𝑎)#𝑓(𝑏) = 𝑓(𝑎⨂𝑏) ∈ 𝑈 ⇒ 𝑎⨂𝑏 ∈ 𝑓−1 (𝑈). 

𝑓−1(𝑈) is a neutrosophic triplet subring of 𝑁𝑇𝑅1.   

(3) If 𝐼 is an ideal of 𝑁𝑇𝑅2, we need to show that 𝑓−1 (𝐼) is an ideal of 𝑁𝑇𝑅1. Since 𝑓−1 (𝐼) ≠ ∅, 

∵ 𝐼 is an ideal of 𝑁𝑇𝑅2. Also let 𝑎, 𝑏 ∈ 𝑓−1 (𝐼) ⇒ 𝑓(𝑎), 𝑓(𝑏) ∈ 𝐼. Since 𝐼 is an ideal of 𝑁𝑇𝑅2. 

𝑓(𝑎) − 𝑓(𝑏) ∈ 𝐼 𝑎𝑛𝑑 𝑓(𝑎)#𝑓(𝑏) ∈ 𝐼. 

Now consider, 

𝑓(𝑎) − 𝑓(𝑏) = 𝑓(𝑎 − 𝑏) ∈ 𝐼 ⇒ 𝑎 − 𝑏 ∈ 𝑓−1 (𝐼)  

and 

 𝑓(𝑎)#𝑓(𝑏) = 𝑓(𝑎⨂𝑏) ∈ 𝐼 ⇒ 𝑎⨂𝑏 ∈ 𝑓−1(𝐼). 

Let 𝑓(𝑟) ∈ 𝑁𝑇𝑅2 and 𝑎 ∈ 𝑓−1(𝐼) ⇒ 𝑓(𝑎) ∈ 𝐼. 𝑓(𝑟) ∈ 𝑁𝑇𝑅2 and since 𝐼 is an ideal of 𝑁𝑇𝑅2.  

𝑓(𝑎)#𝑓(𝑟) ∈ 𝐼 𝑎𝑛𝑑 𝑓(𝑟)#𝑓(𝑎) ∈ 𝐼, 

𝑓(𝑎⨂𝑟) ∈ 𝐼 𝑎𝑛𝑑 𝑓(𝑟⨂𝑎) ∈ 𝐼, 

(𝑎⨂𝑟) ∈ 𝑓−1(𝐼) 𝑎𝑛𝑑 (𝑟⨂𝑎) ∈ 𝑓−1(𝐼). 

Hence 𝑓−1(𝐼) is an ideal of 𝑁𝑇𝑅1. 



(4) If 𝑓 is onto, then 𝑓(𝐼) is an ideal of 𝑁𝑇𝑅2, where 𝐼 is an ideal of 𝑁𝑇𝑅1. Since 𝑓(𝐼) ≠ ∅. Let 

𝑎, 𝑏 ∈ 𝑓(𝐼) ⇒ ∃ 𝑎́, 𝑏́ ∈ 𝐼 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑓(𝑎́) = 𝑎 𝑎𝑛𝑑 𝑓(𝑏́) = 𝑏. Now since 𝐼 is an ideal of 𝑁𝑇𝑅1, 

so for 𝑎́, 𝑏́ ∈ 𝐼 ⇒ 𝑎́ − 𝑏́ ∈ 𝐼. Consider, 

𝑎 − 𝑏 = 𝑓(𝑎́) − 𝑓(𝑏́) = 𝑓(𝑎́ − 𝑏́) ∈ 𝑓(𝐼), 

𝑎 − 𝑏 ∈ 𝑓(𝐼). 

And let 𝑎 ∈ 𝑓(𝐼) and let 𝑡 ∈ 𝑁𝑇𝑅2 ⇒ ∃ 𝑎́ ∈ 𝐼 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑓(𝑎́) = 𝑎, also 𝑓 is onto ⇒ for 𝑡 ∈

𝑁𝑇𝑅2 ∃ 𝑟 ∈ 𝑁𝑇𝑅1 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑓(𝑟) = 𝑡. 

Since 𝐼 is an ideal of 𝑁𝑇𝑅2, so 𝑎́#𝑟 𝑎𝑛𝑑 𝑟#𝑎́ ∈ 𝐼. Now 

𝑡#𝑎 = 𝑓(𝑟)⨂𝑓(𝑎́) = 𝑓(𝑟⨂𝑎́) ∈ 𝑓(𝐼), 𝑡#𝑎 ∈ 𝑓(𝐼). Similarly 𝑎#𝑡 ∈ 𝑓(𝐼). Hence 𝑓(𝐼) is an ideal 

of 𝑁𝑇𝑅2. 

 

 

 


