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Definition 1. Let (NTR,*,#) be a set together with two binary operations = and #. Then NTR
is called a neutrosophic triplet ring if the following conditions are holds.

1) (NTR,*) is a commutative neutrosophic triplet group with respect to .
2) (NTR,#) is a semineutrosophic triplet monoid with respect to # .

3) a#(b=*c)=(a#b)*(a#c)and (b=*c)#a=(b#a)=(c#a) for all a,b,ce NTR.

Example 1. Consider Z,,. Let NTR={0,2,4,6,8} = Z,,. Define two operations * and # on
NTR by the following way respectively:

1. a*b=axb(mod10) for all a,be NTR.
2. a#tb=max(a,b) for all a,be NTR.

Then clearly (NTR,*) is a commutative neutrosophic triplet group with respect to
multiplication modulo 10, as NTR is well defined and associative. Also
(0,0,0),(2,6,8),(4,6,4),(6,6,6) and (8,6,2) are neutrosophic triplets in NTR with respect to
multiplication modulo 10. Clearly a*b=b=*a for all a,be NTR.

Now (R,#) is a semineutrosophic triplet monoid with respect to # . Since

max(0,0) =0, max(0,2) = 2,max(2,4) = 4,max(4,6) =6 and max(6,8) =8, that is for every
a e NTR, there exist at least one neut(a) in NTR.

Finally # is distributive over *. For instance
2#(4%6) = (2#4) = (2#6)
2#(4x6) = (2#4) x (2#6)
2#4 = max(2,4) x max(2, 6)
max(2,4) =4x6

4=4 and so on.



Thus for all a,b,ce NTR, # is distributive over =.Therefore (NTR,*#) is a neutrosophic
triplet ring.

Definition. Let (NTR,*#) be a neutrosophic triplet ring and let 0= a < NTR. If there exist a

non-zero neutrosophic triplet b e NTR such that b#a=0. Then b is called left neutrosophic
triplet zero divisors of a. Similarly a neutrosophic triplet b e NTR is called a right neutrosophic
triplet zero divisor if a#b=0.

A neutrosophic triplet zero divisor is one which is left neutrosophic triplet zero divisor as well as
right neutrosophic triplet zero divisor.

Theorem. Let NTR be a neutrosophic triplet ring and a,b e NTR . If b#a=a#b=0, then

1. neut(a)#neut(b) = neut(b)#neut(a) =0 and
2. anti(a)#anti(b) =anti(b)#anti(a) =0.

Proof 1. Let NTR be a neutrosophic triplet ring and a,b e NTR such that b is a neutrosophic
triplet zero divisor of a. Then a#b=b#a=0. Now consider

neut(a)#neut(b) = neut(a#b)

Or
=neut(0), since a#b=0.
Or
=0, as neut(0) =0.
Also

neut(b) #neut(a) = neut(b#a)
=neut(0) , as b#a=0
neut(0) =0.
Hence neut(a)#neut(b) = neut(b)#neut(a) =0.
2. The proof is similar to 1.

Definition. Let (NTR,*,#) be a neutrosophic triplet ring and let S be a subset of NTR. Then S
is called a neutrosophic triplet subring of NTR if (S,*,#) is a neutrosphic triplet ring.



Definition. Let (NTR,*,#) be a neutrosophic triplet ring and | is a subset of NTR . Then | is
called a neutrosophic triplet ideal of NTR if the following conditions are satisfied.

1. (I,%)is a neutrosophic triplet subgroup of (NTR, #), and
2. Forall xel and reNTR, x#rel and r#xel.

Theorem. Every neutrosophic triplet ideal is trivially a neutrosophic triplet subring but the
converse is not true in general.

Remark. Let (NTR,*, #) is a neutrosophic triplet ring and let a € NTR. Then the following are
true.

1. neut(a) and anti(a) is not unique in NTR with respect to =.
2. neut(a) and anti(a) is not unique in NTR with respect to #.

Theorem. Let (NTR,*,#) is a neutrosophic triplet ring . Then for any element a in a
neutrosophic triplet ring NTR, one has O#a=a#0=0.

Definition. Let NTR is a neutrosophic triplet ring and let a € NTR. Then ais called nilpotent
neutrosophic triplet if a" =0, for some positive integer n>1.

Theorem. Let NTR is a neutrosophic triplet ring and let a € NTR. If ais a nilpotent
neutrosophic triplet. Then the following are true.

1. (neut(a))" =0 and
2. (anti(a))" =0.

Proof: 1:

Suppose that a is a nilpotent neutrosophic triplet in a neutrosophic triplet ring NTR . Then by
definition a" =0 for some positive integer n>1. Now we consider Left hand side of 1:

Since (neut(a))" = (neut(a)) #(neut(a))""
=neut(a#a"™)
= neut(a")
=neut(0) , by definition.
- 0.

This completes the proof.



2: The proof of 2 is similar to 1.

Integral Neutrosophic triplet domain

Definition: Let (NTR,x, #) be a neutrosophic triplet ring. Then NTRis called a commutative
neutrosophic triplet ring if a#b="b#a for all a,be NTR.

Definition: A commutative neutrosophic triplet ring NTR is called integral neutrosophic triplet
domain if for all a,be NTR, a#b=0 implies a=0o0r b=0.

Theorem: Let NTR be an integral neutrosophic triplet domain. Then the following are true.

1. neut(a)#neut(b) =0 implies neut(a) =0 or neut(b) =0 and
2. anti(a)#anti(b) =0 implies anti(a) =0 or anti(b) =0 for all a,be NTR.

Proof: 1.

Suppose that NTR is an integral neutrosophic triplet domain. Then for all a,be NTR, a#b=0
implies a=0 or b=0. Consider neut(a)#neut(b). Then

neut(a)#neut(b) = neut(a#b)
=neut(a#b)
=neut(0), as a#b=0.
neut(a)#neut(b) =0
Which implies that either neut(a) =0 or neut(b)=0.

2: The proof is similar to 1.

Proposition: A commutative neutrosophic triplet ring NTF is an integral neutrosophic triplet
domain if and only if whenever a,b,c € NTR such that a#b = a#cand a # 0,then b = c.

Proof: Suppose that NTR is an integral neutrosophic triplet domain and let a, b,c € NTR. Since
a #0and a € NTR. ais not zero divisor then a is cancellable i.e.,

atb =a#c>a#tb—attc=0=>a#(b—-¢c)=0
Sincea#+0,b—c=0=>b=c.

& Let a € NTR, such that a # 0, then by hypothesis a is cancellable. a is not a zero divisor.
NTR is an integral neutrosophic triplet domain.



Neutrosophic Triplet Ring Homomorphism.

Definition: Let (NTR,,*,#) and (NTR,,®, ®) be two neutrosophic triplet rings. Let
f : NTR, »> NTR, be a mapping. Then f is called neutrosophic triplet ring homomorphism if the

following conditions are true.

. flaxb) = f(a)®f(b).
. f(a#b) = f(a)®f (b), for all a,b € NTR,.

) f(neut(a)) = neut(f(a)).
. f(anti(a)) = anti(f(a)).

A WD e

Neutrosophic Triplet Field

Definition. Let (NTR,x,#) be a neutrosophic triplet set together with two binary operations
and #. Then (NTR,*,#) is called neutrosophic triplet field if the following conditions are holds.

1. (NTR,x)is acommutative neutrosophic triplet group with respect to = .
2. (NTR,#) is a neutrosophic triplet group with respect to #.

3. a#(b*c)=(a#b)=*(at#c) and (b *c)#a=(b#a)=*(c#a) for all a,b,ce NTF.

Example. Let X be a set and P(X) be the power set of X. Then (P(X),u,n) is a
neutrosophic triplet field if neut(A)=A and anti(A)=A for all AeP(X).

Proposition. A neutrosophic triplet field NTF has no neutrosophic triplet zero divisors.

Proof. Suppose that a neutrosophic triplet field NTF has neutrosophic triplet zero divisor say
O0=#a,b. Then by definition of neutrosophic triplet zero divisor, a#b =0. This implies either
a=0 or b=0 which clearly contradicts our supposition. Hence this shows that a neutrosophic
triplet field NTF has no zero divisors.

Proposition. A neutrosophic triplet field NTF has always anti(a)'s for all a € NTF .
Proof. The proof is straightforward.
Theorem. If NTF is afield and a € NTF. Then a#0=0.

Proof. Since (a#0)*(a#0)=a#(0+*0), by commutative law.

Also 0x0=0. Thus (a#0)*(a#0) =a#0 which implies a#0=0.



Theorem. Every finite integral neutrosophic triplet domain NTD is a neutrosophic triplet field
NTF.

Proof. Let NTD be a finite integral neutrosophic triplet domain. NTD is commutative ring with
unity. To show that D is a neutrosophic triplet field NTF, it is enough to show that every non-
zero element of NTD is a unit. Let the elements of NTD be labelled as

1o(=Oyrp) and 7. (= 1yrp), 3000 s T
Let r, € NTD such that r; # Oyp = 1,. Thus consider the elements
ri#tn, ri#n,,,,,,,, ri#n, € NTDand are distinct (- if ri#fr, =ri#n,=>r=r,).

Now since 1y., € NTD, therefore there must be some j such that r;#r; = r;#r; = r; is inverse
of r;i.e. r; is invertible orr;is aunit. Thus NTD is a neutrosophic triplet field NTF.

Theorem. Every neurosophic triplet field NTF is an integral neutrosophic triplet domain NTD.

Proof. Let NTF be a neutrosophic triplet field. Then NTF is a commutative neutrosophic triplet
ring with unity. To show that NTF is an integral neutrosophic triplet domain NTD, it is enough
to show that every non-zero element is not a zero-divisor.

Now suppose that a,b € NTF such that a # 0 and a#b = 0. Consider a#b = 0, since a # 0 €
NTF.a#b=a#0 (- a#0=0)=>a#b—a#0=0=2a#(b—-0)=0=2a#0,b—-0=0>
b = 0. a is not a zero-divisor.

Theorem. If f: NTR, = NTR, is a neutrosophic triplet ring homomorphism then

(1) If S is a neutrosophic triplet subring of NTR,, then £(S) is a neutrosophic triplet subring of
NTR,.

(2) If U is a neutrosophic triplet ring of NTR,, then f~1(U) is a neutrosophic triplet subring of
NTR,.

(3) If I is a neutrosophic triplet ideal of NTR,, then f~1(I) is a neutrosophic triplet ideal of
NTR,.

(4) If f is onto, then f(I) is a neutrosophic triplet ideal of NTR,.
(I is neutrosophic triplet ideal of NTR,).

Proof. Given that f:NTR, —» NTR, is a neutrosophic triplet ring homomorphism.

(1) If S is a neutrosophic triplet subring of NTR,, we need to show that £(S) is a neutrosophic
triplet subring of NTR,. To do this, f(S) # @, (S is a neutrosophic triplet subring) and



f(Oyrr) =0g.AlsO et a,b € f(S) = 34,5 € Ssuch that £(d) = a and f(b) = b. Since S is
neutrosophic triplet subring so for d,b € S = d — b € S and a#b € S.

Consider f(d — b) = f (d+ (b)) = F(@Df(~b) = f(@ — f(B), (~ f(~b) = —f(5))
ie., fad—b)=f@—f(b)=a—-bef(s).

Also f(d#b) = f(@)®f(b) = a®b € f(S).

£(S) is aneutrosophic triplet subring of NTR,.

(2) If U is a neutrosophic triplet subring of NTR,, then f~*(U) is a neutrosophic triplet subring
of NTR,,50 f(U) = {r € U|r € NTR, & f(r) € U}.Clearly f~'(U) @, Uisa
neutrosophic triplet subring. Let a,b € f~1(U) = f(a), f(b) € U. Since U is a neutrosophic
triplet subring of NTR, = f(a) — f(b) € U and f(a)#f(b) € U.

Now f(a) — f(b) = f(a—b) EU = a—b € fL(U).
And f(a)#f(b) = f(a®b) € U = a®b € f~1(V).
f~1(U) is a neutrosophic triplet subring of NTR,.

(3) If I is an ideal of NTR,, we need to show that f~*(I)is an ideal of NTR;. Since f~*(I) # @,
~ 1'is an ideal of NTR,. Also let a,b € f~1(I) = f(a), f(b) € I.Since I is an ideal of NTR,.

f(a) — f(b) €I and f(a)#f(b) € I.
Now consider,

fla)—f(b)=f(a—-b)el=>a—-bef ()
and

F(Q#f(B) = f(a®b) €1 = a®b € f1(I).
Let f(r) e NTR,and a € f (1) = f(a) €1. f(r) € NTR, and since I is an ideal of NTR,.
f@#f(r) €l and f(r)#f(a) €1,
f(a®r) €1 and f(rQa) €1,
(a®r) € f7H(D) and (r®a) € f~(I).

Hence f (1) is an ideal of NTR,.



(4) If f is onto, then f(I) is an ideal of NTR,, where I is an ideal of NTR;. Since f(I) # @. Let
a,b € f(I) = 3d,b €1 such that f(d) = a and f(b) = b. Now since I is an ideal of NTR,,
sofor d,b €I = d — b € I. Consider,

a—b=f(d)—-f(b) =f(d—b)ef),
a—be f().

And let a € f(I)and let t € NTR, = 3 d € I such that f(a) = a, also f is onto = for t €
NTR, 3r € NTR, such that f(r) = t.

Since I is an ideal of NTR,, so d#r and r#a € 1. Now

tha = f(Nf(a) = f(r@®a) € f(I),t#a € f(I).Similarly a#t € f(I).Hence f(I)is an ideal
of NTR,.



