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Abstract: In this paper, similar to the extension from intuitionistic fuzzy numbers (IFNs) to
neutrosophic numbers (NNs), we propose the normal neutrosophic numbers (NNNs) based on the
normal intuitionistic fuzzy numbers (NIFNs) to handle the incompleteness, indeterminacy and
inconsistency of the evaluation information. In addition, because Heronian mean (HM) operators can
consider capture the correlations of the aggregated arguments, we further extend the HM operator to
deal with the NNNs, and propose some new HM operators and apply them to solve the multiple
attribute group decision making (MAGDM) problems. Firstly, we briefly introduce the definition, the
operational laws, the properties, the score function, and the accuracy function of the NNNs. Secondly,
some Heronian mean (HM) operators are introduced, such as generalized Heronian mean (GHM)
operator, generalized weighted Heronian mean (GWHM) operator, improved generalized weighted
Heronian mean (IGWHM) operator, generalized geometric Heronian mean (GGHM) operator,
improved generalized geometric Heronian mean (IGGHM) operator, and improved generalized
geometric weighted Heronian mean (IGGWHM) operator. Moreover, we propose the normal
neutrosophic number improved generalized weighted Heronian mean (NNNIGWHM) operator and
normal neutrosophic number improved generalized geometric weighted Heronian mean
(NNNIGGWHM) operator, and discuss their properties and some special cases. Furthermore, we
propose two multiple attribute group decision making methods respectively based on the NNNIGWHM
and NNNIGGWHM operators. Finally, we give an illustrative example to demonstrate the practicality
and effectiveness of the two methods.

Keywords: Multiple attribute decision making; Heronian mean; Normal fuzzy number; Normal
neutrosophic numbers; Normal neutrosophic number Heronian mean operator.

1. Introduction

Multiple attribute decision making (MADM) or Multiple attribute group decision making
(MAGDM) have the wide applications in many fields such as economy, politics, management, and so
on. Because the evaluation information usually has the properties of incompleteness, indeterminacy
and inconsistency in real decision making, it’s not suitable to express the evaluation values by the real
numbers in same situations. Compared to the real numbers, fuzzy numbers can be more appropriate to
express these evaluation values. Zadeh [1] firstly proposed the fuzzy set (FS) theory which only has a
membership function to process the fuzzy information. Base on this, Atanassov [2] further proposed
the intuitionistic fuzzy set (IFS) which has the non-membership function (or can be called
falsity-membership) and the membership function (or can be called truth-membership). So the most
obvious difference between IFS and FS is that whether it has the non-membership function. Obviously,
IFS can process the incomplete information in multiple attribute decision making or the multiple
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attribute group decision making (MAGDM), but it cannot process the indeterminate information and
inconsistent information. The reason is that the hesitation degree (or can be called indeterminacy
-membership) has been neglected. So, Smarandache [3] added an independent indeterminacy
-membership function to IFS and further proposed the neutrosophic set (NS). In other words, the
neutrosophic set (NS) is made up of truth-membership, falsity-membership and
indeterminacy-membership. We can find IFS is the special case of NS in which the three parts are
completely independent. NS has attracted more and more attention. Wang et al. [4, 5] proposed a single
valued neutrosophic set (SVNS) and further proposed the interval neutrosophic set (INS) in which the
truth-membership, indeterminacy-membership, and false-membership were expressed by interval
numbers. In addition, the normal distribution, which widely existed in the natural phenomena or social
phenomena, has been widely applied in many fields. To this day, the research about the normal
distribution is limited. Yang and Ko [6] firstly proposed the normal fuzzy numbers (NFNs) which was
used to describe the normal distribution phenomena. Wang and Li [7] further proposed the normal
intuitionistic fuzzy numbers (NIFNs), and their corresponding operations, the score function, the
comparative method and so on. But neither NS nor INS considers the normal distribution. So similar to
the extension from IFS to NS, it is very necessary to combine the normal distribution with the NS and
to define a new concept which can describe this type of information i.e., we can give the definition of
the normal neutrosophic set (INS) and the relative theorems in this paper.

The information aggregation operators have attracted more and more attention[8-21], and they
have become a hot research topic. Heronian mean (HM) operator is an important aggregation operator
which can be used to capture the correlations of the aggregated arguments. Beliakov [8] firstly proved
that Heronian mean was an aggregation operator. It is a pity that Beliakov didn’t do further researches
the HM operator. Based on this, Skora [9, 10] further proposed the generalized Heronian means(GHM)
operator, and discussed the generalized arithmetic Heronian mean (GAHM)operator and generalized
geometric Heronian mean(GGHM) operator. Yu and Wu [11] further proposed generalized
interval-valued intuitionistic fuzzy Heronian mean (GIVIFHM) operator and generalized
interval-valued intuitionistic fuzzy weighted Heronian mean (GIVIFWHM) operator, which is an
extension from crisp numbers to interval intuitionistic fuzzy numbers. Yu [12] proposed some
intuitionistic fuzzy aggregation operators based on HM, including the intuitionistic fuzzy geometric
Heronian mean (IFGHM) operator and the intuitionistic fuzzy geometric weighed Heronian mean
(IFGWHM) operator. At the same time, Yu [12] further discussed the relative theorems and found that
IFGWHM operator has not reducibility and idempotency. Obviously, there is not the research on the
HM operators for the normal neutrosophic numbers. Liu et al. [20] proposed some intuitionistic
uncertain linguistic Heronian mean operators and applied them to multiple attribute group decision
making, and developed the decision-making method based on these operators. Chen and Liu [21]
proposed the intuitionistic trapezoidal fuzzy general Heronian OWA operator, and the multi-attribute
decision-making approach based on this operator.

Normal neutrosophic number (NNN) is produced by combining the normal fuzzy number and the
neutrosophic number, so it is a generalization of FS, IFS, NS, NFN, and so on, and it not only can
handle incompleteness, indeterminacy and inconsistency of evaluation information but also can handle
the information of normal distribution. Obviously, it can provide an easier way to express the uncertain
information. In addition, Heronian mean (HM) operator can capture the correlations of the aggregated
arguments. However, the traditional HM operator can only process the crisp number and not NNNs, So,
it is very necessary to extend HM operator to process the information with NNNs. In this paper, we



will propose some normal neutrosophic number Heronian mean (NNNHM) operators, including the
normal neutrosophic number improved generalized weighted Heronian mean (NNNIGWHM) operator
and the normal neutrosophic number improved generalized geometric weighted Heronian mean
(NNNIGGWHM) operator, and then we will apply them to MAGDM problems.

In order to achieve this goal, the remainder of this paper is shown as follows. In section 2, we
briefly introduce the basic concepts, the operation rules and the relevant characteristics of NNNs and
some Heronian mean operators and their properties, including generalized Heronian mean(GHM)
operator, generalized geometric Heronian mean(GGHM) operator and generalized improved Heronian
mean(GIHM) operator. In section 3, we propose the normal neutrosophic numbers improved
generalized weighted Heronian mean (NNNIGWHM) operator, the normal neutrosophic numbers
improved generalized weighted geometric Heronian mean (NNNIGGWHM) operator. In section 4, the
multiple attribute group decision making methods based on NNNIGWHM operator and
NNNIGGWHM operators were proposed. In section 5, we give an numerical example to prove the
function of the proposed method.

2. Preliminaries
2.1 The normal intuitionistic fuzzy set and the neutrosophic set
Definition 1[22]. Let X be areal number set. A denoted as A=(a,o) isan normal fuzzy number

(NFN) when its membership function is expressed as :

X—a 2

A(X) = e o) (o >0) )

The set of all normal fuzzy numbers is denoted as N.
Definition 2[23, 24]. Let X be an ordinary finite non-empty set and (a,c) e N, A= ((a,0), p,va)

is a normal intuitionistic fuzzy number (NIFN) if its membership function satisfies:

oy
Up(X)=pupe 7 xeX )
and its non-membership function satisfies:
_(E)Z
va(X)=1-(1-vp)e °  ,xeX. (3)

where 0< 1) (X) <L0<va(X)<L0< pp+vpa <1.When u, =1 and v, =0, the NIFN will be
a NFN. Compared to NFN, NIFN adds the non-membership function that expresses the degree of
alternatives not belonging to(a,o) . In addition, 7, (X) =1— ua(X)—va(X) expresses the degree of
hesitance.
Definition 3 [3]. Let X be a universe of discourse, with a generic element in X denoted by x. A
neutrosophic set Ain X is

A:{<x’(TA(X)! IA(X)v FA(X))>| Xe X} (4)
where, T, (x)is the truth-membership function, 1, (x)is the indeterminacy-membership function,

and F,(x) is the falsity-membership function. T,(x),I

1,(x) and F,(x) are real standard or

nonstandard subsets of }0‘,1*[ .



There is no restriction on the sum of T, (x) , [ ,(x)and F,(x) ,s0 0" <T,(X)+1,(X) + F,(x) <3".

The neutrosophic set was difficult to apply to real life because it was proposed from philosophical
point of view. So Wang et al. [4] further narrow it to the single valued neutrosophic set (SVNS) from
scientific or engineering point of view. Obviously, SVNS is a generalization of classical set, fuzzy set,
intuitionistic fuzzy set and paraconsistent sets etc., and it was defined as follows.

Definition 4 [4]. Let X be a universe of discourse, with a generic element in X denoted by x. A
single valued neutrosophic set Ain X is

A={x (TA00, 1409, FAGO)) I x < X (5)
Where T,(x)is the truth-membership function, 1,(x)is the indeterminacy-membership

function, and F,(x) is the falsity-membership function. For each point x in X , we

haveT,(x),1,(x),F,(x) €[0,],and 0 <T,(X)+ 1 ,(x) + F,(x) <3.

2.2 The normal neutrosophic set

Because the neutrosophic number can provide the independent indeterminacy-membership function,
and it is a generalization of fuzzy set, intuitionistic fuzzy set and paraconsistent sets etc. Motived by the
normal intuitionistic fuzzy number which is produced by combining the normal fuzzy number and
intuitionistic fuzzy number, we will propose the normal neutrosophic number by combining the normal
fuzzy number and neutrosophic number, which will be a generalization of the normal intuitionistic
fuzzy number. We can give the definition of the neutrosophic number as follows.

Definition 5. Let X be a universe of discourse, with a generic element in X denoted by X,

and(a,o) € N , A normal neutrosophic set A in X is

A= {x,(3,0) TA00, 1500, FAOO) < X ©

where, T,(x),1,(x)andF,(x)are the truth-membership function, the indeterminacy-membership

function, and the falsity-membership  function. For each point x in X, we
haveT,(x), 1,(x),F,(x) €[0,],and 0 <T,(X)+ 1 ,(xX) + F,(xX) <3.

Further, we can call the ((a, o), (T,(x),1,(x), F4(x)))as a normal neutrosophic number (NNN).

Definition 6. Let &=((a,0,),(T.I,F)) and & =((a,,0,).(T,.1,,F,)) be two NNNSs, then the

operational laws are defined as follows.

(1)51(-552:<(a1+a2,0'1+02),(T1+T2—T1T2,|1|2,F1F2)> (7)
(2)é1®§2=<(aiaz'a1a2 :1_§+Z_§2)1(T1T2'|1+|2_|1|2’F1+F2_F1F2)> (8)
(3) 24 =((a,40,),(1-A-T)" I}, FY))  A>0 ©



@a =(@ 2" o), (17 1--1)" 1-a-F)")) >0 (10)
In the following, we will discuss some properties about the operational laws shown as follows.

Theorem 1. Let & =((a,0,),(T,,I,,F,)) and & =((a,.0,).(T, 1,,F,))be two NNNs, and7,7,,77, >0,

then we have

(1a®a, =384 (11)

(2)a,®a,=8,®4 (12)

) n(a ®4,)=na ®na, (13)

(4) 77151 ® 77251 = (771 +772)é1 (14)

(5)a"'®4," =(a4,®4a,)" (15)

®)a" ®a" =4 (16)
Proof.

(1) The formula (11) is obviously right according to the operational rule (1) expressed by (7).
(2) The formula (12) is obviously right according to the operational rule (2) expressed by (8).
(3) For the left of formula (13), we have

7@ ®ay) = ’7<(al +a;,01 +52): (Tl +T, =TT, 45, F1F2)>
=((n(a, +3).n(0; +0,)), (1A~ (T, + T, =TL)), (L1, (RF,)"))

= <(77(a1 +a,),n(0, +Gz))!(l_((1_T1)(l_T2))]7 (1) (RR)" >>
and for the right of formula (13), we have

= (72, + 72, 10, +70,) (- (A-T)") + (- @-T,)) - (- =T )A-A-T,)", 1, R )

= <(’7(ai +8,),1(0, +(72)),(1—((1—T1)(1—T2))'7,(|1|2)”, (RF)’ )>

So, we can get (4, ® &,) = nd, ® na, ,which completes the proof of formula(13).
(4) For the left of formula (14), we have

may ®1,8; = <(77131y "oy ) (1— @A-T)™, 1 B )> ® <(772a1, 1,01 ) (1— @-Ty)%, 12 R )>
=((ma+ma,mo, +n,0,), (1-A-T)" +1-(1-T))" = (- (1=T)" )= (@=T,)"), I} 17, R R )>

= (O + )3, On+m)er), (1= @=T, Y, 1o B ))

=(m +1m2)8
So, we can get the formula (14) is right.
(5)For the left of the formula (15), we have

1
3" ®3," =<[af ,nzafl“l}ﬁﬁl—(l—Il)",1—<1—Fl’">>



®<(a§,nia§‘lazj,(T2’7 A-@-1,)"1-(1-F,)"))

2(n 1) 2 2(n 1) 2
:<{afaz,afaz\/"aiaf,, +’7aa§q ]

(/T A== 1))+ Q- (L= 1)) - (@-@- 1))~ L~ 1,)"),

1-Q-FR)")+1-1-FK)")-1-0-R)")A-1- Fz)”))>

<[(a1az)"n @) o a—] (T2 (@- 1)@= 1) 1-(@-R)e-F)Y))

and for the right of the formula (15), we have
2

n
2
o (o
_12+a—§}(T1T2, l+1, =0, F +Fy— F1F2)>
1 2

=<[(a1a2)".n2(alaz)xf:1—; a—g] ((VT,) 4@ (1, 1, - L1,))" A= (F, +F, - FF))"))
:<[(a1az)" (alaz)",/gg é] (L) (@ 1)a- 1) 1-(A-F)a-F)"))

So, we can get the formula (15) is right.
(6) For the formula (16), we have

(&, ®a,)" = <{ala2 18,

1
A @& = <{a{h 2 a{“ol} (i a-@- 1) a-a-F)" )>

<(a{” nial o j( 1= (- 1) 1= (1= F)™))

2(m l) 2 2(1,-1) __2
<[a1 a”,al alfzz\/771a1 +’72a1 - Oy ],

a/™ a;

(T 77 1-@- 1) @-1,)" 1-(1-F)"1-F)" )>

1
: <(a1 (4’ af“"“alj (T 1= 1) 1= R )

— ahtn
=a

So, we can get the formula (16) is right.
In the following, we will give the comparative method for two NNNs.



Definition 7. Suppose & =((a,,0,),(T,,1,,F,)) and & =((a,,0,).(T,.1,,F,))are two NNNs. If and only

Generally speaking, for any two NNNs, it is difficult to meet the Definition 7, so we can give a new
comparative method by extending the comparative method of INNs to NNNs..

Definition 8. Let 8, = <(ak,0'k),(Tk, I, F )> be a NNN, and then its score function is

si(@)=a+T — 1, =F) . s(a) =0 (2+T — Iy —F) a7
and its accuracy function is
h(@)=a+Ty — 1, +FR). h(&a) =0 (2+T — I} +F) (18)

Definition 9. Let & =((a,0,).(T,1,,F,)) and & =((a,.0,),(T,.1,,F,))be two NNNs, the values of

score functions of & and a, are s,(a;),s,(a;) and s,(a,),s,(a,), and the values of accuracy
functions of 3, and a,areh;(a;),h,(a;) and hy(a,),h,(a,), respectively. Then, we have
Q) If s,(3) >s,(a,) then, a >a,;
(2 If s,(a;) =5,(a,) ,then
OIf h(3)>h(a,) then, a, >a,;
Q@If h(3)=h(a,) then
() If s,(a)<s,(@,),then,a; > a,;
(ii)If s,(a;) =s,(a,) then
@ If hy(3) <hy(a@,) then,a, >a,;
(0)If h,(3)=h,(@,) then,a, > a,.
2.3. Heronian mean (HM) operator
Heronian mean (HM) operator can be regard as a useful tool which is used to catch the
interrelations of the aggregated arguments [9, 25] and can be defined as follows.

Definition 10[9]. A HM operator of dimension n is a mapping HM: 1" > 1,1 =[01]. If

HM(Xlnxzv“"Xn)=n(++l)zzm (19)

i=1 j=i
So the HM operator is called the Heronian mean (HM) operator.

Definition11[9, 25]. A GHM operator of dimension n is a mapping GHM 1" — 1,1 =[01]. If

1
GHM PYQ(Xl'Xz,...’xn):{ﬁiixipx?]p+q (20)

i=1 j=i
where p,q>0. So the GHM P9 operator is called the generalized Heronian mean (GHM)

operator.
It is easy to prove that the GHM operator has the following properties [9, 25].
Theorem 2. (Idempotency)

Suppose X =X (i=12,---,n), then



GHM PA(x, Xp, -+, X ) = X (21)

Theorem 3. (Monotonicity)
Let x (i=12,....n)and y;(i=12,....n) be two sets of the nonnegative numbers satisfying x; < y;,
forall i,i=12,---,n, then

GHM P01, Xp, "+, X, ) < GHM 2y, Y5, -+, ¥y ) )

Theorem 4. (Boundary)
The GHM operator satisfies:

Min(X;, Xp,. %y ) < GHM P9(x1, X, -+, X ) < MaX (g, Xp, -+, X ) (23)

Because the GHM operator didn’t consider the weight of inputs, in the following, we will give the
generalized weighted Heronian mean operator as follows.
Definition 12[25]. Let p,g>0 , and x; (i =12,---, n) be a set of nonnegative numbers.

n
w= (W, W,,--,w, )" is the weight vector of x;(i=12,---,n), which satisfyingw; [0,1], ZWi =1.If
i1

N n p+q
GWHM pﬂ(xl’xz,...,xn): ﬁZZ(WiXi)p(ijj)q (24)
i=1l j=i

then GWHM P9 operator is called the generalized weighted Heronian mean (GWHM) operator.

However, the GWHM operator has not the idempotency, in order to overcome this deficiency, Liu
[25] further proposed an improved generalized weighted Heronian mean (IGWHM) operator.
Definition 13[25]. Let p,gq>0 , and X; (i :1,2,---,n) be a set of nonnegative numbers.

n
w= (W, W,,---,w, )" is the weight vector of x;(i=12,---,n), which satisfyingw; [0.], ZWi =1.If
i1

1

Pya
22 viwxPx]

(n n qu
IGWHM P(x,, Xy, -+, X, ) =~ / (25)

i=1 j=i

The IGWHM P9 operator is called the improved generalized weighted Heronian mean (IGWHM)
operator.

It is easy to prove the IGWHM P9 operator has these properties [25].
Theorem 5 (Idempotency)
Letx; =x forall i=12,--- n,then

IGWHM P9 (x;, %y,+, %, ) = X (26)

Theorem 6 (Monotonicity)

Let (XX, %) and (yi, Yo, Y,) be two sets of the nonnegative numbers, if x <y for



alli,i=12,---,n, then
IGWHM P9(x;, Xy, X, ) < IGWHM P9 (y;, y5,--, ¥, )- (27)

Theorem 7 (Boundary)
Let (%,Xp,~--,X,) be a set of the nonnegative numbers, if Xy, =min(x,X,,....%) and

Xmax = Max (%, Xy,...,% ), then
< IGWHM P9 (X1, Xp,++, Xy ) < Xpnax (28)

m|n

In the following, we can analyze some special cases of the IGWHM operator
(1) When gq=0 ,then

i=1l j=i

o]

IGWHM PO(x;, Xy, -+, X, ) = (29)
ZZWW
i=1 j=i
Further, when p =1, there is
n n
ZZwiwjxi
IGWHM™(x, X+, X, ) = == —— (30)
D wiw;
i=1 j=i
(2) When p=0, then
1
[ZZWW qu
IGWHM 9 (x,, Xp, -+, X, ) =~ a (31)
q

£5e)

Further, when q=1, there is

ZZWinXj (32)

i=l j=i

Zn:Zn:Win

i=l j=i

IGWHM % (x;, %5+, X, ) =

According to the above special cases, we can find that the parameters p and g don’t have the
interchangeability.

(3) When p=qg=1,then
1

IGWHM ™ (x,, Xy, -, X, ) =~ 2 (33)

30

i1 j=i



2.4. The geometric Heronian mean (GHM) operator

Based on the generalized Heronian mean (GHM) operator, Yu [12] further proposed the generalized
geometric Heronian mean (GGHM) operator.
Definition 14[12]. Let x; (i :1,2,---,n)be a set of nonnegative numbers and p,q > 0,the value of p
and g isnot setto O at the same time. If

GGHM PA(x,, Xp, -+, X, ) = ! ﬁﬁ(pXﬁqxj)ﬁ (34)

P+a54 5

then GGHM P9 is called the generalized geometric Heronian mean (GGHM) operator.
It is easy to prove the GGHM P9 operator has these properties [12].

Theorem 8 (Idempotency)

Letx; =x forall i,i=12,---,n, then

GGHM P9(x;, %y,++, %, ) = X (35)

Theorem 9 (Monotonicity)
Let (X,%p,--,X,)and (y;, Y-, Y,) be two sets of the nonnegative numbers, if x; <y; for
alli,i=12,---,n, then

GGHM P9(x;, Xy, X, ) < GGHM P4(yy, Y5+, ¥ ). (36)

Theorem 10 (Boundary)
Let (X,X,~--,X,) be a set of the nonnegative numbers, if Xy, =min(x,X,,....%) and
Xmax = Max (%, Xy,...,% ), then

Xmin < GGHM P9 (%, X5+, X5 ) < Xy (37)

The GGHM operator brought more attentions on the correlations of the aggregated arguments so
that it also neglected the weights, which is similar to GHM operator. So based on this, Yu [12] further
proposed the generalized geometric weighted Heronian mean (GGWHM) operator.

Definition 15[12]. Let x; (i =12,---, n)be a collection of nonnegative numbers and p,q >0, the value

of pand g is not set to O at the same time. W=(W1,W2,~-,Wn)T is the weight vector of

n
x; (i =12,---,n)satisfying w; €[0,1], ZWi =1.If
=

n n 2
1 )
GGWHM P.a X1, X ,'”,Xrl = Xi Wi +(QgX: Wj n(n+1) 38
(%, % ) P+qu l,-!((p) (ax;) (38)

GGWHM P9 operator is called the generalized geometric weighted Heronian mean (GGWHM)
operator.

In order to overcome the counterintuitive of the GGWHM P9 operator, Yu [12] further proposed an
improved generalized geometric weighted Heronian mean (IGGWHM) operator.

Definition 16[12]. Let xi(i:1,2,---,n) be a set of nonnegative numbers and p,q>0, the value

T

of pand q is not set to O at the same time. w=(w,w,,--,w,)" is the weight vector of

10



n
x(i=12,---,n)satisfying w; [0,1], ZWi =1.If

i=1

W

IGGWHM P(x;, Xy, -, HH(px X, )%1)')2’ . (39)

p+q i=1l j=i

k=i

then IGGWHM P9 is called the improved generalized geometric weighted Heronian mean
(IGGWHM) operator.

It is easy to prove the IGGWHM P9 operator has these properties [12].
Theorem 11 (Reducibility).

T
Let W = [l ! lj ,sthen
n'n" 'n

IGGWHM P9(x;, Xy, X, ) = GGHM P9(x;, Xy, X, ) (40)

Theorem 12 (Idempotency)
Letx; =x forall i=12,---,n, then

IGGWHM P(x;, Xy, X, ) = X . (41)

Theorem 13 (Monotonicity)
Let (%, Xy, -, %,)and (yy, Yz, Y, ) be two collections of the nonnegative numbers, if x; < y;

foralli=12,---,n, then
IGGWHM P (%, Xy, X, ) < IGGWHM P(yy, Y5, Yy ). (42)

Theorem 14 (Boundary)
Let (x,%,,---,X,) be a set of the nonnegative numbers, if Xy, =min(x,X,,....%) and

Xmax = Max (%, Xy,...,% ), then

<IGGWHM P9(xy, Xp, -, Xn ) < Xy (43)

m|n

In the following, we can analyze some special cases of the IGGWHM P9 operator
(1) Wheng =0, then

n+l | Wj
IGGWHM P (x;, X, ,- -, HH (44)
i=1 ] i k=i
From here we see that IGGWHM P does not have any relationship with p .
(2) When p =0, then
n__n 2(n+1-i) w;
0.9 = ) n
IGGWHM %% (x;, X, ,xn)_lijlﬂj:[(xJ ) o, (45)
- - k=i
Similarly, IGGWHM %9 does not have any relationship with q .
(3) When p=q=1,then
IGGWHM “( HH( )Ll' - (46)
X15 Xy Xj +X: | n(n+1) & .
11 A2 Et kzz:

11



3. Some Heronian mean operators based on the normal neutrosophic numbers

In this section, we combine the IGWHM and IGGWHM operators with the normal neutrosophic
numbers, and propose the normal neutrosophic humber improved generalized weighted Heronian mean
(NNNIGWHM) operator and the normal neutrosophic number improved generalized geometric
weighted Heronian mean (NNNIGGWHM) operator.
3.1 The NNNIGWHM operator

Definition 17. Let p,q>0, and & ={(&,0;).(T;,1;,F)) (i=12,---,n) be a set of the normal

neutrosophic numbers. w=(w,w,,---,w,)" is the weight vector of &(i=12,--,n) satisfying

n
w20, w =1 If
i=1

NNNIGWHM P(3, &, ,---, 4, ) = | == (47)

NNNIGWHM P9 is called the normal neutrosophic number improved generalized weighted
Heronian mean (NNNIGWHM) operator.

Theorem 15. Letp,q>0, and& =((a;, ;). (T;, I;,F;)) (i=122,--,n)be a set of normal neutrosophic

n
numbers. w=(w;,W,,---,w, )" is the weight vector of &(i=12,---,n),and satisfiesw; >0 ,ZWi =1.
=)

then, the result aggregated from  Definition 17 is still  a NNN, and

p+q

n n
P34
2. wiwala
o _ —l i
NNNIGWHMP4(3,,&, .8, ) =| ~——
22w,
i1 j=i
1 1 1
. o 2
n_on o.q p+q n_on o p+q n_n 04 p0'i2 qo;
B il ji 1 y2| =T i1 ji ai a;
- n n ! P+ n n n n !
22w, 22w, 22w,
i—1 ji i1 ji i-1 j=i

12



1 ﬁ 1 \p+g
- - >3 n n n n
1_[HH(1—TipTJq)Win]EEW] - 1—(1_[1_[(1—(1—'0"(1_! ;)“)WinJEFaWiWi
i=1 j=i i
1
! p+q
n n n n
- 1‘[1_[1_[(1—(1— R)PL-F, )q)wiwjjizlf:iw‘wi (48)
il =i
Proof.
Since

3 = <£aip: p%aiHUi ] (Tip 1-(-1;)P1-(-F )p)>

and
2 2
~p~ poi 4oj
raj <[aipa?,aipa? a_-zl+a_21]’(Tiijq'1_(l_Ii)p(l_lj)q’l_(l_ F)P(L- Fj)q)>
i j

2
~P~q P g P~q pO‘i2 qu
ca =(|wwa a; ,ww;afa? [—-+— |,

) 7) = =) a2 82

(1-Gmem ™ - Pl P -0l )

then
SRy P~d nn non p02 CIO'Z
~P~ i J
DD wiwid a) =(| X Ywwalaf, ¥ Xwwala |5 |
_ i=1j=i i=Lj=i a; aj

i=l j=i
n n o q non pO_Z qo-?

a a nan w.aPal i )
ZZWinai a; > >ww;aa] _;lgwlea, A\ 2 T a2
i=1 j=i _ i=1j=i == i j

n n - n n ! n n !
ZZWW ZZWin ZZWin
< ) i=1j=i i=1j=i
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So, we can get

and

NNNIGWHM P9 (

ap,ay,
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L \p+g
| TIT T e-rplery) 22
i=1 j=i
Which completes the proof of the theorem 15.
Theorem 16. (Idempotency) .
Letall 3 =a forall i (i=12,---,n), then
NNNIGWHM P4 (3, ,a,,---,a, )= a.
Proof
Since all & = =<(a o)(T,1 |:)> forall i (i=12,--,n), then we have

N J . \p+q
ZZwiwjapaq
o _ ==
NNNIGWHMP4(3,, &, , .8, ) = | —1——
> wiw;
i=L j=i
1 1
nn " m nn " mil nn " o
> X ww;aht 'y >ww.aP > Yww;af™ M p+q—
_ i=1j=i 1 2| i2j=i i=1j=i a
- n n ! p+q n n n n !
> 2 WW;j > X WW; 2 2 Wi Wj
i=1lj=i i=1j=i i=1j=i
1 1
C p+q p—q
n n n n n n n n
1- HH(]_—T p+q)WiWJ Eljz::iWin ,l— 1- HH(:I.—(l—I)p+q)Win EEiWin ,
i=1 j=i =1 j=i
1
1 Yp+a
2 X WW;
p+q ey
1-[1- [HH( 1-F) ) }u ~((a,0).(T,1,F))
i=l j=i

In the following, we will discuss some special cases of the NNNIGGWHM operator in regard to the
parameters pandq .
(1) when p=0, then

n n n n ; 2

ZZwiwjaj‘ 1 ZZwiwja? ZZWW af a9y
NNNIGWHM (3, &, -, &, )= || 20— ,(%)2 EWE] EWER.
i=L j=i =L j=i i=L j=i
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1
n n W; W n .n
{1(ﬁﬁ<1w>“”"“jw} o
i=1 j=i =1 j=i
L 1
n_n WiW; Zn‘,zn:W'W K
1-|1- 1._1[11_.1(1 L-Fp) (e (49)
(2) wheng =0, then
n n % n n 571 n n 2
ZZwiwja, ) ZZW,WJa, Zzwleap poz'.
NNNIGWHM PO (3, &, -, )=( || 21 (Lyz| L ENE 3
n n n n n n
2w, P D> ww, WyW;
i=1 j=i i=1 j=i i=1 j=i
1 1
L intv.w. P n__n WiWj § P
[ Fpwer e o ] [
i=1 j=i i=1 j=i
n n WiW; iz“? P
AL
1- 1—(1:1[1;[(1 (1—|=,)p) Jim : (50)
(3) when p=q=1, then
1
nn 2 n n S5 non 0_2
Zzwiwia'al 1 Z WiW; ZZWinauaJ o
WE 5 .05 )= i=L j=i 1o it =i = j=i aj
NNNIGWHM™(3,,8,,--,3, )= " 1ok —
22w, 222, 3w,
i=l j=i i=l j=i i=1 j=i
1 1
n n : E n n WWJ n nl E
1{[HH<H K )]J _ 1‘[HH<1—<1_|.X1-|,>> JZZ
i=1 j=i i=1 j=i
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n_n WiWj Z“:Z”:W_W_
- - [T [e-a-Fa-F)  |[&=™ (51)
=1 j=i
3.2 The NNNIGGWHM operator
Definition 18. Letp,q>0, and 3, —<(a| 0 ) (T, L, )> (i=12,---,n)be a collection of single normal

neutrosophic numbers. w=(w;,w,,--,w,)" is the weight vector of &(i=12,---,n), and satisfies

n
w20, w =1.If
i=1

Wj

NNNIGGWHM P%(3,,a,,---,8

(n+1-i)
S GO

k=i

then NNNIGGWHM P9 is called the normal neutrosophic number improved generalized geometric
weighted Heronian mean (NNNIGGWHM) operator.

Theorem 17. Let p,q=0, and & ={(a,0;).(T;,1;,F)) (i=12---,n)be a collection of normal

neutrosophic numbers. w=(w;,w,,--,w,)" is the weight vector of &(i=12---,n) , and

n
satisfiesw; >0 ,Zwi =1. then the result aggregated from Definition 18 is still a NNN, then the
i=1

aggregated value by (52) can be expressed as

NNNIGGWHM P9(3,,3,,---, HH(pa +qa) "“))Z

p+q i=l j=i

k=i

L ot (oa +oa ' —2{ 11 (oa H(poi +40,)
s A S0

1 1 X
ans " e Lt D+ n_n P+
- 1-T [ [0-6-76-7, ) Jp q{l‘ (1—|ip|?)H]p q’[l—HH(l— eeesf |7 69)
i=L j=i Ent 11
Where
:2(n+1—i) w;
nn+1) 5
Proof.

According to the operational rules of NNNs, we have
pa; :<(pa,, po; ) A-(1-T))", I ,Fp)>
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6d; = ((0a;.q0; ) - @-T)% 15, F)
and

p5i+q5j—<(pa +qa;, poy +qo; ) (L-A-T)PA-T)% 119, Fqu)>

C2n+loi) W
Dueto  n(n+1)
Dw

1

(8 + a8, )% = (pa + o ) =<[(pai vqa) H2
(( @-THPa- T)) (1 Iplq) 1- (1_|:ip|:jq)H)>

<pai+qa,->H—1<pai+qaj)],

and

[T a3, <{Hn<pa o [T T o | S5 |

i=1 j=i =1 j=i i=l j=i =1 j=i pa +qa)

(ﬁﬁ(l—a—To"(l—Tj)“)“ I 110 3 TTL TPy ) J>

i=1l j=i i=1l j=i i=l j=i
So
_ \2(n+1-i) Wi
p+q1jlﬂj_|[(pa +08; ) nnaD) § S =<(p+qulﬂj_l[(pa +0a, P,
e s (A H(po; +0c;)’
o T Tl oony JJZZ feov oy }
1 1 1
[1{1HH(1<1T.>"<1TJ>“)” [HWU[HH()”
i=l j=i i=l j=i i=l j=i
So, we complete the proof that
+: )W
NNNIGGWHM P(3,, &, p+qHH(pa + 03 nnnil Z k

i=l j=i

= 1 oo AT T H(p0',+QO'J)
<[HH<> Sl er B

i e o] oo

i=l =i
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Moreover, the NNNIGGWHM operator has the following properties.
Theorem 18. (Reducibility) .

T
11 1

Suppose w=|—,—,....— | , then
PP (n n nj

NNNIGGWHM P4 (3,,a,,---,a, )= NNNGGHM P4(3,,a,,---, &, )

T
Proof. Since w:(lllj ,then according to (53), we have
nn n

S 2n+l-i) w2
~ n(n+1) anw " n(n+1)
k

- - - 1 nn non L J pa,+qaj)
NNNIGGWHM PY(a,a,,---,a, )= | —— a; +0a; a; +0a; E E '
oy o) [p qgg(p @[ p+ Q[lnunl(p i JJ = (pa; +, ] ]

NI 1) (A=) Hnm)][nm) J >

izl j=i

(o +40;)?

1 2 1 (nn Sy n(n+1)
(st gt siaer|

- P+Qiz=1j=i g\i=tj=i

e ke | e s

i=l j=i

= NNNGGHM P4(3,,3,,...a,)

Theorem 19. (Idempotency) .
Letall & =a=((a,c)(T,I,F)) forall i (i=12--n),then

NNNIGGWHM P9 (3;,8,, -+, 8, )= 4.

Proof. since a=((a,c)(T.I.F)) (i=12--n), then, we have

2(n+1-i) W
IGGW M4, ,a,,--,a +1)
NNN K&,,a,,- p+qHH pa+qa nl Zk

i=1 j=i
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i o | S5 000 |

P+qi=tj=i +Q\i=lj=i il joi (pa+qa)
n_ n H piq n n H ﬁ n n H o
-11-T] (1 a T)p*q) -T] (1—|P*q) 1—HH(1 FF”q)
i=l j=i i=l j=i i=l j=i
2(n+1-i) w; o
n(in+1) 2
2(n+1-i) Wi 1 L& 2(n+1-i) Wy n n Z::Wk
{55 q(pa+qa)§; n(n+1) Z": (pa+qa)zljz n(n+1) Zn‘,Wk Iljzi: azk 1
k=1 k=1 7 -
1 1 1

k=1 k=1

o 2041-0) Wi pig (n+1-i) W 2n+l-i) W,
1_[1_@__(1_T)p+q>izlljzi: n(n+1) ZH:WKJ []_ (]_ | P4 ”Z n(n+1) Z“:Wk] [ ).21: < n(n+l) & }

~ 1 Z":Z(n+l—i) 1 o Z":Z(n+l—i) n 2(n+1-i)
_< |O+q(|omqa)':1 " g 2 (Paraa) o |3 n(n+l) |

1

1 1
0 2(n+1-i) | pg 2(n+1-i) ) p+q 2(n+1 i) Y p+q
1- 1_@_(1_1')“‘1); n(n+1) J1- |P+q)z1 n(n+) 11— |:P+q < n(n+)

<(piq(pa+q ? piqcaf(pawa)}[l b Gomp o o1 - qu)ﬁp

={(a,o)(T.1,F))=

Which complete the proof of the theorem 19.

We will discuss some special cases of the NNNIGGWHM operator according to the parameters
pandq.
(1) when p=0, then
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(2) whenq =0, then

NNNIGGWHM P°(3,,&,,---,

N 2(n+1-i) 1 (n 2(n+1-) . 2(n+1—i)0_i2
= [p H( ) n(n+l) , (H( ) n(n+1) j\/z n(n +1) aiz }’

i=1 -1

1
P

. 2(n+1-)
2(n+1-i n

1—[1—11[(1—(1—Ti)p)ﬁ+1>)]p, 1—H(1—|ip)"m ,[1— |

i=1 i=1

h-r p)(lﬁ")j" (56)

Obviously, when ¢ =0, NNNIGGWHM P does not have any relationship with w

(3)wheng = p =1, then

NNNIGGWHM™ (&,,a,, -, &, )= %ﬁlﬁ(a +Q) ;(
i=1j=i

,[1— T (1—|i|j)”J2,[1— T (1—FiFj)HJ2 (57)
i=1 =i i<l j=i

4. The group decision-making methods based on the NNNIGWHM operator and
NNNIGGWHM operator
In this part, we use the normal neutrosophic number improved generalized weighted Heronian

l:l=
T=
=
+
QJ
\_/
g_
AM
T
j‘r’ Q9
+
~ _q

1
n n 2

I

izl j=i

mean operator and the normal neutrosophic number improved generalized geometric weighted
Heronian mean operator to deal with the multiple attribute group decision making (MAGDM)
problems in which the attribute values take the form of NNNs.

For a multiple attribute decision making problem, suppose we have known

that A={A,A,,--- A} is the collection of alternatives, C={C,C,,---,C,} is the collection of
attributes, and e={ee,,---,e}is the collection of decision makers. Supposed the attributes are

independent of each other, and the evaluation of the alternative A with respect to the criterion C i

t t
JlI|J1

given by the decision maker e, is rijt = <(a“, ) (T, F. )>which is represented by the form

of NNN, where T;,1;,F €[0,1] and T; +1;+F; <3 . The weight vector of the criteria is

ijroig? 1]
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W= (W, W,,--,W,), which satisfying w, e[O,l],Zwj =1. Let wz(a)l,a)z,...,a)d) be the vector of
j=1

d
decision makers, and @, €[0,1], > @, =1
t=1
Then, we give the steps of decision making method based on the NNNIGWHM operator and
NNNIGGWHM operator. So, the procedures are shown as follows:

Step 1. Utilize the NNNIGWHM operator
rt :<(a},oi‘)(Ti‘, 1L, Ff)) — NNNIGWHM(rt, 1.t ) (58)
or NNNIGGWHM operator
= <(a},ai‘)(Ti‘, 1L F )> — NNNIGGWHM (14, 1. x2 ) (59)

to get the comprehensive attribute values for each decision-maker of each alternative.
Step 2. Utilize the NNNIGWHM operator

r={((a,0),(T.1;,F)) = NNNIGWHM (r},i,..., ") (60)
or NNNIGGWHM operator
i =((8),(T. 1)) = NNNIGGWHM (i, i7,.... K¢ (61)

to get the collective values for each alternative.
Step 3. Calculate the value s, (r;), s, (r;), hy (1), hy (r;) of ;.
Step 4. Rank all the alternatives {A, A,,..., A,} according to the theorem 1.

5. A numerical example
In this section, we provide an example to illustrate the application of NNNIGWHM and
NNNIGGWHM operators. Suppose that an investment company wants to choose a company as the

partner. There are four companies A (i =12,34) evaluated by three decision makers{D,,D,, D;}.

The weight vector of the decision makers is 2 = (0.314,0.355,0.331)" , and the attributes include: C, (the

risk index) ,C, ( the growth index), and C; (the social-political impact index). Suppose the attribute

weight vector is w:(0.4,0.20,0.40)T. The three decision makers {D,, D,, D;} evaluate the four

companies A (i=1234) with respect to the attributes C;(j=123) . The values of evaluation

information can be expressed by NNNs. According to the evaluation from three decision makers, we

construct three decision matrices R' = [I’ijt]M3 (t =12, 3) which are listed in Tables 1-3.

Table 1. Decision matrix R®.

C1 Cc2 C3

Al <(3,0.4),(0.265,0.350,0.385)>  <(7,0.6),(0.330,0.390,0.280)>  <(7,0.6),(0.245,0.275,0.480)>
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A2

A3

Al

<(4,0.2),(0.345,0.245,0.410)>
<(3,0.2),(0.365,0.300,0.335)>

<(5,0.5),(0.430,0.300,0.270)>

<(8,0.4),(0.430,0.290,0.280)>
<(6,0.2),(0.480,0.315,0.205)>

<(7,0.5),(0.460,0.245,0.295)>

<(5,0.3),(0.245,0.375,0.380)>
<(6,0.4),(0.340,0.370,0.290)>

<(7,0.2),(0.310,0.520,0.170)>

Table 2. Decision matrix R?.

C1

C2

C3

Al

A2

A3

A4

<(3,0.4),(0.125,0.470,0.405)>
<(4,0.3),(0.355,0.315,0.330)>
<(3,0.2),(0.315,0.380,0.305)>

<(5,0.5),(0.365,0.365,0.270)>

<(5,0.4),(0.220,0.420,0.360)>
<(6,0.7),(0.300,0.370,0.330)>
<(5,0.6),(0.330,0.565,0.105)>

<(4,0.5),(0.355,0.320,0.325)>

<(5,0.3),(0.345,0.490,0.165)>
<(7,0.6),(0.205,0.630,0.165)>
<(7,0.2),(0.280,0.520,0.200)>

<(6,0.4),(0.425,0.485,0.090)>

Table 3. Decision matrix R®.

C1

C2

C3

Al

A2

A3

A4

<(3,0.4),(0.260,0.425,0.315)>
<(4,0.2),(0.270,0.370,0.360)>
<(4,0.5),(0.245,0.465,0.290)>

<(5,0.6),(0.390,0.340,0.270)>

<(7,0.6),(0.220,0.450,0.330)>
<(8,0.4),(0.320,0.215,0.465)>
<(6,0.2),(0.250,0.570,0.180)>

<(7,0.5),(0.305,0.475,0.220)>

<(5,0.4),(0.255,0.500,0.245)>
<(6,0.7),(0.135,0.575,0.290)>
<(5,0.6),(0.175,0.660,0.165)>

<(7,0.5),(0.465,0.485,0.050)>

5.1 The MAGDM method based on NNNIGWHM operator

(1) Calculate the comprehensive evaluation values ' (i =1,2,3,4;t =1,2,3) of each decision maker by

formula (58) of the NNNIGWHM operator (suppose ¢ = p=1),we can get

i =((5.450,0.522),(0.269,0.324,0.401)) , r; = ((5.156,0.279),(0.322,0.303,0.373)),

ry =((4.826,0.289),(0.330,0.291,0.376)),, r; = ((6.198,0.387),(0.369,0.229,0.388)) ,

i’ =((4.208,0.361),(0.469,0.283,0.240)), rf = ((5.636,0.502),(0.438,0.253,0.287)) ,

ry =((5.093,0.281),(0.466,0.218,0.303)) , r/ = ((5.247,0.461),(0.403,0.188,0.389)) ,

r’ =((4.583,0.438),(0.459,0.287,0.251)) , r; =((5.573,0.461),(0.412,0.347,0.227)) ,

ry =((4.777,0.501),(0.558,0.214,0.218)) , r; =((6.198,0.543),(0.420,0.144,0.408)),

(2) Calculate the collective overall values r; (i =1,2,3,4) by formula (60) of the NNNIGWHM operator
(suppose q=p=1 ), we can get

r, =((4.678,0.433),(0.250,0.422,0.323)) , r, =((5.416,0.419),(0.276,0.389,0.323))
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r; =((4.860,0.358),(0.298,0.453,0.243)) , r, = ((5.804,0.463), (0.391,0.402,0.189))

(3)Calculate the score functions s;(r;), S,(r;) and the accuracy function hy(r;) ,h,(r;) foralli
(i=1,2,3,4) by formulas (17-18), we can get

s(r) =7.041,,(r,) =8.470,s,(r3) = 7.787 , 5,(r,) =10.451

s,(r) =0.652,s,(r,) =0.656, s,(r;) =0.573, s,(r,) =0.833

h, () =10.062 , hy(r,) =11.968 , h; (r;) =10.145, h; (r,) =12.639

h,(r) =0.932, h,(r,) =0.927 , h,(r;) =0.746 , h,(r,) =1.008

(4) According to the score functionss,(r;) (i=12,3,4) , we can rank the alternatives A, Ay, Aq, Ay
show as follows

Ay-Po- A=A
So, we get the best alternatives is A, .
5.2 The MAGDM method based on NNNIGGWHM operator

(1)Calculate the comprehensive evaluation values I’ (i=12,3,4;t =1,2,3) of each decision maker by

formula (59) of the NNNIGGWHM operator (suppose g = p=1),we can get

i =((5.342,0.540),(0.274,0.333,0.394)) , r; = ((5.325,0.286),(0.326,0.308,0.365)),
ry =((4.791,0.279),(0.385,0.331,0.284)) , r; =((6.249,0.425),(0.390,0.373,0.240)) ,
i’ =((4.222,0.389),(0.221,0.464,0.307)) , rf =((5.576,0.512),(0.279,0.459,0.270)) ,
ry =((4.863,0.342),(0.306,0.488,0.217)) , r/ =((5.071,0.477),(0.384,0.400,0.220)) ,
r’ =((4.667,0.466),(0.247,0.461,0.293)), r; =((5.700,0.452),(0.225,0.413,0.364)),

ry =((4.880,0.495),(0.218,0.572,0.216)) , r;’ =((6.249,0.557),(0.393,0.435,0.178)) ,

(2) Calculate the collective overall values r; (i=12,3,4) by formula (61) of the NNNIGGWHM
operator (suppose g=p=1 ), we can get

r, =((4.723,0.462),(0.247,0.422,0.332)) , r, =((5.533,0.422),(0.275,0.397,0.333))

r; =((4.845,0.378),(0.298,0.470,0.239)) , r, = ((5.829,0.490), (0.389,0.403,0.213))

(3)Calculate the score functions s;(r;), S,(r;) and the accuracy function hy(r;) ,h,(r;) foralli
(i=1,2,3,4) by formula (17-18), we can get
s,(rn) =7.047,s,(r,) =8.549,s5,(r;) =7.696 , 5,(r,) =10.333
s,(r;) =0.689, s,(r,) =0.652,s,(r;) =0.600, s,(r,) = 0.869
h () =10.186 , hy(r,) =12.238 , h; (r;) =10.015, hy (r,) =12.820
h,(r)) =0.997 , h,(r,) =0.934, h,(r;) =0.781, h,(r,) =1.078
(4) According to the score functionss;(r;) (i=12,3,4), we can rank the alternatives A, Ay, Aq, Ay
show as follows
AP = A A

So, we get the best alternatives is A, .
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5.3 Analysis on the effect of the parameters p,q

Table 4 Ordering of the alternatives by the different parameters p and g in NNNIGWHM operator

P9 s1(1;) ranking

p=0,q=10 s,(r) =9.917,s,(r,) =11.626 A=A, - Ay - A

p=19=0 s,(r) = 6.210,s,(r,) = 8.047 A=A = Ag - A
Sy(r3) =7.052,s,(r,) =9.775

p=10,q=0 s;(r) =9.745,s,(r,) =11.534 A=A - A= A
s1(r3) =10.289,s,(r,) =11.715

p=1qg=1 s,(r;) =7.041,s,(r,) =8.470 A=A - A= A
S1(r;) =7.787,5,(r,) =10.451

p=1q=10 s,(r) =9.635,s,(r,) =11.380 A=A - A= A

p=10,q=1 (1) =9.758,s,(r,) =11.394 A=A - A=A

p=10,9=10 s,(r) =10.430,5,(r,) =12.126 A=A - A=A

s,(r3) =10.979, s, (r,) =12.558

Table 5 Ordering of the alternatives by the different parameters p and g in NNNIGGWHM operator

p.d s () ranking

p=0,q=1 s,(r) =7.334,s,(r,) =8.362 A=A - A=A

p=0,0=10 s,(r) =6.720,s,(r,) =7.324 A=A - A= A

p=1g=0 s,(r,) = 6.337,5,(r,) = 8.463 A=Ay - Ay - A

p=10,0=0 $1() =7.334,s,(r,) =8.362 A=A = A= A
Sl(rs) = 6406, Sl(l’4) = 9161

p=Lq=1 s;(r) =7.047,s,(r,) =8.549 A=A = A= A
5,(r3) =7.696,s, (r,) =10.333

p=1q=10 s,(r) =6.732,s,(r,) = 7.475 A=A, = A= A
S,(r3) =7.167,5,(r,) =9.937

p=10,q=1 s,(r) =6.110,s,(r,) = 7.406 A=A = A= A
s,(r;) =6.550, s, (r,) =9.288

p=10,q=10 s,(r;) =6.403,s,(r,) =7.210 A=A = A=A

Obviously, in this example, the ranking of the alternatives is unchanged regardless of the
parameters p and g. In general, we can use the parameters p=21,q=1 in real applications because it is

simple and it can also consider the correlations of inputs.

6. Conclusions
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The multiple attribute group decision making problems are an important research topic, and they
have the wide applications in real world. However, the attribute values in MAGDM problems are often
uncertain, and they are difficult to be expressed by crisp numbers. In this paper, we proposed the
normal neutrosophic numbers (NNNSs) which are the generalization of FS, IFS, NS, NFN, and so on,
and it not only can handle incompleteness, indeterminacy and inconsistency of evaluation information
but also can handle the information of normal distribution. Obviously, NNNs can provide an easier way
to express the uncertain information. In addition, Heronian mean (HM) operator has the characteristic
of capturing the correlations of the aggregated arguments, and the traditional HM operator cannot
process the NNNs, So, we extend HM operator to process the information with NNNs, and propose
some normal neutrosophic number Heronian mean (NNNHM) operators, including the normal
neutrosophic humber improved generalized weighted Heronian mean (NNNIGWHM) operator and the
normal neutrosophic number improved generalized geometric weighted Heronian mean
(NNNIGGWHM) operator. Furthermore, we propose two multiple attribute group decision making
methods respectively based on the NNNIGWHM and NNNIGGWHM operators, which have the
advantages that they can take the correlations of the aggregated attributes into consideration. Finally, we
give an illustrative example to demonstrate the practicality and effectiveness of the two methods, and
analyze the influence of the parameters p and g on the two orderings. In the further research, we will
continue studying the applications of two new methods, or some new aggregation operators for NNNs,
such as power operator and priority operator for NNNSs, etc.
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