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Abstract. In this paper, we investigate the Smarandache curves according to Sabban frame of fixed pole curve which drawn by the
unit Darboux vector of the Bertrand partner curve. Some results have been obtained. These results were expressed as the depends
Bertrand curve.
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INTRODUCTION AND PRELIMINARIES

A regular curve in Minkowski space-time, whose position vector is composed by Frenet frame vectors on another reg-
ular curve, is called a Smarandache curve [1]. K. Tagkoprii, M. Tosun studied special Smarandache curves according
to Sabban frame on S? [2]. Senyurt and Caliskan investigated special Smarandache curves in terms of Sabban frame
for fixed pole curve and spherical indicatrix and they gave some characterization of Smarandache curves [4, 6]. Let
@ : I — E? be a unit speed curve denote by {T, N, B} the moving Frenet frame. For an arbitrary curve a € E3, with
first and second curvature, x and 7 respectively, the Frenet formulae is given by [7, 8]

T"=kN, N =—-«T+71B, B =-1N €))

the vector W is called Darboux vector defined by

W =1T + «B.
If we consider the normalization of the Darboux C = m W we have, sing = m and cos ¢ = m
and [5]
C =sinT + cos¢B 2

where Z(W, B) = ¢.

Theorem 1 Leta : I — E3and o : I — E3 be the C?-class differentiable unit speed two curves and the amounts
of {T(s), N(s), B(s), k(5), T($)} and {T*(s), N*(s), B*(s), k*(s), T*(5)} are entirely Frenet- serret aparataus of the curves
a and the Bertrand partner *, respectively, then
T = cosOT —sindB, N* =N, B* =sin0T + cosOB, 3)
Ak — sin? @ in” 6
_ Ak —sin ’T*=s1n @
A(1 = Ax) A2t

*

where Z(T,T*) =6, [8].
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Theorem 2 Let (a, @*) be a Bertrand curves pair in E3. We have between unit Darboux vectors [3],
Cc*=-C. &)

Theorem 3 Let y be a unit speed spherical curve. We denote s as the arc-length parameter of vy . Let us denote
t(s) = ¥'(s), and we call t(s) a unit tangent vector of y. We now set a vector d(s) = y(s) A t(s) along . This frame is
called the Sabban frame of y on S* (Sphere of unit radius). Then we have the following spherical Frenet formulae of
Y. (2, 6]

Y o=t U =—y+kd, d =—kyt (6)
where kg is called the geodesic curvature of y on S? and

ke = (. d). ™

SMARANDACHE CURVES ACCORDING TO SABBAN FRAME OF FIXED POLE
CURVE BELONGING TO THE BERTRAND CURVES PAIR

In this section, we investigate Smarandache curves according to the Sabban frame of fixed pole (C*). Let . (s) = C*
be a unit speed regular spherical curves on S2. We denote s¢- as the arc-lenght parameter of fixed pole (C*)

. (s) = C*(s). 8)

Differentiating (8), we have
Tcr = cos@"T™ — sinp* B

and
C*ANTc = N™.

From the equation
C* = sin@'T" +cos¢’B*, Tc- =cosg T —sing™B*, C*ATc- =N* 9)

is called the Sabban frame of fixed pole curve (C*). From the (6)

W*
Kg = <Tc*/,C“k ATy = Kg = ”—*/”
¥
Then from the (4) we have the following spherical Frenet formulae of (C*):
o wH . , , w*
Cc” = Te, Te' + I ||C' ANTc-, (C*ANTe) = —” ”Tc*. (10)

*/ 4

i.) C*T¢--Smarandache Curves

Let S2 be a unit sphere in E° and suppose that the unit speed regular Bertrand partner curve a.. (s) = C*(s) lying fully
on S2. In this case, C*T¢ - Smarandache curve can be defined by

Lo
Bi(s) = $(C +Tc). (11)
Substituting the equation (9) into equation (11), we reach
1 4
Bi(s) = —|((sing” + cos¢™)T™ + (cos ¢* — sin¢*)B*). (12)
o )

Differentiating (11), we can write the tangent vector of §;-Smarandache curve according to Bertrand partner curve

* —sing* w* * + sin @*
Ty = (¢"" —sing") T 4 [IW=| N (¢"" +sing") B

=
V22 W 2 IR 2 R

(13)
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Differentiating (13), we get

r4 P 4 74 .
T[/fl _ ¢ V2(x1 sing +)(22cos<p )T*+ e V2 ZN*+¢p V2(y cos ¢ )(22s1n<p)B (14)
(||W*||2+(,0*’2) (HW*”2+¢*/2) (”W*Hz_,_‘p*,z)
where
IIW*II IIW*II IIW*II [IW™]] W=l W=, [IWE
X o= -2- ( =) ( )( =) x2=-2-3—7) - () - () (") (15)
¥ [ Y ¥
IIW*II IIW*II IIW*II /
3 = 22—+ () +(—").
Y Y [
Considering the equations (12) and (13), it easily seen that
W* * : * Py W* * N *
(C* ATey = [W*li(cos ¢* +sing™) ., @ N+ IWli(cos ¢" +sing™) o, a6)

’2||W*||2 +4SD*,2 ’ZHW*HZ +490*’2 IZHW*HZ +490*/2

Substituting the (3) and (4) into equation (12), (13), (14) and (16), Sabban aparataus of the §;-Smarandache curve
according to Bertrand curve

¢sing—cosp) . IWIL__ . ¢'(cosp+sing)
V202 +IWIR - 292 + [[WIR V2¢2 + W2

Bi(s) = \/_(( singp—cos )T +(— cosgo+smcp)B) T, =

’

w —si w +si
[IWll(cos ¢ SIHQO)T_ @ N—” |l(cos ¢ sm(p)B

V2WIP +407 — \2IWIP+4¢?  \2IWIP + 47

(C* A Tc* )ﬁl =

90'4 ‘/5(—)71 sin ¢ — ), cos ‘P)T _ )7390/4 V2 N + '4 \/_(_Xl COS @ + X, Sm‘ﬂ)
(W2 + 272 (W] + 2¢72) (W2 + 2¢72)

where

IIWII ||W|| IIWII IVl IIWII ||W|I IIWII

2= 230 - (8

IIWII IIWII IIWII ,

a7

&
[

Geodesic curvatures of the ,Bl(sﬁl)—Smarandache curve according to Bertrand partner and Bertrand curves, recpec-
tively,

1 W=l [IW=l 1 IWIl_ IIWII_ —
L= ; ”W*HZ%( 1= X2+ 203), Kgl:—Z \\W\|2g(¢' - +23).
@+ (1)) (2 + (1))
ii.) T¢+(C* A T¢+)-Smarandache Curves
Tc+(C* A Te-)-Smarandache curve can be defined by
1 .
Ba(s) = —(Tc- + C" AN T¢). (18)

V2

Solving the above equation by substitution of T¢+ and C* A T¢- from (9), (3) and (4), we reach ,-Smarandache curve
according to Bertrand partner and Bertrand curves, respectively,

Ba(s) = %(cos @'T"+ N* —sing*B"), Ba(s) = %( —cos T + N + sin pB). (19)
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Geodesic curvature of the 3,(sg,)-Smarandache curve according to Bertrand curve

1 IWIl<

3 2—(51 52 +53)
(1+2apys " ¥
7

where

||W|| IIWII ||W|| IIWII IVl

S ||W|| ||W||

8 =

2(

bl

iii.) C*T¢+(C* A T¢-)-Smarandache Curves

C*Tc-(C* A Te-)-Smarandache curve can be defined by

Ba(s) = %(C* + T +C* ATe).

By =) -

Wl IIWII LAY

(20)

Solving the above equation by substitution of C*, T¢+ and C* A T+ from (9), (3) and (4), we reach S3-Smarandache

curve according to Bertrand partner and Bertrand curves, respectively,

B3(s) = %((sin @" +cos )T + N* + (cos ¢* — singp™)B*), B3(s) = %((— sing — cos )T + N + (sing — cos ¢)B).

Geodesic curvature of the 3(sg,)-Smarandache curve according to Bertrand curve,

& _ I = ¢)p1 = @ (Wl + ¢)p2 + ¢°(2¢" ~ Wl
b=

5
4N2(¢? = @I+ IWIR)*

where

_ w W W W w w

5 = || |I || |I || |I 2(II II) |I II |I I| ’
_ IIWII ||W|I IIWII ||W|I I|W|| I|W||
P2 = ( o )»
_ IWII IWII IWII IWII IWII IWII

P3 =

ACKNOWLEDGEMENT

This work was supported by BAP (The Scientific Research Projects Coordination Unit), Ordu University.

REFERENCES

1] Turgut M. and Yilmaz S., International Journal of Mathematical Combinatorics 3, 51-55 (2008).
2] Ta§k6prﬁ K. and Tosun M., Boletim da Sociedade Paranaense de Mathematica 3 srie. 32 (1), 51-59 (2014).
3] Ozgtiner Z. and Senyurt S., University of Ordu Journal of Science and Technology, 3 (2), 58-81 (2013).

4] Caligkan A. and Senyurt, S., Gen. Math. Notes, 31 (2), 1-15, (2015).

6] Caligkan A. and Senyurt, S., Boletim da Sociedade Parananse de Mathematica 3 srie. 34 (2), 53-62 (2016).
7] Hacisalihoglu H.H., Differential Geometry (Inénii University Publications, Malatya, 1994).

[
[
[
[
[5] Fenchel, W., Bull. Amer. Math. Soc. 57, 44-54 (1951).
[
[
[

8] Sabuncuoglu A., Differential Geometry(Nobel Publications, Ankara, 2006).

020045-4


http://dx.doi.org/10.5269/bspm.v32i1.19242
http://dx.doi.org/10.1090/S0002-9904-1951-09440-9
http://dx.doi.org/10.5269/bspm.v34i2.22375

