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Abstract Simplified neutrosophic sets (SNSs) can effec-

tively solve the uncertainty problems, especially those

involving the indeterminate and inconsistent information.

Considering the advantages of SNSs, a new approach for

multi-criteria decision-making (MCDM) problems is

developed under the simplified neutrosophic environment.

First, the prioritized weighted average operator and prior-

itized weighted geometric operator for simplified neutro-

sophic numbers (SNNs) are defined, and the related

theorems are also proved. Then two novel effective cross-

entropy measures for SNSs are proposed, and their prop-

erties are proved as well. Furthermore, based on the pro-

posed prioritized aggregation operators and cross-entropy

measures, the ranking methods for SNSs are established in

order to solve MCDM problems. Finally, a practical

MCDM example for coping with supplier selection of an

automotive company is used to demonstrate the effective-

ness of the developed methods. Moreover, the same

example-based comparison analysis of between the pro-

posed methods and other existing methods is carried out.

Keywords Simplified neutrosophic sets � Prioritized
aggregation operator � Cross-entropy � Multi-criteria

decision-making

1 Introduction

Fuzzy set (FS) theory was introduced by Zadeh [1] and

used as a key method to solve multi-criteria decision-

making (MCDM) problems [2], and pattern recognition [3].

But, some issues, where the membership degree is difficult

to be defined by one specific value, cannot be well dealt

with by FSs. In order to overcome the shortcomings of

Zadeh’s FS theory, Atanassov [4] introduced intuitionistic

fuzzy sets (IFSs) and Gau and Buehrer [5] defined vague

sets, but in fact, IFSs and vague sets are mathematically

equivalent collections. Because of the advantages that an

IFS considers the membership-degree, non-membership

degree and hesitation degree simultaneously, it is more

flexible and useful to describe the uncertain information

than a traditional FS. Thus, many methods based on IFSs

have been put forward and widely applied to solve MCDM

problems [6–12], medical diagnosis [13, 14], pattern

recognition [15, 16], stock market prediction [17, 18], and

marketing strategy selection [19]. However, in some real

situations, the membership degree, non-membership degree

and hesitation degree may be difficultly given by specific

numbers; hence, interval-valued intuitionistic fuzzy sets

(IVIFSs) [20] are developed and applied to solve such

problems [21–25]. In addition, Torra and Narukawa [26]

proposed hesitant fuzzy sets (HFSs) to deal with the hesi-

tant situation when people express their preferences for

objects in a decision-making process. Since then, many

researches on HFSs and their extensions have been carried

out. Chen et al. [27] proposed interval-valued hesitant

fuzzy sets (IVHFSs) and verified the effectiveness in

solving MCDM problems. Wang et al. introduced several

hesitant fuzzy linguistic aggregation operator-based meth-

ods [28, 29], and Zhou et al. [30] proposed a linguistic

hesitant fuzzy decision-making method based on evidential
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reasoning to solve MCDM problems. Moreover, Wang

et al. [31] studied hesitant fuzzy linguistic term sets, Tian

et al. [32] introduced gray linguistic sets based on gray sets

and linguistic term sets, and Peng et al. [33] proposed

intuitionistic hesitant fuzzy sets based on HFSs and IFSs.

Although FSs have been extended and generalized, they

still cannot handle all types of problems with uncertainty in

reality, especially those of the indeterminate and incon-

sistent information [34]. For example, when an expert is

asked for the opinion about a certain statement, he or she

may say the possibility that the statement is true is 0.5, the

possibility that the statement is false is 0.6, and the degree

that he or she is not sure is 0.2. Such issues cannot be

properly solved using HFSs and IFSs. Thus, a new theory is

required.

Smarandache [35] proposed neutrosophic logic and

neutrosophic sets, and then several researchers have made

their efforts to enrich NSs [36–42]. Recently, some meth-

ods on simplified neutrosophic sets (SNSs) and interval

neutrosophic sets (INSs) have been put forward and used to

solve MCDM problems [43–51]. For example, Ye [43]

defined the operational rules of SNSs and proposed a

method with simplified neutrosophic information based on

the weighted arithmetic average operator and the weighted

geometric average operator. Ye [43, 44] proposed different

methods based on single valued neutrosophic measures:

one is the cosine similarity-based measure method, and

another is the logarithm–based cross-entropy measure

method. The effectiveness of both methods for MCDM

problems have been proved through the same illustrative

example. However, Peng et al. [50, 51] pointed out some

limitations of previous research papers for SNSs [43–45],

including the lacks of the SNS operation and cross-entropy

measure, and brought forward an improved method of

SNSs. In a word, it has been demonstrated that neutro-

sophic set-based methods are effective tools to handle

indeterminate and inconsistent information, which cannot

be achieved using HFSs and IFSs.

In this paper, in order to overcome the lacks of previous

proposed methods [43–45], the prioritized weighted aver-

age operator (SNNPWA) and prioritized weighted geo-

metric operator (SNNPWG) for SNS are defined and two

novel cross-entropy measures are proposed. Moreover,

based on the proposed operators and measures, the ranking

methods are established. Then the assessment information

of alternatives with respect to criteria is given by truth-

membership degree, indeterminate-membership degree,

and falsity-membership degree under simplified neutro-

sophic environment, and then the ranking of all alternatives

is obtained using the developed approach.

The paper is organized as follows. Some concepts of

NSs, SNSs, prioritized aggregation (PA) operator, and

cross-entropy are introduced in Sect. 2. In Sect. 3, the

SNNPWA and SNNPWG operators are defined and

proved, two novel cross-entropy measures are proposed

and their effectiveness is verified. Section 4 provides the

ranking method for MCDM problems with simplified

neutrosophic information. Section 5 shows the illustration

of our approaches and the comparison analysis between the

proposed methods and other existing methods. Finally,

conclusions are drawn in Sect. 6.

2 Preliminaries

In this section, some basic concepts and definitions of NSs,

SNSs, PA operator, cross-entropy, and cosine similarity

measure are briefly reviewed.

2.1 NS and SNSs

In this subsection, the definitions and operations of NSs

and SNSs are introduced.

Definition 1 [35] Let X be a space of points (objects),

with a generic element in X denoted by x. A neutrosophic

set A in X is characterized by a truth-membership function

TA(x), an indeterminacy- membership function IA(x) and a

falsity-membership function FA(x). The functions TA(x),

IA(x) and FA(x) are real standard or nonstandard subsets of

0�; 1þ� ½, that is, TAðxÞ : X� ! 0�; 1þ� ½, IAðxÞ : X�
! 0�; 1þ� ½, and FAðxÞ : X� ! 0�; 1þ� ½. There is no

restriction on the sum of TA(x), IA(x) and FA(x), so

0� � sup TAðxÞ þ sup IAðxÞ þ supFAðxÞ� 3þ.

Definition 2 [35] A neutrosophic set A is contained in the

other neutrosophic set B, denoted by A � B if and only if

inf TAðxÞ� inf TBðxÞ, sup TAðxÞ� sup TBðxÞ, inf IAðxÞ�
inf IBðxÞ, sup IAðxÞ� sup IBðxÞ, inf FAðxÞ� inf FBðxÞ, and
supFAðxÞ� supFBðxÞ for every x in X.

Since it is hard to use NSs to solve practical problems,

so Ye [43] reduced NSs of nonstardard intervals into a kind

of SNSs of standard intervals.

Definition 3 [43] Let X be a space of points (objects),

with a generic element in X denoted by x. A neutrosophic

set A in X is characterized by a truth-membership function

TA(x), a indeterminacy-membership function IA(x) and a

falsity-membership function FA(x). If the functions TA(x),

IA(x) and FA(x) are singleton subintervals/subsets in the real

standard 0; 1½ �, that is, TAðxÞ : X� ! 0; 1½ �, IAðxÞ : X� !
0; 1½ � and FAðxÞ : X� ! 0; 1½ �. Then, a simplification of the

neutrosophic set A is denoted by A ¼ fhx; TAðxÞ; IA
ðxÞ;FAðxÞijx 2 Xg which is called a SNS. It is a subclass of
NSs.
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Definition 4 [43]. A SNS A is contained in the other SNS

B, denoted by A � B if and only if TAðxÞ� TBðxÞ, IAðxÞ�
IBðxÞ and FAðxÞ�FBðxÞ, for any x 2 X. Especially, A = B

if A � B and B � A. The complement set of A denoted by

AC is defined as AC ¼ f\x;FAðxÞ; IAðxÞ; TAðxÞ[ jx 2 Xg:

Definition 5 [43] Let A and B are two SNSs, the opera-

tions of SNSs are defined as follows.

(1) Aþ B ¼ TAðxÞ þ TBðxÞ � TAðxÞTBðxÞ; IAðxÞ þ IBh
ðxÞ �IAðxÞIBðxÞ;FAðxÞ þ FBðxÞ � FAðxÞFBðxÞi;

(2) A � B ¼ TAðxÞTBðxÞ; IAðxÞIBðxÞ;FAðxÞFBðxÞh i;
(3) kA ¼ 1� ð1� TAðxÞÞk; 1� ð1� IAðxÞÞk; 1�

D
ð1�

FA ðxÞÞki; k[ 0;

(4) Ak ¼ ðTAðxÞÞk; ðIAðxÞÞk; ðFAðxÞÞk
D E

; k[ 0:

However, Peng et al. [50, 51] pointed out there are still

some lacks in Definition 5. In some cases, the operations

such as Aþ B and A � B might be impractical as presented

in Example 1.

Example 1 Let A ¼ x; 0:5; 0:5; 0:5h if g and B ¼ x; 1;hf
0; 0ig be two SNSs. Obviously, B ¼ x; 1; 0; 0h if g is the

largest SNSs. Theoretically, the sum of an arbitrary value

and the maximum value should be equal to the maximum

value. However, according to Definition 5, Aþ B ¼ x; 1;hf
0:5; 0:5; 0:5ig 6¼ B. Thus, the operation ‘‘?’’ cannot be

accepted. Similar contradictions exist in other operations of

Definition 5, and thus the operations of SNSs need to be

redefined.

Definition 6 [50, 51] Let A and B be two SNSs, and the

operations of SNSs can be defined as follows:

(1) Aþ B ¼ TAðxÞ þ TBðxÞ � TAðxÞTBðxÞ; IAðxÞIBðxÞ;h
FAðxÞFBðxÞi;

(2) A � B ¼ TAðxÞTBðxÞ; IAðxÞ þ IBðxÞ � IAðxÞIBðxÞ;h FA

ðxÞ þ FBðxÞ � FAðxÞFBðxÞi;
(3) kA ¼ 1� ð1� TAðxÞÞk; ðIAðxÞÞk; ðFAðxÞÞk

D E
; k[ 0;

(4) Ak ¼ ðTAðxÞÞk; 1� ð1� IAðxÞÞk; 1� ð1
D

�FAðxÞÞki;
k[ 0:

2.2 Prioritization Aggregation Operator

The prioritization aggregation (PA) operator was originally

introduced by Yager [52], and is shown as follows.

Definition 7 [52] Let G ¼ G1;G2; � � � ;Gnf g be a col-

lection of criteria and there is a prioritization between the

criteria expressed by the linear ordering G1 � G2 � G3 �
� � � � Gn, which indicates the criteria Gj has a higher pri-

ority than Gk, if j\k. GjðxÞ is an evaluation value denoting

the performance of the alternative x under the criteria Gj,

and satisfies Gj 2 0; 1½ �, thus

PAðGjðxÞÞ ¼
Xn
j¼1

WjGjðxÞ;

where Wj ¼ TjPn

i¼1
Ti
, T1 ¼ 1 and Tj ¼

Qj�1
k¼1 GjðxÞ

ðj ¼ 2; � � � ; nÞ. Then PA is called the prioritized aggrega-

tion operator.

2.3 Cross-Entropy of FSs and SNSs

The cross-entropy measure was introduced by Kullback

[53] and its definition is shown as follows.

Definition 8 [53] Let P ¼ fp1; p2; � � � ; png and Q ¼ fq1;
q2; � � � ; qng be two given probability distributions, where

pi � 0,
Pn

i¼1 pi ¼ 1, qi � 0 and
Pn

i¼1 qi ¼ 1 for i ¼ ð1;
2; � � � ; nÞ, the cross-entropy measure of P to Q is defined as

HðP;QÞ ¼
Xn

i¼1
pi 	 ln

pi

qi
:

Based on Kullback’s entropy definition, Shang and Jiang

[54] proposed the cross-entropy measure between two FSs.

Definition 9 [54]. Assume that A ¼ fAðx1Þ;Aðx2Þ; � � � ;
AðxnÞg and B ¼ fBðx1Þ;Bðx2Þ; � � � ;BðxnÞg are two FSs in

the universe of discourse X ¼ fx1; x2; � � � ; xng, and the

fuzzy cross-entropy of A from B is defined as follows:

HðA;BÞ ¼
Xn
i¼1

AðxiÞlog
AðxiÞ

1
2
ðAðxiÞþBðxiÞÞ
2 þ ð1� AðxiÞÞlog

1�AðxiÞ
1�1

2
ðAðxiÞþBðxiÞÞ

2

 !
;

which indicates the degree of discrimination of A from B.

However, HðA;BÞ is not symmetric with respect to its

arguments. Shang and Jiang [54] proposed a symmetric

discrimination information measure IðA;BÞ ¼ HðA;BÞþ
HðB;AÞ.

Similarly, considering the indeterminacy-membership

and falsity-membership functions, Ye [44] proposed the

cross-entropy measure of SNSs as follows:

EðA;BÞ

¼
Xn
i¼1

TAðxiÞlog
TAðxiÞ

1
2
ðTAðxiÞþTBðxiÞÞ

2 þð1�TAðxiÞÞlog
1�TAðxiÞ

1�1
2
ðTAðxiÞþTBðxiÞÞ

2

 !

þ
Xn
i¼1

IAðxiÞlog
IAðxiÞ

1
2
ðIAðxiÞþIBðxiÞÞ

2 þð1�IAðxiÞÞlog
1�IAðxiÞ

1�1
2
ðIAðxiÞþIBðxiÞÞ

2

 !

þ
Xn
i¼1

FAðxiÞlog
FAðxiÞ

1
2
ðFAðxiÞþFBðxiÞÞ
2 þð1�FAðxiÞÞlog

1�FAðxiÞ
1�1

2
ðFAðxiÞþFBðxiÞÞ

2

 !
;

which also indicates the discrimination degree of the SNSs

A from B. Moreover, it can be easily proved that
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EðA;BÞ� 0 and EðA;BÞ ¼ 0 if and only if TAðxiÞ ¼ TBðxiÞ,
IAðxiÞ ¼ IBðxiÞ, and FAðxiÞ ¼ FBðxiÞ for any xi 2 ðXÞ.
EðAC;BCÞ ¼ EðA;BÞ, where AC and BC are the comple-

ment of SNSs A and B, respectively. Then, EðA;BÞ is not
symmetric, and similarly, it could be revised to a sym-

metric discrimination information measure for SNSs as

DðA;BÞ ¼ EðA;BÞ þ EðB;AÞ.
The larger the difference between A and B is, the larger

DðA;BÞ is.

2.4 Cosine Similarity Measure of SNSs

The cosine similarity measure of SNSs was introduced by

Ye [43], which was induced from the correlation coeffi-

cient of Ye [45]. To rank the alternatives in the decision-

making process, Ye [43] defined the SNS value of ideal

alternative as a
 ¼ 1; 0; 0h i, and the cosine similarity

measure between SNSs ai i ¼ 1; 2; � � � ; nð Þ and a
 is defined
as follows:

Siðai; a
Þ ¼
tit


 þ iii

 þ fif



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2i þ i2i þ f 2i

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t
2 þ i
2 þ f 
2

p

¼ tiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2i þ i2i þ f 2i

p :

The bigger the measure value Siðai; a
Þ ði ¼ 1; 2; � � � ; nÞ is,
the better alternative Ai is.

However, the cosine measure above has the lacks when

it is used in a real situation as demonstrated in Example 2.

Example 2 Let A1 ¼ x; 0:8; 0; 0h if g and A2 ¼
x; 0:2; 0; 0h if g be two SNSs. Obviously, A1 is superior than

A2, that is, S1ða1; a
Þ[ S2ða2; a
Þ. However, according to

the cosine measure of Ye [43], S1ða1; a
Þ ¼ S2ða2; a
Þ ¼ 1:

Therefore, the results in Example 2 cannot be accepted,

and the measure given in [43] needs to be improved.

3 SNNPWA and SNNPWG Operators
and Cross-Entropy Measure for SNSs

3.1 SNNPWA and SNNPWG Operators

In this subsection, the score function of a simplified neu-

trosophic number (SNN) is first defined. Then, the

SNNPWA and SNNPWG operators are defined, and their

relative theorems are proved.

From the intuitive judgment, A SNN A, which is closer

to the ideal SNN Aþ ¼ 1; 0; 0h i, should possess a higher

score, thus, the score function S(A) can be defined as

follows:

Definition 10 Let A ¼ TA; IA;FAh i be a SNN, and the

score function S(A) is represented as follows:

SðAÞ ¼ TA þ 1� IA þ 1� FA

3
ð1Þ

Example 3 If A ¼ 0:8; 0:2; 0:2h i, by applying Eq. (1),

then SðAÞ ¼ 0:8þ1�0:2þ1�0:2
3

¼ 0:8:

In the following, the prioritized weighted average

operator and prioritized weighted geometric operator under

simplified neutrosophic environment are defined, and their

related theorems are given.

Definition 11 Let Aj ¼ TAj
; IAj

;FAj

� �
ðj ¼ 1; 2; � � � ; nÞ be

a collection of SNNs, and the SNNPWA operator can be

defined as follows:

SNNPWA ðA1;A2; � � � ;AnÞ ¼
T1Pn
i¼1 Ti

A1 þ
T2Pn
i¼1 Ti

A2

þ � � � þ TnPn
i¼1 Ti

An

¼
Xn

j¼1

TjAjPn
i¼1 Ti

;

where Tj ¼ Pj�1
k¼1SðAkÞ ðj ¼ 2; � � � ; nÞ; T1 ¼ 1 and S(Ak) is

the score function of Ak.

Theorem 1 For the collection of SNNs A ¼ fAjjj ¼ 1; 2;

� � � ; ng, the following aggregated results will be obtained

by using the SNNPWA operator:

SNNPWAðA1;A2;���;AnÞ

¼ 1�
Yn
j¼1

ð1�TAj
Þ

TjPn

i¼1
Ti ;
Yn
j¼1

ðIAj
Þ

TjPn

i¼1
Ti

*
;
Yn
j¼1

ðFAj
Þ

TjPn

i¼1
Ti

+
;

ð2Þ

where Tj ¼ Pj�1
k¼1SðAkÞ ðj ¼ 2; � � � ; nÞ; T1 ¼ 1 and S(Ak) is

the score function of Ak.

Proof Clearly, according to Definition 11 and the oper-

ation of SNSs defined in Definition 6, Eq. (2) can be pro-

ven by utilizing mathematic induction.

(1) When n ¼ 2, we have

T1Pn
i¼1 Ti

A1 ¼ 1� ð1� TA1
Þ

T1Pn

i¼1
Ti ; I

T1Pn

i¼1
Ti

A1
;F

T1Pn

i¼1
Ti

A1

* +
;

T2Pn
i¼1 Ti

A2 ¼ 1� ð1� TA2
Þ

T2Pn

i¼1
Ti ; I

T2Pn

i¼1
Ti

A2
;F

T2Pn

i¼1
Ti

A2

* +
:

Then
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SNNPWAðA1;A2Þ

¼ 1� ð1� TA1
Þ

1P2

i¼1
Ti ;

*
ðIA1

Þ
1P2

i¼1
Ti ; ðFA1

Þ
1P2

i¼1
Ti

+

þ 1� ð1� TA2
Þ

T2P2

i¼1
Ti

*
; ðIA2

Þ
T2P2

i¼1
Ti ; ðFA2

Þ
1P2

i¼1
Ti

+

¼ 1� ð1� TA1
Þ

1P2

i¼1
Tiþ

*
1� ð1� TA2

Þ
T2P2

i¼1
Ti

� ð1� ð1� TA1
Þ

1P2

i¼1
TiÞ

	 ð1� ð1� TA2
Þ

T2P2

i¼1
TiÞ; ððIA1

Þ
1P2

i¼1
Ti

	 ðIA2
Þ

T2P2

i¼1
Ti ; ðFA1

Þ
1P2

i¼1
Ti	ðFA2

Þ
1P2

i¼1
Ti

+

¼ 1�
Y2
j¼1

ð1� TAj
ðxÞÞ

TjP2

i¼1
Ti

*
;
Y2
j¼1

ðIAj
ðxÞÞ

TjP2

i¼1
Ti ;

	
Y2
j¼1

ðFAj
ðxÞÞ

TjP2

i¼1
Ti

+
: ð3Þ

(2) When n ¼ k, the following results can be obtained by

applying Eq. (2)

SNNPWAðA1;A2;���;AkÞ

¼ 1�
Yk
j¼1

ð1�TAj
Þ

TjPn

i¼1
Ti ;
Yk
j¼1

ðIAj
Þ

TjPn

i¼1
Ti

*
;
Yk
j¼1

ðFAj
Þ

TjPn

i¼1
Ti

+
:

ð4Þ

When n¼kþ1, by using Eqs. (3) and (4), we can obtain

SNNPWAðA1;A2;���;Akþ1Þ

¼ 1�
Yk
j¼1

ð1�TAj
Þ

TjPn

i¼1
Ti ;
Yk
j¼1

ðIAj
Þ

TjPn

i¼1
Ti

*
;
Yk
j¼1

ðFAj
Þ

TjPn

i¼1
Ti

+

þ 1�ð1�TAkþ1
Þ

Tkþ1Pn

i¼1
Ti ;

*
ðIAkþ1

Þ
Tkþ1Pn

i¼1
Ti ;ðFAkþ1

Þ
Tkþ1Pn

i¼1
Ti

+

¼ 1�
Ykþ1

j¼1

ð1�TAj
Þ

TjPn

i¼1
Ti ;
Ykþ1

j¼1

ðIAj
Þ

TjPn

i¼1
Ti

*
;
Ykþ1

j¼1

ðFAj
Þ

TjPn

i¼1
Ti

+
:

The proof that Eq. (2) holds for any n is completed now.

Property 1 (Boundedness). Let A ¼ fAjjj ¼ 1; 2; � � � ; ng
be a collection of SNNs. A� ¼ MinðTAj

Þ;MaxðIAj
Þ;

�

MaxðFAj
Þi, Aþ ¼ MaxðTAj

Þ;MinðIAj
Þ;MinðFAj

Þ
� �

, and

then A� � SNNPWA ðA1;A2; � � � ;AnÞ � Aþ:

Proof Since

SNNPWA ðA1;A2; � � � ;AnÞ

¼ 1�
Yn
j¼1

ð1� TAj
Þ

TjPn

i¼1
Ti ;
Yn
j¼1

ðIAj
Þ

TjPn

i¼1
Ti

*
;
Yn
j¼1

ðFAj
Þ

TjPn

i¼1
Ti

+
:

Then, we have

1�
Yn
j¼1

ð1� TAj
Þ

TjPn

i¼1
Ti � 1�

Yn
j¼1

ð1�MinðTAj
ÞÞ

TjPn

i¼1
Ti � 1

� ð1�MinðTAj
ÞÞ

¼ MinðTAj
Þ;

Yn
j¼1

ðIAj
Þ

TjPn

i¼1
Ti �

Yn
j¼1

ðMaxðIAj
ÞÞ

TjPn

i¼1
Ti �MaxðIAj

Þ;

Yn
j¼1

ðFAj
Þ

TjPn

i¼1
Ti �

Yn
j¼1

ðMaxðFAj
ÞÞ

TjPn

i¼1
Ti �MaxðFAj

Þ:

According to Definition 4 and the induced result above,

A� � SNNPWA ðA1;A2; � � � ;AnÞ holds. By the similar

induction process, we obtain

1�
Yk
j¼1

ð1� TAj
Þ

TjPn

i¼1
Ti � 1

�
Yk
j¼1

ð1�MaxðTAj
ÞÞ

TjPn

i¼1
Ti � 1� ð1�MaxðTAj

ÞÞ

¼ MaxðTAj
Þ;

Yn
j¼1

ðIAj
Þ

TjPn

i¼1
Ti �

Yn
j¼1

ðMinðIAj
ÞÞ

TjPn

i¼1
Ti �MinððIAj

Þ;

Yn
j¼1

ðFAj
Þ

TjPn

i¼1
Ti �

Yn
j¼1

ðMinðFAj
ÞÞ

TjPn

i¼1
Ti �MinðFAj

Þ:

In accordance with Definition 4, SNNPWA ðA1;A2;

� � � ;AnÞ � Aþ holds.

Thus, A� � SNNPWA ðA1;A2; � � � ;AnÞ � Aþ holds.

Property 2 (Idempotency). Let A ¼ fAjjj ¼ 1; 2; � � � ; ng
be a collection of SNNs. If Aj ¼ B ¼ TB; IB;FBh i, then

SNNPWA ðA1;A2; � � � ;AnÞ ¼ B:

Proof Utilizing Eq. (2), we have

SNNPWA ðA1;A2; � � � ;AnÞ

¼ 1�
Yn
j¼1

ð1� TBÞ
TjPn

i¼1
Ti ;
Yn
j¼1

ðIBÞ
TjPn

i¼1
Ti

*
;
Yn
j¼1

ðFBÞ
TjPn

i¼1
Ti

+

¼ 1� ð1� TBÞ; IB;FBh i ¼ TB; IB;FBh i ¼ B:

Thus, Property 2 is proved.
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Property 3 (Monotonity). If A ¼ fAjjj ¼ 1; 2; � � � ; ng and
A
 ¼ fA


j jj ¼ 1; 2; � � � ; ng are two collections of SNNs. If

Aj � A

j for j ¼ 1; 2; � � � ; n, then SNNPWA ðA1;A2; � � � ;

AnÞ � SNNPWA ðA

1;A



2; � � � ;A


nÞ.

Proof By applying Eq. (2), the following result can be

obtained:

SNNPWAðA1;A2;���;AnÞ

¼ 1�
Yn
j¼1

ð1�TAj
Þ

TjPn

i¼1
Ti ;
Yn
j¼1

ðIAj
Þ

TjPn

i¼1
Ti

*
;
Yn
j¼1

ðFAj
Þ

TjPn

i¼1
Ti

+
;

SNNPWAðA

1;A



2;���;A


nÞ

¼ 1�
Yn
j¼1

ð1�T

Aj
Þ

TjPn

i¼1
Ti ;
Yn
j¼1

ðI
Aj
Þ

TjPn

i¼1
Ti

*
;
Yn
j¼1

ðF

Aj
Þ

TjPn

i¼1
Ti

+
:

Because of Aj � Aj
, we obtain TAj
\T


Aj
, IAj

[ I
Aj
,

FAj
[F


Aj
in accordance with Definition 4. Obviously, the

inequality 1� TAj
[ 1� T


Aj
holds, and 1�

Qn
j¼1

ð1� T

Aj
Þ

TjPn

i¼1
Ti [ 1�

Qn
j¼1

ð1� TAj
Þ

TjPn

i¼1
Ti ,
Qn
j¼1

ðI
Aj
Þ

TjPn

i¼1
Ti\

Qn
j¼1

ðIAj
Þ

TjPn

i¼1
Ti and

Qn
j¼1

ðF

Aj
Þ

TjPn

i¼1
Ti\

Qn
j¼1

ðFAj
Þ

TjPn

i¼1
Ti hold as

well.

According to Definition 4, clearly, SNNPWA ðA1;A2;

� � � ;AnÞ � SNNPWA ðA

1;A



2; � � � ;A


nÞ.

Definition 12 Let A ¼ fAjjj ¼ 1; 2; � � � ; ng be a collec-

tion of SNNs, and then the SNNPWG operator can be

defined as follows:

SNNPWG ðA1;A2; � � � ;AnÞ

¼ A

T1Pn

i¼1
Ti

1 	 A

T2Pn

i¼1
Ti

2 	 � � � 	 A

TnPn

i¼1
Ti

n ¼
Yn

j¼1
A

TjPn

i¼1
Ti

j ;

ð5Þ

where Tj ¼ Pj�1
k¼1SðAkÞðj ¼ 2; � � � ; nÞ; T1 ¼ 1; and S(Ak) is

the score function of Ak.

Theorem 2 Let A ¼ fAjjj ¼ 1; 2; � � � ; ng be a SNS, and

the following can be obtained by using Eq. (5).

SNNPWG ðA1;A2; � � � ;AnÞ

¼
Yn
j¼1

T

TjPn

i¼1
Ti

Aj

*
; 1�

Yn
j¼1

ð1� IAj
Þ

TjPn

i¼1
Ti ;

1�
Yn
j¼1

ð1� FAj
Þ

TjPn

i¼1
Ti

+
: ð6Þ

Proof According to Definition 12 and Definition 6, the

proof of Eq. (6) can be proved in a similar proof manner.

(1) For n ¼ 2, by using the operation defined in Defi-

nition 6, we have

SNNPWGðA1;A2Þ

¼ T

T1P2

i¼1
Ti

A1

*
;1�ð1�IA1

Þ
T1P2

i¼1
Ti ;1�ð1�FA1

Þ
T1P2

i¼1
Ti

+

	 T

T2P2

i¼1
Ti

A2

*
;1�ð1�IA2

Þ
T2P2

i¼1
Ti ;1�ð1�FA2

Þ
T2P2

i¼1
Ti

+

¼
Y2
j¼1

T

TjP2

i¼1
Ti

Aj

*
;1�

Y2
j¼1

ð1�IAj
Þ

TjP2

i¼1
Ti

;1�
Y2
j¼1

ð1�FAj
Þ

TjP2

i¼1
Ti

+
:

ð7Þ

For n¼k, if Eq. (6) holds, we can get

SNNPWG ðA1;A2; � � � ;AnÞ ¼
Yn
j¼1

T

TjPn

i¼1
Ti

Aj

*
; 1

�
Yn
j¼1

ð1� IAj
Þ

TjPn

i¼1
Ti ; 1

�
Yn
j¼1

ð1� FAj
Þ

TjPn

i¼1
Ti

+
:

ð8Þ

(2) When n ¼ k þ 1, by applying Eqs. (7) and (8), we can

obtain

SNNPWG ðA1;A2; � � � ;Akþ1Þ

¼
Yk
j¼1

T

TjPn

i¼1
Ti

Aj

*
; 1�

Yk
j¼1

ð1� IAj
Þ

TjPn

i¼1
Ti ; 1�

Yk
j¼1

ð1� FAj
Þ

TjPn

i¼1
Ti

+

	 T

Tkþ1Pn

i¼1
Ti

Akþ1
; 1� ð1� IAkþ1

Þ
Tkþ1Pn

i¼1
Ti ; 1� ð1� FAkþ1

Þ
Tkþ1Pn

i¼1
Ti

* +

¼
Ykþ1

j¼1

T

TjPn

i¼1
Ti

Aj

*
; 1�

Ykþ1

j¼1

ð1� IAj
Þ

TjPn

i¼1
Ti ; 1�

Ykþ1

j¼1

ð1� FAj
Þ

TjPn

i¼1
Ti

+
:

Equation (6) holds for n ¼ k þ 1, so Eq. (6) holds for any

n, and the proof is completed.

Obviously, the SNNPWG operator has the following

properties:

Property 4 (Boundedness). Let A ¼ fAjjj ¼ 1; 2; � � � ; ng
be a collection of SNNs. A� ¼ MinðTAj

Þ;MaxðIAj
Þ;Max

�

ðFAj
Þi, Aþ ¼ MaxðTAj

Þ;MinðIAj
Þ;MinðFAj

Þ
� �

, and then

A� � SNNPWA ðA1;A2; � � � ;AnÞ � Aþ:
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Property 5 (Idempotency). Let A ¼ fAjjj ¼ 1; 2; � � � ; ng
be a collection of SNNs. If Aj ¼ B ¼ TB; IB;FBh i, then

SNNPWA ðA1;A2; � � � ;AnÞ ¼ B.

Property 6 (Monotonity). If A ¼ fAjjj ¼ 1; 2; � � � ; ng and
A
 ¼ fA


j jj ¼ 1; 2; � � � ; ng are two collections of SNNs. If

Aj � A

j for any j, then SNNPWA ðA1;A2; � � � ;AnÞ �

SNNPWA ðA

1;A



2; � � � ;A


nÞ:

By a similar proof manner, the properties above can be

proved.

3.2 Cross-Entropy Measure for SNSs

The cross-entropy measure for SNSs was proposed by Ye

[44], but it cannot be accepted in some specific cases, as

shown in the example given by Peng et al. [50].

Example 4 Let A1 ¼ x; 0:1; 0; 0h if g and A2 ¼ x; 0:9; 0;hf
0ig be two SNSs, and B ¼ x; 1; 0; 0h if g be the largest SNS.
According to the cross-entropy measure for SNSs [44],

S1ðA1;BÞ ¼ S2ðA2;BÞ ¼ 1 can be obtained, which indi-

cates that A1 is equal to A2. However, it is not possible to

discern which one is the best. As TA2
ðxÞ[ TA1

ðxÞ, IA2
ðxÞ ¼

IA1
ðxÞ and FA2

ðxÞ ¼ FA1
ðxÞ for any x in X, it is clear that A2

is superior to A1.

In order to overcome the shortcomings mentioned

above, in this subsection, two new cross-entropy measures

for SNSs are defined. Before defining the new cross-en-

tropy measures, the following definition is required to be

introduced to help us obtain the proof of the properties of

the proposed cross-entropy measures later.

Definition 13 A SNS A is greater than or equal to the

other SNS B, denoted by A�B if and only if TA � TB,

IA � IB and FA �FB:

Next, the novel cross-entropy measures are defined.

Definition 14 Let A and B be two SNSs, and then the

cross-entropy between A and B can be defined as:

ð1ÞISNS1ðA;BÞ ¼
Xn
i¼1

sin TAðxiÞ 	 sinðTAðxiÞ � TBðxiÞÞ½

þ sin IAðxiÞ 	 sinðIAðxiÞ � IBðxiÞÞ
þ sinFAðxiÞ 	 sinðFAðxiÞ � FBðxiÞÞ�

;

and

ð2Þ ISNS2ðA;BÞ ¼
Xn
i¼1

tan TAðxiÞ 	 tanðTAðxiÞ � TBðxiÞÞ½

þ tan IAðxiÞ 	 tanðIAðxiÞ � IBðxiÞÞ
þ tanFAðxiÞ 	 tanðFAðxiÞ � FBðxiÞÞ�;

which can indicate the degree of discrimination of A from

B. However, ISNS1ðA;BÞ and ISNS2ðA;BÞ is not symmetric

with respect to its argument. Therefore, a modified cross-

entropy measure based on ISNS1ðA;BÞ and ISNS2ðA;BÞ can
be defined as follows:

(1) DSNS1ðA;BÞ ¼ ISNS1ðA;BÞ þ ISNS1ðB;AÞ;
(2) DSNS2ðA;BÞ ¼ ISNS2ðA;BÞ þ ISNS2ðB;AÞ:

Property 7 Let A and B be two SNNs. Define the degree

of discrimination of A from B as DSNSðA;BÞ, and then the

following properties hold:

(1) DSNS1ðA;BÞ ¼ DSNS1ðB;AÞ and DSNS2ðA;BÞ ¼
DSNS2ðB;AÞ;

(2) DSNS1ðA;BÞ ¼ DSNS1ðAC;BCÞ; and DSNS2ðA;BÞ ¼
DSNS2ðAC;BCÞ;
where AC and BC are the complement sets of A and

B, respectively, as defined in Definition 4;

(3) DSNS1ðA;BÞ� 0 ( DSNS1ðA;BÞ ¼ 0 if and only if

A ¼ B) and DSNS2ðA;BÞ� 0 (DSNS2ðA;BÞ ¼ 0 if and

only if A ¼ B);

(4) The larger the difference between A and B, the

larger DSNS1ðA;BÞ or DSNS2ðA;BÞ will be.

Proof Obviously, it can be easily verified that (1) and (2)

hold. Next, the proofs of (3) and (4) are shown in the

following.

(3) Now, let us consider the following functions:

f1ðx; yÞ ¼ sinðxÞ 	 sinðx� yÞ þ sinðyÞ 	 sinðy� xÞ and

¼ sinðx� yÞ 	 ðsinðxÞ � sinðyÞÞ
ð9Þ

f2ðx; yÞ ¼ tanðxÞ 	 tanðx� yÞ þ tanðyÞ 	 tanðy� xÞ
¼ tanðx� yÞ 	 ðtanðxÞ � tanðyÞÞ

ð10Þ

where x 2 0; 1½ � and y 2 0; 1½ �. Obviously, whether x� y or

x� y, the function f1ðx; yÞ� 0 and f2ðx; yÞ� 0 always hold.

According to Definition 14, the following Equation can

be concluded:

DSNS1ðA;BÞ
¼ ISNS1ðA;BÞ þ ISNS1ðB;AÞ

¼
Xn
i¼1

sin TAðxiÞ 	 sinðTAðxiÞ � TBðxiÞÞ þ sin IAðxiÞ 	 sinðIAðxiÞ � IBðxiÞÞ½

þ sinFAðxiÞ 	 sinðFAðxiÞ � FBðxiÞÞ� þ
Xn
i¼1

sin TBðxiÞ 	 sinðTBðxiÞ � TAðxiÞÞ½

þ sin IBðxiÞ 	 sinðIBðxiÞ � IAðxiÞÞþ sinFBðxiÞ 	 sinðFBðxiÞ � FAðxiÞÞ�

¼
Xn
i¼1

ðsin TAðxiÞ � sin TBðxiÞÞ 	 sinðTAðxiÞ � TBðxiÞÞ þ ðsin IAðxiÞ � sin IBðxiÞÞ½

	 sinðIAðxiÞ � IBðxiÞÞ þ ðsinFAðxiÞ � sinFBðxiÞÞ 	 sinðFAðxiÞ � FBðxiÞÞ�

ð11Þ

Because 8ðTAðxiÞ; TBðxiÞ; IAðxiÞ; IBðxiÞ;FAðxiÞ;FBðxiÞÞ 2
½0; 1� and f1ðx; yÞ� 0 according to Eq. (9), ðsinTAðxiÞ
� sin TBðxiÞÞ 	 sinðTAðxiÞ � TBðxiÞÞ� 0, ðsin IAðxiÞ �
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sin IBðxiÞÞ 	 sinðIAðxiÞ � IBðxiÞÞ� 0; and ðsinFAðxiÞ�
sinFBðxiÞÞ 	 sinðFAðxiÞ � FBðxiÞÞ� 0. Hence, DSNS1ðA;
BÞ� 0 holds. Especially, DSNS1ðA;BÞ ¼ 0 holds if and

only if TAðxiÞ ¼ TBðxiÞ; IAðxiÞ ¼ IBðxiÞ; and FAðxiÞ ¼
FBðxiÞ; namely, A ¼ B.

In accordance with Definition 14, we can obtain

DSNS2ðA;BÞ
¼ ISNS2ðA;BÞ þ ISNS2ðB;AÞ

¼
Xn
i¼1

tan TAðxiÞ 	 tanðTAðxiÞ � TBðxiÞÞ þ tan IAðxiÞ 	 tanðIAðxiÞ � IBðxiÞÞ½

þ tanFAðxiÞ 	 tanðFAðxiÞ � FBðxiÞÞ� þ
Xn
i¼1

tan TBðxiÞ 	 tanðTBðxiÞ � TAðxiÞÞ½

þ tan IBðxiÞ 	 tanðIBðxiÞ � IAðxiÞÞþ tanFBðxiÞ 	 tanðFBðxiÞ � FAðxiÞÞ�

¼
Xn
i¼1

ðtan TAðxiÞ � tan TBðxiÞÞ 	 tanðTAðxiÞ � TBðxiÞÞ þ ðtan IAðxiÞ � tan IBðxiÞÞ½

	 tanðIAðxiÞ � IBðxiÞÞ þ ðtanFAðxiÞ � tanFBðxiÞÞ 	 tanðFAðxiÞ � FBðxiÞÞ�:

ð12Þ

Similarly, 8ðTAðxiÞ; TBðxiÞ; IAðxiÞ; IBðxiÞ;FAðxiÞ;FBðxiÞÞ
2 ½0; 1�, and f2ðx; yÞ� 0 according to Eq. (10); thus,

ðtan TAðxiÞ � tan TBðxiÞÞ	 tanðTAðxiÞ � TBðxiÞÞ� 0, ðtan IA
ðxiÞ� tan IBðxiÞÞ	 tanðIAðxiÞ� IBðxiÞÞ�0, and ðtanFAðxiÞ�
tanFBðxiÞÞ 	 tanðFAðxiÞ � FBðxiÞÞ� 0. Therefore, DSNS2

ðA;BÞ� 0 holds. Especially, DSNS2ðA;BÞ ¼ 0 holds if and

only if TAðxiÞ¼TBðxiÞ; IAðxiÞ¼ IBðxiÞ;and FAðxiÞ ¼ FBðxiÞ;
namely, A ¼ B.

(4) Let A ¼ TA; IA;FAh i, B ¼ TB; IB;FBh i, and C ¼
TC; IC;FCh i be three SNSs. Assume A�B�C. then

according to Definition 13, we have TA � TB � TC,

IA � IB � IC, and FA �FB �FC.By using Eq. (11), we obtain

DSNS1ðA;CÞ ¼ sinðTA � TCÞ 	 ðsin TA � sin TCÞ
þ sinðIA � ICÞ
	 ðsin IA � sin ICÞ þ sinðFA � FCÞ
	 ðsinFA � sinFCÞ;

DSNS1ðA;BÞ ¼ sinðTA � TBÞ 	 ðsin TA � sin TBÞ
þ sinðIA � IBÞ
	 ðsin IA � sin IBÞ þ sinðFA � FBÞ
	 ðsinFA � sinFBÞ;

DSNS1ðB;CÞ ¼ sinðTB � TCÞ 	 ðsin TA � sin TCÞ
þ sinðIB � ICÞ
	 ðsin IB � sin ICÞ þ sinðFB � FCÞ
	 ðsinFB � sinFCÞ:

Moreover, it is easy to conclude that the following

inequality is correct.

sinðTA � TBÞ 	 ðsin TA � sin TBÞ� sinðTA � TCÞ 	 ðsin TA
� sinTCÞ;

sinðIA � ICÞ 	 ðsin IA � sin ICÞ� sinðIA � IBÞ 	 ðsin IA
� sin IBÞ;

sinðFA � FCÞ 	 ðsinFA � sinFCÞ� sinðFA � FBÞ
	 ðsinFA � sinFBÞ:

Clearly, DSNS1ðA;CÞ�DSNS1ðA;BÞ holds. Similarly,

DSNS1ðA;CÞ�DSNS1ðB;CÞ holds
The similar proof can also be given for DSNS2 :

In order to verify the effectiveness of the two proposed

cross-entropy measures, the data of Example 4 is used

again, and the results are obtained as follows:.

DSNS1ðA1;BÞ ¼ 0:58094, DSNS1ðA2;BÞ ¼ 0:00580,

DSNS2ðA1;BÞ ¼ 1:83614, and DSNS2ðA2;BÞ ¼ 0:02982.

Clearly, the problem pointed out by Peng et al. [50] can

be solved by using the proposed cross-entropy measures.

4 The Ranking Method for MCDM Problems
with Simplified Neutrosophic Information

The ranking method based on the SNNPWA and SNNPWG

operators and the cross-entropy measure under simplified

neutrosophic environment is presented to deal with MCDM

problems.

Let A ¼ A1;A2; � � � ;Amf g be a set of m alternatives and

C ¼ C1;C2; � � � ;Cnf g be a set of n criteria. Assume that

criterion prioritization relationships are C1 � C2 �
� � � � Cn, and if i\j, then the priority of Ci is higher than

that of Cj. The assessment value of the alternative Ai on the

criterion Cj can be expressed in the following form:

AiðCjÞ ¼ Cj; TAi
ðCjÞ; IAi

ðCjÞ;FAi
ðCjÞ

� �
Cj 2 C
��� �

. Suppose

that D ¼ bij ¼ ðAiðCjÞÞm	n is a simplified neutrosophic

decision matrix.

To rank the alternatives, we define a positive ideal

solution and a negative ideal solution for SNNs denoted by

Aþ and A� , and they are Aþ ¼ 1; 0; 0h i and A� ¼ 0; 0; 1h i:
The decision process procedure of the proposed method

is summarized as follows.

Step 1 Normalize the decision matrix.

First, the decision-making information b
_

ij in the matrix

�D ¼ ðb
_

ijÞm	n must be normalized. The criteria can be

classified into the benefit and cost types. The evaluation

information does not need to be changed for the benefit-

type criteria; however, for the cost-type criteria, it must

be transformed with the complement set.

The normalization of the decision matrices can be

expressed as
bij ¼ b

_

ij ;Cj 2 BT

bij ¼ b
_c

ij ;Cj 2 CT

8<
: ;where BT is the set of
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benefit-type criteria, and CT is the set of cost-type

criteria, and b
_C

ij is complement set of b
_

ij.

The normalized decision matrix can be denoted by

D ¼ ðbijÞm	n.

Step 2 Compute the aggregation results of each

alternative Ai

Compute the aggregation values of each alternative Ai by

using Eq. (2) or (6), and then, the SNNPWA or

SNNPWG operator aggregation values are obtained.

Step 3 Determine the cross-entropy and ranking value

Sbi of each alternative Ai

The cross-entropy values of each alternative Ai from the

positive ideal solution A? and the negative solution A-

are calculated by using Eqs. (11) and (12). Then Sbi can

be obtained based on the following equation:

Sbi ¼
DSNSðAi;A

þÞ
ðDSNSðAi;AþÞ þ DSNSðAi;A�Þ ð13Þ

Step 4 Select the best alternative by the ranking value Sbi
The smaller Sbi is, the better the alternative is. According

to Sbi , the ranking of all alternatives is obtained and the

best alternative is chosen.

5 Illustrated Example

The MCDM problem with simplified neutrosophic infor-

mation example is used to demonstrate the application of

the proposed approach and the relative comparison analysis.

5.1 An Illustrative Example with Simplified

Neutrosophic Information

The illustrative example is the supplier-selection problem

of an automotive company in reality. Actually, supplier

selection of an automotive company is quite complex, and

the number of the related criteria is up to fourteen [55],

including quality, delivery, reputation, risk, security, ser-

vice, and so forth. Furthermore, normally, considering real

situations of a specific automotive company from different

aspects of company strategies, product features, etc., dif-

ferent criteria sets should be constructed for different sit-

uations. In order to verify the effectiveness of the proposed

method on the representative supplier-selection problems, a

simplified supplier selection of an automotive company

[56] with four essential criteria is adopted.

Suppose that for an automotive company, which expects

to select the most appropriate key components supplier,

after first round assessment, five suppliers Ai i ¼ 1; 2;ð
� � � ; 5Þ have been selected as alternatives for the final

evaluation. During evaluation, four criteria are chosen,

including product quality (c1), relationship closeness (c2),

price (c3), and delivery performance (c4). The prioritization

relationship of the criteria is C1 � C2 � C3 � C4. The

decision makers gave the evaluation values of all alterna-

tives for each criterion with simplified netursophic infor-

mation, and then, a simplified neutrosophic decision matrix
�D is provided as follows:

�D ¼ ðb
_

ijÞ5	4

¼

0:7; 0:0; 0:1h i 0:6; 0:1; 0:2h i 08; 0:7; 0:6h i 0:5; 0:2; 0:3h i

0:4; 0:2; 0:3h i 0:7; 0:1; 0:0h i 0:1; 0:1; 0:6h i 0:5; 0:3; 0:6h i

0:5; 0:2; 0:2h i 0:4; 0:1; 0:2h i 0:1; 0:1; 0:4h i 0:4; 0; 1; 0:2h i

0:7; 0:3; 0:2h i 0:5; 0:3; 0:2h i 0:3; 0:2; 0:5h i 0:6; 0:1; 0:1h i

0:6; 0:5; 0:1h i 0:7; 0:1; 0:1h i 0:1; 0:2; 0:9h i 0:8; 0:1; 0:0h i

2
666666664

3
777777775
:

The following shows the decision-making procedure by

means of the SNNPWA operator.

Step 1 Normalize the decision matrix.

The price (c3) is considered as cost-criterion, others are

considered as benefit-criteria. Therefore, the decision

martrix �D ¼ ðb
_

ijÞ5	4 can be normalized as

D ¼ ðbijÞ5	4

¼

0:7; 0:0; 0:1h i 0:6; 0:1; 0:2h i 0:6; 0:7; 0:8h i 0:5; 0:2; 0:3h i
0:4; 0:2; 0:3h i 0:7; 0:1; 0:0h i 0:6; 0:1; 0:1h i 0:5; 0:3; 0:6h i

0:5; 0:2; 0:2h i 0:4; 0:1; 0:2h i 0:4; 0:1; 0:1h i 0:4; 0; 1; 0:2h i

0:7; 0:3; 0:2h i 0:5; 0:3; 0:2h i 0:5; 0:2; 0:3h i 0:6; 0:1; 0:1h i

0:6; 0:5; 0:1h i 0:7; 0:1; 0:1h i 0:9; 0:2; 0:1h i 0:8; 0:1; 0:0h i

2
666666664

3
777777775
:

Step 2 Compute the aggregation results of each alterna-

tive Ai

The SNNPWA operator aggregation values bi for each

alternative Ai are obtained by applying Eq. (2). The results

are: b1 ¼ 0:64167; 0:0; 0:180645h i, b2 ¼ 0:60339;h
0:12859; 0:0i, b3 ¼ 0:42117; 0:11463; 0:16456h i, b4 ¼
0:60639; 0:23802; 0:19470h i and b5¼ 0:76401;h
0:19314; 0:0i.
Step 3 Determine the cross-entropy and ranking value Sbi
of each alternative Ai

Calculate the cross-entropy DSNS of bi i ¼ 1; 2; � � � ; 5ð Þ
from Aþ ¼ 1; 0; 0h i and A� ¼ 0; 0; 1h i by applying

Eqs. (11) and (12), and obtain the Sbi value by utilizing

Eq. (13). The results are shown in Tables 1 and 2.

Step 4 Select the best alternative by the ranking value

Sbi .

According to the Sbi value in Tables 1 and 2, the ranking

of five alternatives is
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A5 � A2 � A1 � A4 � A3:

In the following, we utilize the SNNPWG operator in the

decision-making procedure.

Step 1 Normalize the decision matrix.

This step is the same as that of the decision-making

procedure by means of the SNNPWA operator and thus

omitted here.

Step 2 Compute the aggregation results of each alterna-

tive Ai.

Compute the SNNPWG operator aggregation values bi
for the alternative Ai by applying Eq. (5), and the result

is shown in the following. b1 ¼ 0:63309; 0:18638;h
0:29952i, b2 ¼ 0:57704; 0:14348h i, b3 ¼ 0:41797; 0:1h
2064; 0:17304i, b4 ¼ 0:58833; 0:25650; 0:20565h i, and

b5 ¼ 0:72538; 0:27040; 0:08057h i:
Step 3 Determine the cross-entropy and ranking values

Sbi of each alternative Ai.

By applying Eqs. (11) and (12), calculate the cross-

entropy DSNS of bi i ¼ 1; 2; � � � ; 5ð Þ from Aþ ¼ 1; 0; 0h i
and A� ¼ 0; 0; 1h i, and obtain the value of Sbi by

applying Eq. (13). The results are shown in Tables 3 and

4.

Step 4 Select the best alternative by the ranking value

Sbi .

According to the Sbi value shown in Tables 3 and 4, the

ranking of all alternatives is

A5 � A2 � A4 � A1 � A3:

From the above results, we can see that the best alter-

native is A5, but the worst alternative is A3 no matter

which proposed aggregation operator is used.

5.2 A Comparison Analysis

In order to verify the effectiveness of proposed method, a

comparison analysis is carried out with other four repre-

sentative methods [43–45, 57] by using the same illustra-

tive example and the same weight. Among four

representative methods, three methods are proposed by Ye

[43–45], the other one is proposed by Liu and Wang [57].

Meanwhile, the weight for each criterion in the illustrative

example is still calculated using the PA operator.

Given the same decision information on the simplified

supplier-selection problem under simplified neutrosophic

environment, the final results of all compared methods is

shown in Table 5. If the aggregation operators proposed by

Ye [43] are used, for Fw, the final ranking is

A5 � A2 � A3 � A4 � A1; for Gw, the final raking is

A2 � A5 � A1 � A3 � A4. Clearly, the best alternative is

A5 or A2, and the worst alternative is A1 or A4. If the

methods of Ye [44, 45] are used, the final rankings are

A5 � A2 � A1 � A4 � A3 or A5 � A4 � A3 � A2 � A1,

and the best alternative is A5 while the worst alternative is

A1 or A3. However, if the proposed methods and Liu and

Wang’s methods [57] are utilized, the best alternative and

worst alternative are the same, that is, A5 and A3, but the

final rankings are slightly different.

There are three reasons why different rankings exist in

the proposed method and other previous methods:

(1) The operations of SNSs [43] conflicts with the theory

that the sum of an arbitrary value and the maximum

value should be equal to the maximum one, as

explained in Example 1. And the cross-entropy

measure given in [44] has the lacks as discussed in

Table 3 The cross-entropy DSNS1 and ranking values Sbi

DSNS1 ðbi;AþÞ DSNS1ðbi;A�Þ Sbi

b1 0.21103 0.73658 0.22269

b2 0.17410 0.80195 0.17837

b3 0.28356 0.67176 0.29682

b4 0.22070 0.82700 0.21065

b5 0.12612 1.11666 0.10148

Table 4 The cross-entropy DSNS2 and ranking values Sbi

DSNS2 ðbi;AþÞ DSNS2ðbi;A�Þ Sbi

b1 0.44743 1.62680 0.21571

b2 0.46216 1.91710 0.19424

b3 0.77785 1.71456 0.31209

b4 0.50100 1.88707 0.20979

b5 0.27234 2.79991 0.08865

Table 2 The cross-entropy DSNS2 and the ranking values Sbi

DSNS2 ðbi;AþÞ DSNS2ðbi;A�Þ Sbi

b1 0.33681 2.02965 0.14233

b2 0.38036 2.91714 0.11535

b3 0.76585 1.75200 0.30417

b4 0.45649 1.95535 0.18927

b5 0.18236 3.38175 0.05117

Table 1 The cross-entropy DSNS1 and the ranking values Sbi

DSNS1 ðbi;AþÞ DSNS1ðbi;A�Þ Sbi

b1 0.11748 0.84182 0.12246

b2 0.12230 1.0465 0.10463

b3 0.27660 0.68276 0.28831

b4 0.19718 0.84762 0.18872

b5 0.07183 1.22353 0.05545
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Example 4, that is, the cross- entropy of two

different SNNs to the same SNN may be equal.

(2) The cosine similarity measure [43] between SNSs

has the lacks as discussed in Example 2, that is, the

similarity measure only considers the comparison

with the positive ideal solution 1; 0; 0h i and ignores

the negative ideal solution 0; 0; 1h i:
(3) The previous methods were established by combin-

ing different operations of SNSs [43] with cross-

entropy measure [44], correlation coefficients [45],

and aggregation operators [43, 57].

Besides, the proposed method and the method of Liu

and Wang [57] can obtain the same best and worst alter-

natives, but the final raking slightly varied. This is because

the SNNPWA operator emphasizes the overall truth-

membership of criteria, and the SNNPWG operator em-

phasizes the overall indeterminacy-membership and fal-

sity- membership of criteria.

In summary, from the above analysis, it is concluded

that the proposed method is more reasonable and reliable

than the existing methods; meanwhile, the proposed

method has several advantages: (1) The new proposed

cross-entropy measures can overcome the shortcoming of

the cross-entropy measure of Ye [44]. (2) The SNNPWA

and SNNPWG aggregation operators can compute the

weighted vector of criteria, but they do not need to give the

values by decision-maker in advance. (3) The improved

operation of SNSs [50, 51] is adopted to effectively make

up the previous method’s shortcomings [43].

6 Conclusions

SNSs can be utilized to solve the indeterminate and

inconsistent information that exists in the real world but

which FSs and IFSs cannot deal with. Considering the

advantages of SNSs, several methods of SNSs were put

forward and used to solve MCDM problems. However,

there are some shortcomings in those methods [43, 44].

Therefore, two novel cross-entropy measures are put for-

ward to overcome the shortcomings of the previously

proposed cross-entropy measure [44]. Based on the

SNNPWA and SNNPWG aggregation operators, a MCDM

method was established. Utilizing the proposed method,

the best and the worst alternative can be identified easily.

In this paper, the main contributions are two novel

cross-entropy measure that were put forward to overcome

the shortcomings of the existing methods as discussed by

Peng et al. [50, 51], and the SNNPWA and SNNPWG

operators that were inferred from the PA operator to solve

the MCDM problems with incomplete weight information.

Finally, the comparison results produced by different

methods can show the effectiveness of the proposed

method.

In the future, according to the different requirements in

the real-world applications, how to optimize the score

function could form the scope of discussion and further

detailed study.
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