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Background
In decision theory, decision-making method is one of important research topics. Then 
various decision-making methods has been proposed and applied widely to engineering, 
economics, and management fields. However, in complex decision-making problems, 
decision makers (DMs) may give the qualitative evaluation for attributes by linguistic 
variables (LVs) due to the uncertainty of decision environment and difference of DMs’ 
cultural and knowledge background. Hence, Zadeh (1975) firstly presented the LV con-
cept and its application in fuzzy reasoning. Later, linguistic decision analyses were intro-
duced to deal with decision-making problems with linguistic information (Herrera et al. 
1996; Herrera and Herrera-Viedma 2000). Then, a linguistic hybrid arithmetic average 
operator was used for multiple attribute group decision-making (MAGDM) problems 
with linguistic information (Xu 2006a). Further, goal programming models were put 
forward to handle multiple attribute decision-making (MADM) problems under lin-
guistic environment (Xu 2006b). Also, the uncertain linguistic ordered weighted aver-
aging (ULOWA) and uncertain linguistic hybrid aggregation (ULHA) operators were 
presented for dealing with MAGDM problems with uncertain linguistic information 
(Xu 2004). Some induced uncertain linguistic ordered weighted average (IULOWA) 
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operators were further developed for MAGDM problems with uncertain linguistic infor-
mation (Xu 2006c).

However, incomplete, indeterminate, and inconsistent information often exists in real 
life. To express this kind of information, Smarandache (1998, 2013, 2014) proposed the 
concept of a neutrosophic number (NN), denoted by B =  t + vI, which consists of its 
determinate part t and its indeterminate part vI. Then, neutrosophic sets and NNs (Sma-
randache 1998, 2013, 2014) are two different branches in neutrosophic theory. Here, NN 
can express incomplete, indeterminate and inconsistent information by the determinate 
and indeterminate parts, which exists commonly in real life, while existing linguistic 
information cannot express indeterminate and inconsistent information. Since NN can 
effectively express incomplete and indeterminate information, Ye (2015) developed a 
bidirectional projection method for MAGDM problems with NNs. Ye (2016) proposed a 
MAGDM method with NNs, including a de-neutrosophication process and a possibility 
degree ranking method for NNs. Kong et al. (2015) presented a cosine similarity meas-
ure between NNs and applied it to the misfire fault diagnosis of gasoline engines.

Because of the ambiguity of people’s thinking about the complex objective things in 
the real world, linguistic evaluation in complex decision-making problems may easily 
express and better deal with the incomplete and indeterminate information than numer-
ical evaluation. However, existing linguistic variables cannot express indeterminate and 
inconsistent information, hence one needs to introduce a expression form of indeter-
minate linguistic information to overcome the difficulty of existing linguistic expression 
for indeterminate information. Recently, Smarandache introduced the concept of a neu-
trosophic linguistic number (NLN) expressed by lt+vI in symbolic neutrosophic theory 
(Smarandache 2015), where t + vI is NN. Unfortunately, there are not operational laws 
of NLNs and their application till now. To study these problems, the objects of this paper 
are: (1) to define basic operational laws of NLNs and the expected value of a NLN for 
ranking NLNs, (2) to propose the NLN weighted arithmetic average (NLNWAA) and 
NLN weighted geometric average (NLNWGA) operators and to discuss their properties, 
and (3) to establish a MAGDM method based on the NLNWAA and NLNWGA opera-
tors under NLN environment. The main advantages of the proposed method are able to 
express and handle indeterminate linguistic information in linguistic decision-making 
environments and extend the existing NN decision-making methods (Ye 2015, 2016) to 
NLN decision-making method.

The remainder of this paper is organized as follows. Section  “Preliminaries of LSs, 
NNs and NLNs” briefly reviews the basic concepts of LVs, linguistic sets (LSs), NNs, and 
NLNs. The operational laws of NLNs and the expected value of a NLN are defined in 
“Operational laws and expected value of NLNs” section. “Weighted aggregation opera-
tors for NLNs” section develops NLNWAA and NLNWGA operators of NLNs and 
discusses their properties. In “MAGDM method using the NLNWAA and NLNWGA 
operators” section, a MAGDM method based on the NLNWAA and NLNWGA opera-
tors is developed under NLN environment. In “Illustrative example” section shows the 
application of the presented method. Conclusions and future research are contained in 
“Conclusion” section.
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Preliminaries of LSs, NNs and NLNs
The concepts of LV and LS

Zadeh (1975) firstly proposed the concept of LV in 1975.
Let L = {L0, L1, …, Ls−1} be a finitely linguistic term set with cardinality s, where Li in 

the linguistic term set L is a LV and s is an odd value. For instance, taking s = 7, one can 
specify a LS L = {L0, L1, L2, L3, L4, L5, L6} = {extremely poor, very poor, poor, medium, 
good, very good, extremely good}.

Then, any two LVs Li and Lj in a LS L should satisfy the following properties (Herrera 
et al. 1996; Herrera and Herrera-Viedma 2000):

1.	 Ordering: Li ≥ Lj if i ≥ j;
2.	 Negation operator: Neg(Li) = Ls−1−i;
3.	 Maximum operator: Max(Li, Lj) = Li if i > j;
4.	 Minimum operator: Min(Li, Lj) = Lj if i > j.

To minimize the linguistic information loss in the operational process, the discrete 
LS L = {L0, L1, L2, L3, L4, L5, L6} can be generalized to a continuous LS L̄ = {Lθ |θ ∈ R}, 
which satisfied the above-mentioned characteristics.

For any two LVs Li and Lj for Li, Lj ∈ L̄, Xu (2006a, b) defined the following operational 
laws:

1.	

2.	

3.	

4.	

5.	

Some concepts of NNs and NLNs

NN proposed by Smarandache (1998, 2013, 2014) consists of the determinate part t and 
the indeterminate part vI, which is denoted by B = t + vI, where t and v are real num-
bers, and I is indeterminacy, such that In = I for n > 0, 0 × I = 0, and bI/nI = undefini-
tion for any real number n.

For example, assume that there is a NN B = 3 + 2I. If I ∈ [0, 0.3], it is equivalent to 
B ∈ [3, 3.6] for sure B ≥ 3, this means that its determinate part is 3 and its indetermi-
nate part is 2I for the indeterminacy I ∈ [0, 0.3] and the possibility for the number “B” is 
within the interval [3, 3.6].

Let B1 = t1 + v1I and B2 = t2 + v2I be two NNs for t1, v1, t2, v2 ∈ R (all real numbers). 
The operational relationship for B1 and B2 is as follows (Smarandache 1998, 2013, 2014):

1.	 B1 + B2 = t1 + t2 + (v1 + v2)I;
2.	 B1 − B2 = t1 − t2 + (v1 − v2)I;
3.	 B1 × B2 = t1t2 + (t1v2 + v1t2 + v1v2)I;

ρLi = Lρ×i, ρ ≥ 0;

Li + Lj = Li+j;

Li × Lj = Li×j;

Li/Lj = Li/j;

(Li)
ρ = Liρ , ρ ≥ 0.
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4.	 B1
2 = (t1 + v1I)2 = t12 + ((t1 + v1)2 − t12)I;

5.	 B1B2 = t1+v1I
t2+v2I

= t1
t2
+ t2v1−t1v2

t2(t2+v2)
· I for t2 ≠ 0 and t2 ≠ −v2;

6.	
√
B1 =

√
t1 + v1I =























√
t1 − (

√
t1 +

√
t1 + v1)I

√
t1 − (

√
t1 −

√
t1 + v1)I

−
√
t1 + (

√
t1 +

√
t1 + v1)I

−
√
t1 + (

√
t1 −

√
t1 + v1)I

.

Let B = t + vI be a NN. If t, v ≥ 0, then B is called the positive NN.
In the following, all NNs are considered as positive and are called NNs for short, 

unless they are stated.
In 2015, Smarandache introduced the concept of NLN expressed by lt+vI in symbolic 

neutrosophic theory (Smarandache 2015), where t + vI is NN, t and v are real numbers, 
and I is indeterminacy.

Operational laws and expected value of NLNs
In this section, we give the operational laws of NLNs and the expected value of a NLN 
for ranking NLNs.

Definition 1  Assume that l̄1 = lt1+v1I and l̄2 = lt2+v2I are two NLNs, then the opera-
tional laws are defined as follows:

1.	

2.	

3.	

4.	 l̄1
l̄2
= l t1

t2
+ t2v1−t1v2

t2(t2+v2)
·I for t2 ≠ 0 and t2 ≠ − v2;

5.	 ρ l̄1 = lρt1+ρv1I for ρ ≥ 0;

6.	 l̄ρ1 = ltρ1+[(t1+v1)ρ−t
ρ
1 ]I

 for ρ ≥ 0.

Clearly, the above operational results are still NLNs.
Then, we define an expected value of a NLN, which is an important index to rank 

NLNs in the following decision-making problems.

Definition 2  Let L = {l0, l1, …, ls−1} be a finitely linguistic term set with cardinality s 
and l̄ = lt+vI for L be a NLN and I ∈ [inf I, sup I]. Then, an expected value of the NLN l̄ 
can be represented as

Obviously, the bigger the value of E(l̄) is, the greater the corresponding NLN l̄ is.
Based on Definition 2, a ranking method for NLNs can be given below.

Definition 3  Let l̄1 and l̄2 be two NLNs. Then, their ranking can be defined as follows:

l̄1 + l̄2 = lt1+t2+(v1+v2)I ;

l̄1 − l̄2 = lt1−t2+(v1−v2)I ;

l̄1 × l̄2 = lt1t2+(t1v2+t2v1+v1v2)I ;

(1)E(l̄) =
(t + v inf I)+ (t + v sup I)

2(s − 1)
.
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1.	 If E(l̄1) > E(l̄2), then l̄1 ≻ l̄2;
2.	 If E(l̄1) = E(l̄2), then l̄1 = l̄2.

Example 1  Let l̄1 = l3+2I and l̄2 = l2+3I be two NLNs for I ∈ [0.1, 0.3] and the cardinal-
ity of linguistic term sets L be s = 7. Then, in this case the ranking order between l̄1 and 
l̄2 is given as follows:

According to Eq. (1) we have E(l̄1) = 0.5667 > E(l̄2) = 0.4333, Hence, l̄1 ≻ l̄2.

Weighted aggregation operators for NLNs
Weighted aggregation operator is an important tool for information aggregation, which 
can capture the expressed interrelationship of the individual arguments. Based on the 
operational laws in Definition 1, this section proposes the NLNWAA and NLNWGA 
operators to aggregate NLNs, which are usually utilized in decision-making problems.

NLNWAA operator

Definition 4  Let l̄j (j = 1, 2, …, n) be a collection of NLNs. The NLNWAA operator is 
defined by

where wj is the weight of l̄j (j = 1, 2, …, n) with wj ∈ [0, 1] and 
∑n

j=1 wj = 1.

Theorem 1  Let l̄j
(

j = 1, 2, . . . , n
)

 be a collection of NLNs. Then by Eq. (2) and the oper-
ational laws in Definition 1, we have the following aggregation formula:

where wj is the weight of l̄j
(

j = 1, 2, . . . , n
)

, satisfying wj ∈ [0, 1] and 
∑n

j=1 wj = 1.

Obviously, the proof of Eq. (3) can be easily obtained according to the operational laws 
in Definition 1. Hence, its proof is omitted here.

Especially if wj = 1/n for j = 1, 2, . . . , n, then the NLNWAA operator is reduced to a 
NLN arithmetic average operator.

Then, the NLNWAA operator shows the following properties:

1.	 Idempotency: Let l̄j (j = 1, 2, . . . , n) be a collection of NLNs. Then there 
is NLNWAA

(

l̄1, l̄2, . . . , l̄n

)

= l̄ if l̄j (j = 1, 2, . . . , n) is equal, i.e., l̄j = l̄ for 
j = 1, 2, . . . , n.

2.	 Monotonicity: Let l̄j (j = 1, 2, . . . , n) be a collection of NLNs. Then there is 
NLNWAA

(

l̄1, l̄2, · · · , l̄n
)

≤ NLNWAA
(

l̄∗1 , l̄
∗
2 , · · · , l̄∗n

)

 if l̄j ≤ l̄∗j  for j = 1, 2, . . . , n.

(2)NLNWAA
(

l̄1, l̄2, . . . , l̄n

)

=
n

∑

j=1

wjl̄j ,

(3)NLNWAA
(

l̄1, l̄2, . . . , l̄n

)

= l∑n
j=1 wjtj+I

∑n
j=1 wjvj

,
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3.	 Boundedness: Let l̄j (j = 1, 2, . . . , n) be a collection of NLNs and 
l̄min = min(l̄1, l̄2, . . . , l̄n) and l̄max = max(l̄1, l̄2, . . . , l̄n) for j = 1, 2, . . . , n. Then there 

is l̄min ≤ NLNWAA
(

l̄1, l̄2, . . . , l̄n

)

≤ l̄max.

Since the above properties are obvious, their proofs are omitted here.

NLNWGA operator

Definition 5  Let l̄j (j = 1, 2, …, n) be a collection of NLNs. Then the NLNWGA opera-
tor is defined as

where wj is the weight of l̄j (j = 1, 2, …, n), satisfying wj ∈ [0, 1] and 
∑n

j=1 wj = 1.

Theorem 2  Let l̄j (j = 1, 2, . . . , n) be a collection of NLNs. by Eq. (4) and the operational 
laws in Definition 1, we have the following aggregation formula:

where wj is the weight of l̄j (j = 1, 2, . . . , n), satisfying wj ∈ [0, 1] and 
∑n

j=1 wj = 1.

Proof  The proof of Eq. (5) can be given by mathematical induction.

1.	 If n = 2, then

	

2.	 If n = k, by using Eq. (5), we obtain
	

3.	 If n = k + 1, by using Eqs. (6) and (7), we obtain

	

(4)NLNWGA
(

l̄1, l̄2, . . . , l̄n

)

=
n
∏

j=1

l̄
wj

j ,

(5)NLNWGA(l̄1, l̄2, . . . , l̄n) = l∏n
j=1 t

wj
j +

(

∏n
j=1 (tj+vj)

wj−
∏n

j=1 t
wj
j

)

I
,

(6)

l̄
w1

1
× l̄

w2

2
= l(

t
w1
1

+
(

(t1+v1)
w1−t

w1
1

)

I

)

×
(

t
w2
2

+
(

(t2+v2)
w2−t

w2
2

)

I

)

= l
t
w1
1

t
w2
2

+t
w1
1

(

(t2+v2)
w2−t

w2
2

)

I+t
w2
2

(

(t1+v1)
w1−t

w1
1

)

I+
(

(t2+v2)
w2−t

w2
2

)(

(t1+v1)
w1−t

w1
1

)

I

= l
t
w1
1

t
w2
2

+
(

t
w1
1

(t2+v2)
w2−t

w1
1

t
w2
2

)

I+
(

t
w2
2

(t1+v1)
w1−t

w2
2

t
w1
1

)

I+
(

(t2+v2)
w2 (t1+v1)

w1−t
w2
2

(t1+v1)
w1−t

w1
1

(t2+v2)
w2+t

w1
1

t
w2
2

)

I

= l
t
w1
1

t
w2
2

+
(

(t2+v2)
w2 (t1+v1)

w1−t
w1
1

t
w2
2

)

I
.

(7)NLNWGA(l̄1, l̄2, . . . , l̄k) = l∏k
j=1

t
wj
j +

(

∏k
j=1

(tj+vj)
wj−

∏k
j=1

t
wj
j

)

I
.

NLNWGA(l̄1, l̄2, . . . , l̄k+1)

= l(∏k
j=1

t
wj
j +

(

∏k
j=1

(tj+vj )
wj−

∏k
j=1

t
wj
j I

))(

t
wk+1

k+1
+(tk+1+vk+1)

wk+1−t
wk+1

k+1

)

I

= l∏k
j=1

t
wj
j t

wj+1

k+1
+
∏k

j=1
t
wj
j

(

(tk+1+vk+1)
wk+1−t

wk+1

k+1

)

I+t
wk+1

k+1
+
(

∏k
j=1

(tj+vj )
wj−

∏k
j=1

t
wj
j

)

I+
(

(tk+1+vk+1)
wk+1−t

wk+1

k+1

)(

∏k
j=1

(tj+vj )
wj−

∏k
j=1

t
wj
j

)

I

= l∏k+1

j=1
t
wj
j +

(

∏k+1

j=1
(tj+vj )

wj−
∏k+1

j=1
t
wj
j

)

I
.
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Therefore, according to the above results, we have Eq. (5) for any n. This completes the 
proof.� □

Especially when wj = 1/n for j = 1, 2, …, n, the NLNWGA operator is reduced to a NLN 
geometric average operator.

Then, the NLNWGA operator also shows the following properties:

1.	 Idempotency: Let l̄j (j  =  1, 2, …, n) be a collection of NLNs. Then there is 
NLNWGA

(

l̄1, l̄2, . . . , l̄n

)

= l̄ if l̄j (j = 1, 2, …, n) is equal, i.e., l̄j = l̄ for j = 1, 2, …, n.
2.	 Monotonicity: Let l̄j (j  =  1, 2, …, n) be a collection of NLNs. Then there is 

NLNWGA
(

l̄1, l̄2, . . . , l̄n

)

≤ NLNWGA
(

l̄∗1 , l̄
∗
2 , . . . , l̄

∗
n

)

 if l̄j ≤ l̄∗j  for j = 1, 2, …, n.
3.	 Boundedness: Let l̄j (j  =  1, 2, …, n) be a collection of NLNs and 

l̄min = min(l̄1, l̄2, . . . , l̄n) and l̄max = max(l̄1, l̄2, . . . , l̄n) for j = 1, 2, …, n, then there is 
l̄min ≤ NLNWGA

(

l̄1, l̄2, . . . , l̄n

)

≤ l̄max.
	 Since the above properties are obvious, their proofs are omitted here.

MAGDM method using the NLNWAA and NLNWGA operators
In this section, we present a handling method for MAGDM problems by using the 
NLNWAA and NLNWGA operators.

For a MAGDM problem with NLNs, let U = {u1, u2, …, um} be a discrete set of alter-
natives, G = {g1, g2, …, gn} be a set of attributes, and E = {e1, e2, …, ep} be a set of DMs. 
If the kth (k = 1, 2,…, p) DM provides the evaluation of the alternative ui (i = 1, 2, …, 
m) on the attribute gj (j =  1, 2,…, n) under some linguistic term set, such as L =  {L0: 
extremely poor, L1: very poor, L2: poor, L3: medium, L4: good, L5: very good, L6: extremely 
good}, the evaluation value with indeterminacy I can be represented by the form of a 
NLN l̄kij = l

tkij+vkij I
 for tkij , v

k
ij ∈ R (k = 1, 2,…, p; j = 1, 2,…, n; i = 1, 2,…, m). Therefore, we 

can obtain the kth NLN decision matrix Dk:

If the weight vector of attributes is W  =  (w1, w2, …, wn) satisfying wj ≥ 0 and 
∑n

j=1 wj = 1, and the weight vector of DMs is Q =  (q1, q2,…, qp) satisfying qk ≥ 0 and 
∑p

k=1 qk = 1. Then, the steps of the MADM problem are described as follows:

Step 1 According to the decision matrix Dk (k = 1, 2, …, p) provided by DMs, by the fol-
lowing formula:

D
k
=























l̄
k

11
l̄
k

12
· · · l̄

k

1n

l̄
k

21
l̄
k

22
· · · l̄

k

2n

.

.

.
.
.
.

. . .
.
.
.

l̄
k

m1
l̄
k

m2
· · · l̄

k
mn























.

(8)l̄ij = NLNWAA
(

l̄1ij , l̄
2
ij , . . . , l̄

p
ij

)

= l∑p
k=1 qk t

k
ij+I

∑p
k=1 qkv

k
ij
,
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we can get a collective NLN decision matrix:

Step 2 The individual overall NLN l̄i for ui (i = 1, 2, …, m) is calculated by the following 
aggregation formula:

or

Step 3 We introduce a de-neutrosophication process in the decision-making problem 
based on I ∈ [inf I, sup I] ⊂ [−1, 1]. A NLN l̄i (i = 1, 2, …, m) can be transformed to an 
interval NLN, which is equivalent to l̄i = lti+viI ∈ l[ti+vi inf I ,ti+vi sup I]. Then, the expected 
value of E(l̄i) (i = 1, 2, …, m) is calculated by applying Eq. (1).

Step 4 The alternatives are ranked according to the values of E(l̄i) (i = 1, 2, …, m) by 
the ranking method in Definition 3, and then the best one(s) can be selected according 
to the largest expected value of E(l̄i).

Step 5 End.

Illustrative example
In this section, an illustrative example for a MAGDM problem with NLNs is provided to 
demonstrate the applications of the proposed decision-making method in realistic scenarios.

There is a decision-making problem of manufacturing alternatives in the flexible man-
ufacturing system. Suppose a set of four alternatives for the flexible manufacturing sys-
tem is U =  {u1, u2, u3, u4}. Then, a decision is made according to the three attributes: 
(1) g1 is the improvement of manufacturing quality; (2) g2 is the market response; (3) g3 
is the manufacturing cost. The four possible alternatives on the three attributes are to 
be evaluated by a group of three DMs corresponding to the linguistic term set L = {L0: 
extremely poor, L1: very poor, L2: poor, L3: medium, L4: good, L5: very good, L6: extremely 
good}, where DMs may contain the linguistic evaluation with indeterminacy I expressed 
by NLNs according to the linguistic term set. Assume that the weight vector of the three 
attributes is W = (0.2, 0.5, 0.3) and the weight vector of the three DMs is Q = (0.3, 0.36, 
0.34).

Then, the three DMs are invited to make judgments and to give the linguistic evalua-
tion with indeterminacy I expressed by NLNs according to the linguistic term set. Thus, 
the evaluation results of an alternative ui (i = 1, 2, 3, 4) on an attribute gj (j = 1, 2, 3) are 
given as the following three NLN decision matrices:

D =











l̄11 l̄12 · · · l̄1n
l̄21 l̄22 · · · l̄2n
...

...
. . .

...

l̄m1 l̄m2 · · · l̄mn











.

(9)l̄i = NLNWAA
(

l̄i1, l̄i2, . . . , l̄in

)

= l∑n
j=1 wjtij+I

∑n
j=1 wjvij

,

(10)l̄i = NLNWGA(l̄i1, l̄i2, . . . , l̄in) = l∏n
j=1 t

wj
ij +

(

∏n
j=1 (tij+vij)

wj−
∏n

j=1 t
wj
ij

)

I
.
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Whereas, we use the developed approach to rank the alternatives and to select the most 
desirable one(s), which can be described as the following steps:

Step 1 According to the above three decision matrices of Dk (k = 1, 2, 3), the collective 
NLN decision matrix is obtained by applying Eq. (8) as follows:

Step 2 By applying Eq. (9), we can obtain the individual overall NLNs of l̄i for ui (i = 1, 
2, 3, 4): 

Step 3 For the de-neutrosophication in the decision-making problem, assume that 
the infimum of I is taken as inf I = 0 and the supremum of I is taken as sup I = 0.1 to 
consider the minimum and maximum values for indeterminacy I, which are determined 
by DMs’ preference or requirements in real situations. Thus by applying Eq. (1), we can 
obtain the expected values of E(l̄i) (i = 1, 2, 3, 4):

 
Step 4 Since E(l̄4)  >  E(l̄3)  >  E(l̄1)  >  E(l̄2), the ranking of four alternatives is 

u4 ≻ u3 ≻ u1 ≻ u2. Therefore, we can see that the alternative u4 is the best choice among 
all the alternatives.

Or we can also utilize the NLNWGA operator as the following computational steps:
Step 1′ It is the same result as Step 1.
Step 2′ By applying Eq. (9), we can obtain the individual overall NLNs of l̄i for ui (i = 1, 

2, 3, 4):

Step 3′ By applying Eq. (1) for I ∈ [0, 0.1], we can obtain the expected values of E(l̄i) 
(i = 1, 2, 3, 4):

Step 4′ Since E(l̄4)  >  E(l̄3)  >  E(l̄2)  >  E(l̄1), the ranking of four alternatives is 
u4 ≻ u3 ≻ u2 ≻ u1. Therefore, we can see that the alternative u4 is the best choice among 
all the alternatives.

Similarly, if one considers different ranges of the indeterminate degree for I in NLNs, 
by Steps 3 and 4 or Steps 3′ and 4′, one can obtain different results, as shown in Tables 1 
and 2.

D
1
=









l5 l4+I l3+I

l4 l5 l4+I

l4+I l4+I l4

l5 l4+I l4









, D
2
=









l4+I l5 l3

l5 l4 l3+I

l5 l4+I l4

l4+I l5 l5+I









, D
3
=









l5+I l4 l3+I

l4+I l4 l3

l5 l5 l4+I

l4 l4+I l4









.

D =







l4.64+0.7I l4.36+0.3I l3+0.64I

l4.36+0.34I l4.3 l3.3+0.66I

l4.7+0.3I l4.34+0.66I l4+0.34I

l4.3+0.36I l4.36+0.64I l4.36+0.36I






.

l̄1 = l4.008+0.482I , l̄2 = l4.012+0.266I , l̄3 = l4.31+0.492I , and l̄4 = l4.348+0.5I

E(l̄1) = 0.672, E(l̄2) = 0.6709, E(l̄3) = 0.7224, and E(l̄4) = 0.7288.

l̄1 = l3.9462+0.5004I , l̄2 = l3.9828+0.2876I , l̄3 = l4.3031+0.489I , and l̄4 = l4.3479+0.4976I

E(l̄1) = 0.6619, E(l̄2) = 0.6662, E(l̄3) = 0.7213, and E(l̄4) = 0.7288.
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For the decision results based on the NLNWAA operator in Table 1, we can see that the 
ranking orders of the four alternatives are u4 ≻ u3 ≻ u2 ≻ u1 from I ∈ [−0.7, 0] to I = 0 and 
u4 ≻ u3 ≻ u1 ≻ u2 from I ∈ [0, 0.1] to I ∈ [0, 0.7], and then the best alternative is u4. For the 
decision results based on the NLNWGA operator in Table 2, we can see that the ranking 
orders of the four alternatives are u4 ≻ u3 ≻ u2 ≻ u1 from I ∈ [−0.7, 0] to I ∈ [0, 0.3] and 
u4 ≻ u3 ≻ u1 ≻ u2 from I ∈ [0, 0.5] to I ∈ [0, 0.7], and then the best alternative is also u4. 
The illustrative example demonstrates that different ranges of indeterminate degrees for 
I in NLNs result in different ranking orders of alternatives. Then, the MAGDM method 
proposed in this paper can deal with the decision-making problems with NLN information 
(indeterminate linguistic information). If we do not consider the indeterminacy I in NLNs 
(i.e., I = 0), then this MAGDM method reduces to classical one with crisp linguistic values.

Furthermore, since the indeterminate linguistic part lviI in NLNs can affect the rank-
ing order of alternatives in the MAGDM problem, the method proposed in this paper 
can provide more general and more flexible selecting way for DMs when the indeter-
minate degree for I in NLNs is assigned different ranges in de-neutrosophication pro-
cess. Therefore, the DMs can select some ranges of indeterminate degrees for I in NLNs 
according to their preference or real requirements and have flexibility in real decision-
making problems.

Table 1  Decision results based on the NLNWAA operator by choosing different indetermi-
nate ranges for I in NLNs

I NLNWAA Ranking

I ∈ [−0.7, 0] E( l̄1) = 0.6399, E( l̄2) = 0.6532, E( l̄3) = 0.6896, E( l̄4) = 0.6955 u4 ≻ u3 ≻ u2 ≻ u1

I ∈ [−0.5, 0] E( l̄1) = 0.6479, E( l̄2) = 0.6576, E( l̄3) = 0.6978, E( l̄4) = 0.7038 u4 ≻ u3 ≻ u2 ≻ u1

I ∈ [−0.3, 0] E( l̄1) = 0.6559, E( l̄2) = 0.6620, E( l̄3) = 0.7060, E( l̄4) = 0.7122 u4 ≻ u3 ≻ u2 ≻ u1

I ∈ [−0.1, 0] E( l̄1) = 0.6640, E( l̄2) = 0.6665, E( l̄3) = 0.7142, E( l̄4) = 0.7205 u4 ≻ u3 ≻ u2 ≻ u1

I = 0 E( l̄1) = 0.6680, E( l̄2) = 0.6687, E( l̄3) = 0.7183, E( l̄4) = 0.7247 u4 ≻ u3 ≻ u2 ≻ u1

I ∈ [0, 0.1] E( l̄1) = 0.6720, E( l̄2) = 0.6709, E( l̄3) = 0.7224, E( l̄4) = 0.7288 u4 ≻ u3 ≻ u1 ≻ u2

I ∈ [0, 0.3] E( l̄1) = 0.6801, E( l̄2) = 0.6753, E( l̄3) = 0.7306, E( l̄4) = 0.7372 u4 ≻ u3 ≻ u1 ≻ u2

I ∈ [0, 0.5] E( l̄1) = 0.6881, E( l̄2) = 0.6797, E( l̄3) = 0.7388, E( l̄4) = 0.7455 u4 ≻ u3 ≻ u1 ≻ u2

I ∈ [0, 0.7] E( l̄1) = 0.6961, E( l̄2) = 0.6842, E( l̄3) = 0.7470, E( l̄4) = 0.7538 u4 ≻ u3 ≻ u1 ≻ u2

Table 2  Decision results based on the NLNWGA operator by choosing different indetermi-
nate ranges for I in NLNs

I NLNWGA Ranking

I ∈ [−0.7, 0] E( l̄1) = 0.6285, E( l̄2) = 0.6470, E( l̄3) = 0.6887, E( l̄4) = 0.6956 u4 ≻ u3 ≻ u2 ≻ u1

I ∈ [−0.5, 0] E( l̄1) = 0.6369, E( l̄2) = 0.6518, E( l̄3) = 0.6968, E( l̄4) = 0.7039 u4 ≻ u3 ≻ u2 ≻ u1

I ∈ [−0.3, 0] E( l̄1) = 0.6452, E( l̄2) = 0.6566, E( l̄3) = 0.7050, E( l̄4) = 0.7122 u4 ≻ u3 ≻ u2 ≻ u1

I ∈ [−0.1, 0] E( l̄1) = 0.6535, E( l̄2) = 0.6614, E( l̄3) = 0.7131, E( l̄4) = 0.7205 u4 ≻ u3 ≻ u2 ≻ u1

I = 0 E( l̄1) = 0.6577, E( l̄2) = 0.6638, E( l̄3) = 0.7172, E( l̄4) = 0.7247 u4 ≻ u3 ≻ u2 ≻ u1

I ∈ [0, 0.1] E( l̄1) = 0.6619, E( l̄2) = 0.6662, E( l̄3) = 0.7213, E( l̄4) = 0.7288 u4 ≻ u3 ≻ u2 ≻ u1

I ∈ [0, 0.3] E( l̄1) = 0.6702, E( l̄2) = 0.6710, E( l̄3) = 0.7294, E( l̄4) = 0.7371 u4 ≻ u3 ≻ u2 ≻ u1

I ∈ [0, 0.5] E( l̄1) = 0.6786, E( l̄2) = 0.6758, E( l̄3) = 0.7376, E( l̄4) = 0.7454 u4 ≻ u3 ≻ u1 ≻ u2

I ∈ [0, 0.7] E( l̄1) = 0.6869, E( l̄2) = 0.6806, E( l̄3) = 0.7457, E( l̄4) = 0.7537 u4 ≻ u3 ≻ u1 ≻ u2
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Obviously, the main advantage of the proposed method is able to express and handle 
indeterminate linguistic information in linguistic decision-making environments since 
the existing decision-making methods (Herrera et al. 1996; Herrera and Herrera-Viedma 
2000; Xu 2006a, b; Ye 2015, 2016) cannot do it.

Conclusion
This paper defined the operational laws of NLNs and the expected value of NLNs for 
ranking NLNs. Then, we proposed the NLNWAA and NLNWGA operators to aggre-
gate NLN information and discussed their properties. Furthermore, a MAGDM method 
based on the NLNWAA and NLNWGA operators was established in NLN setting. 
Finally, an illustrative example demonstrated the application of the presented method. 
The proposed MAGDM method with NLNs is more suitable for real science and engi-
neering applications because it easily express and handle the indeterminate linguistic 
information which exists commonly in real life. In the future research, we shall further 
develop other aggregation operators of NLNs, such as ordered weighted aggregation 
operators and prioritized weighted aggregation operators of NLNs, and apply them to 
assignment and resource allocation problems where the indeterminate information of 
the problems is specified uncertainly.
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