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Abstract
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interactions alone. Conformal symmetry is introduced in the action of gravity
with the Weyl tensor. Electromagnetism is geometrized to conform with gravity.
Conformal symmetry is seen to improve quantization in loop quantum gravity.
The Einstein-Cartan theory with torsion is analyzed suggesting structure in
spacetime below the Cartan scale. A toy model for black hole constituents is
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1 Introduction

The purpose of this article is to search for unifying principles for quantum
models of matter and spacetime on all possible length scales: from the tiniest
distances of high energy accelerators and colliders up to galaxies and towards
the radius of the universe. Even the Planck scale Gedanken experiments are
considered. Cosmological developments are included with a lesser emphasis
- though not less important. This task is motivated by a large number of
theoretical results on the various sectors of the subject, not necessarily on the
most fashionable areas of main stream research, but they are unfortunately
scattered around widely in the literature. The author feels therefore that trying
to collect some of the pieces of the puzzle together is well justi�ed. Evidence
for mathematical unity of matter and spacetime structure is indeed found, even
though this work is bound to require much more e�ort in the future. Some of
material of this note is of this author but mostly what follows is a mini review
based on a personal, and partly random, selection of papers.

In the last �fty years, or more, symmetry has been the leading principle in
classifying particles and their interactions. Speci�cally, the gauge symmetry is
the basis of particle phenomenology and theory. All known particles belong to
a presentation of some group, be it e.g. the Lorentz, Poincaré or an SU(N)
group. The standard model (SM) of particles with its some twenty parameters
describes all measured accelerator data available today. There are known lim-
itations and problems with the standard model. Bigger problems occur when
one considers astrophysical and cosmological measurements, like dark energy
and dark matter. Gravity has its own known problems with quantum theory
in general. String theory was a promising candidate for unifying the standard
model with gravity. Unfortunately, not much progress has taken place in about
forty�ve years, apart from experimentally discovering the top quark, the Higgs
boson and the accelerating expansion of the universe. Have we considered in
depth all possible symmetries now? Perhaps not.

One speci�c symmetry has long been known in special circumstances: scale,
or conformal, invariance in deep inelastic scattering, magnetism and the primor-
dial cosmic microwave background (CMB) �uctuations.1 Here I use the term
conformal symmetry. The standard model is conformal symmetric if one leaves
out the Higgs sector. The standard model is stable towards Planck scale but
the Higgs sector is metastable. This metastability is a problem to in�ationary
cosmology but it �ts well to conformal cyclic cosmology where the decay of the
current vacuum is a prediction ending the current cycle and beginning the next
one [1, 2]. The SM, including the Higgs mechanism, has been formulated as a
conformal theory together with gravity [3]. Conformal symmetry changes cos-
mology allowing to solve classical Friedmann-Robertson-Walker (FRW) equa-
tions through big crunch-big bang transitions. Consequently, a satisfactory
standard model has emerged for both small scale and large scale phenomena

1To airfoil designers the Joukowsky transformation has been the �rst example.
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covering distances between 10−17 cm and 1028 cm. Even dark matter and dark
energy seems to �nd their place in this scenario.

Together with several other people, I have gone quite some time ago one step
further down to preon level, for a review of early work see e.g. [4]. The term
preon means here any new kind of hypothetical point particle or geometrical
structure in spacetime near the Planck length scale. There is no direct exper-
imental evidence for preons, they are rather objects of Gedanken experiments.
Recently, I have reanalyzed a phenomenological preon model for quarks and
leptons [5] trying to �nd an theoretical reference frame for it [6]-[8]. Uni�cation
was discussed on two levels: uni�cation of gravitational and electromagnetic
interactions only, instead of the traditional grand uni�cation (GUT), and sec-
ondly, uni�cation of both these interactions and spacetime, i.e. uni�cation of
everything.

Uni�cation of physics based on particle internal symmetry has been suc-
cessful until recently when geometry has taken a signi�cant role in the form of
the local conformal symmetry. Gravity itself is not limited to Einstein gravity
(EG). Several extra terms in the gravitational action have been studied with
more and less success. In fact, a good old starting point is the gravity based on
the Weyl tensor [9], which provides a unique form of the gravitational action as
the square of the Weyl tensor. An almost equally old idea is, due to Einstein and
Rosen, that particles themselves would be structures in pure vacuum geometry
[10]. Intriguingly, Cartan introduced spinors long before spin was discovered for
particles [11].

Quantization of geometry has been pursued for a few decades within a the-
ory called loop quantum gravity (LQG) [12]. There again introducing conformal
symmetry certain details of quantization have become clearer [3]. Most consid-
erations in this note apply to the SM as well to the preon model. In the latter
I wish to keep the Higgs scalar sector clean as long as possible to endorse the
massless particles for conformal cosmology. On the other hand, fermion mass
is considered in a generalized gravity theory, the Einstein-Cartan theory, which
includes torsion [13] and brings interesting new light to fermion behavior in
curved spacetime at high energy density. I give arguments for the existence
of structure of spacetime at Cartan length scale, where quantum gravity is ex-
pected to begin to appear. A toy model for black hole constituents is proposed
in section 8.

This note is organized as follows. In section 2 I brie�y recall the preon model,
which is discussed partly for historical reasons. In subsection 3.1 conformal
gravity and in subsection 3.2 loop quantum gravity are summarized. In section
4 electromagnetism is geometrized. The conformal standard model is discussed
in section 5. Section 6 is on the outer edge of this study. The Dirac �eld in
the presence of torsion is introduced in subsection 6.1. The massive Dirac �eld
is discussed in subsection 6.2. Cosmology is reviewed in section 7. Conformal
symmetry and black holes are treated in section 8. Finally, conclusions are given
in section 9.

The presentation of the material is concise and goal oriented rather than
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comprehensive but an attempt is made for it to be reasonably self contained.
The author feels he had to go through all the material presented in this note
but the reader may �nd it better to start with the �rst and last section on �rst
reading and save sections 2 and 6 for later.

2 The Preon Model

2.1 Conformal Preons

The virtue of conformal symmetry is that the action for conformal gravity is
de�ned uniquely by the Weyl tensor, described in subsection 3.1. All particles
in conformal theory are massless. Other properties of conformal theory include
renormalizability, unitarity, and the theory is ghost-free. It has been shown to
explain dark matter and energy [14]-[18]. Therefore in this note I assume zero
mass preons on action level.

Requiring charge quantization {0, 1/3, 2/3, 1} and preon permutation anti-
symmetry for identical preons, one can de�ne three preon bound states which
form the �rst generation quarks and leptons [6, 7]

uk = εijkm
+
i m

+
j m

0

d̄k = εijkm
+m0

im
0
j

e = εijkm
−
i m
−
j m
−
k

ν̄ = εijkm̄
0
i m̄

0
jm̄

0
k

(2.1)

A binding interaction between preons is needed to make the quark and
lepton bound states possible. I have at the moment no detailed form for this
interaction. Its details are not expected to be of primary importance at this
preliminary stage. I suppose this attractive, non-con�ning interaction is strong
enough to keep together the charged preons but weak enough to liberate the
preons at high temperature. Some more thoughts are indicated in subsection
2.2.

A useful feature in (2.1) with two identical preons2 is that the construction
provides a three-valued subindex for quark SU(3) color, as it was originally
discovered [19]. In addition, the weak SU(2) left handed doublets can be read
from the �rst two and last two lines in (2.1). The SM gauge structure can
be deduced in this sense from the present preon model. One could also have
preon charges 1/3 and 2/3 but then the index k distinction between quarks and
leptons in (2.1) would be lost.

One may now propose that, as far as there is an ultimate uni�ed theory,
it is a preon theory with only gravitational and electromagnetic interactions
operating between preons. The strong and weak forces are generated in the
early universe later when massless preons combine into quarks and leptons at

2An assumption appears here that the same charge preons inside quarks have the same spin

z-components.
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lower temperature and they operate only with short range interaction within
nuclei making atoms, molecules and chemistry possible. In a contracting phase
of the universe processes take place in the opposite order.

The uni�cation picture is supposed to hold in the present scheme up to the
energy of about 1016 GeV. The electroweak interaction has the spontaneously
broken symmetry phase below an energy of the order of 100 GeV and symmetric
phase above it. The electromagnetic and weak forces take separate ways at
higher energies (100 GeV� E � 1016 GeV), the latter melts away due to
ionization of quarks and leptons into preons, but the former stays strong towards
Planck scale,MPl ∼ 1.22×1019 GeV. Likewise the quark color interaction su�ers
the same destiny as the weak force. One is left with the electromagnetic and
gravitational forces only at Planck scale.

The proton, neutron, electron and ν can be constructed of 12 preons and 12
anti-preons. The construction (2.1) is matter-antimatter symmetric on preon
level, which is desirable for early cosmology. The model makes it possible to
create from vacuum a universe with only matter: combine e.g. six m+, six
m0 and their antiparticles to make the basic β-decay particles. Corresponding
antiparticles may occur equally well.

The baryon number (B) is not conserved [20, 21] in this model: a proton
may decay at Planck scale temperature by a preon rearrangement process into
a positron and a pion. This is expected to be independent of the details of the
preon interaction. Baryon number minus lepton number (B-L) is conserved.

Uni�cation of gravity and electromagnetism is discussed in section 4.

2.2 Geometrical Preons

The preon model described in [6] is based on a statistical black hole model in
loop quantum gravity (LQG). In LQG the geometry is quantized such that the
lowest area eigenvalue is zero, which allows zero mass particles in the model
construction as the Brown-York energy is proportional to area. The idea that
a particle can be de�ned in pure gravity theory was �rst put forward in [10].
There it was also found that a charged black hole with Reissner-Nordström
metric can have zero mass.

The preons have to be kept inside the quarks and leptons using some ele-
gant, preferably non-con�ning mechanism. I also want to exclude scalar, vector
and spinorial self-interactions. Same sign charges should be kept inside the
bound states. Therefore a possibility could be that the zero mass black hole
preons would form together one single non-spherical horizon around the quark
or lepton.

Uni�cation of black hole particles (i.e. preons) and spacetime is discussed
in subsection 3.2.
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3 Gravity

3.1 Conformal Gravity

Weyl introduced, while working on the geometrization of electromagnetism,
a new tensor called the Weyl or conformal tensor [9] (for an introduction to
conformal theories, see e.g. [22])

Cλµνκ = Rλµνκ−
1

2
(gλνRµκ−gλκRµν−gµνRλκ+gµκRλν)+

1

6
Rαα(gλνgµκ−gλκgµν)

(3.1)
where Rλµνκ is the Riemann tensor. Under local conformal transformation ω(x)
of the metric tensor gµν of the form

gµν → e−2ω(x)gµν (3.2)

the Weyl tensor transforms simply as

Cλµνκ(x)→ Cλµνκ(x) (3.3)

The pure local conformal gravity is based on the following action

IW = −αg
∫
d4x
√
−gCλµνκCλµνκ (3.4)

where αg is a dimensionless gravitational coupling constant. The action (3.4)
can be written in the following simpler form [23]

IW = −2αg

∫
d4x
√
−g
[
RµκR

µκ − 1

3
(RR)

]
(3.5)

Conformal gravity is power-counting renormalizable and unitary [16]. In IW
there is no cosmological constant term since

∫
d4x
√
−ggµνΛ is not conformal

invariant. The cosmological constant will appear later when conformal symme-
try is dynamically broken and gives the dimensionful ψ̄ψ a non-zero vacuum
expectation value.

The reason for local conformal invariance is that massless particles move
on the light cone which is invariant under the 15 parameter conformal group
SO(4, 2) [16]. The covering group of SO(4, 2) is SU(2, 2). This is generated by
the 15 Dirac matrices (γ5, γµ, γµγ5, [γµ, γν ]) and its fundamental representation
is a fermionic �eld. Therefore it is natural to take fermions as the basic objects
in physics. Gravity is generated by gauging the conformal symmetry on the
light cone. Mass scales are to be generated dynamically by fermion bilinear
condensates in the vacuum.

Functional variation of IW with respect to metric de�nes a gravitational rank
two tensor Wµν in terms of the Riemann tensor that is covariantly conserved
∇µWµν = 0 and traceless gµνWµν = 0. Assuming a conformally invariant
matter action IM (an example is discussed in the next section 4 variation with
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respect to IW + IM gives a fourth order derivative equation of motion of the
form

4αgW
µν = TµνM (3.6)

where

Wµν = 1/2 gµν∂β∂β(Rαα) + ∂β∂βR
µν − ∂ν∂βRµβ − ∂µ∂βRνβ

− 2 RµβRνβ + 1/2 gµνRαβR
αβ − 2/3 gµν∂β∂βR

α
α

+ 2/3 ∂µ∂νRαα + 2/3 RααR
µν − 1/6 gµν(Rαα)2

(3.7)

By de�ning the left hand side of (3.6) as the energy-momentum tensor
Tµνgravity we can write (3.6) in the form

Tµνgravity + TµνM = 0 (3.8)

We see that gravity and matter sectors are on equal footing and the total energy-
momentum tensor of the universe is zero.

The connection between Einstein gravity and conformal gravity is that the
solutions of the former are solutions of the latter [24, 25]. However, conformal
gravity has more general solutions to be explored. From these the Einstein
solutions can be chosen by imposing a certain Neumann boundary condition on
the metric at the future boundary. The boundary condition eliminates ghosts
and the theory becomes an Einstein theory with a cosmological constant.

As a �nal piece of support to conformal invariance it can be mentioned that
the high energy limit of all non-trivial renormalizable �eld theories is comfor-
mally invariant [26].

3.2 Loop Quantum Gravity

A statistical physics model for quantum black holes has been presented in [7].
It is based on Brown-York energy E for an area A of a horizon: E = ac2A/8πG
where a is the constant proper acceleration of an observer on the stretched
horizon. In LQG the area eigenvaleus are

A = γl2Pl
∑

p

√
jp(jp + 1) (3.9)

where the sum is over punctures p of the spin network, lPl is the Planck length,
γ is the Barbero�Immirzi parameter and the values of jp are half integral. The
spin number jp describes the size of the quanta of space [27]. For comprehensive
treatments of quantum geometry and black holes see e.g. [28].

Among the problems in LQG is �nding quantization without quantum anoma-
lies. A second di�culty is making contact with the semiclassical physical picture
of gravity. The existence of Planck scale sets restrictions in going to the con-
tinuum limit. If one adds points to the spin network to re�ne it, the continuum
approximation of volumes and areas does not get better, one just adds volume
to the spacetime as the area eigenvalue has a minimum value. In a confor-
mal theory there is no length scale available and it is possible to improve the
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situation. Thirdly, though the theory is discrete and therefore �nite, a �nite
renormalization is needed to separate the lower energy physics from the Planck
scale features [3].

Conformal invariance helps in all the above di�culties. In a conformal the-
ory spin networks can be de�ned which can be inde�nitely re�ned to arbitrary
precision. In the renormalization problem no counter terms are needed in spac-
ing dependent renormalization.

The geometric operators of area of a surface and the volume of a region can
be generalized to their conformal invariant counterparts which are the same as
before but now without factors of Planck length to the relevant power. Thus a
conformal geometry of a spin network can be de�ned [3].

4 Geometrization of Electromagnetism

Conformal invariance is also important for understanding the geometrization
of other interactions. Metrication of electromagnetism coupled to a Dirac �eld
ψ(x) is given in [29] (see also [30]).

The generalized Dirac action is

ID =

∫
d4x
√
−giψ̄γceµc (x)(∂µ + Γ̃µ)ψ + h.c. (4.1)

where the γa are the Dirac matrices, eµc (x) is a vierbein de�ned by gµν = eaµe
b
νηab

(solving this for ηµν , the vierbein vectors are seen to diagonalize the metric
tensor) and

Γ̃µ(x) =
1

8
[γa, γb](e

b
ν∂µe

aν + ebλΓ̃λνµe
aν) (4.2)

which is obtained from the generalized connection

Γ̃λµν = Λλµν +W λ
µν (4.3)

where Λλµν and W λ
µν are the Levi-Civita and Weyl connections, respectively

Λλµν =
1

2
gλα(∂µgνα + ∂νgµα − ∂αgµν) (4.4)

W λ
µν = −gλα(gναAµ + gµαAν − gνµAα) (4.5)

where Aα is the electromagnetic potential. It turns out that the covariant
derivative of the metric in (4.1) is non-zero, ∇̃λgµν = −2gµνAλ, and therefore
parallel transport is path dependent and the theory is untenable.

Secondly, the Weyl connection drops out from the generalized Dirac action
and therefore does not provide geometrization of electromagnetism. Replacing
W λ
µν by

Wλ
µν = −2i

3
gλα(gναAµ + gµαAν − gνµAα) (4.6)
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and ∂µ by ∂µ − 2Aµ in (4.1) one ends up with a satisfactory action

ID =

∫
d4x
√
−giψ̄γµ(x)(∂µ + Γµ − iAµ)ψ (4.7)

where γµ(x) = eµa(x)γa and

Γµ(x) = 1/8
(
[γν(x), ∂µγν(x)]− [γν(x), γσ(x)]Γσµν

)
(4.8)

The action ID is locally invariant under both gauge and conformal transfor-
mations ω(x)

ψ(x)→ e−3ω(x)/2ψ(x)

gµν → e−2ω(x)gµν

eαµ → eω(x)eαµ

Aµ(x)→ Aµ(x)

(4.9)

One sees that Aµ(x) does not transform at all. The equation of motion for
preons, without preon-preon interactions, is (3.8).

5 Conformal Standard Model

It is possible to couple massless particles to conformal gravity. One can also
couple the massless standard model, or even the complete standard model in
a way in which the Higgs boson acquires mass in the gauge �xed conformal
theory [3, 31]. When the gauge is �xed the Planck scale is determined and so
further the Higgs mass and the masses of all other SM particles, determined by
the dimensionless constants of the theory.

The SM total Lagrangian can be written as a sum of the gravitational and
matter terms

LT = LGR(gc) + LM (gc, ψM/φd) (5.1)

where gcab = φ2gab, ψM are the matter �elds, φ is the Brans-Dicke scalar �eld
[32] and d is a suitable power, like 1 or 3/2, to ensure the conformal invariance
of matter �elds. The equations of motion imply that the stress tensor of the
matter �elds is traceless. All the SM particles can now be incorporated without
mass. The Higgs �eld is introduced as a doublet hα, α = 1, 2. The action is
now in terms of conformal variables

S =

∫
d4x
√
−gc

[
−gab(c)Dαh

c†Dbh
c− λ

4

(
hc†hc−α2

)2
+

1

4
λ

′
+LSM (gc, ψc, Aa)

]
(5.2)

where the λ and λ
′
are coupling constants and Aa refers to the gauge �elds of

the SM, in the simplest case the SU(2)×U(1) �elds.
Choosing the gauge φ(x) = φ0 one gets the dimensionful parameters in terms

of φ0
G = 1/8πφ20, Λ/4πG = λ

′
φ40 (5.3)
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where Λ is the cosmological constant (as usual, its value is nowhere near the
measured value). The Higgs mass and vacuum expectation value are

m2
Higgs = λα2φ2, 〈h†h〉 = α2φ2 (5.4)

This is a brief summary of a conformal invariant theory of gravity coupled to
the SM that can be quantized by the LQG techniques [3].

6 Torsion

6.1 Dirac Field in the Presence of Torsion

In this section I want to emphasize another kind of treatment of conformal
gravity and the Dirac �eld, which can be a quark, lepton, or preon. In GR, one
has to discuss torsion arising from rotations and translations of the Poincaré
group, just as energy gives rise to curvature [33, 34]. Experimentally there is no
evidence for torsion. It will be shown below that constraints coming from the
antisymmetry of the spin do not yield complete antisymmetry of torsion but
cause constraints to the metric. In particular, the spinorial self-interactions are
absent. If, in addition, no scalar interactions are allowed for spinors their zero
masses are well protected. In the case of preons, this sector of the model joins
smoothly to the conformal SM when the energy or temperature becomes so low
as to allow quark and lepton bound states.

The Riemann-Cartan geometry with metric and torsion is de�ned in terms
of the metric tensor gµν and a metric-compatible connection Γλµν , which are
independent. A connection is metric compatible if the covariant derivative of the
metric with respect to that connection is everywhere zero. Given any connection
the torsion tensor is de�ned as

Qλµν = Γλµν − Γλνµ = Γλ[µν] (6.1)

The torsion tensor is antisymmetric in its lower indices. A symmetric connection
is known as torsion-free.

The most general conformal transformation for the metric and torsion are
with φ = logσ

Qσρα → Qσρα + q(δσρ∂αφ− δσα∂ρφ)

gαβ → σ2gαβ
(6.2)

where q is the conformal charge. It is seen in (6.2) that the conformal transfor-
mation of the torsion is a transformation of its trace vector Qα → Qα + 3q∂αφ.
The vierbein transforms as follows

ekα → σekα (6.3)

The Dirac �eld conformal transformation is

ψ → σ−3/2ψ, ψ̄ → σ−3/2ψ̄ (6.4)
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Let us introduce the modi�ed metric-torsional curvature tensor with the
Riemann curvature tensor Rαβµν

Mαβµν = Rαβµν +
1− q

3q
(QβQαµν −QαQβµν) (6.5)

whose irreducible part is

Tαβµν = Mαβµν −
1

2
(Mα[µgν]β −Mβ[µgν]α) +

1

12
M(gα[µgν]β − gβ[µgν]α) (6.6)

and it is conformally covariant. The commutator of covariant derivatives obeys
the equation

[Dµ, Dν ]ψ = QαµνDαψ +Gµνψ (6.7)

The conformal transformation for torsion is not uniquely de�ned [35]. The
most general invariant obtainable from Tαβµν in (6.6) is the expression

aTαβµνTαβµν + bTαβµνTµναβ + cTαβµνTαµβν (6.8)

with the parameters a, b and c. De�ne the quantity Pαβµν as follows

Pαβµν = aTαβµν + bTµναβ +
c

4
(Tαµβν − Tβµαν + Tβναµ + Tανβµ) (6.9)

(6.9) is antisymmetric in the �rst and second pair of indices, irreducible and
conformally covariant. This reduces to the form TαβµνPαβµν and the most
general Dirac action is

S =

∫
d4x
√
−g[kTαβµνPαβµν + Lmatter] (6.10)

with k the gravitational constant. By variation one gets

4k[DρP
αβµρ +QρP

αβµρ − 1
2Q

µ
ρθP

αβρθ −

−(1−q3q )(QρP
ρ[αβ]µ − 1

2Qσρθg
µ[αP β]σρθ)] = Sµαβ (6.11)

2k[P θσραT µ
θσρ −

1
4g
αµP θσρβTθσρβ + PµσαρMσρ +

+(1−q3q )(Dν(2PµρανQρ − gµαP νθρσQθρσ + gµνPαθρσQθρσ) +

+Qν(2PµρανQρ − gµαP νθρσQθρσ − PµνρσQαρσ))] = 1
2T

αµ (6.12)

where Sρµν and Tµν are the spin and energy density tensors of the matter
conformal �eld. Here both Weyl equations and this new set of equations describe
how energy and spin are the source of an intertwined combination of both
curvature and torsion. This fact will be interesting for Dirac matter.

The Dirac action is

S =
∫
d4x[Lgravity + i

2(ψ̄γρDρψ −Dρψ̄γ
ρψ)]|e| (6.13)
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where e = det eai . By variation of the action one gets the antisymmetric spin
and traceless energy densities

Sµαβ = 1
4εµαβρψ̄γ

ργψ (6.14)

Tµα = i
2(ψ̄γµDαψ −Dαψ̄γµψ) (6.15)

and the massless matter �eld equations are

iγµDµψ + i
2Qµγ

µψ = 0 (6.16)

To see the e�ects of the complete antisymmetry of the spin on the structure
of the �eld equations one should rewrite the �eld equations as follows

4k[DρP
αβµρ +QρP

αβµρ − 1
2Q

µ
ρθP

αβρθ − (1−q3q )(QρP
ρ[αβ]µ)]

= 1
4ε
µαβρψ̄γργψ (6.17)

2k[P θσραT µ
θσρ −

1
4g
αµP θσρβTθσρβ + PµσαρMσρ +

+(1−q3q )(Dν(2PµρανQρ) +Qν(2PµρανQρ − PµνρσQαρσ))]

= i
4(ψ̄γαDµψ −Dµψ̄γαψ) (6.18)

with the massless matter �eld equations (6.16).
In Weyl gravity there is no more a completely antisymmetric torsion and

there are additional constrictions on the curvature tensor. This happens because
both �eld equations for the spin and energy couple to both torsion and curvature
so that the complete antisymmetry of the spin is partly imposed on torsion and
partly on the curvature. We may decompose torsional terms away from the
torsionless ones in all curvatures and derivatives. Thereafter all curvatures
and derivatives are written in terms of purely metric curvature and derivatives
given by the Weyl conformal tensor Cαβµν and the Levi-Civita derivative ∇µ
plus contributions due to torsion Qµασ decomposable in its three components
according to

Qµασ ≡ Tµασ + εµασρW
ρ +

1

3
(gµαQσ − gµσQα) (6.19)

where Tµασ is the non-completely antisymmetric irreducible part and Wα is
the axial vector dual of the completely antisymmetric irreducible part of the
torsion. The Dirac equation, in Einstein-type of gravity, is of the general form

iγµ∇µψ −
3

4
Wµγ

µγψ = 0 (6.20)

In Weyl-type of gravity there is no possibility to substitute torsion with the spin
of the spinors and there are no longer non-linear self-interactions in the spinor
�eld equations. The Dirac equation is linear even in the presence of torsion.

The conclusion from all the above analysis of torsion in GR is that the
non-linear self-interactions of Dirac matter �elds are absent.

12



6.2 Massive Dirac Field in the Presence of Torsion

ADirac �eld with mass is a non-conformal theory, but it is a very interesting case
and is discussed brie�y. The Einstein-Cartan (EC) [11, 36], or Einstein-Cartan-
Kibble-Sciama (ECKS) [37, 38, 39] theory of gravity is a natural extension of GR
to include matter with spin as is necessary to take into account the local gauge
invariance with respect to the full Poincaré group. This produces torsion. The
e�ect of torsion occur only at very high density of matter, much larger than the
density of nuclear matter. Torsion modi�es Dirac-Kerr-Newman ring singularity
by a non-singular toroidal structure with the outer radius of the Compton wave
length size and inner radius of the Cartan size (see (6.31) below). The Cartan
size may introduce an e�ective UV cuto� for fermionic quantum �eld theory.

The dynamical variables in Einstein-Cartan theory are the vierbein eia and
the spin connection

ωabk = eaj (∂ke
j
b + Γjike

i
b) (6.21)

where Γjik is the a�ne connection or Christo�el symbol. It is asymmetric in
the lower indices and its antisymmetric part is the torsion tensor Sijk = Γi[jk].
The notation [] means antisymmetrization. The dynamical energy-momentum
density is de�ned by the variation of the Lagrangian density of matter Lm with
respect to vierbein

Θa
i = δLm/δω

ab
i (6.22)

The variation with respect to spin connection ωabi de�nes the dynamical spin
density

Σi
ab = 2δLm/δωabi (6.23)

The ECKS Lagrangian density is

L = LM − eR/16πG (6.24)

where e = det eai , R = Rai e
i
a is the Ricci scalar and G the gravitational constant

(c = 1). This is the simplest of various theories of gravity with torsion. The
Cartan equation relates locally the torsion of spacetime to the spin density
(6.21)

e(Siab − Saeib + Sbea) = −4πGΣi
ab (6.25)

where Si = Skik is the torsion vector coming from the variation of the ECKS
action under spin connection. Combining Einstein equation and (6.25) yields

Gik = 8πGTik + Uik (6.26)

where Gik = Rik − 1/2Rgik is the Einstein tensor and Tik = 2/e δLM/δgik is
the metric energy-momentum tensor. The tensor Uik

Uik = −(Slij + 2Sl(ij))(S
j
kl + 2Sj(kl)) + 4SiSk +

1/2(GikS
mjl + 2S(jl)m)(Sljm + 2S(jm)l)− 2gikS

jSj (6.27)
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where () denotes symmetrization, is quadratic in Σk
ij . The torsion is zero in GR

and (6.26) reduces to Einstein equations.
The Cartan equation (6.25) is a linear relation and torsion is proportional

to spin density. Therefore the torsion is zero outside material bodies. This
makes detection of torsion di�cult. The torsion �eld of ECKS theory does not
propagate, unlike curvature.

The relativistic Dirac Lagrangian density in curved spacetime is

Lψ = 1/2 i~e(ψ̄γi∂iψ − ∂iψ̄γiψ)−
1/2 i~e(ψ̄(γiΓi + Γiγ

i)ψ)−
qeψ̄γiψAi −meψ̄ψ (6.28)

where the γi are the Dirac matrices, m is the mass, q the charge of the par-
ticle and A is the electromagnetic potential (c = 1). The spinor connection
is Γi = −1/4 ωabiγ

aγb. The spin density corresponding to (6.28) is totally
antisymmetric

Σijk = 1/2 i~eψ̄γiγjγkψ (6.29)

This spin density (6.29) does not depend on m or q. It remains the same if one
includes the weak and strong interactions for the fermions. Substituting the spin
density (6.29) into (6.28) one introduces the Heisenberg-Ivanenko four-fermion
self-inteaction term in the Lagrangian density

LS = 3/2 πGe~2(ψ̄γiγ5ψ)(ψ̄γiγ
5ψ) (6.30)

If one assumes the simplest possible fermion system, namely a point particle
or a system of point particles, it turns out that there exist no solutions for the
spinor �eld, i.e. ψ = 0. The same happens for a fermionic string. Thus torsion
in ECKS theory does not make it possible for a Dirac �eld to form point or
string con�gurations. Torsion determines the minimal spatial extension d of a
spinor �eld. The size comes from the condition that the repulsive four-fermion
self-interaction term balances the gravitationally attractive mass term in (6.28).
The energy-momentum tensor in (6.28) is of the order ofm|ψ2|, the spin density
~|ψ2| and the wave function ψ ∼ d3/2. Therefore the size is of the order of the
Cartan radius rC de�ned by

m/r3C ∼ G(~/r3C)2 (6.31)

For an electron, rC ∼ 10−25 cm, which is much less than its Compton wave
length h/m ∼ 10−10 cm. For heavier fermions, rC is below ∼ 10−27 cm. If the
ECKS theory is correct an e�ective UV cuto� for quantum �eld theory would
be of the order of rC . If GR is correct the cuto� would be much smaller Planck
scale lPl.

These results imply that the Dirac wave function of an electron forms a
non-singular form of spacetime structure of a toroid which has the outer ra-
dius of the electron Compton wave length and the inner radius of its Cartan
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radius. This is valid both for charged and uncharged leptons. The weak in-
teractions do not change the situation in any signi�cant amount. The toroid
structure works also for quarks for which asymptotic freedom holds at distances
∼ rC . Free fermions in the ECKS theory must therefore extend in two spatial
dimensions at least on the scale of their Cartan radii. The Cartan density for
an electron, ρC ∼ me/r

3
C ∼ 1049 g/ccm approximates the order of the maxi-

mum density of matter composed of standard model particles. Gravitational
collapse of fermionic matter cannot create a singularity even if an event horizon
is formed. Somewhat surprisingly, this corresponds a minimum mass of a black
hole of the order of 1043 GeV which is a way above the MPl.3

Finally, for the cosmological constant it is derived in [40], using the type of
four-fermion interaction (6.30)

Λ =
3

16M4
Pl

(ψ̄γiγ
5ψ)(ψ̄γiγ5ψ) (6.32)

This Λ, induced by torsion, depends on spinor �elds and is not constant in time.
If the spinor �elds can form a condensate the vacuum expectation value of Λ
behaves like a cosmological constant. Quark �elds in quantum chromodynamics
form a condensate with a vacuum expectation value 〈0|ψ̄ψ|0〉 ≈ −(230 MeV)3.
This energy scale is only about eight times larger than the observed Λ value.

7 Cyclic Conformal Cosmology

The running standard model quartic Higgs coupling λ switches sign from pos-
itive to negative value when the vacuum expectation value of the Higgs �eld
h exceeds 1010−12 GeV, assuming that no new physics below the Planck scale
changes the situation [41]. The measured values of the Higgs and top quark
masses are essential for this result: the electroweak vacuum is metastable being
maintained by a low energy barrier of height (1010−12GeV )4, well below the
Planck density. This means that the universe has a �nite lifetime before decay-
ing into a contracting phase caused by a large negative potential energy density.
On the theoretical side, this is a problem for the in�ationary model. In short,
because of �ne tuned initial conditions the past of our universe is unlikely and
its future precarious [1].

But for the metastable Higgs there is a better solution, cyclic cosmology [2].
According to the cyclic picture, the vacuum is required to be metastable in order
for the current phase of accelerated expansion to end and for a big crunch/big
bang transition to occur enabling a new cycle to begin. It is important that
scalar �elds exist that tunnel from the current vacuum of positive potential
energy density to a phase with negative potential energy density which decreases
deeper with increasing �eld magnitude. For the cyclic model, this behavior not
only is part of the future but also part of our distant past leading to the most
recent bounce, the big bang.

3This result is intuitively strange.
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In [2] Bars, Steinhardt and Turok construct a theoretical model that sup-
ports all known accelerator and satellite physics and describes the evolution of
the Higgs through the big bounce. A major question is whether there exist
solutions that will return the Higgs to the metastable vacuum after each big
crunch/big bang transition.

The guiding principle of the model is conformal symmetry. The Weyl in-
variant action S =

∫
d4xL(x) to describe gravity and the standard model is

L(x) =
√
−g
[ 1

12
(φ2 − 2h†h)R(g) + gµν(

1

2
∂µφ∂νφ−Dµh

†Dνh)

−(
λ

4
(h†h− µ2φ2)2 +

λ′

4
φ4) + LSM

]
(7.1)

The term LSM invludes the terms of the standard model Lagrangian except
for the kinetic and self-interaction terms of the Higgs doublet h(x) which are
explicitly indicated in (7.1). The scalar �eld φ(x) is a singlet under SU(2)×U(1)
and it couples only to the Higgs �eld but not to the other �elds of the SM.
φ looks like a ghost but one can choose a Weyl gauge Ω(x) such that φ is
constant, φ0 ≡ φc, and therefore is eliminated as a physical degree of freedom.
This gauge is called c-gauge. µ is a parameter, 10−17 in Planck units, and it
determines the Higgs vacuum expectation value and the Higgs mass. Both φ
and h are conformally coupled scalars and the coe�cient 1/12 is due to local
Weyl symmetry. There is a relative minus sign between h and φ kinetic energy
terms and the Ricci scalar couplings in order to have h as the proper physical
scalar with conformal symmetry requirements.

The action (7.1) is invariant under Weyl transformations by a local function
Ω(x) as follows

gµν → Ω−2gµν , s→ Ωs, ψq,l → Ω−3/2ψq,l, A
γ,W,Z,g
µ → Aγ,W,Z,gµ (7.2)

where s is the scalar �eld h or φ.
In the gauge φ = φ0 the physical parameters can be expressed in terms pf

φ0 as follows

3/4πG = φ20, Λ/4πG = λ′φ40

h†0h0 = ω2φ20 ≡ v2/2 (7.3)

The action (7.1) de�nes a conformally invariant homogenous and isotropic
Friedman-Robertson-Walker (FRW) universe [42]

S =

∫
dτ(−1/2e)

[
[(∂τ (aφ))2 + (∂τ (ah))2]− e[a4V (φ, h)

+ρr + C
√
ρra

2h2 +K(φ2 − h2)a2]
]

(7.4)

where τ is the conformal time, e is the lapse function, C is a dimensionless
constant, K is the spatial curvature and V (tφ, th) = t4V (φ, h) describes the
Higgs potential. The gauge bosons and fermions are treated as a radiation �uid
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at temperature T which induces a term like T 2h†h ∼ √ρra2h2 for the e�ective
Higgs �eld potential. The radiation density in Einstein frame (where Ricci
scalar is not multiplied by the scalar �eld) is ρr/a4E ∝ T 4 and ρr is a constant.

Cosmological variables and gauges are brie�y discussed, in γ-gauge (a ≡
aγ = 1), and there is no cosmological singularity, the Higgs potential is purely
quartic V (φγ , hγ = 1/4(λh4γ + λ

′
φ4γ) and the dynamics of the universe is de-

scribed smoothly by the �elds φγ and hγ . The authors of [1] focus on studying
cyclic solutions taking λ′ to be negative and smaller than all other scales. An
e�ect is needed in the cyclic model where λ′ would be replaced by a �eld, the
Higgs, that tunnels from a small positive energy density, the current dark energy
density, to a negative value to change development from expansion to contrac-
tion. For the running coupling λ(h/φ) the form obtained in [41] is assumed in
a simpli�ed form

λ(h/φ) = λ0
[
1− εlog(h/ωφ)2

]
(7.5)

where λ0 is to �t the Higgs mass in today's Higgs vacuum at h/φ = ω ≈ 10−17

and ε is chosen to make the quartic coupling pass negative at hc ≈ 1012 GeV.
The authors are now able to conclude having found a band of continuous

solutions that undergo acceptable repeated cycles of expansion and contraction
as illustrated in detail in [2].

8 Conformal symmetry and black holes

The conformal action is (3.4). The general static, spherically symmetric solu-
tions of (3.8) is [43]

ds2 = −V (ρ)dτ2 + V (ρ)−1dρ2 + ρ2(dΘ2 + sin2ΘdΦ2) (8.1)

where the function V is

V (ρ) = 1− β(2− 3βγ)/ρ− 3βγ + γρ− kρ2 (8.2)

where β, γ and k are constants. By analytically continuing (8.1) as follows

τ = it, ρ = ir, Θ = iθ, Φ = φ, β = −ib, γ = ic (8.3)

which gives

ds2 = −V (r)dt2 + V (r)−1dr2 + r2(dθ2 + sinh 2θdφ2) (8.4)

where V (r) is now given by

V (r) = −1− b(2− 3bc)/r + 3bc+ cr − kr2 (8.5)

For certain values of the parameters (8.4) is a black hole line element. The
metric on the spacelike surfaces of constant r and t on the event horizon is

dσ2 = r2(dθ2 + sinh2θdφ2) (8.6)
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This metric describes a non-compact hyperbolic two-space H2 with constant
negative curvature. The (θ, φ)-sector can be compacti�ed by considering the
quotient space H2/G. G is the discrete subgroup of the isometry group SO(2, 1)
of H2. If one requires this space to be orientable, it becomes a Riemann surface
of genus g > 1. Genus one is a torus and a higher degree genus is a hyperelliptic
surface y2 = P (x), where P is a complex polynomial of degree 2g + 1. The
topology of the manifold is R2 × Sg.

There are several possibilities to �nd black holes with non-trivial topologies.
With c = 0 and k = Λ/3 < 0 one has an uncharged static topological BH
solution in AdS gravity. Secondly, one may set k = 0 which gives a space not
asymptotically AdS. For c > 0 and −1 ≤ 3bc < 2 it is a BH. The condition
3bc = −1 gives an extreme BH. The scalar curvature in case k = 0 is

R = −6c/r (1 + b/r) (8.7)

which is singular at r = 0, but for r → ∞ R vanishes. Thirdly, one may set
b = 2/3c− η and k = Λ/3 > 0 in (8.5). In the limit c→ 0 on gets for V

V (r) = 1− 2η/r − Λr2/3 (8.8)

This spacetime is similar to the Schwarzschild-de Sitter solution but with non-
trivial topology. As r →∞ the scalar curvature S → 4Λ. (8.8) is not a solution
of Einstein's equations. (8.8) has two zeroes r− < r+. r− is the black hole
event horizon radius and r+ is a cosmological horizon. Finally, one can obtain
a toroidal black hole spacetime using another analytic continuation

τ =
√
d, ρ = r/

√
d, Θ = θ

√
d, Φ = φ, β = b/

√
d, γ = c/

√
d (8.9)

In the limit d→ 0 one has

ds2 = −V (r)dt2 + V (r)−1dr2 + r2(dθ2 + θ2dφ2) (8.10)

with
V (r) = 3b2c/r − 3bc+ cr − kr2 (8.11)

Depending on the parameter values (8.10) may represent a black hole. The
angular sector has a �at metric dσ2 = r2(dθ2 + θ2dφ2). Changing coordinates
to Cartesian ones with

x ' x+ n, y ' y +m, n,m ∈ Z (8.12)

on gets a compact orientable surface, a torus, with a topology R2 × S1 × S1.
Putting c = −2η/L, b =

√
L/3, and k = Λ/3 and letting L→∞ on has

V (r) = −2η/r − Λr2/3 (8.13)

This is for η > 0 an uncharged static toroidal black hole, known in AdS gravity.
For k ≥ 0 the black hole interpretation is lost since (8.11) has no real root for
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k = 0 and only one real root for positive k which is not a black hole event
horizon.

For di�erent genus values one has: g = 1, a torus, only solutions with
asymptotically AdS. For g > 1 dS BHs exist. Interestingly, Weyl conformal and
AdS gravity alone have consistent interaction with massless higher spin �elds.

I propose a toy model for generic black hole structure, or constituents, in
which the hole consist of tori of decreasing sizes starting from the radius of
the hole. The next torus radius is the previous torus tube radius increasing
the complexity of the hole topology. The scale dependence of this spacetime
structure should be studied by this scale method.

9 Conclusions

The elegance and power of general relativity is realized when the basic Ein-
stein equations are generalized to the largest local symmetry groups including
the Weyl conformal symmetry and the full Poincaré symmetry with torsion of
spacetime. The statement �to modify it [EG] without destroying the whole
structure seems to be impossible� did not turn out to be true, if the modi�ca-
tion is done properly. The main conclusion of this study is that local conformal
symmetry allows us to obtain a uni�ed description of gravity and the standard
model. All interactions are described in geometrical or geometrized formalism
which contains the familiar SM quantum particles. A possible model for matter-
spacetime uni�cation was reviewed in subsection 3.2. I proposed in section 8 a
toy model for black hole structure, or constituents, in which the holes consist
of tori of decreasing sizes starting from the radius of the hole.

With conformal symmetry the applicability of GR is greatly expanded. The
cosmological picture of the universe is changed substantially as became clear
several decades later [2, 44, 45]. The �one start� big bang is replaced by the
cyclic picture of the universe. Conformal symmetry makes it possible to ge-
ometrize all other interactions, of which electromagnetism received in section
4 special attention. Further it has been shown that dark matter of galaxies
can be explained with the di�erent velocity pro�le of conformal equations [17].
A theory for dark energy has also been proposed [18]. At high energy/matter
density, like inside black holes, the pure massless conformal symmetry must be
modi�ed to include mass of Dirac �elds. Torus solutions in theories with mas-
sive Dirac �eld in the presence of torsion are interesting. Most likely, torsion
is a neglected important sector of gravity. Interesting structures in spacetime
with certain area and volume quantization methods should be restudied. The
area and volume of a torus are A = 4π2rR and V = 2π2r2R where r is the
`tube' radius and R is the radius of the `tube' center line. To make the torus
area compatible with spherical area requires r = const×R.
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