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Surface Formulations of the

Electromagnetic-Power-based Characteristic
Mode Theory for Material Bodies — Part 111

Renzun Lian

Abstract—As a supplement to the previous Parts I and II, the
Surface formulations of the ElectroMagnetic-Power-based
Characteristic Mode Theory for the system constructed by
Multiple Homogeneous Material bodies (Surf-MHM-EMP-CMT)
are established in this Part II1. The coupling phenomenon among
different bodies is specifically studied, and then a new kind of
power-based Characteristic Mode (CM) set, Coupling power CM
(CoupCM) set, is developed for characterizing the coupling
character.

Index Terms—Characteristic Mode (CM), Electromagnetic
Power, Interaction, Material Body, Multi-body Coupling.

I. INTRODUCTION

THE MoM-based Characteristic Mode Theory (CMT) was
established by R. F. Harrington et al. in the 1970s [1]-[3],
such that the inherent ElectroMagnetic (EM) character of an
object, especially the open object, can be efficiently extracted.
Recently, the physically appropriate ideas in the MoM-based
CMT are liberated from the MoM framework [4]-[5], and an
ElectroMagnetic-Power-based CMT (EMP-CMT) is built
[4]-[9].

It has been clearly illustrated in [4]-[9] that the EMP-CMT is
an object-oriented modal theory, and its object-oriented feature
is mainly demonstrated in the following two aspects.

1) The power-based Characteristic Mode (CM) sets for an
EM system can be constructed by focusing on different
objective EM powers. For example, the Radiated power CM
(RaCM) set [4]-[5], the Stored power CM (StoCM) set [4], and
the Output power CM (OutCM) set [4]-[9], etc. can be
respectively constructed by optimizing the system radiated
power, by optimizing the system reactively stored power, and
by orthogonalizing the system output power, etc.

2) The objective EM system is regarded as a whole object,
and the other EM sources (such as the impressed source and the
source generated by EM environment) are uniformly treated as
an external source. Then, it was proven in [4]-[5] that the
various power-based CM sets are the inherent characters of the
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objective system, and they are completely independent of the
external source.

The papers [6] and [7] mainly focus on the system
constructed by a single body. The EM system considered in
[4]-[5] and [8]-[9] can be constructed by multiple bodies
(simply called as multi-body system), and the multi-body
system was treated as a whole object in the [4]-[5] and [8]-[9],
so the coupling effect among different bodies was not
specifically analyzed in the [4]-[5] and [8]-[9].

Taking the system constructed by multiple homogeneous
material bodies as a typical example, the coupling effect among
different bodies is studied in this paper by employing the
surface formulations developed in [6] and [7], and then a new
power-based CM set, the Coupling power CM (CoupCM) set,
is constructed for characterizing the coupling character. If the
Surface formulations of the EMP-CMT for a Single
Homogeneous Material body [6]-[7] can be simply denoted as
Surf-SHM-EMP-CMT, the Surface formulations of the
EMP-CMT for Multiple Homogeneous Material bodies
developed in this paper can be similarly denoted as
Surf-MHM-EMP-CMT, and the Surf-SHM-EMP-CMT and
Surf-MHM-EMP-CMT are collectively referred to as the
Surface formulations of the EMP-CMT for Material bodies
(Surf-Mat-EMP-CMT).

In what follows, the e'* convention is used throughout, and
the EM systems constructed by double homogeneous material
bodies are focused on, and the systems constructed by any
number of homogeneous material bodies can be similarly
discussed. In addition, the discussions in this paper can also be
easily generalized to the systems constructed by multiple metal
bodies, the systems constructed by multiple inhomogeneous
material bodies, and the metal-material combined systems.

II. SOURCE-FIELD RELATIONSHIPS

For an objective double-body system, the regions occupied
by two bodies are respectively denoted as V, and V,, and the
region occupied by whole system is denoted as V=V, UV, .
When an external field F™ incidents on the system, the
scattering sources will be excited on every V., and then the
scattering field F™ is generated as illustrated in Fig. 1, here
i =1,2. The summation of F™ and F* is the total scattering
field generated by whole system, and it is denoted as F**, i.e.,
F*=F*+F™, here F=E,H . The summation of F™ and



R. Z. LIAN: SURFACE FORMULATIONS OF THE EMP-BASED CMT FOR MATERIAL BODIES — Part I1I 2

F* is the total field, and it is denoted as F* , i..,
F* =F™ 4+ F*  Based on the superposition principle [10], the
F* can be viewed as the scattering field due to the excitation
F" +F, here (i-/)=(1,2),(2,1) . To simplify the symbolic
system of this paper, the F™ +F* is denoted as f™, i..,
& F"™+F*, here (F,f)=(E.e),(H,h) . In addition, it is
obvious that f™ = F" —F*.

The physical scattering currents on ¥, include the volume

i

ohmic electric current J° , the volume polarized electric

current J* , and the volume magnetized magnetic current M," .

In addition, the summation of J” and J* is denoted as J,,

ie., J2J"+J" . For the body V,, the surface equivalent
currents on its boundary 9%, are defined as follows [6]-[7]

TE(F) 2 [ (F)xH" ()] . (Fedr) (1)

MYE(F) 2 [E (TL)xi. ()] . (Feor) ()

here 7., and 7,_ are respectively the external and internal
normal directions of 9V ; 7, e extV; 2R’ \clV,, and 7,_e intV,;
the R® is three-dimensional Euclidean space; the symbols cl7;,
intV, , and extV, are respectively the closer, interior, and
exterior of set ¥, . In this paper, it is restricted that ¥, =clV;, and
then ¥, =intV,Ua¥, [11]. In fact, the C can be uniformly
denoted as follows [6]-[7]

CF(F) 2 CX(F) = ~CE(F) . (Feav) ()
here C=J,M .

Based on the method given in [6]-[7], the various fields and
physical scattering currents corresponding to body ¥, can be
expressed as the functions of the surface equivalent currents on
aV, as follows

F;:ca (F) — E:ca (ZSE’M;S‘E)

Fe(TE M) (Feinth,) )
- .7-7;“"(;7,,55,]\7[[55) , (FeextV)
Efi’(?) = ]-;;’j’(jff,ﬂff) (FeintV)) &)
and
rine (— inc (TSE ygSE
f;;—(r) = f;;—( i ’Mf )
= Efi‘(?)—ﬁ““(?) (6.1)
= FE(R)+F(F) . (Feiny)
leiz‘ (?) — ]_—ITL (ZSE’MiSE’ */SE’M;SE)
= FY(7)-F*“(7) (6.2)
= fr(F)-F“(¥), (reintV))
and
Jr(F) = ge(JE.MF) L (Feinth) (7.1)
Jr(F) = gr(JF.MF) . (Feinth) (7.2)

F_;SLK

Fig. 1. Various fields and scattering currents.

jiwp(?) _ \Zvap(leE’M[SE) , (Feintl)) (7.3)

I (F) = MTEIE) L (Feimr) ()
here i=1,2; F=E,H, and correspondingly F =& H; f=e,h,
and correspondingly # =¢,4; to utilize the subscript “-" in
F, f*, and F istoemphasize thatthe £, £, and F™
are the corresponding fields in the interior of V;; to utilize the
subscript “i” in the operators in (4)-(8) is to emphasize that the
mathematical expressions of these operators are different for
the case i=1 and the case i=2 . In addition, it must be
emphasized that the operator 7™ is also dependent on the
body 7, besides the body V; itself, because of the coupling
between two bodies, and this is just the reason why the
arguments of operator Z"™ include both {J*,M*} and
(7,01,

In the above (4)-(8), the operators F*“ and F“ are
essentially the same as the operators (10) and (11) in paper [6];
the operator £ is essentially the same as the operator (12) in
[6]; the operators (7.3) and (8) are essentially the same as the
operators (13.1) and (13.2) in [6]. Then, the specific
mathematical expressions of these operators are not repeated
here. However, it must be clearly emphasized that: although the
operator Z™ in above (6.2) has a similar symbolic
representation to the operator (12) in [6], they are essentially
different from each other, because there doesn’t exist the
coupling between different bodies in [6], whereas there exists
the coupling between different bodies as illustrated in the third
equalities of the above (6.1) and (6.2).

III. BASIC VARIABLES

In [6]-[7], it has been pointed out that the surface equivalent
electric and magnetic currents are not independent, and it is
necessary for Surf-SHM-EMP-CMT to establish the relation
between them. In fact, it is also indispensable for
Surf-MHM-EMP-CMT to establish the relation between J;*
and M , and it is just the main topic of this section.

In the following parts of this section, the surface equivalent
currents are decomposed into some parts at first, to do the
preparation for constructing the basic variables in Sec. 111-C.
Secondly, the mapping from modal space to expansion vector
space is established. Thirdly, the method fo unify variables (i.e.,
to construct basic variables and to express all EM quantities in
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terms of basic variables [7]) for every single body in a
double-body system is provided in expansion vector space. At
last, the method to unify variables for whole double-body
system is given.

A. The decompositions for 9V, and C*

In this subsection, the boundary of every single body is
decomposed into some parts, and then the decompositions for
surface equivalent currents are provided.

1) The decomposition for oV,

Obviously, the 9V, is a closed set
cl(o¥,\aV,) cav;.

If cl(9V,\aV,) = dV;, the set oV, \cl(a¥;\dV,) is constructed
by some surfaces, and it is denoted as S, , i.e.,

in R*, so

S, & v \cl(av;\ar,)

= I, \cl(3,\ V)

&)

and two typical examples are illustrated in the Figs. 2 (d) and 2
(e). The second equality in (9) can be easily proven by using the
language of point set topology [11], and the proof is not
specifically provided here. In addition, it is obvious that
S, cdV, forany i=1,2, so

(V\S,)NS, = @
(¥, \S,)US, = oV,

(10.1)
(10.2)

forany i=1,2.

If cl(oV,\oV,)=09V,, the S, can also be defined as (9), and
S, =@ for this case. Three typical examples are illustrated in
the Figs. 2 (a), 2 (b), and 2 (c).

2) The decomposition for C**

It is easy to prove that clS,, =9V, if and only if S, =0dV,.
This implies that the set 97\ S,, includes some surfaces, if and
only if S,, #dV,. Based on this observation and the (10), the
C* can be decomposed as follows

CH(F) = CGi(A)+ G (7) » (reor) (11)
here C=J,M , and

Cx(F) {5””0(7) gi ZI:")\S”) (12.1)

2 oy | asy 2

In (11)-(12), (i,j)=(1,2),(2,1). In addition, it is obvious that

CY(F) = -G (7) (13)
because of the (3).

In particular, Cy' =C* , when S,=@ ; C)*=C* , when
S, =09V, . In fact, the case S, =9 corresponds to that there

Fig. 2 (a). The ¥, and ¥, don’t contact with each other, i.e., oV, NIV, =D,
and this paper doesn’t focus on this case.

. v, NV,

Fig. 2 (b). The intersection between dV, and 9V, is a point, and this paper
doesn’t focus on this case.

iav nav,

Fig. 2 (c). The intersection between d¥, and dV, is a line, and this paper
doesn’t focus on this case.

S12

Fig. 2 (d). The intersection between oV, and 9V, is a surface, and this case is
specifically studied in this paper.

@/BVZ :

Fig. 2 (e). The body V, is entirely surrounded by body ¥,, and this paper
doesn’t focus on this case.

doesn’t exist any interface between ¥, and 7,, i.e., the set
oV, NaV, only may include some lines or points, as illustrated
in Figs. 2 (a), 2 (b), and 2 (c); the case S, #J corresponds to
that there exist some interfaces between bodies ¥, and V,, as
illustrated in Figs. 2 (d) and 2 (e); the case S,=09V,
corresponds to that the body ¥, is entirely surrounded by body
V., as illustrated in Fig. 2 (e). This paper only focuses on the
case S, #J,dV,,dV, , because the discussions for the cases
S,=9 and S, =9V, can be easily finished as a similar way.

B.  From modal space to expansion vector space

The C; and C," are respectively expanded in terms of the
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G2z

basis function sets {5;“};[ and {5, =—B§Q'}§:1 = as follows

=Cio

C (7) = L af*bfe(F) = B-a% , (Fedv\s,) (14)
&

and

=02

CE () = Sahe () = Bo-at , (Fes,) (1.0
&

T (7) = :ZHEUECU (7F) =B .a%
e

(15.2)

=2

= ;a?z (b5 (F)]= B -a® , (Fes,)
=1

here i=1,2, and C=J,M , and the third equality in (15.2) is
due to (13). In (14)-(15),

B = [B%(F) . b (F) . ., b (F)] e
g = [ a , &, e, | (162)

and
B = [EIC,Z(?) . b (F) o, [;:(;IZ (7)] (17.1)
a = [ a& , & e, % ] (72

and
B¢ = _BC (171')
a% = g% (17.2"

here the superscript “7 ” represents the transpose of matrix.
For the convince of following discussions, the basis function
sets {pS };I and {p;*}_ are defined as follows

=2

(oY 2 (A0 B e BB B B} (8.1)

{l;cz }Z:l a {_E]Cu ’_l;zCn e ’_I;_CL}‘:Z , E]Czo , I;ZC:O Lo, b;“% } (] 82)

here =9 =Z2% +Z% . Then, the following vectors can be
introduced.
BY = [EC'" E‘“Z] (19.1)
aclﬂ
ad = [C“} (19.2)
76
and
B® = [B™ B™]|=[-B" B™] (20.1)
=Cu =Cpp
ECZ = |:ZC2":| = |:ZCZ(>:| (202)

Correspondingly,

CE(7) = Safb0 (7) = B-a , (Fedv) (1)
=

C. Variable unification

The methods to unify variables for a single body have been
carefully discussed in [6] and [7], and the a” and @ can be
related to each other as follows

"‘r

a _ D, >

el

r.a (22)

here (®,¥)=(J,M), if the surface equivalent electric current is
selected as basic variable; (®,¥)=(M,J), if the surface
equivalent magnetic current is selected as basic variable. If the
transformation matrix 7"~" is partitioned according to the
partition ways of the vectors in (19.2) and (20.2), the relation
(22) can be equivalently rewritten as the following portioned

version.
aq’m f‘l’lu —¥ f‘l’lz —¥ aq’m
E\PIZ 7:"‘1’10 ¥ 7:"‘I’|z Y, a(b'z

5‘*’|z f‘blz =¥ T“l’:o —¥p afb,l
E\ym f‘l’lz ¥ f‘l’zu -V E‘Dz“

Based on the (23), the following relation can be derived

(23.1)

(23.2)

E‘{-’ — f(l)a‘{-’ . EKD (24)
here
_7:“‘1)10 =¥ 7:“‘1)12 =¥y 0 1
]:wCI’A)‘P — Z:-vd’m ¥, Z:"‘l’u ->¥ 0
0 Zz"q’lz ¥y 7:"‘1’20 —¥y
o _ 2 (25)
T“Dlo =¥ T“Dlz =¥y 0
— 0 Z:"‘l’lz ->¥p Z:"‘I’zo a2+
0 Zz"q’lz -y 7:"‘1’20 —¥y
and
aq’m a\ym
a® =\|a™ at =|a"™ (26)
a®» AE

IV. OutpUT POWER, COUPLING POWER, AND THEIR MATRIX
ForMmsS

In [6]-[7], some different surface formulations for the output
power of a single body have been established, and several
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typical surface formulations for the output power of a
double-body system are given in this section. In addition, the
surface formulations of the coupling power between the two
bodies in double-body system are also provided here.

A. The surface formulations for the powers of a double-body
system

The input power P™ from incident field to system and the
output power P™ of system are as follows

P = pon —

[0 E), wy(aer), |

i=1,2

{5, + )i, |

i=1,2

27)
2T B, 2w, ]}

(1_)’01«/ + wa«p)

i=1,2

here P™ is the output power of ¥;, and P;™ corresponds to
the coupling between ¥, and V,, and [7]

i

= ()T E), 0P,
_ m:;wﬁﬂm ‘; <h;"‘,MSE>VJ (28)
ﬂl:’o ; (75, + ; (e ) }
P = —[(1/2)@@ B, (1/2)<gm,m”
” S ><HM>}

here w4 and g, are respectively the permeability and complex
permittivity of body V,, and Ay, =u, —pu,, and Ae, =¢, —¢,;
Ag,. 2(Ag,) ; the superscript “# ” represents the complex
conjugate of relevant quantity; the inner product is defined as
<f,8>2],f -gdQ. The derivation for the second equality
of (29) is based on the Maxwell’s equations of F)* and F*',
and its detailed procedure will not be given here, because of its
simplicity.

Based on the conclusions given in [5]-[7], the various powers
related to the formulation (27) can be summarized in the (30).
The first line in (30) corresponds to the second equality in (27),
and they are based on the first equality of the formulation (12)
in paper [5]; the second line in (30) corresponds to the third
equality in (27), and they are based on the second equality of

the formulation (12) in paper [5]; the third line in (30)
corresponds to the fourth equality in (27), and they are based on
the second equality of the formulation (6.1) in this paper.

In (30), the specific mathematical expressions of the powers
jEfU[.V(’aCI,mHI s PiIOI,IOSS s and ESL‘LI,WIC are as fOIIOWS [5]_[7]

ijz,rem,mm _ (1/2)<jp Emz> (1/2)<I—7W’Mivm>,,’
1 tot tot 1 Totot Totot (311)

= ﬂwb(fl JAuH > Z<A5E E >V}

le’lm — 12 j.vo’Emz

‘ /2 7>V' (31.2)
_ (1/2)< Elol’Elol>‘

pe e o), s
— Rsm.mt/ +_] Psm react, vac

here the “; ”
unity, and

appearing in (31.1) and (31.3) is the imaginary

P[.rca. rad dg

Ly (x|

1/ Gsa ,, s
2w|:Z<Hi > Mo H,; >Rx

(32.1)

Psm. react,vac _

- i(goﬁ““,lff"“ )R‘} (32.2)

The powers P™~" | P~" and P*~" are respectively the

powers done by F™ , F“ , and F*“ on ¥, , and their
mathematical expressions are as follows

Pim‘AV, _ (1/2)<j[vup,Einc>V + (1/2)<ﬁ[ﬂc’Mivm>V (331)
pe-ti = (1/2)<jivop,Emr>V + (1/2)<Hm’7]\7[ivm>y (332)
P:mHV, — (1/2)<‘7‘vop,Esm>V + (1/2)<Iflsca’Mlvm>V (33'3)

The powers P*“" and P are as follows
P:va,vac — P:m,md + jP:fa.reacl,vac (34)
Pcaup — Pcaup,rad + choxzp,react,vac (35)

here
sea, _ 1 Fsea s, (TFsea\ | T

peet = E@SN[E x(H )]~ds (36.1)

peas react, vac _

2w|:i<ﬁm’ﬂoﬁw>u§z _ %<€0Esca’gsca>ml j‘ (362)

and

pine=

—V)

pine

Pinp — Poul — j})llol,rearl.mat + 1)]101,1055 + E:ca,\m‘

plo= _p

+ })choup + 1)]L2'uup + })Zscu,mc +

ca—H

10t , loss - plot, react, mat
LS 6

_pea—s ploi=n

- plot, react, mat 1ot loss sca, vac
IR + B + B

coup coup sca, vac tot, loss . plot, react, mat
+ 5"+ B+ B + B + J B

(30

- plot, react, mat ot loss sca, vac
J R + B + B

_ pseaV _ psea.vac

+ chluup + Réz‘oup + f;zsm.vac + Pzzol,loss + / Pztot,react.mat

out
it

peow pout
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prow. rad

= %#SN[E;MX(HIMI)*+E[xca><(1f1;ca)*:|.d§ (371)

eact, vac 1 7 sca r7sca 1 Isca  prsca
peoup.re 1, = 2[0|:2<H‘ 7#0Hj >R‘ _Z<£0E' 7Ej >Rx:|
1 — —
— Z<€0Ej5_m , E‘sm >R<3 :|

| (37.2)
+2w{Z<Hj‘“ o H )RJ

B. The matrix forms for the powers of a double-body system:
The relation (24) is not utilized.

Inserting the (4)-(8) and (21) into the (28)-(29), the 2™ and
P can be written as the following matrix forms.

=

X
ol ol

})ioul — .a (38)

@ (39)

]|

coup  _
By =

]|

and then the (27) can be written as the following matrix form

Pinp — Pout — 5H~13-E (40)
here
P =R+P+P,+P (41)
and
EJ
a = 42
] e

To derive the matrices P, and P, based on the first
equality in (28) 3 3

If the first equality in (28) is utilized, the matrices P and P,
are as follows

I::;Jme ]:)lfwflz O }:)]JIO’MIU ]:)IJIUMIZ 0
I_:)ljlz/m EJ\ZJIZ 0 }:)]leMm ﬁl'/\lez 0
= 0 0 0 0 0 0
R =12 - - - (43.1)
])le'/m I_)lejlz 0 PleMlu I_)leMlz 0
f:TM\leo EMuA 0 EMlem EMIZ’MIZ 0
|0 0 0 0 0 0]
[0 0 0 0 0 0 ]
0 f:)zjlz-/wz [:)zjlzjn 0 f:)zjle\ ﬁzjle 0
— 0 ;‘IZO‘IIZ ;Jmfm 0 ;JZOMII ;JzoM 0
B = 2 (43.2)
0 0 0 0 0 0
0 ;Man f:)lezfzo 0 é”l M, f:)lez My
_0 }:)Mm./,z EMZOJ 0 () }:)ZMzon I:)MzuMzo

here the partition ways of ;1 and é are based on the partition
ways of (26) and (42), and

PO = [ p ] (44.1)
PO = [pa . (44.2)
Ec{{cﬂ _ [pﬁ?.’itd'o Jsfﬁxsfﬂv (44.3)
PO = [p L (44.4)
here
‘CCO — 1/2 jwp CO e qu bC
P = e >>M s
+(1/2) <h (65 ), M (BS )>M
pcoc, — |:1/2 TP (0 ’emc (,Z
8 (1/2)(7 (5" (7 . 452)
+2) (55 ). M (55)) |
P = r 027 (6 (), 453)
+0/2) (o (55 ) M (), |
P = O e ), s
e (B (B,
In (44)-(45), i=1,2 ; C,C"=J,M ; y,=1, and p,=-1;

777 (B2*)£ 3,7 (B,0)and 77 (B )£ 7,7 (0.5 and the
other operators can be similarly explained.

To derive the matrices P and P, based on the second
equality in (28)
_If the second equality in (28) is utilized, the matrices E and
P, are as follows

= Ag* = =
P - ”[P +Eop, ]
Ho&y — HiE, H; (46)
AL =, =
p—eoh [‘g‘) Bl +R,HMj
Eolly = E i \ &,
here i=1,2. The above matrices :,,E and P P, are as follows
E;J}%Jm E;J}%Jn 0 ﬁ];f}zj‘/’m E;J}%Mu 0
I_)I;J}z:lm I_)l;/}z:/lz 0 I‘)I;{}ZEMN E;{}EMIZ 0
0 0 0 0 0 0
0 0 0 0 0 0
L0 0 0 0 0 0
0 0 0 0 0 0
0 f’z{IJZJ]Z F)Z{}:EJZO 0 f)szJzEMl ﬁJano
}:)ZJE _ 0 P%{_Z/%JIZ })2‘;/;%‘/20 0 PZJ}?EMI PQJJEMZD (472)
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
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})2 HM

ll]

Jli
})1 HM

JIZMII
R;HM

PMloM\z
1,HM

MIZMI
})IHM

0

0
:‘IIZMIZ
f)Z HM
DMy
1)2 HM

0

:Mlelz
B

=Ci0 = Mio

x=Mio

=60 =2

=Cl2 =M

0
0
0
0
0
0

0

;JmMm
2;HM

DM
})Z;HM

0

I:)Mlezo
2;HM

DMy
f)Z sHM

el (b ))aV
e (b )>OV
el (b))
e (b ))BV:

(48.1)

(48.2)

(49.1)
(49.2)
(49.3)
(49.4)

(50.1)
(50.2)
(50.3)
(50.4)

(51.1)
(51.2)
(51.3)
(51.4)

(52.1)
(52.2)
(52.3)
(52.4)

In (49)-(52), i=12; C'=J,M .

To derive the matrix I:’ﬁ based on the first equality in

9) _
If the first equality in (29) is utilized, the matrix P, in (39) is
as follows
[ 0 ;ﬁfmfu }:)j“/m'/zu 0 ]:)j{liz }:)j'i/mMzu i
;',l"/]ﬂ ;'/]Z'III ;']\2‘,20 ;']\Zﬂ/llﬂ ﬁ'IIZMIZ P%leMZﬂ
Ji Jji Ji Ji Ji Ji
}:) f)ﬁ{m/w ﬁj{zan 0 F)j{:oMlo ﬁj‘{m’wlz 0 (53)
J 0 ]:)j?/fm‘/lz Igj?’[m'/m 0 }:)j?/melz }:)jA‘MmMzu
:Mw/m :M12']|2 :MIZJZO :Mlem :M12M|: :Mlezn
Bt Bt B By By B
PMuho  pMudi DMuMg  pMaMy,
B B0 B B o |
The submatrices in (53) are as follows
BCCh _ [ ChoCh
Pji - |:p/l & :| =C10 4= Cia (541)
:C;Z,C;O — Cl:CIO
Pfi - |:pjr;§§ :|Eq"2><sfl’“ (542)
and
pCacs — [ pCudh
Pji - [pj, & :| =Ci0 = Ci2 (54'3)
pCici — e
P = [ p ] (54.4)
and
pCaCe — [ G
})ﬁ - [p]’ & :|—C|z><3r12 (54'5)
and
DIy _ Ji My
F}i - |:pjr & ]_7, 25=M2 (54'6)
PMuJy _ MypJy,
Ei - |:p/’ & :.EMIZ xE12 (54'7)
and
PG — [ pChCh
Ei - |:p/’ & :.—Q'nxzﬁ“z\v (54'8)
pCiCio — [ pCiCh
g = |:pji;§§ ]Eq’u =i (54.9)
In (54.1) and (54.2),
P = e, 55
P = (7 (B ) e () (552)
In (54.3) and (54.4),
Pﬁ 5?2 = 77 (1/2)<‘_7l""1’ (l;'f% )’gjrf (EZCG )>inll/ (553)
PG = _71(1/2)<H;';‘" (B4, M (B )>W (55.4)
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In (54.5),

rig = g (B)£ (R8),,

_ _ (55.5)
(2 (m (B ). M7 (B52),,

In (54.6) and (54.7),
plke = (1/2)<J,»"“”(55"* )& (b2 )>M (55.6)
(Y2 (R (B )M (B))
pi\:{&{'z = (1/2)<\7,’mp (bingz ),g/\f‘:’ (55'/‘2 )>ian, (55 7)
() (p (B2 ) M (B)
In (54.8) and (54.9),
PO = _[(gj (1/2)<.7]”"”(1;¢C"° ) Exct (b5 )>mm (55.8)
+8, (12)(H (B ). M (5 )>Wj
piig = {8,017 (B ).z (54)) (559

8, (1/2) (M2 (b ), M7 (5 )>WJ

In the above (53)-(55), (/.i)=(2.1),(1,2); C,C"=J,M , and
C=J,M; &, is the Kronecker delta symbol.

mn

To derive the matrix P, based on the second equality in
(29) )

If the second equality in (29) is utilized, the matrix P, in (39)
is as follows

<ol

HAE, 3 H 5
i = [P,‘i;.]f"’iP,‘fHMJ

& — UE.
luO 0 lur ic (56)
v T
Ely = E i\ & '
The above matrices IZ?WE and :ji;HM are as follows
0 Bl B 0 Bl B
0 Bl Bie 0 BIE P
EI;JE =0 0 0 0 0 0 (57.1)
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0 |
[0 0 0 0 0 0
Ry Pam® 0 Ry Ry 0
B, = | B 0 B B 0 (572
' 0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0]

and

in which

and

here

and

000 0 0 0
0.0 0 Bl Bl 0
5 _ |00 0 Ay B 0
2HM T
’ 000 0 0 0
0.0 0 Pi" Py 0
0 00 B RN of
0.0 0 0 R B
000 0 Ry Rl
Ig 00 0O 0 0
120 = = =
; MM, MM,
000 0 ARj" RZ;‘IYIMJ
0.0 0 0 R Rl
10 0 0 0 0 0
BJi0Clo J30C
Pji;;E ‘= |:pjr;OJE;O§§ JE’L“XEC’/“
BIoCh JioCh
f)ji:SEl2 - [pjr;oJEI;‘f{ }E-llnxgﬁ'z
:J12C70 — JIEC/,O
L [pjr;JEf{ L’w G0
DInCh TGl
P = [p i :|E./‘2 =€
DChoMyy CioM,
Pﬁ;;;MO - [pji;ilM?éf]EF}osz,n
DCHM,y ChM,
P_/:‘;‘I:IA/[0 - |:pjil;ZHMn;§{:'EﬁzXE‘4m
DChMy, CioM,,
f)ji:lgMu - [pji;ilﬁzéf]at;oxzm,z
DChM,, ChM,
Pji;‘fz'/Ml. = [pj![-HA/"szf :.551'2 xEM12
JoCo 7 5E
ik = = 2B g (57))
JoCh B ca ((p G
it = ~n (2B €3 (05))
J12C; _ = 3G
ik = —n (B g2 (55))
J,C. 77, ca (7. Cl,
Pk = (2)(B & (b))

CloM,g
Pjisnvee

(“I,2 M, i0

CjoMy,

P = — 7V (1/2)

C|,ZM12
Pjimae =

<
Pilmise = ~ 7, (/2)(H2

<

<

(58.1)

(58.2)

(59.1)
(59.2)
(59.3)
(59.4)

(60.1)
(60.2)
(60.3)
(60.4)

(61.1)
(61.2)
(61.3)

(61.4)

(62.1)
(62.2)
(62.3)

(62.4)
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In (56)-(62), (j,i)=(2.1),(1,2
C. The matrix forms for the powers of a double-body system:
The relation (24) is utilized.

Inserting the (24) and (42) into (38)-(40), the (38)-(40) can
be rewritten as follows

); C'=J,M .

o @) B &
B - () <64>
Pinp/um — (aq’ )H .]gtp -a® (65)

here ® =, if the surface equivalent electric current is selected
as basic variable; ® = M , if the surface equivalent magnetic
current is selected as basic variable. In (63)-(65),

[ ] (66.1)
TJ~>M

&1
Il
1

el
7o
=
| I
x
ol
ll

(66.2)

for the case ® =M . In (66), P ,,PH,P and correspondingly

P“’ —P,."’, Pj“’, P“’ the 7 is identity matrix.

The matrix form for the coupling power P is as follows

. —_o\H = . —
peow = (adl) _Pcuup,fb .aCD

(67)
here

:coup;<b _ Db D
P - 1)21 + 12

(68)

V. COUPLING POWER CHARACTERISTIC MODE (COUPCM) SET

As illustrated in [4]-[9], the EMP-CMT is an object-oriented
modal theory, and the power-based CM sets being similar to the
ones discussed in [4]-[9] are not repeated here. However, the
CM set focusing on the coupling power between two bodies is
specifically researched in this section, because the coupling
phenomenon between the elements in a whole system has not
been analyzed in [4]-[9].

A. The CM set which can orthogonalize the active part of

power P (the time-average of coupling power)

If the matrix P is decomposed as follows

oup;® | : peoup;®
= prow® 4 j peow
A a

ﬁcnup;d)

(69)

it can be concluded that

H

Pcuup,act — Re{Pcoup} - (all))

m{P} = (a*)" - P

w® g (70.1)

"gu il

peowr react __

w® GO (70.2)

here the P and P“" " are respectively the active and
reactive parts of P« . In (69),

% [ Beopio | ( ;m,,@)’*}

zij I:I:)(.oup;fb _ (Iﬁmp;cb )H :|

The “ j ” appearing in (69) and (71.2) is the imaginary unity.
Because the matrix P“#** is Hermitian, there exists an
independent and complete expansion vector set {z;"***}._, such
£=1
that [12]

:coup;d) —
P =

(71.1)

Igcox«p;d) _

(71.2)

—coup;® H ) :coup;(b L eoup;® coup, act
(@) P gt = Bt oy (72)

for any &,¢=1,2,---,2%, here E* =2® +E®™ +E® |, If the zero
characteristic value exists, and """ =0 for &=n,n,, -, ny,
all modes in the space spanned by set {a;"" @ a0 )
have zero active coupling powers.

B. The CM set which can orthogonalize the active part of
power P (the time-average of one-way coupling power)

Sometimes, a one-way decoupling between ¥, and V, is
more desired than the complete decoupling discussed in above
subsection. Just like the decomposition for matrix P“**, the
matrix Igj,j“’“'”“’ can be similarly decomposed as follows

Byt = Brt 4 j Bt (73)
here
coup; P 1 :cox«p'd) :foup'dl a
I R (74.1)
Pwup o 1 ﬁcoup;d) _ P?mup:d) a (74 2)
Jis= - Z Ji Ji .
Then,
prowsact _ RG{P;OW} — (aq))ﬁ P;ofpd) ad) (751)
peoups react Im{P;oup} — ((TD )H ‘é?j;fp@ ~E¢ (752)

Because the matrix P"”""" is Hermitian, there ex1sts an
independent and complete expansion vector set {a”‘"’“"} ,»such
that [12]

—coup;® coup;®  —coup; P coup, act
(age)" - Pre age® = s, (76)

Jird

for any &, =1,2,---,E®. If the zero characteristic value exists,
and P =0 for {=n,ny,,n,, all modes in the space
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Fcoup;® = coup; P = coup; @

spanned by set {&aQr®.a> ., -, @0 ®} have zero one-way

active coupling powers, i.e., their time-average powers done by
modal scattering field F? on modal scattering currents

{32, M} are zeros.

VI. CONCLUSIONS

As a supplement to the previous Surf-SHM-EMP-CMT
established in the Parts I and II, the Surf-MHM-EMP-CMT is
provided in this Part III. Some surface formulations for the
coupling powers among different bodies are provided, and then
a new kind of power-based CM set, CoupCM set, is developed
for depicting the inherent coupling character among different
bodies. It is found out that the zero space of the power quadratic
matrix corresponding to the active part of coupling power is
valuable for the decoupling applications.
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