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Abstract—As a supplement to the previous Parts I and II, the 
Surface formulations of the ElectroMagnetic-Power-based 
Characteristic Mode Theory for the system constructed by 
Multiple Homogeneous Material bodies (Surf-MHM-EMP-CMT) 
are established in this Part III. The coupling phenomenon among 
different bodies is specifically studied, and then a new kind of 
power-based Characteristic Mode (CM) set, Coupling power CM 
(CoupCM) set, is developed for characterizing the coupling 
character. 
 
 

Index Terms—Characteristic Mode (CM), Electromagnetic 
Power, Interaction, Material Body, Multi-body Coupling. 
  
 

I. INTRODUCTION 
HE MoM-based Characteristic Mode Theory (CMT) was 
established by R. F. Harrington et al. in the 1970s [1]-[3], 

such that the inherent ElectroMagnetic (EM) character of an 
object, especially the open object, can be efficiently extracted. 
Recently, the physically appropriate ideas in the MoM-based 
CMT are liberated from the MoM framework [4]-[5], and an 
ElectroMagnetic-Power-based CMT (EMP-CMT) is built 
[4]-[9]. 

It has been clearly illustrated in [4]-[9] that the EMP-CMT is 
an object-oriented modal theory, and its object-oriented feature 
is mainly demonstrated in the following two aspects. 

1) The power-based Characteristic Mode (CM) sets for an 
EM system can be constructed by focusing on different 
objective EM powers. For example, the Radiated power CM 
(RaCM) set [4]-[5], the Stored power CM (StoCM) set [4], and 
the Output power CM (OutCM) set [4]-[9], etc. can be 
respectively constructed by optimizing the system radiated 
power, by optimizing the system reactively stored power, and 
by orthogonalizing the system output power, etc. 

2) The objective EM system is regarded as a whole object, 
and the other EM sources (such as the impressed source and the 
source generated by EM environment) are uniformly treated as 
an external source. Then, it was proven in [4]-[5] that the 
various power-based CM sets are the inherent characters of the 
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objective system, and they are completely independent of the 
external source. 

The papers [6] and [7] mainly focus on the system 
constructed by a single body. The EM system considered in 
[4]-[5] and [8]-[9] can be constructed by multiple bodies 
(simply called as multi-body system), and the multi-body 
system was treated as a whole object in the [4]-[5] and [8]-[9], 
so the coupling effect among different bodies was not 
specifically analyzed in the [4]-[5] and [8]-[9]. 

Taking the system constructed by multiple homogeneous 
material bodies as a typical example, the coupling effect among 
different bodies is studied in this paper by employing the 
surface formulations developed in [6] and [7], and then a new 
power-based CM set, the Coupling power CM (CoupCM) set, 
is constructed for characterizing the coupling character. If the 
Surface formulations of the EMP-CMT for a Single 
Homogeneous Material body [6]-[7] can be simply denoted as 
Surf-SHM-EMP-CMT, the Surface formulations of the 
EMP-CMT for Multiple Homogeneous Material bodies 
developed in this paper can be similarly denoted as 
Surf-MHM-EMP-CMT, and the Surf-SHM-EMP-CMT and 
Surf-MHM-EMP-CMT are collectively referred to as the 
Surface formulations of the EMP-CMT for Material bodies 
(Surf-Mat-EMP-CMT). 

In what follows, the j te ω  convention is used throughout, and 
the EM systems constructed by double homogeneous material 
bodies are focused on, and the systems constructed by any 
number of homogeneous material bodies can be similarly 
discussed. In addition, the discussions in this paper can also be 
easily generalized to the systems constructed by multiple metal 
bodies, the systems constructed by multiple inhomogeneous 
material bodies, and the metal-material combined systems. 
 
 

II. SOURCE-FIELD RELATIONSHIPS 
For an objective double-body system, the regions occupied 

by two bodies are respectively denoted as 1V  and 2V , and the 
region occupied by whole system is denoted as 1 2V V V=  . 
When an external field incF  incidents on the system, the 
scattering sources will be excited on every iV , and then the 
scattering field sca

iF  is generated as illustrated in Fig. 1, here 
1,2i = . The summation of 1

scaF  and 2
scaF  is the total scattering 

field generated by whole system, and it is denoted as scaF , i.e., 
1 2

sca sca scaF F F= + , here ,F E H= . The summation of incF  and  
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scaF  is the total field, and it is denoted as totF , i.e., 
tot inc scaF F F= + . Based on the superposition principle [10], the 
sca

iF  can be viewed as the scattering field due to the excitation 
inc sca

jF F+ , here ( ) ( ) ( ), 1,2 , 2,1i j = . To simplify the symbolic 
system of this paper, the inc sca

jF F+  is denoted as inc
if , i.e., 

inc inc sca
i jf F F+ , here ( ) ( ) ( ), , , ,F f E e H h= . In addition, it is 

obvious that inc tot sca
i if F F= − .  

The physical scattering currents on iV  include the volume 
ohmic electric current vo

iJ , the volume polarized electric 
current vp

iJ , and the volume magnetized magnetic current vm
iM . 

In addition, the summation of vo
iJ  and vp

iJ  is denoted as vop
iJ , 

i.e., vop vo vp
i i iJ J J+ . For the body iV , the surface equivalent 

currents on its boundary iV∂  are defined as follows [6]-[7] 
 

 ( ) ( ) ( ) ( )
;

; ; ;ˆ ,
i

SE tot
i i i ir r

J r n r H r r V
±

± ± ± →
 × ∈∂   (1) 

 ( ) ( ) ( ) ( )
;

; ; ;ˆ ,
i

SE tot
i i i ir r

M r E r n r r V
±

± ± ± →
 × ∈∂   (2) 

 
here ;ˆin +  and ;ˆin −  are respectively the external and internal 
normal directions of iV∂ ; 3

; ext \ cli i ir V V+ ∈   , and ; inti ir V− ∈ ; 
the 3  is three-dimensional Euclidean space; the symbols cl iV , 
int iV , and ext iV  are respectively the closer, interior, and 
exterior of set iV . In this paper, it is restricted that cli iV V= , and 
then inti i iV V V= ∂  [11]. In fact, the ;

SE
iC ±  can be uniformly 

denoted as follows [6]-[7] 
 
 ( ) ( ) ( ) ( ); ; ,SE SE SE

i i i iC r C r C r r V− += − ∈∂  (3) 

 
here ,C J M= . 

Based on the method given in [6]-[7], the various fields and 
physical scattering currents corresponding to body iV  can be 
expressed as the functions of the surface equivalent currents on 

iV∂  as follows 
 

 

( ) ( )
( ) ( )
( ) ( )

;

;

,

, , int

, , ext

sca sca SE SE
i i i i

sca SE SE
i i i i

sca SE SE
i i i i

F r J M

J M r V

J M r V

−

+

=

 ∈= 
∈







 (4) 

 ( ) ( ) ( ); ; , , inttot tot SE SE
i i i i iF r J M r V− −= ∈  (5) 

 
and 
 

 

( ) ( )
( ) ( )
( ) ( ) ( )

; ;

;

;

,

, int

inc inc SE SE
i i i i

tot sca
i i

inc sca
i j i

f r J M

F r F r

F r F r r V

− −

−

−

=

= −

= + ∈

f

 (6.1) 

 

( ) ( )
( ) ( )
( ) ( ) ( )

; ;

;

;

, , ,

, int

inc inc SE SE SE SE
i i i i j j

tot sca
i

inc sca
i j i

F r J M J M

F r F r

f r F r r V

− −

−

−

=

= −

= − ∈



 (6.2) 

 
and 
 
 ( ) ( ) ( ), , intvo vo SE SE

i i i i iJ r J M r V= ∈  (7.1) 

 ( ) ( ) ( ), , intvp vp SE SE
i i i i iJ r J M r V= ∈  (7.2) 

 ( ) ( ) ( ), , intvop vop SE SE
i i i i iJ r J M r V= ∈  (7.3) 

 ( ) ( ) ( ), , intvm vm SE SE
i i i i iM r J M r V= ∈  (8) 

 
here 1,2i = ; ,F E H= , and correspondingly ,=   ; ,f e h= , 
and correspondingly ,=f e h ; to utilize the subscript “ − ” in 

;
tot

iF − , ;
inc

if − , and ;
inc

iF −  is to emphasize that the ;
tot

iF − , ;
inc

if − , and ;
inc

iF −  
are the corresponding fields in the interior of iV ; to utilize the 
subscript “ i ” in the operators in (4)-(8) is to emphasize that the 
mathematical expressions of these operators are different for 
the case 1i =  and the case 2i = . In addition, it must be 
emphasized that the operator ;

inc
i −  is also dependent on the 

body jV  besides the body iV  itself, because of the coupling 
between two bodies, and this is just the reason why the 
arguments of operator ;

inc
i −  include both { },SE SE

i iJ M  and 
{ },SE SE

j jJ M . 
In the above (4)-(8), the operators sca

i  and ;
tot

i −  are 
essentially the same as the operators (10) and (11) in paper [6]; 
the operator ;

inc
i −f  is essentially the same as the operator (12) in 

[6]; the operators (7.3) and (8) are essentially the same as the 
operators (13.1) and (13.2) in [6]. Then, the specific 
mathematical expressions of these operators are not repeated 
here. However, it must be clearly emphasized that: although the 
operator ;

inc
i −  in above (6.2) has a similar symbolic 

representation to the operator (12) in [6], they are essentially 
different from each other, because there doesn’t exist the 
coupling between different bodies in [6], whereas there exists 
the coupling between different bodies as illustrated in the third 
equalities of the above (6.1) and (6.2). 
 
 

III. BASIC VARIABLES 

In [6]-[7], it has been pointed out that the surface equivalent 
electric and magnetic currents are not independent, and it is 
necessary for Surf-SHM-EMP-CMT to establish the relation 
between them. In fact, it is also indispensable for 
Surf-MHM-EMP-CMT to establish the relation between SE

iJ  
and SE

iM , and it is just the main topic of this section. 
In the following parts of this section, the surface equivalent 

currents are decomposed into some parts at first, to do the 
preparation for constructing the basic variables in Sec. III-C. 
Secondly, the mapping from modal space to expansion vector 
space is established. Thirdly, the method to unify variables (i.e., 
to construct basic variables and to express all EM quantities in 

vmM1
vopJ1

1V

2V
vmM2

vopJ2

incF

1
scaF

2
scaF

  
Fig. 1. Various fields and scattering currents. 
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terms of basic variables [7]) for every single body in a 
double-body system is provided in expansion vector space. At 
last, the method to unify variables for whole double-body 
system is given. 

A. The decompositions for iV∂  and SE
iC  

In this subsection, the boundary of every single body is 
decomposed into some parts, and then the decompositions for 
surface equivalent currents are provided. 

1) The decomposition for ∂ iV  
Obviously, the 1V∂  is a closed set in 3 , so 
( )1 2 1cl \V V V∂ ∂ ⊆ ∂ . 
If ( )1 2 1cl \V V V∂ ∂ ≠ ∂ , the set ( )1 1 2\ cl \V V V∂ ∂ ∂  is constructed 

by some surfaces, and it is denoted as 12S , i.e., 
 

 
( )
( )

12 1 1 2

2 2 1

\ cl \

\ cl \

S V V V

V V V

∂ ∂ ∂

= ∂ ∂ ∂


 (9) 

 
and two typical examples are illustrated in the Figs. 2 (d) and 2 
(e). The second equality in (9) can be easily proven by using the 
language of point set topology [11], and the proof is not 
specifically provided here. In addition, it is obvious that 

12 iS V⊆ ∂  for any 1,2i = , so 
 
 ( )12 12\iV S S∂ = ∅  (10.1) 

 ( )12 12\i iV S S V∂ = ∂  (10.2) 

 
for any 1,2i = . 

If ( )1 2 1cl \V V V∂ ∂ = ∂ , the 12S  can also be defined as (9), and 

12S = ∅  for this case. Three typical examples are illustrated in 
the Figs. 2 (a), 2 (b), and 2 (c).  

2) The decomposition for SE
iC  

It is easy to prove that 12cl iS V= ∂ , if and only if 12 iS V= ∂ . 
This implies that the set 12\iV S∂  includes some surfaces, if and 
only if 12 iS V≠ ∂ . Based on this observation and the (10), the 

SE
iC  can be decomposed as follows 

 
 ( ) ( ) ( ) ( )0 ,SE SE SE

i i ij iC r C r C r r V= + ∈ ∂  (11) 

 
here ,C J M= , and 
 

 ( ) ( ) ( )
( )

12
0

12

, \

0 ,

SE
i iSE

i

C r r V S
C r

r S

 ∈∂
 ∈

  (12.1) 

 ( ) ( )
( ) ( )

12

12

0 , \

,
iSE

ij SE
i

r V S
C r

C r r S

 ∈∂
 ∈

  (12.2) 

 
In (11)-(12), ( ) ( ) ( ), 1,2 , 2,1i j = . In addition, it is obvious that 
 
 ( ) ( )12 21

SE SEC r C r= −  (13) 

 
because of the (3). 

In particular, 0
SE SE
i iC C= , when 12S = ∅ ; SE SE

ij iC C= , when 

12 iS V= ∂ . In fact, the case 12S = ∅  corresponds to that there 

doesn’t exist any interface between 1V  and 2V , i.e., the set 

1 2V V∂ ∂  only may include some lines or points, as illustrated 
in Figs. 2 (a), 2 (b), and 2 (c); the case 12S ≠ ∅  corresponds to 
that there exist some interfaces between bodies 1V  and 2V , as 
illustrated in Figs. 2 (d) and 2 (e); the case 12 iS V= ∂  
corresponds to that the body iV  is entirely surrounded by body 

jV , as illustrated in Fig. 2 (e). This paper only focuses on the 
case 12 1 2, ,S V V≠ ∅ ∂ ∂ , because the discussions for the cases 

12S = ∅  and 12 iS V= ∂  can be easily finished as a similar way.  

B. From modal space to expansion vector space 

The 0
SE
iC  and SE

ijC  are respectively expanded in terms of the 

1V 2V

 
Fig. 2 (a). The 1V  and 2V  don’t contact with each other, i.e., 1 2V V∂ ∂ = ∅ ,
and this paper doesn’t focus on this case. 
 

1V
2V

1 2V V∂ ∂
 

Fig. 2 (b). The intersection between 1V∂  and 2V∂  is a point, and this paper
doesn’t focus on this case. 
 

1V
2V

1 2V V∂ ∂
 

Fig. 2 (c). The intersection between 1V∂  and 2V∂  is a line, and this paper
doesn’t focus on this case. 
 

1V 2V

12S
 

Fig. 2 (d). The intersection between 1V∂  and 2V∂  is a surface, and this case is
specifically studied in this paper. 
 

1V

2 12V S∂ =

 
Fig. 2 (e). The body 2V  is entirely surrounded by body 1V , and this paper
doesn’t focus on this case. 
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basis function sets { } 0
0

1

Ci
iCbξ ξ

Ξ

=
 and { } 12 21

12 21

1

C C
C Cb bξ ξ ξ

Ξ =Ξ

=
= −  as follows 

 

 ( ) ( ) ( )
0

0 0 0 0
0 12

1

, \
Ci

i i i iC C C CSE
i iC r a b r B a r V Sξ ξ

ξ

Ξ

=

= = ⋅ ∈∂  (14) 

 
and 
 

 ( ) ( ) ( )
12

12 12 12 12
12 12

1

,
C

C C C CSEC r a b r B a r Sξ ξ
ξ

Ξ

=

= = ⋅ ∈  (15.1) 

 
( ) ( )

( ) ( )

21

21 21 21 21

12

12 12 21 12

21
1

12
1

,

C

C

C C C CSE

C C C C

C r a b r B a

a b r B a r S

ξ ξ
ξ

ξ ξ
ξ

Ξ

=

Ξ

=

= = ⋅

 = − = ⋅ ∈ 




 (15.2) 

 
here 1,2i = , and ,C J M= , and the third equality in (15.2) is 
due to (13). In (14)-(15), 
 
 ( ) ( ) ( )0 0 0 0

01 2, , ,i i i i
Ci

C C C CB b r b r b r
Ξ

 =    (16.1) 

 0 0 0 0
01 2, , ,i i i i

Ci

TC C C Ca a a a
Ξ

 =    (16.2) 

 
and 
 
 ( ) ( ) ( )12 12 12 12

121 2, , , C

C C C CB b r b r b r
Ξ

 =    (17.1) 

 12 12 12 12
121 2, , , C

TC C C Ca a a a
Ξ

 =    (17.2) 

 
and 
 
 21 12C CB B= −  (17.1') 

 21 12C Ca a=  (17.2') 
 
here the superscript “ T ” represents the transpose of matrix. 

For the convince of following discussions, the basis function 
sets { } 1

1

1

C
Cbξ ξ

Ξ

=
 and { } 2

2

1

C
Cbξ ξ

Ξ

=
 are defined as follows 

 

 { } { }1

10 10 101 12 12 12
10 121 2 1 21

, , , , , , ,
C

C C

C C CC C C Cb b b b b b bξ ξ

Ξ

ΞΞ=
    (18.1) 

 { } { }2

20 20 202 12 12 12
12 201 2 1 21

, , , , , , ,
C

C C

C C CC C C Cb b b b b b bξ ξ

Ξ

Ξ Ξ=
− − −    (18.2) 

 
here 0 12i iC C CΞ = Ξ + Ξ . Then, the following vectors can be 
introduced. 
 
 101 12CC CB B B =    (19.1) 

 
10

1

12

C
C

C

a
a

a

 
=  

 
 (19.2) 

 
and 
 
 20 202 21 12C CC C CB B B B B   = = −     (20.1) 

 
21 12

2

20 20

C C
C

C C

a a
a

a a

   
= =   

   
 (20.2) 

Correspondingly, 
 

 ( ) ( ) ( )
1

,
Ci

i i i iC C C CSE
i iC r a b r B a r Vξ ξ

ξ

Ξ

=

= = ⋅ ∈ ∂  (21) 

 

C. Variable unification 

The methods to unify variables for a single body have been 
carefully discussed in [6] and [7], and the iJa  and iMa  can be 
related to each other as follows 
 

 i i i ia T aΨ Φ →Ψ Φ= ⋅  (22) 

 
here ( ) ( ), ,J MΦ Ψ = , if the surface equivalent electric current is 
selected as basic variable; ( ) ( ), ,M JΦ Ψ = , if the surface 
equivalent magnetic current is selected as basic variable. If the 
transformation matrix i iT Φ →Ψ  is partitioned according to the 
partition ways of the vectors in (19.2) and (20.2), the relation 
(22) can be equivalently rewritten as the following portioned 
version. 
 

 
10 10 12 1010 10

12 12
10 12 12 12

T Ta a

a aT T

Φ →Ψ Φ →ΨΨ Φ

Ψ ΦΦ →Ψ Φ →Ψ

    
 = ⋅   
     

 (23.1) 

 
20 1212 1212 12

20 20
12 20 20 20

T Ta a

a aT T

Φ →ΨΦ →ΨΨ Φ

Ψ ΦΦ →Ψ Φ →Ψ

    
 = ⋅   
     

 (23.2) 

 
Based on the (23), the following relation can be derived 

 

 a T aΨ Φ→Ψ Φ= ⋅  (24) 

 
here 
 

 

10 10 12 10

10 12 12 12

12 20 20 20

10 10 12 10

20 1212 12

12 20 20 20

0

0

0

0

0

0

T T

T T T

T T

T T

T T

T T

Φ →Ψ Φ →Ψ

Φ →Ψ Φ →ΨΦ→Ψ

Φ →Ψ Φ →Ψ

Φ →Ψ Φ →Ψ

Φ →ΨΦ →Ψ

Φ →Ψ Φ →Ψ

 
 
 =
 
 
 
 
 
 =
 
 
 

 (25) 

 
and 
 

 

10 10

12 12

20 20

,

a a

a a a a

a a

Φ Ψ

Φ ΨΦ Ψ

Φ Ψ

   
   = =   
   
   

 (26) 

 
 

IV. OUTPUT POWER, COUPLING POWER, AND THEIR MATRIX 

FORMS 

In [6]-[7], some different surface formulations for the output 
power of a single body have been established, and several 
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typical surface formulations for the output power of a 
double-body system are given in this section. In addition, the 
surface formulations of the coupling power between the two 
bodies in double-body system are also provided here. 

A. The surface formulations for the powers of a double-body 
system 

The input power inpP  from incident field to system and the 
output power outP  of system are as follows 
 

 

( ) ( )

( ) ( ){
( ) ( ) }

( )

1,2

1,2

1,2

1 2 , 1 2 ,

1 2 , 1 2 ,

1 2 , 1 2 ,

i i

i i

i i

inp out vop inc inc vm
i iV V

i

vop tot tot vm
i iV V

i

vop sca sca vm
i iV V

out coup
i ji

i

P P J E H M

J E H M

J E H M

P P

=

=

=

 = = +  

 = +  

 − +  

= +







 (27) 

 
here out

iP  is the output power of iV , and coup
jiP  corresponds to 

the coupling between iV  and jV , and [7] 
 

 

( ) ( )

0
; ;

0 0

0
; ;

0 0

1 2 , 1 2 ,

1 1
, ,

2 2

1 1
, ,

2 2

i i

i i

i i

out vop inc inc vm
i i i i iV V

SE inc inc SEi ic
i i i iV V

i ic i

SE inc inc SEic i
i i i iV V

ic i ic

P J e h M

J e h M

J e h M

μ ε μ
μ ε μ ε μ

ε μ ε
ε μ ε μ ε

∗ ∗

− −∗ ∂ ∂

∗

− −∂ ∂

= +

 Δ= + −  
 Δ+ + −  

 (28) 

 

( ) ( )

0

0 0

0

0 0

1 2 , 1 2 ,

1 1
, ,

2 2

1 1
, ,

2 2

i i

i i

i i

coup vop sca sca vm
ji i j j iV V

SE sca sca SEi ic
i j j iV V

i ic i

SE sca sca SEic i
i j j iV V

ic i ic

P J E H M

J E H M

J E H M

μ ε μ
μ ε μ ε μ

ε μ ε
ε μ ε μ ε

∗ ∗

∗ ∂ ∂

∗

∂ ∂

 = − +  
 Δ= − − −  
 Δ+ − − −  

 (29) 

 
here iμ  and icε  are respectively the permeability and complex 
permittivity of body iV , and 0i iμ μ μΔ = − , and 0ic icε ε εΔ = − ; 

( )ic icε ε ∗∗Δ Δ ; the superscript “ ∗ ” represents the complex 
conjugate of relevant quantity; the inner product is defined as 

,f g f g d∗
Ω Ω< >  ⋅ Ω . The derivation for the second equality 

of (29) is based on the Maxwell’s equations of sca
jF  and totF , 

and its detailed procedure will not be given here, because of its 
simplicity. 

Based on the conclusions given in [5]-[7], the various powers 
related to the formulation (27) can be summarized in the (30). 
The first line in (30) corresponds to the second equality in (27), 
and they are based on the first equality of the formulation (12) 
in paper [5]; the second line in (30) corresponds to the third 
equality in (27), and they are based on the second equality of 

the formulation (12) in paper [5]; the third line in (30) 
corresponds to the fourth equality in (27), and they are based on 
the second equality of the formulation (6.1) in this paper.  

In (30), the specific mathematical expressions of the powers 
, ,tot react mat

ijP , ,tot loss
iP , and ,sca vac

iP  are as follows [5]-[7] 
 

 
( ) ( ), , 1 2 , 1 2 ,

1 1
2 , ,

4 4

i i

i i

tot react mat vp tot tot vm
i i iV V

tot tot tot tot

V V

jP J E H M

j H H E Eω μ ε

= +

 = Δ − Δ  

 (31.1) 

 
( )

( )

, 1 2 ,

1 2 ,

i

i

tot loss vo tot
i i V

tot tot

V

P J E

E Eσ

=

=
 (31.2) 

 
( ) ( ),

, , ,

1 2 , 1 2 ,
i i

sca vac vop sca sca vm
i i i i iV V

sca rad sca react vac
i i

P J E H M

P j P

 = − +  
= +

 (31.3) 

 
here the “ j ” appearing in (31.1) and (31.3) is the imaginary 
unity, and 
 

 ( ), 1

2
sca rad sca sca

i i iS
P E H dS

∞

∗ = × ⋅    (32.1) 

 
3 3

, ,
0 0

1 1
2 , ,

4 4
sca react vac sca sca sca sca

i i i i iP H H E Eω μ ε = −   
 (32.2) 

 
The powers iinc VP → , itot VP → , and isca VP →  are respectively the 
powers done by incF , totF , and scaF  on iV , and their 
mathematical expressions are as follows 
 
 ( ) ( )1 2 , 1 2 ,i

i i

inc V vop inc inc vm
i iV V

P J E H M→ = +  (33.1) 

 ( ) ( )1 2 , 1 2 ,i

i i

tot V vop tot tot vm
i iV V

P J E H M→ = +  (33.2) 

 ( ) ( )1 2 , 1 2 ,i

i i

sca V vop sca sca vm
i iV V

P J E H M→ = +  (33.3) 

 
The powers ,sca vacP  and coupP  are as follows 
 
 , , , ,sca vac sca rad sca react vacP P j P= +  (34) 

 , , ,coup coup rad coup react vacP P j P= +  (35) 

 
here 
 

 ( ), 1

2
sca rad sca sca

S
P E H dS

∞

∗ = × ⋅    (36.1) 

 
3 3

, ,
0 0

1 1
2 , ,

4 4
sca react vac sca sca sca scaP H H E Eω μ ε = −   

 (36.2) 

 
and 
 

 

 

1 2

1

, , , , , , , ,
1 1 1 21 12 2 2 2

, , ,
1 1

inc V inc V

tot V

P P

inp out tot react mat tot loss sca vac coup coup sca vac tot loss tot react mat

P

tot react mat tot loss

P P j P P P P P P P j P

j P P

→ →

→

= = + + + + + + +

= + +

 

 1 2 2

,

1

, , , , ,
1 21 12 2 2 2

, , , ,
1 1 1

sca V sca V tot V

sca V sca vac

out

P P P

sca vac coup coup sca vac tot loss tot react mat

P P

tot react mat tot loss sca vac

P

P P P P P j P

j P P P

→ → →

→

− −

− =

+ + + + +

= + +

  




2

, , , ,
21 12 2 2 2

coup out

coup coup sca vac tot loss tot react mat

P P

P P P P j P+ + + + + 

 (30)
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 ( ) ( ), 1

2
coup rad sca sca sca sca

j i i jS
P E H E H dS

∞

∗ ∗ = × + × ⋅    (37.1) 

 
3 3

3 3

, ,
0 0

0 0

1 1
2 , ,

4 4

1 1
2 , ,

4 4

coup react vac sca sca sca sca
i j i j

sca sca sca sca
j i j i

P H H E E

H H E E

ω μ ε

ω μ ε

 = −  
 + −  

 

 

 (37.2) 

 

B. The matrix forms for the powers of a double-body system: 
The relation (24) is not utilized. 

Inserting the (4)-(8) and (21) into the (28)-(29), the out
iP  and 

coup
jiP  can be written as the following matrix forms. 

 

 out H
i iP a P a= ⋅ ⋅  (38) 

 coup H
ji jiP a P a= ⋅ ⋅  (39) 

 
and then the (27) can be written as the following matrix form 
 

 inp out HP P a P a= = ⋅ ⋅  (40) 

 
here 
 

 1 21 12 2P P P P P= + + +  (41) 

 
and 
 

 
J

M

a
a

a

 
=  

 
 (42) 

 

To derive the matrices P1  and P2  based on the first 
equality in (28) 

If the first equality in (28) is utilized, the matrices 1P  and 2P  
are as follows 
 

 

10 10 10 12 10 10 10 12

12 10 12 1012 12 12 12

10 10 10 12 10 10 10 12

12 10 12 1012 12 12 12

1 1 1 1

1 1 1 1

1

1 1 1 1

1 1 1 1

0 0

0 0

0 0 0 0 0 0

0 0

0 0

0 0 0 0 0 0

J J J J J M J M

J J J MJ J J M

M J M J M M M M

M J M MM J M M

P P P P

P P P P

P
P P P P

P P P P

 
 
 
 
 =  
 
 
 
  

 (43.1) 

 

12 20 12 2012 12 12 12

20 12 20 20 20 12 20 20

12 20 12 2012 12 12 12

20 12 20 20 20 12 20 20

2 2 2 2

2 2 2 2
2

2 2 2 2

2 2 2 2

0 0 0 0 0 0

0 0

0 0

0 0 0 0 0 0

0 0

0 0

J J J MJ J J M

J J J J J M J M

M J M MM J M M

M J M J M M M M

P P P P

P P P P
P

P P P P

P P P P

 
 
 
 
 =  
 
 
 
  

 (43.2) 

 
here the partition ways of 1P  and 2P  are based on the partition 
ways of (26) and (42), and 
 

 0 0 0 0

0 0;
i i i i

C Ci i

C C C C
i iP p ξζ ′ ′′

′ ′′ ′ ′′

Ξ ×Ξ
 =    (44.1) 

 0 12 0 12

0 12;
i i

C Ci

C C C C
i iP p ξζ ′ ′′

′ ′′ ′ ′′

Ξ ×Ξ
 =    (44.2) 

 12 0 12 0

012;
i i

CC i

C C C C
i iP p ζξ ′′′

′′ ′ ′′ ′

Ξ ×Ξ
 =    (44.3) 

 12 12 12 12

12 12; C C

C C C C
i iP p ξζ ′ ′′

′ ′′ ′ ′′

Ξ ×Ξ
 =    (44.4) 

 
here 
 

 
( ) ( ) ( )

( ) ( ) ( )
0 0 0 0

0 0

; ;
int

;
int

1 2 ,

1 2 ,

i i i i

i

i i

i

C C C Cvop inc
i i i

V

C Cinc vm
i i

V

p b b

b b

ξζ ξ ζ

ξ ζ

′ ′′ ′ ′′
−

′ ′′
−

=

+





e

h
 (45.1) 

 
( ) ( ) ( )

( ) ( ) ( )

0 12 0 12

0 12

; ;
int

;
int

1 2 ,

1 2 ,

i i

i

i

i

C C C Cvop inc
i i i i

V

C Cinc vm
i i

V

p b b

b b

ξζ ξ ζ

ξ ζ

γ′ ′′ ′ ′′
−

′ ′′
−

= 
+ 





e

h
 (45.2) 

 
( ) ( ) ( )

( ) ( ) ( )

12 0 012

012

; ;
int

;
int

1 2 ,

1 2 ,

i i

i

i

i

C C CCvop inc
i i i i

V

CCinc vm
i i

V

p b b

b b

ζξ ζ ξ

ζ ξ

γ′′ ′ ′′′
−

′′′
−

= 
+ 





e

h
 (45.3) 

 
( ) ( ) ( )

( ) ( ) ( )
12 12 12 12

12 12

; ;
int

;
int

1 2 ,

1 2 ,
i

i

C C C Cvop inc
i i i

V

C Cinc vm
i i

V

p b b

b b

ξζ ξ ζ

ξ ζ

′ ′′ ′ ′′
−

′ ′′
−

=

+





e

h
 (45.4) 

 
In (44)-(45), 1,2i = ; , ,C C J M′ ′′ = ; 1 1γ = , and 2 1γ = − ; 

( ) ( )0 0 ,0i iJ Jvop vop
i ib bξ ξ  , and ( ) ( )0 00,i iM Mvop vop

i ib bξ ξ  , and the 
other operators can be similarly explained. 

To derive the matrices P1  and P2  based on the second 
equality in (28) 

If the second equality in (28) is utilized, the matrices 1P  and 

2P  are as follows 
 

  

0
; ;

0 0

0
; ;

0 0

Hi ic
i i JE i HM

i ic i

Hic i
i JE i HM

ic i ic

P P P

P P

μ ε μ
μ ε μ ε μ

ε μ ε
ε μ ε μ ε

∗

∗

 Δ= + −  
 Δ+ + −  

 (46) 

 
here 1,2i = . The above matrices ;i JEP  and ;i HMP  are as follows 
 

 

10 10 10 12 10 10 10 12

12 10 12 1012 12 12 12

1; 1; 1; 1;

1; 1; 1; 1;

1;

0 0

0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

J J J J J M J M
JE JE JE JE

J J J MJ J J M
JE JE JE JE

JE

P P P P

P P P P

P

 
 
 
 
 =
 
 
 
 
 

 (47.1) 

 

12 20 12 2012 12 12 12

20 12 20 20 20 12 20 20

2; 2; 2; 2;

2; 2; 2; 2;
2;

0 0 0 0 0 0

0 0

0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

J J J MJ J J M
JE JE JE JE

J J J J J M J M
JE JE JE JE

JE

P P P P

P P P PP

 
 
 
 
 =
 
 
 
 
 

 (47.2) 
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and 
 

 

10 10 10 12

12 10 12 12

10 10 10 12

12 10 12 12

1; 1;

1; 1;

1;

1; 1;

1; 1;

0 0 0 0

0 0 0 0

0 0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0 0

J M J M
HM HM

J M J M
HM HM

HM
M M M M
HM HM

M M M M
HM HM

P P

P P

P
P P

P P

 
 
 
 
 =  
 
 
 
  

 (48.1) 

 

12 2012 12

20 12 20 20

12 2012 12

20 12 20 20

2; 2;

2; 2;
2;

2; 2;

2; 2;

0 0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0 0

0 0 0 0

0 0 0 0

J MJ M
HM HM

J M J M
HM HM

HM

M MM M
HM HM

M M M M
HM HM

P P

P P
P

P P

P P

 
 
 
 
 =  
 
 
 
  

 (48.2) 

 
in which 
 

 0 0 0 0

0 0; ; ;
i i i i

J Ci i

J C J C
i JE i JEP p ξζ ′

′ ′

Ξ ×Ξ
 =    (49.1) 

 0 12 0 12

0 12; ; ;
i i

J Ci

J C J C
i JE i JEP p ξζ ′

′ ′

Ξ ×Ξ
 =    (49.2) 

 12 0 12 0

012; ; ;
i i

CJ i

J C J C
i JE i JEP p ξζ ′

′ ′

Ξ ×Ξ
 =    (49.3) 

 12 12 12 12

12 12; ; ; J C

J C J C
i JE i JEP p ξζ ′

′ ′

Ξ ×Ξ
 =    (49.4) 

 
and 
 

 0 0 0 0

0 0; ; ;
i i i i

C Mi i

C M C M
i HM i HMP p ξζ ′

′ ′

Ξ ×Ξ
 =    (50.1) 

 12 0 12 0

012; ; ;
i i

MC i

C M C M
i HM i HMP p ξζ ′

′ ′

Ξ ×Ξ
 =    (50.2) 

 0 12 0 12

0 12; ; ;
i i

C Mi

C M C M
i HM i HMP p ξζ ′

′ ′

Ξ ×Ξ
 =    (50.3) 

 12 12 12 12

12 12; ; ; C M

C M C M
i HM i HMP p ξζ ′

′ ′

Ξ ×Ξ
 =    (50.4) 

 
here 
 

 ( ) ( )0 0 0 0
; ; ;1 2 ,i i i i

i

J C J Cinc
i JE i

V
p b bξζ ξ ζ

′ ′
− ∂

= e  (51.1) 

 ( ) ( )0 12 0 12
; ; ;1 2 ,i i

i

J C J Cinc
i JE i i

V
p b bξζ ξ ζγ′ ′

− ∂
= e  (51.2) 

 ( ) ( )12 0 012
; ; ;1 2 ,i i

i

J C CJ inc
i JE i i

V
p b bξζ ξ ζγ′ ′

− ∂
= e  (51.3) 

 ( ) ( )12 12 12 12
; ; ;1 2 ,

i

J C J Cinc
i JE i

V
p b bξζ ξ ζ

′ ′
− ∂

= e  (51.4) 

 
and 
 

 ( ) ( )0 0 0 0
; ; ;1 2 ,i i i i

i

C M C Minc
i HM i

V
p b bξζ ξ ζ

′ ′
− ∂

= h  (52.1) 

 ( ) ( )12 0 012
; ; ;1 2 ,i i

i

C M MCinc
i HM i i

V
p b bξζ ξ ζγ′ ′

− ∂
= h  (52.2) 

 ( ) ( )0 12 0 12
; ; ;1 2 ,i i

i

C M C Minc
i HM i i

V
p b bξζ ξ ζγ′ ′

− ∂
= h  (52.3) 

 ( ) ( )12 12 12 12
; ; ;1 2 ,

i

C M C Minc
i HM i

V
p b bξζ ξ ζ

′ ′
− ∂

= h  (52.4) 

 

In (49)-(52), 1,2i = ; ,C J M′ = . 

To derive the matrix jiP  based on the first equality in 
(29) 

If the first equality in (29) is utilized, the matrix jiP  in (39) is 
as follows 
 

 

10 12 10 20 10 12 10 20

12 10 12 20 12 10 12 2012 12 12 12

20 10 20 12 20 10 20 12

10 12 10 20 10 12 10 20

12 10 12 2012 12

0 0

0 0

0 0

J J J J J M J M
ji ji ji ji

J J J J J M J MJ J J M
ji ji ji ji ji ji

J J J J J M J M
ji ji ji ji

ji M J M J M M M M
ji ji ji ji

M J M JM J
ji ji ji

P P P P

P P P P P P

P P P P
P

P P P P

P P P P

=

12 10 12 2012 12

20 10 20 12 20 10 20 120 0

M M M MM M
ji ji ji

M J M J M M M M
ji ji ji ji

P P

P P P P

 
 
 
 
 
 
 
 
 
 
  

 (53) 

 
The submatrices in (53) are as follows 
 

 0 12 0 12

0 12;
j j

C Cj

C C C C
ji jiP p ξζ ′ ′′

′ ′′ ′ ′′

Ξ ×Ξ
 =    (54.1) 

 12 0 12 0

012;
j j

CC j

C C C C
ji jiP p ζξ ′′′

′′ ′ ′′ ′

Ξ ×Ξ
 =    (54.2) 

 
and 
 

 0 12 0 12

0 12;
i i

C Ci

C C C C
ji jiP p ξζ ′ ′′

′ ′′ ′ ′′

Ξ ×Ξ
 =    (54.3) 

 12 0 12 0

012;
i i

CC i

C C C C
ji jiP p ζξ ′′′

′′ ′ ′′ ′

Ξ ×Ξ
 =    (54.4) 

 
and 
 

 12 12 12 12

12 12; C C

C C C C
ji jiP p ξζ Ξ ×Ξ

 =    (54.5) 

 
and 
 

 12 12 12 12

12 12; J M

J M J M
ji jiP p ξζ Ξ ×Ξ

 =    (54.6) 

 12 12 12 12

12 12; M J

M J M J
ji jiP p ζξ Ξ ×Ξ

 =    (54.7) 

 
and 
 

 10 20 10 20

10 20; C C

C C C C
ji jiP p ξζ ′ ′′

′ ′′ ′ ′′

Ξ ×Ξ
 =    (54.8) 

 20 10 20 10

20 10; C C

C C C C
ji jiP p ζξ ′′ ′

′′ ′ ′′ ′

Ξ ×Ξ
 =    (54.9) 

 
In (54.1) and (54.2), 
 

 ( ) ( ) ( )0 12 0 12
; ;

int
1 2 ,j j

i

C C C Csca vm
ji i j i

V
p b bξζ ξ ζγ′ ′′ ′ ′′

+= −    (55.1) 

 ( ) ( ) ( )12 0 012
; ;

int
1 2 ,j j

i

C C CCvop sca
ji i i j

V
p b bζξ ζ ξγ′′ ′ ′′′

+= −    (55.2) 

 
In (54.3) and (54.4), 
 

 ( ) ( ) ( )0 12 0 12
; ;

int
1 2 ,i i

i

C C C Cvop sca
ji j i j

V
p b bξζ ξ ζγ′ ′′ ′ ′′

+= −    (55.3) 

 ( ) ( ) ( )12 0 012
; ;

int
1 2 ,i i

i

C C CCsca vm
ji j j i

V
p b bζξ ζ ξγ′′ ′ ′′′

+= −    (55.4) 



R. Z. LIAN: SURFACE FORMULATIONS OF THE EMP-BASED CMT FOR MATERIAL BODIES — Part III 
 

8

In (54.5), 
 

 
( ) ( ) ( )

( ) ( ) ( )
12 12 12 12

12 12

; ;
int

;
int

1 2 ,

1 2 ,
i

i

C C C Cvop sca
ji i j

V

C Csca vm
j i

V

p b b

b b

ξζ ξ ζ

ξ ζ

+

+

=

+

 

 
 (55.5) 

 
In (54.6) and (54.7), 
 

 
( ) ( ) ( )

( ) ( ) ( )
12 12 12 12

12 12

; ;
int

;
int

1 2 ,

1 2 ,
i

i

J M J Mvop sca
ji i j

V

J Msca vm
j i

V

p b b

b b

ξζ ξ ζ

ξ ζ

+

+

=

+

 

 
 (55.6) 

 
( ) ( ) ( )

( ) ( ) ( )
12 12 12 12

12 12

; ;
int

;
int

1 2 ,

1 2 ,
i

i

M J M Jvop sca
ji i j

V

M Jsca vm
j i

V

p b b

b b

ζξ ζ ξ

ζ ξ

+

+

=

+

 

 
 (55.7) 

 
In (54.8) and (54.9), 
 

( ) ( ) ( )
( ) ( ) ( )

10 20 10 20

1

10 20

2

; 2 1 2;
int

1 1; 2
int

1 2 ,

1 2 ,

C C C Cvop sca
ji j

V

C Csca vm
j

V

p b b

b b

ξζ ξ ζ

ξ ζ

δ

δ

′ ′′ ′ ′′
+

′ ′′
+

= − 
+ 

 

 
 (55.8) 

( ) ( ) ( )
( ) ( ) ( )

20 10 20 10

2

20 10

1

; 1 2 1;
int

2 2; 1
int

1 2 ,

1 2 ,

C C C Cvop sca
ji j

V

C Csca vm
j

V

p b b

b b

ζξ ζ ξ

ζ ξ

δ

δ

′′ ′ ′′ ′
+

′′ ′
+

= − 
+ 

 

 
 (55.9) 

 
In the above (53)-(55), ( ) ( ) ( ), 2,1 , 1,2j i = ; , ,C C J M′ ′′ = , and 

,C J M= ; mnδ  is the Kronecker delta symbol. 

To derive the matrix jiP  based on the second equality in 
(29) 

If the second equality in (29) is utilized, the matrix jiP  in (39) 
is as follows 
 

 

0
; ;

0 0

0
; ;

0 0

Hi ic
ji ji JE ji HM

i ic i

Hic i
ji JE ji HM

ic i ic

P P P

P P

μ ε μ
μ ε μ ε μ

ε μ ε
ε μ ε μ ε

∗

∗

 Δ= + −  
 Δ+ + −  

 (56) 

 
The above matrices ;ji JEP  and ;ji HMP  are as follows 
 

 

10 12 10 20 10 12 10 20

12 20 12 2012 12 12 12

21; 21; 21; 21;

21; 21; 21; 21;

21;

0 0

0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

J J J J J M J M
JE JE JE JE

J J J MJ J J M
JE JE JE JE

JE

P P P P

P P P P

P

 
 
 
 
 =
 
 
 
 
 

 (57.1) 

 

12 10 12 1012 12 12 12

20 10 20 12 20 10 20 12

12; 12; 12; 12;

12; 12; 12; 12;
12;

0 0 0 0 0 0

0 0

0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

J J J MJ J J M
JE JE JE JE

J J J J J M J M
JE JE JE JE

JE

P P P P

P P P PP

 
 
 
 
 =
 
 
 
 
 

 (57.2) 

and 
 

 

12 10 12 12

20 10 20 12

12 10 12 12

20 10 20 12

21; 21;

21; 21;
21;

21; 21;

21; 21;

0 0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0 0

0 0 0 0

0 0 0 0

J M J M
HM HM

J M J M
HM HM

HM

M M M M
HM HM

M M M M
HM HM

P P

P P
P

P P

P P

 
 
 
 
 =  
 
 
 
  

 (58.1) 

 

10 12 10 20

12 2012 12

10 12 10 20

12 2012 12

12; 12;

12; 12;

12;

12; 12;

12; 12;

0 0 0 0

0 0 0 0

0 0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0 0

J M J M
HM HM

J MJ M
HM HM

HM
M M M M

HM HM

M MM M
HM HM

P P

P P

P
P P

P P

 
 
 
 
 =  
 
 
 
  

 (58.2) 

 
in which 
 

 0 0 0 0

00; ; ;
i j i j

CJ ji

J C J C
ji JE ji JEP p ξζ ′

′ ′

Ξ ×Ξ
 =    (59.1) 

 0 12 0 12

0 12; ; ;
i i

J Ci

J C J C
ji JE ji JEP p ξζ ′

′ ′

Ξ ×Ξ
 =    (59.2) 

 12 0 12 0

012; ; ;
j j

CJ j

J C J C
ji JE ji JEP p ξζ ′

′ ′

Ξ ×Ξ
 =    (59.3) 

 12 12 12 12

12 12; ; ; J C

J C J C
ji JE ji JEP p ξζ ′

′ ′

Ξ ×Ξ
 =    (59.4) 

 
and 
 

 0 0 0 0

0 0; ; ;
j i j i

C Mj i

C M C M
ji HM ji HMP p ξζ ′

′ ′

Ξ ×Ξ
 =    (60.1) 

 12 0 12 0

012; ; ;
i i

MC i

C M C M
ji HM ji HMP p ξζ ′

′ ′

Ξ ×Ξ
 =    (60.2) 

 0 12 0 12

0 12; ; ;
j j

C Mj

C M C M
ji HM ji HMP p ξζ ′

′ ′

Ξ ×Ξ
 =    (60.3) 

 12 12 12 12

12 12; ; ; C M

C M C M
ji HM ji HMP p ξζ ′

′ ′

Ξ ×Ξ
 =    (60.4) 

 
here 
 

 ( ) ( )0 0 00
; ; ;1 2 ,i j ji

i

J C CJ sca
ji JE j

V
p b bξζ ξ ζ

′ ′
+

∂
= −   (61.1) 

 ( ) ( )0 12 0 12
; ; ;1 2 ,i i

i

J C J Csca
ji JE j j

V
p b bξζ ξ ζγ′ ′

+ ∂
= −   (61.2) 

 ( ) ( )12 0 012
; ; ;1 2 ,j j

i

J C CJ sca
ji JE i j

V
p b bξζ ξ ζγ′ ′

+
∂

= −   (61.3) 

 ( ) ( )12 12 12 12
; ; ;1 2 ,

i

J C J Csca
ji JE j

V
p b bξζ ξ ζ

′ ′
+ ∂

=   (61.4) 

 
and 
 

 ( ) ( )0 0 0 0
; ; ;1 2 ,j i j i

i

C M C Msca
ji HM j

V
p b bξζ ξ ζ

′ ′
+

∂
= −   (62.1) 

 ( ) ( )12 0 012
; ; ;1 2 ,i i

i

C M MCsca
ji HM j j

V
p b bξζ ξ ζγ′ ′

+ ∂
= −   (62.2) 

 ( ) ( )0 12 0 12
; ; ;1 2 ,j j

i

C M C Msca
ji HM i j

V
p b bξζ ξ ζγ′ ′

+
∂

= −   (62.3) 

 ( ) ( )12 12 12 12
; ; ;1 2 ,

i

C M C Msca
ji HM j

V
p b bξζ ξ ζ

′ ′
+ ∂

=   (62.4) 
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In (56)-(62), ( ) ( ) ( ), 2,1 , 1,2j i = ; ,C J M′ = . 

C. The matrix forms for the powers of a double-body system: 
The relation (24) is utilized. 

Inserting the (24) and (42) into (38)-(40), the (38)-(40) can 
be rewritten as follows 
 

 ( )Hout
i iP a P aΦ Φ Φ= ⋅ ⋅  (63) 

 ( )Hcoup
ji jiP a P aΦ Φ Φ= ⋅ ⋅  (64) 

 ( )Hinp outP a P aΦ Φ Φ= ⋅ ⋅  (65) 

 
here JΦ = , if the surface equivalent electric current is selected 
as basic variable; MΦ = , if the surface equivalent magnetic 
current is selected as basic variable. In (63)-(65), 
 

 

H

X X
J M J M

I I
P P

T T

Φ

→ →

   
   = ⋅ ⋅
      

 (66.1) 

 
for the case JΦ = , and 
 

 

H
M J M J

X X

T T
P P

I I

→ →
Φ

   
   = ⋅ ⋅
      

 (66.2) 

 
for the case MΦ = . In (66), , ,X i jiP P P P= , and correspondingly 

, ,X i jiP P P PΦ Φ Φ Φ= ; the I  is identity matrix. 
The matrix form for the coupling power coupP  is as follows 

 

 ( ) ;Hcoup coupP a P aΦ Φ Φ= ⋅ ⋅  (67) 

 
here 
 

 ;
21 12

coupP P PΦ Φ Φ= +  (68) 

 
 

V. COUPLING POWER CHARACTERISTIC MODE (COUPCM) SET 

As illustrated in [4]-[9], the EMP-CMT is an object-oriented 
modal theory, and the power-based CM sets being similar to the 
ones discussed in [4]-[9] are not repeated here. However, the 
CM set focusing on the coupling power between two bodies is 
specifically researched in this section, because the coupling 
phenomenon between the elements in a whole system has not 
been analyzed in [4]-[9]. 

A. The CM set which can orthogonalize the active part of 
power coupP  (the time-average of coupling power) 

If the matrix ;coupP Φ  is decomposed as follows 
 

 ; ; ;coup coup coupP P j PΦ Φ Φ
+ −= +  (69) 

 
it can be concluded that 
 

 { } ( ), ;Re
Hcoup act coup coupP P a P aΦ Φ Φ

+= = ⋅ ⋅  (70.1) 

 { } ( ), ;Im
Hcoup react coup coupP P a P aΦ Φ Φ

−= = ⋅ ⋅  (70.2) 

 
here the ,coup actP  and ,coup reactP  are respectively the active and 
reactive parts of coupP . In (69), 
 

 ( ); ; ;1

2

H
coup coup coupP P PΦ Φ Φ

+
 = +  

 (71.1) 

 ( ); ; ;1

2

H
coup coup coupP P P

j
Φ Φ Φ

−
 = −  

 (71.2) 

 
The “ j ” appearing in (69) and (71.2) is the imaginary unity. 

Because the matrix ;coupP Φ
+  is Hermitian, there exists an 

independent and complete expansion vector set { };

1

coupaξ ξ

ΦΞΦ
=

, such 
that [12] 
 

 ( ); ; ; ,Hcoup coup coup coup acta P a Pξ ζ ξ ξζδΦ Φ Φ
+⋅ ⋅ =  (72) 

 
for any , 1,2, ,ξ ζ Φ= Ξ , here 10 2012Φ ΦΦΦΞ = Ξ + Ξ + Ξ . If the zero 
characteristic value exists, and , 0coup actPξ =  for 1 2, , , Nn n nξ =  , 
all modes in the space spanned by set { }

1 2

; ; ;, , ,
N

coup coup coup
n n na a aΦ Φ Φ  

have zero active coupling powers. 

B. The CM set which can orthogonalize the active part of 
power coup

jiP  (the time-average of one-way coupling power) 

Sometimes, a one-way decoupling between 1V  and 2V  is 
more desired than the complete decoupling discussed in above 
subsection. Just like the decomposition for matrix ;coupP Φ , the 
matrix ;coup

jiP Φ  can be similarly decomposed as follows 
 

 ; ; ;
; ;

coup coup coup
ji ji jiP P j PΦ Φ Φ

+ −= +  (73) 

 
here 
 

 ( ); ; ;
;

1

2

H
coup coup coup
ji ji jiP P PΦ Φ Φ

+
 = +  

 (74.1) 

 ( ); ; ;
;

1

2

H
coup coup coup
ji ji jiP P P

j
Φ Φ Φ

−
 = −  

 (74.2) 

 
Then, 
 

 { } ( ), ;
;Re

Hcoup act coup coup
ji ji jiP P a P aΦ Φ Φ

+= = ⋅ ⋅  (75.1) 

 { } ( ), ;
;Im

Hcoup react coup coup
ji ji jiP P a P aΦ Φ Φ

−= = ⋅ ⋅  (75.2) 

 
Because the matrix ;

;
coup
jiP Φ

+  is Hermitian, there exists an 
independent and complete expansion vector set { };

; 1

coup
jia ξ ξ

ΦΞΦ
=

, such 
that [12] 
 

 ( ); ; ; ,
; ; ; ;

Hcoup coup coup coup act
ji ji ji jia P a Pξ ζ ξ ξζδΦ Φ Φ

+⋅ ⋅ =  (76) 

 
for any , 1,2, ,ξ ζ Φ= Ξ . If the zero characteristic value exists, 
and ,

; 0coup act
jiP ξ =  for 1 2, , , Nn n nξ =  , all modes in the space 
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spanned by set { }
1 2

; ; ;
; ; ;, , ,

N

coup coup coup
ji n ji n ji na a aΦ Φ Φ  have zero one-way 

active coupling powers, i.e., their time-average powers done by 
modal scattering field ;

sca
jF ξ  on modal scattering currents 

{ }; ;,vop vm
i iJ Mξ ξ  are zeros. 

 
 

VI. CONCLUSIONS 
As a supplement to the previous Surf-SHM-EMP-CMT 

established in the Parts I and II, the Surf-MHM-EMP-CMT is 
provided in this Part III. Some surface formulations for the 
coupling powers among different bodies are provided, and then 
a new kind of power-based CM set, CoupCM set, is developed 
for depicting the inherent coupling character among different 
bodies. It is found out that the zero space of the power quadratic 
matrix corresponding to the active part of coupling power is 
valuable for the decoupling applications. 
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