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Abstract 

The first section of this paper (Quantum mechanics and the Warping of Spacetime) attempted 

to show that the fundamental particles of the Standard Model can be built from infinite 

superpositions borrowing mass from a Higgs type scalar field and energy from zero point 

fields. As zero point energy densities are limited, especially at cosmic wavelengths, this 

requires space to expand exponentially with time to make the zero point energy available, 

equal to that required. There is a minimum graviton wavenumber min
k  at which this balance 

occurs. The density of these min
k gravitons is min min minGk Gk

K dk   where minGk
K is a constant 

scalar, in any coordinates, at all points in spacetime. The value of 
1

min Horizon
k R


  decreases 

with cosmic time T , but increases around mass concentrations, inversely to the value of 00
g

in the local metric. These borrowed cosmic wavelength quanta are Planck energy zero point 

modes redshifted from a holographic horizon receding at light velocity. We suggested that an 

infinitesimally modified General Relativity is consistent with this. This paper extends these 

arguments to include angular momentum and the Kerr Metric. In the first paper to keep things 

simple we used the fact that the vast majority of min
k gravitons around mass concentrations is 

due to  (Universe)* * (Universe)
m m

    . We ignored the relatively smaller number of 

min
k gravitons emitted by mass concentrations themselves ( *

m m
  ). This paper includes 

their effect and proposes that as well as the usual 2 /m r  term, the metric also includes an 
2 2

/m r  term (in Planck units) causing insignificant changes in the solar system 16
( 10


  at 

Earth radius versus 8
10


 for the normal 2 /m r  metric term). The effect of this extra term 

however is more significant close to Black Holes.  The radius of a non-rotating Black Hole 

increases  27% from 2r m  to 2.54r m , but a maximum spin Black Hole remains at 

r m . These changes should only significantly affect the fine details of the last two or three 

cycles of gravitational waves from black hole mergers, and will probably only be possible to 

test for after further accuracy improvements in the future. Depending on the degree of spin, 

these changes may reduce slightly the maximum possible neutron star mass before a black 

hole forms.  The 00
T  component of the Stress Energy tensor is based on mass densities and 

does not appear to naturally relate with an 2 2
/m r term in the metric. This may introduce a 

tension with General Relativity in its current form, but only in the extreme region near black 

holes. It may also possibly question the validity of the Equivalence Principle in these regions. 
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1 Introduction 

The universe we live in is currently described by two models: “The Standard Model of 

Particle Physics” and “The Standard Model of Cosmology”. An excellent summary of these 

models, their problems and possible solutions, can be found in the popular science magazine 

“New Scientist” 24 September 2016. It very succinctly describes: “Six Principles, Six 

Problems and Six Solutions.”  While the Standard Model of Particle Physics is remarkably 

accurate in its predictions, and apparently complete, it is also as they say in this article 

“strangely incomplete”.  Supersymmetry, proposed to solve some of its issues, is not panning 

out as expected, and increasingly particle physicists are facing the uncomfortable prospect 

that it may not be the hoped for answer. Nuetrinoes have a small mass when they shouldn’t, 

without supersymmetry there is no force unification, and gravity is not included. 

In the first paper [7] we attempted to show that the fundamental particles of the Standard 

Model can be built from infinite superpositions apart from infinitesimal but important 

differences. They all had mass which naturally divided into two sets. Spin 2 gravitons, spin 1 

photons and gluons, all had infinitesimal mass approximately the inverse of the causally 

connected horizon radius or 33
10 .eV


  They all travel at virtually light velocity.The rest had 

finite masses of micro electron volts upwards. The fundamental forces all related with each 

other, at the Planck energy cutoff of superpositions; but in a manner that seemed to fit nicely 

with the Standard Model.  In the final third of this first paper we tried to fit infinite 

superpositions with General Relativity and The Standard Model of Cosmology. Because 

these infinite superpositions borrow energy from zero point fields, which are in very limited 

supply at cosmic wavelengths, we found that space has to expand exponentially with time. It 

all only worked if space was flat on average. The equations we derived looked the same for 

all comoving observers. Regardless of an observer’s position in the universe this expansion 

looked the same apart from the effect of initial quantum fluctuations at the start. This 

removes one of the key reasons for inflation. The universe in this proposed scenario always 

looks the same and is flat on average for all observers with or without inflation. Even to 

observers near the horizon or outside it.  The properties and equations controlling distant 

universes should be identical to ours and there would be no metaverses which are a natural 

endpoint of inflation.  We connected these equations with an infinitesimally modified GR 

equation locally, but with profound implications at cosmic scale. 

                                 
4

1 8
(Background)

2

G
G R g R T T

c
    


         

In comoving coordinates (Background)T has just one component 00 U
T  the average 

density of the universe.  
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This modification limits the range of GR to scales smaller than the radius of the universe and 

guarantees flatness on average regardless of the value of  . The overall exponential 

expansion of space is controlled by equations balancing the zero point energy available to 

that borrowed by infinite superpositions. Dark Energy is not required for this accelerating 

expansion, but Dark Matter is still required inside galaxies to hold them together against 

centrifugal forces due to their fast rotation. We found a spin 2 massive graviton type infinite 

superposition as a possible dark matter candidate that would not show up in current weak 

interaction type searches.  Spacetime has to warp in accord with GR around mass 

concentrations to make available the zero point energy required by their extra cosmic 

wavelength gravitons. To keep things simple we looked only at the long range gravitons 

emitted by this mass that interact with the rest of the mass in the universe

 (Universe)* * (Universe)
m m

     while ignoring the relatively smaller number of long 

range gravitons emitted by the mass interacting with itself ( *
m m

  ). This paper looks at the

( * )
m m

   term which is only significant close to black holes. It unfortunately messes up a 

nice agreement with the Schwarzchild solution by adding an 2 2
/m r term (in Planck units). In 

the solar system this is insignificant, where at Earth radius 8
/ 10m r


 & 2 2 16

/ 10 ,m r


  but 

a non rotating black hole radius increases approximately 27% from 2r m  to 2.54r m . 

With angular momentum this becomes the modified ergosphere maximum diameter, but the 

radius of a maximum spin black hole is unchanged at r m . These changes may possibly 

introduce a tension with the field equations of General Relativity, but only close to Black 

holes. The 00
T  component, based on mass/energy density, does not seem to naturally relate 

with an 2 2
/m r term. The Riemannian tensor however, that controls the curvature of 

spacetime would remain king, always controlling the metric. This will hopefully become 

clearer as we proceed. These changes would only be seen as small changes in the last few 

cycles of the gravitational waves from black hole mergers recently observed. The accuracy of 

these observations will almost certainly improve with time and these changes may be 

detected. They may also change slightly the maximum mass at which neutron stars form 

black holes depending on their angular momentum. 

 

At the risk of some repitition with the above we repeat some of the abstract and introduction 

of that earlier paper:  

“In a different approach, it proposes fundamental particles formed from infinite 

superpositions with mass borrowed from a Higgs type scalar field. However energy is also 

borrowed from zero point vector fields. Just as the Standard Model divides the fundamental 

particles into two types…those with mass and those without, with the Higgs mechanism 

providing the difference…infinite superpositions seem also to divide naturally into two sets: 

(a) those with  “infinitesimal” mass, and (b) those with significant mass (from micro electron 

volts upwards). In the infinitesimal set (a), photons, gluons and gravitons (so that gravitons in 
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particular can span the cosmos) all have 33
10


 eV mass, approximately the inverse of the 

radius of the causally connected, or observable universe 
9

46 10
OU

R    light years. This 

mass is also close to some recent proposals [8] giving gravitons a mass of 33
10 eV


 to 

explain the accelerating expansion of the universe. These infinitesimal mass values are so 

close to zero the symmetry breaking of the Standard Model remains essentially valid. These 

particles travel so close to the speed of light they have virtually fixed helicity, with the Higgs 

mechanism increasing their mass from infinitesimal type (a) to significant or measureable 

type (b) values.”  

 

In that earlier paper infinite superpositions are always built in some rest frame in which they 

had no nett momentum p but only 
2

p terms. In the “infinitesimal” mass set this rest frame can 

be, and usually is, travelling at almost light velocity, as seen from our usual (nearly) 

comoving frame. We also divided the world of all interactions into two sets.  

(a) Primary Interactions are only virtual. They build all the fundamental particles in the 

form of infinite superpositions. 

(b) Secondary Interactions are all the others that occur between fundamental particles, both 

virtual and real. They are the real world of experiments that the Standard Model is all about. 

The rules for borrowing energy from zero point fields can be different for both (a) & (b). 

Primary interactions are between spin zero particles borrowed from a Higgs type scalar field 

and the zero point vector fields. In the 1970’s models were proposed with preons as common 

building blocks of leptons and quarks [10] [11] [12] [13] In contrast with the spin zero 

particles in this paper, most of these earlier models used real spin ½ building blocks. As in 

earlier models this paper also calls the common building blocks preons, but here the preons 

are both virtual, and spin zero bosons. There are only three preons; red, green and blue, all 

with positive electric charge. There are also three anti preons; antired, antigreen and antiblue, 

all with negative electric charge. As preons are spin zero there can be no weak charge 

involved in primary interactions. This is all explained more fully in the first paper. These 

preons build all spin ½ leptons and quarks, spin 1 gluons, photons, W & Z particles, plus spin 

2 gravitons. This is in contrast to only leptons and quarks in the earlier models.  

In the rest frame in which the particles are built the spin zero preons are born with zero 

momentum. This means they are born with infinite wavelength allowing the possibility that 

they can borrow zero point energy from an infinite distance. We proposed that they borrow 

redshifted Planck energy zero point quanta from a holographic horizon receding at light like 

velocities relative to comoving coordinates instantaneously on that horizon. This is necessary 

because at cosmic wavelengths of OU
R  the density of zero point modes is almost zero and 
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insufficient to build all the fundamental particles; gravitons in particular. We also found that 

there is always some minimum wavenumber 
1

min OH
k R


 where the density of this redshifted 

supply of zero point quanta is equal to that required to build gravitons which are the largest 

user of these cosmic wavelength quanta. At minimum wavenumber min
k the probability 

density of gravitons is min min minGk Gk
K dk   where minGk

K is a constant scalar, in any 

coordinates, at all points in spacetime. The value of 
1

min Horizon
k R


 however depends on the 

cosmic time T , but also on the value of 00
g in the local metric. The Riemannian spacetime 

curvature tensor is controlled by the need to keep what we call “The min
k Graviton Constant 

minGk
K ” invariant. 

For the sake of clarity, and to avoid continually referring to the earlier paper this paper 

repeats (with some changes and corrections) some of the final third (of the earlier paper), but 

now includes cosmic wavelength gravitons emitted by the mass interacting with itself 

( * )
m m

  , and also includes the effects of angular momentum.  

Einstein published his General Theory of Relativity [1] 100 years ago. There have been many 

attempts over the intervening years to modify it with different goals in mind. A dissertation 

by Germanis [2] discusses some of these modifications [3] [4] [5] [6] . If we ignore the 

possible tension with General Relativity close to black holes, the main modification proposed 

in these papers, (Background)T T   versus simply T , has an infinitesimal effect locally, 

but significant implications at cosmic scale. The current Standard Model of Cosmology is 

based on unmodified General Relativity. It requires Dark energy to accelerate the expansion, 

it requires 1  , it requires Inflation so that regions initially out of causal contact can have 

(almost) uniform properties and to produce the observed average flatness. The modification 

in red above, proposed in these two papers, should eliminate the need for these requirements. 

If minGk
K is invariant at all points in spacetime, the equations controlling the expansion of  

space and the warping of spacetime around mass concentrations are the same for all observers 

in this universe and should also be for those far away. There should be no metaverses and no 

need for anthropic arguments. The original arguments behind the Cosmological Model, of 

uniformity on average everwhere, should be absolutely true.  

While the arguments proposed in these papers are radical, and will no doubt contain many 

errors, the principles behind them may well suggest a possible different path forward.  

It is probably to our evolutionary advantage that what we call established or collective 

knowledge, or paradigms particularly in science, changes slowly; and only after evidence for 

change builds to a tipping point. In the end however, science, as it always has in the past, 

slowly but surely progresses towards the simplest explanations regardless. 
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2 The Expanding Universe and General Relativity 

2.1 Zero point energy densities are limited 

If the fundamental particles can be built from energy borrowed from zero point fields and as 

this energy source is limited, (particularly at cosmic wavelengths) there must be implications 

for the maximum possible densities of these particles. In section 2.2.3 in [7] we discussed 

how the preons that build fundamental particles are born from a Higg’s type scalar field with 

zero momentum in the laboratory rest frame. In this frame they have an infinite wavelength 

and can thus be borrowed from anywhere in the universe. This would suggest that there 

should be little effect on localized densities, but possibly on overall average densities in any 

or all of these universes. So which fundamental particle is there likely to be most of? Working 

in Planck, or natural units with 1G   we will temporarily assume the graviton coupling 

constant between Planck masses is one. (We will modify this later but it helps to illustrate the 

problem.) As an example there are approximately 61
10M   Planck masses within the 

causally connected or observable universe. They have an average distance between them of 

approximately the radius 
OH

R  of this region. Thus there should be approximately 2 122
10M 

virtual gravitons with wavelengths of the order of radius 
OH

R  within this same volume. No 

other fundamental particle is likely to approach these values, for example the number of 

virtual photons of this extreme wavelength is much smaller. (Virtual particles emerging from 

the vacuum are covered in section 2.5.4) If this density of virtual gravitons needs to borrow 

more energy from the zero point fields than what is available at these extreme wavelengths 

does this somehow control the maximum possible density of a causally connected universe?   

2.1.1 Virtual Particles and Infinite Superpositions 

Looking carefully at section 3.3 in [7] we showed there that, for all interactions between 

fundamental particles represented as infinite superpositions, the actual interaction is between 

only single wavenumber k  superpositions of each particle. We are going to conjecture that a 

virtual particle of wavenumber k  for example is just such a single wavenumber k member. 

Only if we actually measure the properties of real particles do we observe the properties of 

the full infinite superposition. The full properties do not exist until measurement, just as in so 

many other examples in quantum mechanics. We will use this conjectured virtual property 

below when looking at the probability density of virtual gravitons of the maximum possible 

wavelength. These virtual gravitons would be a superposition of the three modes 3,4,5n   of 

a single wavenumber k , as in Table 4.3.1 in [7]. Time polarized or spherically symmetric 

versions would be a further equal (1 / 5)  superposition of 2, 1,0, 1, 2m       states of the 

above 3,4,5n   mode superpositions. A spin 2 graviton in an 2m    state is simply a 

superposition of the three modes 3,4,5n  as above but all in an 2m    state. This is 

explained in the first paper section 3.2.2 page 30 [7] . 
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2.1.2 Virtual graviton density at wavenumber k  in a causally connected Universe 

From here on we will work in natural or Planck units where 1c G   .  

General Relativity predicts nonlinear fields near black holes, but in the low average densities 

of typical universes we can assume approximate linearity. The majority of mass moves 

slowly relative to comoving coordinates so we can ignore momentum (i.e. 1)  , provided 

we limit this analyses initially to comoving coordinates. Spin 2 gravitons transform as the 

stress tensor in contrast to the 4 current Lorentz transformations of spin 1, but, at low mass 

velocities the only significant term is the mass density
00

T . In comoving coordinates the vast 

majority of virtual gravitons will thus be time polarized or spherically symmetric which we 

will for simplicity call scalar. We should be able to simply apply the equations in sections 3.4 

& 3.5 in [7]  to spin 2 virtual graviton emissions, as they should apply equally to both spins 1 

& 2 at low mass velocities. (This is not necessarily so near black holes.) We will assume 

spherically symmetric 3l   wavefunctions emit both spins 1 & 2 scalar virtual bosons, and 

3, 2l m    states can emit both 1m    spin 1 bosons and 2m    spin 2 gravitons. Section 

3.4 in [7] derived the electrostatic energy between infinite superpositions. In flat space we 

looked at the amplitude that each equivalent point charge emits a virtual photon, and then 

focused on the interaction terms between them. Thus we can use the same scalar 

wavefunctions Eq’s. (3.4.1) in [7] for virtual scalar gravitons as we did for virtual scalar 

photons. Using 1 2( )  * 1(  2 ) 1 1 1 2 2 1 2 2( * ) ( * * ) ( * )          
 

we showed 

in section 3.4.1 in [7]  that the interaction term for virtual photons is 

 

                                        1 2
( )

1 2 2 1 1 2

1 2

4
* * cos ( )

4

k r rk
e k r r

r r
   



 
    

(2.1. 1) 

 

 

 

 

 

 

                 

Where 1 2
&r r  are the distances to some point P  from two charges or masses 1 & 2, and we 

are looking at the interaction at point P  as in Figure 2.1. 1. Equation (2.1. 1) is strictly true 

only in flat space but it is still approximately true if the curvature is small or when 

2 / 1m r  , which we will assume applies almost everywhere throughout the universe 

except in the infinitesimal fraction of space close to black holes. In both sections 3.4 & 3.5 in 

[7] for simplicity and clarity, we delayed using coupling constants and emission probabilities 

in the wavefunctions until necessary. We do the same here. There will also be some minimum 

wavenumber k which we call min
k where for all min

k k  there will be insufficient zero point 

energy available. We want Eq.(2.1. 1) to still apply at the maximum wavelength whe

2 1 

Point P   

1
r

  

2
r   Figure 2.1. 1 
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min
1 / ( 1 / )

OU ObsevableUniverse
k R R  . In section 6 in [7] we found gravitons have an infinitesimal 

rest mass 0
m of the same order as this minimum wavenumber min

k . At these extreme k values 

this rest mass must be included in the wavefunction negative exponential term. It is normally 

irrelevant for infinitesimal masses. Section 6.2 in [7] looks at 2N  infinitesimal rest masses 

finding
2

min
1

k
K  . Using Eq. (3.1.11) in [7] with 1c   

 

 2 2

2 min

min 2

0

1
2

k

s n k
K

m
   and for spin 2 gravitons 

2 2

min 2

0 min2

0

1  or  
n k

m k n
m

           
  (2.1. 2) 

  

From Table 4.3.1 in [7]  we find    

     For 2N   spin 2 gravitons 2
11.644n   so that 0 min min

11.644 3.412m k k   (2.1. 3) 

 

This virtual mass 0
m  increases the negative energy of the virtual graviton from k  to

2 2

0
k m  .  The exponential decay term kr

e
 in its wavefunction becomes

2 2
0r k m

e
 

.  

Using Eq. (2.1. 3) we can define a k   such that 

 

       
22 2 2 2

min min min i

2

n m n0 mi
11.644   and   11.644 3.55  6k k kk k m k k k            (2.1. 4) 

A normalized virtual massles graviton wavefunction is 
2

4

kr ikr
k e

r




 

 see Eq. (3.4.1) in [7] 

and for infinitesimal mass gravitons this becomes using Eq. (2.1. 4)    

 

       A massless 
2

4

kr ikr
k e

r




 

     becomes with infinitesimal mass 
2

4

k r ikr
k e

r

 
  

 (2.1. 5) 

 

 

Thus the massless interaction term in Eq. (2.1. 1) becomes with this infinitesimal mass 0
m   

 
                           1 2

( )
1 2 2 1 1 2

1 2

4
* * cos ( )

4

k r rk
e k r r

r r
   



 
    

     

   (2.1. 6) 

 

 

 

 

 

 

 

 

 

 

 

2
dr

  

1
dr   1

r   

2
r   

Central point P 
     Figure 2.1. 2 

 



10 

 

Let point P  be anywhere in the interior region of a typical universe as in Figure 2.1. 2. Let 

the average density be 
U

  (subscript U for homogeneous universe density) Planck masses per 

unit volume. Consider two spherical shells around the central point P of radii 
1 2

&r r  and 

thicknesses 
1 2

&dr dr  with masses 
2

1 1 1 1
4

U U
dm dv r dr     & 

2

2 2 2 2
4

U U
dm dv r dr    . 

Now we expect the graviton coupling constant  to be 1
G

   between Planck masses but 

because we do not really know this let us define   

 

        The Secondary graviton coupling constant between Planck masses 
G

        (2.1. 7) 

 
In section 3.4.1 in [7] Eq. (3.4.3) used a scalar emission probability (2 / )( / )dk k  which 

becomes (2 / )( / )
G

dk k   between Planck masses. (We return to this in section 2.4.2)  Now 

quantum interactions are instantaneous over all space but distant galaxies recede at light like 

and greater velocities.  However at the same cosmic time T in all comoving coordinate 

systems, clocks tick at the same rate, and a wavenumber k (or frequency) in one comoving 

coordinate system measures the same in all comoving coordinate systems.  Thus as we 

integrate over radii 
1 2

& 0r r     we can still use the same equations as if the distant 

galaxies are not moving. (The vast majority of mass is moving relatively slowly in these 

comoving coordinate systems and we return to this important comoving coordinate property 

in section 2.4.1). Using this proposed coupling probability between Planck masses

(2 / )( / )
G

dk k   we can now integrate over both radii 1 2
&r r ; but to avoid counting all pairs 

of masses 1 2
&dm dm  twice, we must divide the integral by two. The total probability density 

of virtual gravitons at any point P in the universe at wavenumber k is using Eq.  (2.1. 6)  

 

                   

1 2

1 2

2

( )2 2

1 1 2 2 1 2

1 20

( )2

1 2 1 2

0

2 4
4 4 cos ( )

2 4

     16 cos ( )

k r rU

Gk

k r r

G

G U

k
r dr r dr e k r r

r r

k
dk r r e k r r

k






  

 



 



 




   


 





  

Expanding 1 2 1 2 1 2
cos ( ) cos cos sin sink r r kr kr kr kr   , then using: 

   
2 2

2 2 2

0

( ) cos( )
( )

r

r

k k
rExp k r kr dr

k k





 
 

        and      
2 2 2

0

2
( ) sin( )

( )

r

r

k k
rExp k r kr dr

k k






 

                              

     finally yields 
2 2 2

2

2 2 4

( )
16

( )
Gk UG

k k k
dk

k k k
  

  


 

2

2 2 2

1
16

( )
UG

k
dk

k k k





 
 

      (2.1. 8) 

 

From Eq.(2.1. 4) 
2 2 2 2

0 min
11.644k k m k k     and we can write Eq.(2.1. 8) as 

 

 

2 2

min2

2
2 2

min

11.644 1
16

2 11.644
Gk G U

k k
dk

k k k
 




  m

2

2
2

2

4

in

11.644

2 11.6
6

44
1

G

U
x

x x
dk

k







 where 

min

k
x

k
   
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 

2

4

min

2

2
2

0.3056
Wa

52.35 11.644

2 11.64
velength  Graviton Probability Density 

4

U

Gk

G
x

x x
k dk

k







 
 

 
 

  

2

min min4

mi minn

0.3056
Maximum wavelength Probability Density  whe 1n U

Gk

G d
k

k
x

k
k

 
     

 

 

 (2.1. 9) 

 

 

 

As we think minG
K  will prove to be a universal constant scalar we will write this as follows. 

 

2

min min min min 4

min

0.3056
Maximum wavelength Probability Density  where U

Gk

G

Gk Gk
K dk K

k

 
    

 (2.1. 10) 

 

2.2 Can we relate all this to General Relativity? 

The above assumes a homogeneous universe that is essentially flat on average. At any cosmic 

time T it also assumes there is always some value min
k where the borrowed energy density 

min minGk ZP
E E  the available zero point energy density min

@ k . It is also in comoving 

coordinates. At the same cosmic time T, all comoving observers measure the same 

probability density min min minGk G k
K dk  as in Eq. (2.1. 10). So what happens if we put a small 

mass concentration 1
m  at some point?  The gravitons it emits must surely increase the local 

density of min
k gravitons upsetting the balance between borrowed energy and that available. 

However General Relativity tells us that near mass concentrations the metric changes, radial 

rulers shrink and local observers measure larger radial lengths. This expands locally 

measured volumes lowering their measurement of the background minGk
 . But clocks slow 

down also, increasing the measured value of min
k .  Let us look at whether we can relate these 

changes in rulers and clocks with the min min minGk G k
K dk   of Eq. (2.1. 10). 

 

2.2.1 Approximations with possibly important consequences  

Let us refer back to Eq. (3.4.2) in [7] and the steps we took to derive it; but now including 

2 2

0 min
11.644k k m k k     as in Eq. (2.1. 4)  

 

                              1 2
( )

1 2 2 1 1 2

1 2

4
* * cos[ ( )]

4

k r rk
e k r r

r r
   



 
    

  (2.2. 1) 

 

And assume that space has to be approximately flat with errors 
1/2

1 (1 2 / ) / .m r m r     If 

we now focus on Figure 2.1. 1, equation (2.2. 1) is the probability that an infinitesimal mass 

virtual graviton of wavenumber k is at the point P if all other factors are one. Let us now put 

a mass of 1
m  Planck masses at the Source 1 point in Figure 2.2. 1. Also assume that the point 

P is reasonably close to mass 1
m (in relation to the horizon radius) at distance 1

r  as in Figure 
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Central observer 

at point P 
1

r   

2.2. 1 and the vast majority of the rest of the mass inside the causally connected or 

observable horizon OH
R  is at various radii r, equal to 2

 r  of Eq.(2.2. 1) where 2 1
r r r   and 

thus 1
cos[ ( )]k r r cos( )kr  . Only under these conditions can we approximate Eq. (2.2. 1) 

as  

 
1 2 2 1

1

4
* * cos( )

4

k rk
e kr

r r
   




     

    (2.2. 2) 

 

(We will later find that this approximation is consistent with limiting the range of GR to well 

inside the horizon but to vast scales) 

 

 

 

 

 

 

 

 

 

 

 

 

 

As we have assumed average particle velocities are low ( relative to comoving coordinates) 

this is a time polarized or scalar interaction and as there are no directional effects we can 

consider simple spherical shells of thickness dr  and radius r around a central observer at the 

point P which have mass 
2

4 .
U

dm r dr   At each radius r the coupling factor 

(2 / )( / )dk k   using Eq. (2.1. 7) again is (2 / )( / )
G

dk k   between Planck masses and 

again we use the fact that all instantaneously connected comoving clocks tick at the same 

rate.   

      
                    21 1

2 2
Coupling factor 4

U

G G
m mdk dk

dm r dr
k k

 


 


    

(2.2. 3) 

 

Including this coupling factor in Eq. (2.2. 2) 

 

       

2 21 1

1 2 2 1

1

1

1

2 2 4
( 4 )( * * ) 4 cos( )

4

8
                                                                cos( )

k r

U U

k rU

G G

G

m mdk dk k
r dr r dr e kr

k k r r

m k dk
re kr dr

r k

 



       
  









  
    

   


 

 

 

          

 

(2.2. 4) 

 

Spherical shells thickness dr   

& mass 
2

4
U

dm r dr   

 Mass 1
m   

 r   

Radius 1
r r   

Figure 2.2. 1 
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This is virtual graviton density at point P due to each spherical shell. (ignoring the relatively 

small number of particularly min
k  gravitons emitted by mass 1

m  itself 
1 1

( * )
m m

   see section 

2.6.1). Integrating over radius 0r    the virtual graviton density at wavenumber k using 

Eq’s. (2.1. 4 & (2.2. 4) 

                            

1

1 0

2 2

1

2 2 2

1

8
cos( )

8 ( )
       

( )

k rU

G

U

G

G

m k dk
re kr dr

r k

m k dk k k

r k k k



















 

  
  

  


 

 

   

  (2.2. 5) 

 

 

Now 2 2 2 2 2

0 min
11.644k k m k k     and if min

k k then 2 2

min min
12.644k k   & so when min

k k :    

 

                   

1 1

2 2 2

min min1 min min

min 2 2 2

1 min min min

1

min Universe Universe min2

1 min

12.6448 (12.644 )
 

(12.644 )

= ( * + * ) 0.566

U

Gk

U

Gk m m

G

G

k dkm k k

r k k k

m
dk

r k







  



 





 
  

 



 

 

  (2.2. 6) 

 

 

Equation (2.1. 10) suggests min min minGk G k
K dk  . In comoving coordinates in a metric far 

from masses & g  ,  min
k  has its lowest value. As we approach any mass min

k  increases 

to min
k  where we use green double primes when g   to avoid confusion with the 

min
&k k   of Eq. (2.1. 4).  At a radius r  from mass m  the Schwarzchild metric is 

1/2
(1 2 / )m r


  for the time and radial terms. Radial rulers shrink and clocks slow, measured  

volumes and frequencies both increase locally as 1
m

r
  .Thus using min min minGk G k

K dk   

 

                If r m ;    
min min min

minmin min1 1
k

k
k dm V V V

r V V

k

k dk 

  
      

 
  

   (2.2. 7) 

 

 

So in this metric the total number of min
k gravitons is the original ( )g 

minGk
  of Eq. 

(2.1. 10) plus the extra due to a local mass of Eq. (2.2. 6), but we have to divide this number 

by the increased volume to get the new density n minmi
(1 )

Gk Gk

m

r
   . Thus using Eq. (2.2. 7) 

 

                       The new    min min m

m

in mi

i minn

n  (1 /  )
1 / (1 / )

Gk Gk Gk Gk

GkGk
m r

V V m r


   


   
 


 

 
   

 

                          
2

min min min min
(1 /  ) (1 2 / )       (if  )

Gk Gk Gk Gk
m r m r r m           
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                                                   min min

min

2
1Gk Gk

Gk

m

r

 



 
   

                                                              

min

min

2Gk

Gk

m

r








      

(2.2. 8) 

 

 

We can now put Eq’s. (2.1. 9), (2.2. 6) & (2.2. 8)) into this, and dropping the now 

unnecessary subscripts the graviton coupling constant G
  cancels out:     

              

                   
min2

min min

2

min
min4

mi

2

min

n

0.566

     2

        0.305

1 8

6

. 53

U

Gk

UGk

G

U
G

m
dk

r k m k m

r r
dk

k












 
   


   

   
 




 

(2.2. 9) 

 

 

(Strictly speaking we should be using mink
dk   in the top line of this equation but the error is 

second order as we are approximating with r m . We will do this more accurately below 

for large masses.) For the above to be consistent with General Relativity this suggests that: 

 

“At all points inside the horizon, and at any cosmic time T, the red highlighted part is 2  in 

Planck units. This is simply equivalent to putting 2
/ 1G c G c   ”.  

 

Thus we can say 

                   

2

2

min 2

min

(0.9266) 0.9266

Where the parameter  is in radians, and  is close to 1

The average density of the universe 

.

U

OU

OH

k
R

k R




 

  

     

   

  (2.2. 10) 

 

Putting Eq. (2.2. 10 the average density U
 into Eq.(2.1. 10) gives minGk

 & minGk
K . 

      

2 2

mi

2

min min4

min

min min min min4

min

mi

n

mn

0.3056
Maximum Wavelength Graviton Probability Density 

0.3056
            0.262

           Where we label 0.26

(0.9266 )

"The2  a  s 

U

Gk

Gk Gk

G

G

G

Gk

G

dk
k

dk dk K dk
k

K

k

k

 









  


in

 Graviton Constant".

 

 

 

 

(2.2. 11) 

 

If our conjectures are true, this is the number density of maximum wavelength gravitons 

excluding possible effects of virtual particles emerging from the vacuum. In section 2.5.4 we 

argue these do not change the minGk
K  of Eq. (2.2. 11). However minGk

K   does depend on the  

graviton coupling constant G
  between Planck masses, but G

  cancels out in Eq.(2.2. 9).  

It does not affect the allowed universe average density U
  in Eq. (2.2. 10).  
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2.2.2 The Schwarzchild metric near large masses 

At a radius r  from a mass m  (dropping the now unnecessary subscripts) the Schwarzchild 

metric is 
1/2

(1 2 / )m r


  for the time and radial terms which can be written as  

 

                              
2

1 1 1

1 2 1/
r

t

M

M

r

t

g
m r g 




  


 
(2.2. 12) 

 

 

Velocity M
 ( 1c  ) is that reached by a small mass falling from infinity and

1

M
 

is the metric 

change in clocks and rulers due to mass m . We are using green symbols with the subscript M 

for metrics g  as we did for min
k  above. The symbols 

1

M
 

help clarity in what follows. 

                                                              

                                                         

2

2

00

2

1 1

1 2 /

M

M rr

m

r

g
m r g







  


 

 

 Using these symbols  min min mimin min m nn iM M Gk M Gk
dkdkkk            

   

 

 

(2.2. 13) 

 

 

In sections 2.1.2 & 2.2.2 we approximated in flat space. The wavelength of min
k  gravitons 

span approximately to the horizon. They fill all of space. We can think of the space around 

even a large black hole as an infinitesimal bubble on the scale of the observable universe. The 

normalizing constant of a min
k wavefunction emitted from a localized mass is only altered 

very close to this mass. Over the vast majority of space it is unaltered. Only close to this mass 

will local observers measure min minM
k k   due to the change in clocks. There is also a local 

dilution of the normalizing constant due to the change in radial rulers. We will consider both 

these changes in two steps to help illustrate our argument. Now repeat the derivation of 

minGk
  as in section 2.2.1 but with a large central mass as in Figure 2.2. 1. 

At the point P consider Eq.(2.2. 2)  1 2 2

1

1* * cos )
4

4
(

k r
kr

r r
e

k


   


 


 .   

The red part is the normalizing factor discussed above where we will initially ignore the 

dilution due to the local increase in volume. The green &k r kr  can be thought of as invariant 

phase angles. So if we ignore the dilution factor this equation is unaltered. However the 

coupling factor contains all the masses in the universe and the local mass m . But in the 

Schwarzchild metric this is the mass dispersed at infinity before it comes together. At a radius 

r it is measured as M
m  . For the same reasons all the mass in the universe is increased by 

the same factor .
M

   
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We are left with the factor min

min

2
G

dk

k




 which is the same as min

min

min

min

2 2
M

M

G G
d k

kk

dk

 

 







in the 

changed metric. Ignoring the dilution factor, and considering only clock changes Eq.(2.2. 6)  

 

becomes, dropping the now uneccesary subscripts    

             

               With only time change and no dilution min in

m

2

m2

in

 0.566 U

Gk MG

m
dk

r k
  


   

               But 
2

min

0.9266U

k


  from Eq. (2.2. 10) so  min m

2

in

2
 0.262

Gk GM

m
dk

r
    

From Equ’s. (2.2. 11) & (2.2. 13) min
0.262

GGk
K  and 

2 2
M

m

r
     and we finally get  

 

           Before dilution of the normalization factor min min

2 2

min
 

M MGk Gk
K dk     (2.2. 14) 

 

So the total min
k graviton density before dilution is the original min min minGk Gk

K dk  plus the 

extra min min

2 2

min
 

M MGk Gk
K dk   .   Thus before dilution         

              

         

min min min min min

2 2 2 2

2

2 2 2

2

2

min min

min min min

(Total)

                           But  

                          

(1 )

(1 )

 So undiluted (Total)

1
1

 

M M M M

M

M M

Gk Gk Gk Gk

Gk Gk

M

M

M

K dk K dk K dk

K dk

   


  











   

  




 

 

 

    (2.2. 15) 

 

If we now increase the volume to that in the new metric, the new volume is 
Mrr

g   times 

the original volume. So in the new metric we must divide this value by M
 . 

 

            In the new metric min min

min min

2

min mimin n
 M

Gk M

M

Gk

Gk Gk

K dk
K dk kK d


 


    

(2.2. 16) 

 

If for example 2
M

  , frequencies are doubled so min min
2k k  , the number density of 

gravitons ( minGk
  min

2
Gk

 ) is doubled, but so is the measurement of a local small volume 

element, which is now 2V  . The above equations tell us that the original minGk
 background 

gravitons which occupied one unit of volume is now compressed into 1/2 a unit of volume 

and the remaining 3/2 units of volume is taken up by extra gravitons due to the central mass. 

Figure 2.2. 2 illustrates this. The metric appears to adjust itself so that minGk
K (the maximum 

wavelength graviton probability constant) is an invariant scalar. (See Figure 2.5. 1 also.) 

What we have done in this section is only true if the increase in measured volume is equal to 

the increase in measured frequency. In the Schwarzchild metric this is equivalent to saying 

that 1
rr tt

g g  . But what happens in the Kerr metric with angular momentum?  
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2.3 Angular Momentum and the Kerr Metric 

In the Schwarzchild metric the increase in volume is the same as the frequency increase as 

1
rr tt

g g   and 4 2
sing g r     is invariant if there is no angular momentum. With angular 

momentum both &g g   change. The volume ratio of g  space, to g  space in 

 

any metric at fixed &r   is 
4 2

( )( ) ( )( )

( )( ) sin

rr rr

rr

g g g g g g g gV

V g g g g r

       

   

 

 

            
 

   
 

 (2.3. 1) 

 

 

Now the Kerr metric can be written as 
2 2 2 2

cosg r        

                                                              2 2 2 2 2

2
( sin )sinS

r r
g r    


     

                                                              2

2
sinS

t

r r
g   


   

                                                              
2

rr
g


 


       &     

2
1 S

tt

r r
g


    

 

Where 
2 2

S
r r r        and    

J

mc
     and   

2
2

S

Gm
r m

c
   is the Schwarzchild radius in  

Planck units where 1G c  . Everything is in units of 
2

length or (length) , but &
rr tt

g g are 

dimensionless.  Because we want volume ratios as in Eq. (2.3. 1) we can write the above 

version of the Kerr metric in a dimensionless form, leaving the 2
(length)  or length terms 

2 2 2 2 2 2 2 2
, sin & sin  in d , sin d & sin  etcr r r r r r d        outside the metric tensor. This 

effectively gives us the denominator 4 2
sinr   we want in Eq. (2.3. 1) as we will see. We 

need to also remember that   is a length dimension.  

 

Measured local volumes double, & 3/2 units of volume   

the increased number density equals the extra maximum 

wavelength gravitons at that point due to a central mass. 

Figure 2.2. 2 An infinitesimal local volume in a Schwarzchild metric where 2
Mrr

g   .  

 

The background min
k gravitons that originally occupied one 

unit of volume are compressed into 1/2 a unit of volume as 

number densities are doubled in this new metric. 
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Writing the above in dimensionless form as follows, using      for the line element 2
ds :                               

                                                   
2

2 2

2
1 cosg

r



       

   A  Dimensionless form             
2 2

2

2 2 2
1 sin

A
g

r r


 



     

   of the Kerr metric                     
2

sin
t

A
g

r






   

                                                   
2

rr
g


 


 

                                                   
2

1
tt

A
g


    

 

 

 

      (2.3. 2) 

 

Where 
2

2
1 A

r


     and 

2m
A

r
  but we may add an 

2

2

m

r
 later (see Section 2.6) which is 

also dimensionless, as we have left out 1G c   in Planck units. Now the space surrounding 

a rotating mass corotates with it. If we move in this corotating reference frame there is a new 

metric time component

2

t

tt tt

g
g g

g





   . Thus using Eq. (2.3. 2)      

                                    

2 2
2

2 4 2

2 2 2
2

2 2 2

sin

(1 )

1 sin

t

tt tt

A

g A r
g g

g A

r r










  




     
 

   
 

  

                                         

2 2
2

2 2

2 2 2
2 2

2 2 2

sin

(1 )

1 sin

A

A r

A

r r






  
 



  
 
  

 

 

                          

2 2 2 2 2 2 2
2 2 2 2

2 2 2 2 2 2 2 2

2 2
2 2

2 2 2

(1 sin ) (1 ) sin sin

(1 sin )

A A A
A

r r r r r

A

r r

    
   

  

 
 



     



 

  

                                               

2 2 2
2 2

2 2 2

2

(1 sin ) (1 )A
r r r

g

  
 



    




        

                                               

2 2
2 2

2 2

2

(1 cos ) (1 )A
r r

g

 
 



   




                                                                          

                           

2 2
2 2 2

2 2

2 2

(1 ) (1 )

      
tt

A A
r rg

g g g  

 
  

 

    


   
  

   

       

      (2.3. 3) 
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(We have explicitly gone through this to show that if 
2m

A
r

 is dimensionless there is 

potentially freedom to change it, as it will not change Eq.       (2.3. 3), see Section 2.6) 

We will do all our calculations in this corotating refence frame. Space is swirling around the 

black hole effectively at rest in this frame as clocks also tick fastest in it. If a small mass, at 

rest at infinity in the same rest frame as the rotating black hole, falls inwards, it will have the 

same circumferential velocity as the corotating rest frames at all radii. It will be falling 

radially through these corotating frames. As in section 2.2.2 we call this radial velocity 
M

  

where as in the non-rotating case        

                  
2

1

1
M

M





   but now 

2

11

1
M t

M

t
g







 the inverse rate of clocks.  

                      In the corotating frame        

2

2

1
t

M

M

t
g

g

g










 








 

     

    (2.3. 4) 

 

 

Frequencies measured in this corotating frame will increase as M
 .  

Similarly using Eq’s. (2.3. 1) & (2.3. 4) we can get the volume element ratio  

 

 The volume element ratio 
2

2 2 2
( )

r Mr

g
V g g g g



   


  


      
 

 
   (2.3. 5) 

 

 

With angular momentum we no longer have the same increase in frequency as volume as in 

the Schwarzchild case. With no angular momentum we found that the probability density of 

time polarized min
k  gravitons Eq. (2.2. 14) 

min min

2

min

2

M MGk Gk
K dk  

i in

2

m n m

2
GkM

m
K dk

r
  . 

With angular momentum we can expect circularly polarized gravitons surrounding the 

rotation axis and transversely polarized around the equator. This will increase the time 

polarized 
2m

r
 figure to some as yet unknown figure we simply label as X where 

2
X

m

r
   . 

 

We will rewrite Eq.(2.2. 14) as       min min mi

2

nk MG Gk
XK dk   with rotation    (2.3. 6) 

 

Where the factor
2

M
  is for the same clock rate change effect in the metric as before or see 

section 2.3.2 and the derivation of Eq. (2.3. 13). Repeating the derivation of Eq.(2.2. 15)  

          min min min

2

min min m min

2

in
(Undiluted Total) (1 )

Gk Gk Gk GkM M
XK dk K dk K dX k      
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As in Eq.(2.2. 16) we need to divide this undiluted total by the new volume 
2

M
V   in Eq. 

(2.3. 5) to get the new 
min

k  graviton density
min

 
Gk

  .  

If our conjectures are correct 
m m minin niGkGk

K dk  is always true, and as our measurement of 

min
k increases to 

min minM
k k  in the new metric, 

min
 

Gk
 

min minGk M
K dk .  

 So rewriting Eq.(2.2. 16) as follows 

 

    min min min min

min min min2

2 2

min min

(1 ) (1 )
 Gk Gk

Gk Gk k

M M

G M

M

KX d Xk K dk
K dk K k

V
d

 


 


 


                

                                          2

min min min m

2 2

in
(1 )

Gk GkM M
K dk K dkX     

 

                                          22 2
1 

M M
X     

                                         
2

2

2 2

22

1 1
( 1 cos )

M M

X
r








      

                                         
2

2

2
(1 cos )

r
X

g





  


 using Eq. (2.3. 4)  

                                         

2

2
2

2

2 22
2

2 2 2

1

1 cos

1 sin

A
r

A

r

X
r

r






 




 

  

 

 using Eq’s.(2.3. 2) 

We can write this as        

2 2 2

2

2 2 2 22

2

2 22
2

2 2 2

1 sin 1

cos

1 sin

X

A
A

r r r

Ar

r r

  





 




   
       

   
 

 

 

                                        

2 2

2 22

2

2 22
2

2 2 2

sin
1

cos

1 sin

A
r

Ar
X

r r

 




 




 
 

 
 

 

 

                                       

2 2

22

2

2

sin
1

cos

A

X
r g

r g





 




 
 

 
 


  using Eq’s.(2.3. 2) 

 

     Which we will write as   
2

2

2

2 2

2
   co       s

sin
   A

r g

A
X

g r g  

 



  


 

 (2.3. 7) 
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Putting 
2m

A
r

 ,  the extra min
k  virtual gravitons 2

M
X  (due to a mass m  rotating with 

angular parameter  but with dimensions of length) are the following three polarization 

groups (The background min
k  virtual gravitons have been normalized to one when 1

M
  )   

 

Time polarized spin 2                      2 2 1
M

m

r g


 
 

  

  

Transversely polarized spin 2:        

2
2

2

2

2
sin

 
M

m

r r

g g 






  
  

   
 
 
 

  
( 2) ( 2)

2 2

m m    
 

 
   

Circularly polarized spin 2:             
2

2 2

2
cos           ( 2)

M
m

r


 

 
   

 
 

Comparing Figure 2.3. 1 & Figure 2.3. 2 there are some parallels with spinning charged 

spheres in electromagnetism. The electrostatic energy density surrounding a charged sphere 

however, reduces with radius as 4
r
 , and magnetic energy as 6

r
 , or two more powers of 

radius. With gravity however we have been looking at the probability density of minimum 

wavenumber min
k  gravitons surrounding a mass. With no angular momentum there are only 

time polarized min
k gravitons and their extra probability density drops as 1

r
 , as so far we 

have only focussed on those min
k gravitons (the vast majority), that interact with the rest of 

the mass in the universe. If a charged sphere rotates, there is a radial magnetic field of 

circularly polarized 1m    photons varying in intensity as 2
cos   and a transverse magnetic 

field (of transversely polarized 1m   photons) varying as 2
sin   as in Figure 2.3. 1.  

 

 

         

 

 

 

                  

 

 

 

  Figure 2.3. 1  Spinning electrically charged sphere. At the same radius  (@ 0)
R

B    

 2 (@ / 2)
T

B      

Spin Axis R
B Circularly polarized radial 1m    photon 

 magnetic field intensity varies as 2 6
cos / r  

T
B Transversely polarized 1m    photon 

 magnetic field intensity varies as 2 6
sin / r  

 


  

Spherically symmetric time polarized photon 

electrostatic field intensity outside sphere 

varies as 4
1/ r . 
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Figure 2.3. 2  Spinning mass m  with angular momentum length parameter  .  The time 

polarized  min
k  gravitons are distorted from spherical symmetry as 1/ g  . For Sw

r r   we 

can ignore the effects of ,g g   & 
2

M
 ,  as all three rapidly tend to 1  when written in 

dimensionless form as in Equ’s.(2.3. 2).  These values are the extra probability densities 

before the density dilution due to the expansion of space around the rotating mass.                                                             

2.3.1 Stress tensor sources for spin 2 gravitons but 4 current sources for spin 1 

Spin 1 particles behave like a 4 vector, transforming with velocity as in the Special Relativity 

transformations of Minkowski spacetime. Spin 2 gravitons, in contrast, behave differently 

seeming to relate with the accelerations of General Relativity or non-Minkowski spacetime. 

The shape of gravitational waves behaves like transversely polarized 2m    particles, 

suggesting the min
k gravitons surrounding mass concentrations may only consist of time 

polarized, plus 2m   , transverse or circularly polarized, spin 2 particles. Time polarized 

versions would consist of an equal 1 / 5  superposition of 2, 1,0, 1, 2m       states. Before 

we considered angular momentum we treated all min
k  gravitons as time polarized or 

spherically symmetric. Unless close to black holes we only needed to think about mass 

sources, as the only significant term in the stress tensor near slow moving masses is 00
T . Also 

there is no accepted quantum field theory relating spin 2 gravitons to General Relativity. It is 

generally seen however, that spin 2 gravitons can be treated as coming from a Stress tensor 

source in contrast to a 4 Current source for spin 1 photons.When we looked at non rotating 

spherical masses it appeared that, even close to black holes, the spherical symmetry of the 

Schwarzchild metric suggested similarly spherically symmetric, or time polarized, extra min
k

gravitons right down to the horizon; with space expanding only radially. A stress tensor 

source with no angular momentum has only time polarized min
k gravitons. But this clearly 

changes when there is angular momentum in the source as above. We still have time 

polarized min
k  gravitons due to the central mass but distorted from spherical symmetry as 

Time polarized min
k graviton extra probability density 

outside sphere varying as   2 2 1
M

m

r g


 
 

  

 

Spin Axis 

Circularly polarized 2m    min
k graviton extra 

probability density varying as 
2

2 2

2
cos

M
r


 

 
 
 

 

Transversely polarized 2m    min
k graviton extra 

probability density varying as 

2

2

2

2

2
sin

M

m

r r

g g 






 
 
   

 


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1/ g  which only affects the close in region and disappears as 0  . There are 

transversely polarized 2m   min
k extra gravitons that are related to the central mass and the 

angular momentum length parameter .  The behaviour of the circularly polarized extra 

2m   min
k gravitons is only related to angular momentum. These circularly polarized 

gravitons do not have the 2 /m r  factor that the transverse gravitons have, and thus behave 

very differently. As we will discuss below it appears that they are generated from the 

background time polarized min
k gravitons by the swirling velocity of corotating space.  

2.3.2 Circularly polarized gravitons from corotating space 

With angular momentum the transversely polarized gravitons have the same 2 /m r  factor as 

the time polarized gravitons. They reduce in intensity as 3
1/ r . The circularly polarized 

gravitons do not have this 2 /m r factor and reduce as 2
1/ r .  The Kerr metric is an exact 

solution to Einstein’s field equations, which we claim (in an infinitesimally modified form as 

in Eq. (2.5. 6) are consistent with the min
k  Graviton constant being invariant at all points in 

spacetime (section 2.6 changes this consistency in some respects only); or that Eq. (2.2. 11) is 

always true. If this is so then Eq. (2.3. 7) should be true also. We can perhaps just accept that 

it must be true, but at the same time look at whether it makes sense? 

The angular momentum parameter has dimensions of length, and is defined as 
J

mc
  . 

Because angular momentum is the cross product of momentum by radius or m v r , we can 

think of this length parameter as a vector of length  , pointing along the axis of spin, with 

components cos   at any polar angle   to the spin axis. Space corotates around spinning 

masses with angular velocity 
t

g

g





    which in the plane of the equator simplifies to  

                                
3 2 2 3

S S

S

r c r c

r r r r

 

 
  

 
 when &

S
r r  .  

                          At large radii the corotating velocity   
2

S
r c

V r
r


     

      (2.3. 8) 

Because &
S

r   have dimensions of length this equation has dimensions of velocity, and if 

we divide it by c  it is dimensionless. We will call it Coratating C
     

                                  At large radii   
2

S

Coratating C

rV r

c c r


 

 
     

   (2.3. 9) 

If we now think of 
J

mc
   as 

m

m c c


 
 

v r v r
 we can consider a similar vector along the 

spin axis consisting of the cross product of the corotating velocity of space 
2

S
rV

c r


  by the 

radius .r  The length along the spin axis of this cross product vector 
c

V r
 is simply S

r

r


.   
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             Length of vector 
c

V r
 along the spin axis is S

r

r


  for 

S
r r   

  (2.3. 10) 

We need this vector length to be a dimensionless number representing the amplitude that a 

background time polarized min
k graviton generates a circularly polarized min

k graviton around 

the spin axis. If we divide Eq. (2.3. 10) by the Schwarzchild radius
S

r , all rotating black holes 

with the same percentage of maximum spin look identical and we get a dimensionless 

magnitude as required 

             Magnitude of normalized dimensionless vector S

S S

r

r c r r r

 
 

V r
 

 (2.3. 11) 

 

Now the /
t

g g    in Eq. (2.3. 8) is measured by the clock rate at infinity. In the 

corotating frame clocks tick slower and it is measured as the M
 of Eq. (2.3. 4) times greater. 

             In the corotating frame this magnitude becomes 
S

M M

r c r

  


V r
 

 

 (2.3. 12) 

The whirling velocity of space is a maximum out from the equator, but circularly polarized 

gravitons generated in this region have to be distributed on this shell around the spin axis as 

the square of the component of angular momentum. We thus conjecture that the probability 

of background time polarized min
k gravitons, on a corotating thin spherical shell at large 

radius, generating circularly polarized min
k gravitons around the spin axis on the same shell is 

(before we expand the volume with the new spatial metric)  

    Probability of 
2 2

min

2

m

2

in

Extra circularly polarized 2 gravitons cos

 Background time polarized  gravitons

M
m k

k r

   
   

 (2.3. 13) 

 

 

What we are suggesting here is that there is a background density of time polarized min
k

gravitons on each corotating spherical shell. The swirling velocity of these min
k gravitons 

generates extra circularly polarized min
k gravitons around the spin axis with a 2

cos   

distribution around the spin axis on the same shell, in agreement with Figure 2.3. 2. We have 

only derived this approximation at large radius, but we suggest that the swirling velocity of 

corotating space makes this true at all radii apart from possible changes we discuss in section 

2.6. Circular polarization is a result of the swirling velocity and not due to the mass.  

 

2.3.3 Transverse polarized gravitons from a rotating mass 

The mass is the cause of the extra time polarized min
k gravitons varying as 2 /m r . As we 

discussed earlier, in electromagnetism the electrostatic energy intensity drops as 4
1/ r , and 

the magnetic (or transverse 1m    polarization) intensity two powers of radius smaller, or as 
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2 6
sin / r . But the ratio of time polarized to transverse polarized photons at any radius is 

proportional to 2 2
sin / r . In a similar manner the ratio of the extra transverse 2m   min

k

gravitons to the extra time polarized min
k gravitons due to a rotating mass is proportional to 

2 2
sin / r . The proportionality factor being the same 2 as for circular polarization. 

      For rotating black holes   
2

2min

2

min

Extra time polarized  gravitons
sin

Extra tranversely polarized gravitons

k

k r


   

   

  (2.3. 14) 

As the Kerr metric is an exact solution for rotating black holes we can say that if the extra 

min
k gravitons due to a rotating mass are consistent with 

2

M
X  where X is as in Eq. (2.3. 7) 

then it is also consistent with keeping the Graviton constant minGk
K  as in Eq. (2.2. 11) 

invariant in the spacetime surrounding it. We come back to this, and potential changes to the 

dimensionless term 2 /A m r  in section 2.6. When we looked at non rotating black holes in 

section 2.2.2 we used simple first principles to show that the warping of spacetime around 

them is consistent with an invariant Graviton constant minGk
K . With rotating black holes we 

have turned the argument around and assumed this invariance to derive the extra probability 

densities of time, circular and transverse polarized min
k gravitons, before the density dilution 

due to the expansion of space around the rotating mass. We then tried to show that these extra 

probability densities (as in Figure 2.3. 2) are not too far from what might be intuitively 

expected. It is important to also remember that the Kerr metric is an exact solution for 

rotating black holes and not for rotating masses in general. We have only considered here the 

exact solution. We could perhaps summarize section 2.3 as follows: 

Spherically symmetric “Einstein fictitious / Newtownian real” accelerations do not transform 

spherically symmetric, or time polarixed min
k gravitons. 

Cylindrically symmetric “Einstein fictitious / Newtownian real” accelerations generate both 

transverse and cylindrically polarized 2m    min
k gravitons.  

This should not be confused with acceleration generating a thermal spectrum of real photons 

and gravitons (and other particles) from the virtual pair background with a temperature 

proportional to that acceleration. See for example [18]. 

We need to next include the relatively small number of min
k gravitons emitted by the mass 

itself ( * )
m m

  , which has effect close to black holes, but before we do that, it helps if we 

first look at the expanding universe. This is almost a repeat of section 5.3 in [7],  but Figure 

2.4. 1 & Equ’s.(2.4. 12) help to make clearer the real significance of what the min
k graviton 

constant minGk
K  is all about, and why it has to be invariant throughout spacetime. It is the 

cutoff wavenumber where the zero point quanta density available equals the quanta density 

required by the min
k graviton superpositions. The value of min

k reduces with cosmic time T but 

increases around mass concentrations with the local metric clock rates. See Figure 2.5. 1. 

This repeated section also has a few refinements and corrections from the first paper. 
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2.4 The Expanding Universe 

Section 2.1.1 conjectures that virtual gravitons are single wavenumber k  members of 

superpositions, of width dk . They are thus, using Eq. (2.1.4) in [7], wavefunctions k
  

occurring with probability /sN dk k , but we have aready included factor /dk k  in deriving 

Eq’s.(2.1. 9), (2.2. 6) & (2.2. 11). The number density of  k
  wavefunctions is simply

4
k Gk Gk

sN     for spin 2 & 2N   gravitons. To get the number density of gravitons at 

any wavenumber k we can rewite Eq. (2.1. 9) using Eq.(2.2. 10) for 
2 4

min
/

U
k & Eq.(2.2. 11). 
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2
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2 2

2 2
2 2

n
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

    
(2.4. 1) 

 

The blue part of Eq. (2.4. 1) is one when min
/ 1k k x   . 

From Eq.(3.2.1) in [7] the vacuum debt for a superposition is    
2

( ) .
k k

debt n p k   

Using Eq’s. (3.1.11), (3.1.12) & (3.2.10)  in [7]   

2

2

2
1

k

k

k

K

K
 


.  

0

2 spin 2For   
k

n k
K

m
N   and from Eq. (2.1. 3) 0 min

3.33m k from which we can show 

                                  
2

2

2 2

2

2

minmin

 wher     
1

e
k

x k
x

x

k

kk k
 


 


.  

From Table 4.3.1 in [7] 3.33n   for gravitons.  Each wavefunction k
 borrows from the 

zero point fields
2

2

2
(3.3 )

1
3

k
n

x

x
 


wavenumber k quanta. The quanta density required 

@k by gravitons is: 
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(2.4. 2) 

But the density of zero point modes available min
@ k is 

2 2

min
/k dk   (ignoring some small 

factors). Even if 1
G

   this is too small by about
2 2

min
1/

OH
k R . However the area of the 

causally connected horizon 
2

4
OH

R suggests possible connections with Holographic horizons 

and the AdS/CFT correspondence [24]. 
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2.4.1 Holographic horizons and red shifted Planck scale zero point modes 

Malcadena proposed AntiDesitter or Hyperbolic spacetime where Planck modes on a 2D 

horizon are infinitely redshifted at the origin by an infinite change in the metric. In contrast 

we have assumed flat space on average to the horizon. In section 2.2.3 in [7] we defined a 

rest frame in which zero momentum preons with infinite wavelength build infinite 

superpositions. If we also have a spherical horizon with Planck scale modes, but here 

receding locally at the velocity of light, these Planck modes can be absorbed by infinite 

wavelength preons (from that receding horizon) and red shifted in a radially focussed manner 

inwards. We will argue in what follows, that at the centre where the infinite superpositions 

are built, approximately 1/6 of these Planck modes can be absorbed from that horizon with 

wavelengths of the order of the horizon radius. This potential possibility only exists because 

zero momentum preons have an infinite wavelength. If any source of radiation recedes at 

velocity /v c   the frequency/wavenumber reduces as  (1 )
observer source

k k     where
2 1/2

(1 )  
  .  In the extreme relativistic limit 1   & we can put1       .  

                          

 

2

2 2

Putting 1  implies 1  and 1 2

             1

1

2  and 1 / 2

Thus 

 

(1 )
2 22

Observer

Source

k

k

      

    

 
 





 

       

  

  

   

       

         (2.4. 3) 

 

There is always some rest frame travelling at nearly light velocity that can redshift Planck 

energy modes into a min
1 /

OH
k R  mode and also many other frames travelling at various 

lower velocities that can redshift Planck energy modes into any min
k k  mode .  This is 

special relativity applying locally. But in sections 2.1.2 & 2.2.1 we used the fact that clocks 

in comoving coordinates tick at the same rate.   So how does Eq.(2.4. 3) help? Space between 

comoving galaxies expands with cosmic or proper time t and is called the scale factor ( )a t . It 

is normally expressed as ( )
p

a t t .                            

                     Thus 
1

( )
p

a t pt


 and the Hubble parameter
( )

( )
( )

a t p
H t

a t t
   

    (2.4. 4) 

 

Writing the present scale factor normalized to one so that ( ) 1a T   implies ( ) /
p P

a t t T , we 

can get the causally connected horizon radius and the horizon velocity V. Using Eq. (2.4. 4)  

   
0 0

The horizon radius   only when  is constant.
( ) 1

T T

p

OH p

dt dt T
R T p

a t t p
  

   
       (2.4. 5) 

 

   

1

0

The horizon velocity ( ) 1

 But  is the current Hubble constant so horizon velocity 1 ( )

T p
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dR Rd dt T p
V T pT R

dT dT t T T T
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 

      
 

 


 

 

   

  (2.4. 6) 
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Now the receding velocity of a comoving galaxy on the horizon is ( )
OH

V H T R   and thus 

from Eq.(2.4. 6) the horizon velocity is always 1V V   .  In other words the horizon is 

moving at light velocity relative to comoving coordinates instantaneously on the horizon as 

measured by a central observer. Now clocks tick at the same rate in all comoving galaxies but 

clocks moving at almost the horizon light velocity (relative to comoving coordinates 

instantaneously on the horizon) will tick extremely slowly or as 1/   from Eq.(2.4. 3) as 

special relativity applies locally in this case. Thus Planck modes on the receding horizon will 

obey Eq’s.(2.4. 3) as seen in all comoving coordinates. Let us now imagine an infinity of 

frames all travelling at various relativistic velocities relative to comoving coordinates 

instantaneously on the horizon and radially as seen by central observers. We can think of 

these as spherical shells on the horizon all of one Planck length thickness as measured by 

observers moving radially with them. Transverse dimensions do not change for all radially 

moving observers and the effective surface area of all these shells is
2

4
OH

R . The internal 

volume of all these shells as measured in rest frames by observers moving radially with them 

as each of these observers measures their thickness as one Planck length is 

                        2 2
Rest frame internal shell volume  4 4

OH OH
V R R R       (2.4. 7) 

We want the zero point quanta available where these quanta have Planck energy E  lasting 

for Planck time T  such that / 2E T   . Before redshifting, a single zero point quanta 

thus has Planck energy (temporarily using a single primed k  that is not the k  of Eq.(2.1. 4)) 

where 1k   before redshifting and k after redshifting. The density of Planck energy zero 

point modes in this shell is 
2 2

/k dk    and at energy / 2k   per mode this is equivalent to 

          
2

2
2

k dk



 
  quanta, which we will write as zero point quanta density 

3

2
2

dk

k

k



 


. 

  (2.4. 8) 

Now at Planck energy 1k   and we are redshifting to k  where from Eq’s.(2.4. 3) 

/ 2k k   & / 2dk dk  .  Thus / /dk k dk k   .  As 1k   Eq.(2.4. 8) becomes 

    
3

2 2

1 1
Planck Energy Zero Point Quanta Density before redshifting

2 2

dk dk

k k 




   

  (2.4. 9) 

 

Now multiply density by volume ie. Eq’s. (2.4. 7) & (2.4. 9) to get the total Planck energy 

zero point quanta inside the rest frame shell as 
2

2

1

2
4

OH

d
R

k

k
  . Two thirds of these quanta  

are transverse and one third radial so only 1/ 6  of these quanta are available for redshifting  

radially inwards. Using Eq.(2.4. 6): After redshifting to wavenumber k  these quanta have  

radius min min

min

1 1 OH

C

Rk k
R

k k k k
    


 and thus occupy spherical volume

33

min

3

4

3

OH
R k

V
k

  
     

.  
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Again using min OH
k R   the effective quanta density becomes 

  

3 2
3

2

3

min min m

2 2

@ 2 2 2

i

3

n

3
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1

2
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 These quanta are half scalar and half the vector required to build infinite superpositions. 

              Density of vector quanta available after redshifting 
2

2

2
8

k
dkx




   

 (2.4. 10) 

 

Now an observer at the centre of all this sees space being added inside the horizon at the rate 

of the horizon velocity  1 ( )
OH

V H T R   as in Eq. (2.4. 6). We will conjecture that the space 

added in one unit of Planck time inside the expanding horizon also creates the source of these 

zero point quanta that we can borrow. Thus Eq. (2.4. 10) becomes  

 

  

2
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8 8

OH
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dk x dk
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  (2.4. 11) 

 

2.4.2 Plotting available and required zero point quanta 

 

               

 

Figure 2.4. 1 plots Eq’s. (2.4. 2) & (2.4. 11) as a function of min
/x k k  and when min

k k  

we can equate these 
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  (2.4. 12) 

 

Equation (2.2. 10)

2

2
the average density of the 0.univ 9266erse  

U

OH
R




 allows us to solve 

the present value of min OH
k R   .  Using the 9 year WMAP (March 2013) data for Baryonic  

 

Quanta available 

Quanta reqired 

min

k
x

k
 

  

min
k   

 

Figure 2.4. 1 
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and Dark Matter density and radius 
61

2.7 10
OH

R    Planck lengths ( 9
46 10  light years)  

puts
2

0.37
U OH

R   in Planck units. Thus
2 2

0.9266 0.37
U OH

R     yields  

 

                                   The current value for min
0.63

OH
k R       (2.4. 13) 

                   

         

Figure 2.4. 2  plots 
2 2

0.927
U OH

R      

 Figure 2.4. 7 plots Eq. (2.4. 20) 0.8 ( 0.24 )Exp t   out to 10 times the current age of the 

universe showing the exponential decrease with time. The current Horizon Hubble velocity 

1 ( ) 4.35
OH

V H T R    and putting this and 0.63   into Eq.(2.4. 12) we can solve the 

approximate graviton coupling constant G
 .  

 

                                                           
2

1

137.8 80
G

V



   

(2.4. 14) 

 

The actual value for G
  is less important than the form of this equation as provided Eq. (2.2. 

10)
2 2

0.927
U OH

R    is true (or in other words all comoving observers measure the 

maximum wavelength graviton probability density minGk
K  as in Eq. (2.2. 11) GR is still true 

locally regardless of graviton coupling G
 . The normal gravitational constant (big) G is 

directly related to the metric change of GR, and if GR is true locally then G will not change, 

as it is independent of graviton coupling G
 . Because Eq. (2.4. 14) depends on the actual 

present values for &V it must be approximate. The above analysis is based on a receding 

horizon source of cosmic wavelength quanta that can only be borrowed if preons are born 

with zero momentum and infinite wavelength, but as we will see exponential expansion 

seems to follow naturally from Eq. (2.4. 14). It also strongly suggests that if fundamental 

particles are in fact built from infinite superpositions that borrow quanta from zero point 

vector fields, then graviton coupling G
  between Planck masses must be much less than 1. 

So are there possible consequences of this? We need to remember here that Einstein believed 

the forces of gravity were due to fictitious accelerations and not due to exchanged four 

momentum of virtual gravitons. They behave differently to all the other forces.  
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2.4.3 Possible consequences of a small gravitational coupling constant 

In quantum mechanics forces between charged particles are due to the exchange of virtual 

bosons. All scattering crossections are calculated from the exchanged 4 momenum of these 

bosons. General Relativity suggests that the forces of gravity are fictitious and only seem real 

due to the change of the metric. This paper proposes that the change in the metric around 

mass concentrations is consistent with keeping the “
min

k  Graviton Constant minGk
K ” of Eq.  

(2.2. 11) invariant.  These changes in the metric are about 80 times greater than the coupling 

constant suggests. We are suggesting in this paper that spin 2 gravitons only cause changes in 

the metric by the need to keep min min minGk Gk
K dk  invariant. The attempts to develop a 

quantum field theory for gravitons have difficulty with the infinities at Planck energies that 

are not renormalizable. They assume a gravitational coupling constant of one between Planck 

masses. This could change if this coupling constant is in fact about 80 times smaller, as 

Planck energy gravitons would no longer automatically form Black holes. However it may be 

irrelevant if, as Einstein believed, gravity is not due to exchanged 4 momentum. 

 

2.4.4 A possible exponential expansion solution and scale factors 

Let the scale factor be a then density
3

1

a
   and Eq. (2.2. 10) tells us the average density of 

the universe 

2

2
1.41

U

OH
R




 so that 

2

2 3

1
U

OH

K
R a




   where 1.41K   is constant. 

 

                           Thus     
3 2 2 2/3 2/3

a KR a K R
        where OH

R R    (2.4. 15) 

 

The Hubble parameter H is 
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(2.4. 16) 

 

We can also write Eq.(2.4. 14) 2
164 a constant

G
V    , hence 

2
2 0dV d V     .  

Thus  
1

2

1dV

V dT

d

dT






  and Eq. (2.4. 6) tells us that the Horizon velocity OH
dR dR

V
dt dt

  .  

 

Equation (2.4. 6) also tells us that 1V H R V      so we can write Eq. (2.4. 16) as  
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  (2.4. 17) 
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We will look for an exponential increase of the horizon velocity so / 0dV dt  and 3 .V      

Let us try first a simple 3 ( )V Exp bt with 3V  for all values of & 0b t  .     

Also simply put      
0 0

 3 ( )
t t

R Vdt Exp bt dt        thus    
3[ ( ) 1]Exp bt

R
b


 .  

Putting this value for R   plus 3 ( )V Exp bt  &  3 3[ ( ) 1]V Exp bt    into Eq. (2.4. 17) 

                ( 3) 3 ( ) 3[ ( ) 31]
3[ ( ) 1]

( )
V b

V Exp bt Exp bt
R Exp b

dV
bExp bt

d tt
      


.  

But 3 ( )V Exp bt and again  3 ( ) 3 ( )
dV d

Exp bt bExp bt
dt dt

  . Thus Eq’s. (2.2. 10) & (2.4. 14) 

are consistent with 3 ( )V Exp bt for positive b regardless of the value of graviton coupling G
  

        A possible expansion solution is 3 ( )V Exp bt  & 
3[ ( ) 1]Exp bt

R
b


 , 0.b    

(2.4. 18) 

 

But is this consistent with the local special relativity requirement for OH
R ? In other words 

does
0

3[ ( ) 1]
@ time ( )

( )

T dt Exp bT
R T a T

a t b


   ? Now Eq. (2.4. 15) tells us the scale factor 

3 2 2 2/3 2/3
a KR a K R

      but Eq.(2.4. 14) says
2

1/V   so the scale factor
1/3 2/3

.a V R   

 

From Eq. (2.4. 18) ignoring the constant factors 3 & b, ( )V Exp bt  &  ( ) 1R Exp bt   
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(2.4.19) 

And Eq. (2.4. 18) appears to be a consistent exponential expansion for both V and R.  

 

From Eq. (2.4. 14) we showed   
1

2

1dV

V dT

d

dT






. Using Eq. (2.4. 18) 3 ( )V Exp bt  &  

3 ( )
dV

bExp bt
dt

 implies ( / 2)K Exp bt    . The current value of 0.63   from Eq.(2.4. 

13) and our best guess of 0.48b   from Figure 2.4. 3 yields 
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    (2.4. 20) 
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2.4.5 Possible values for b and plotting scale factors 

This simple exponential expansion starts at the Big Bang and is very different to the current 

cosmology models that keep a constant horizon velocity until Dark Energy starts to take 

effect. This continuous exponential increase could well lead to slightly different values for 

the radius OH
R  and also possibly the age 9

13.8 10T    years. (Some recent observations [7] 

have also been questioning the leading current dark energy explanations of acceleration).  

Current cosmology models put the Hubble parameter as / 1/H a a T   at present (based on 
9

13.8 10T   years). It also simplifies the plots above if we put 
9

13.8 10  years 1T    , with 

OH
R  or radius R  becoming multiples of 1T  . Using Eq. (2.4. 6) 1 ( )V H T R  , Figure 2.4. 

3 plots the Hubble parameter by time ( 1)T  now as a function of the exponential time 

coefficient b showing if 0b   that  always 2 / (3 )H t  as in current cosmology at critical 

density with no dark energy. Also if 1/H T now the best guess is 0.48b  . This yields 

3.85R T  or 15%  greater than current cosmology. Figure 2.4. 4 plots horizon velocity & 

Figure 2.4. 5 the scale factor based on 0.48b  , but of course the actual value of b or rate of 

change with time must be in agreement with the redshifts currently observed when looking 

back towards the big bang. These could well change b and radius R. Figure 2.4. 6 plots the 

transition to positive acceleration of the scale factor showing the effect of changing the value 

of b.  Figure 2.4. 7 plots Eq.(2.4. 20) min
0.8 ( 0.24 )

OH
k R Exp t     out to 10 T. 

 

2.5 An Infinitesimal change to General Relativity effective at cosmic scale 

All we have discussed is based on the energy in the zero point fields being limited. We 

argued that uniform mass density throughout the cosmos has min
k  graviton probability 

density minGk
 as in Eq. (2.2. 11). At this probability density the zero point quanta density 

available equals that required. To maintain this required balance as in Figure 2.4. 1 we argued 

that around any mass concentration the curvature of space expands space locally so as to keep 

the min
k  graviton constant min

0.262
GGk

K  as in Eq. (2.2. 11) invariant at all points. In other 

words our conjecture only works if the local curvature of space depends on the difference 

2 4 6 8 10

0.2

0.4

0.6

0.8

 

 Figure 2.4. 7 

 

Cosmic time t    

0.63 radians now    

Current time 1t   

Big Bang 
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between the local mass density and the uniform background. Compared to General Relativity 

this is an infinitesimal change except at cosmic scale. GR says the curvature of space depends 

on local mass density whereas we argue that it depends on the difference between local mass 

density and the average background (only a few hydrogen atoms per cubic metre). This 

automatically guarantees the universe to be flat on average. All our aguments start with flat 

space on average. The equations of GR would look almost identical except the Energy 

Momentum Tensor T  in comoving coordinates requires 00
T  the mass/energy density to 

change from   to U
   where the density of the universe U

  is as in Eq.(2.2. 10). 

 

00
 In comoving cordinates  changes from  to  in the Energy Momentum Tensor 

U
T T      (2.5. 1) 

2.5.1 Non comoving coordinates in Minkowski spacetime where  g  

To this point everything we have looked at has been in comoving coordinates. Velocities 

relative to comoving coordinates are usually referred to as peculiar velocities, so, does what 

we are saying above still apply in such non comoving coordinates? In section 2.3.1 we said 

that spin 1 sources are 4 currents, but spin 2 graviton sources are the stress tensor. We have 

also been saying up to here that the background min
k gravitons are spherically symmetric or 

time polarized in comoving coordinates. We are going to conjecture that in non rotating 

Minkowski spacetime they are always time polarized, regardless of peculiar velocities. This 

may seem impossible, as we would intuitively expect something to not remain spherically 

symmetric if we move relative to it. But we are not talking about real particles; we are talking 

about virtual spin 2 gravitons. We cannot see them, or detect them directly in any way, only 

their consequences. We can calculate amplitudes and probabilities for their presence only. So 

let us look again at these background min
k graviton amplitudes and probabilities. In section 

2.1.2 we found in Eq.(2.1. 10) the probability density of background min
k virtual gravitons 

     

2

Universe Universe min min min min 4

min

0.3056
*  where U

Gk Gk Gk

GK dk K
k


 


    in comoving coordinates.  

If we move relative to this at peculiar velocity P
 , measured volumes shrink as

1 2 1/2
(1 )

P P
 

  and all comoving mass increases as 
2 1/2

(1 )
P P

  
  . (We will use red 

symbols with the subscript P, and triple primes for wavenumber min
k   for peculiar velocities, to 

distinguish them from metric changes where we used green and a double primed min
k   .) Thus 

2

U P U
   .The minimum wavenumber min

k  has its lowest value in comoving coordinates (at 

least far from mass concentrations where g  ) but at peculiar velocity P
 , mi minn P

k k .  

 

                         
2 4

4 4

2 2

min4 4

min mimi nn

 and  is invariant.U UU P

P

Gk
kk

K
k

 



 


    

                         min min minGk Gk
K dk   in non comoving coordinates if g    

     

    (2.5. 2)       
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2.5.2  Non comoving coordinates when  g  

Starting with Eq. (2.1. 10) min min minGk Gk
K dk   we have just shown that this equation remains 

true at any peculiar velocity P
  in flat spacetime. All that happens is that the values of min

k , 

min
dk &  min min minGk Gk

K dk   all increase as 
2 1/2

(1 )
P P

  
  .  In other words the probability 

of finding a min
k graviton is always proportional to whatever the value min

k &
min

dk is. Also the 

amplitude to find a min
k graviton is always proportional to either 

min
k or 

min
dk . We have 

shown in sections 2.1 & 2.2 that around mass concentrations in comoving coordinates, the 

min
k gravitons are comprised of the background due to the universe plus the interaction 

between the local mass and the universe as in Figure 2.2. 2 . This background min
k graviton 

probability, regardless of the local metric, is always proportional to whatever the local value 

min
k & min

dk is. Amplitudes are also always proportional to local values of 
min

k or 
min

dk .   

   

               min
Amplitude  (due to rest of universe)

Gk
  or Universe min

  allways dk       (2.5. 3) 

As in Figure 2.2. 1 the probability for a small mass m to emit a min
k graviton is

2 min

min

2
G

dk
m

k



. 

The normalized wavefunction min2min min min

2 2 2

2 2 2 3.556
 

4 4 4

k rk k k
e

r r r  

  
   

min
as 0k r  & min min

3.556k k 

using Eq. (2.1. 4). Thus we can say the: 

      

2

min

minmin min

2 2

min

3.5563.5562
Amplitude  (due to small mas

2
s

2
 

4
 )

G Gk

G
dkdk k m

m
k r r

m



  

    

                            
min

2

3.5562
=

4
 

m

G
dkm

r





 is allways 

min

2m
dk

r
   

       

  

      (2.5. 4) 

 

 

The interaction between this small mass and the rest of the universe is 

               Universe Universe mimin m nminn i

2
 +  is allw* * ays

2
Gk m m

m m
dk

r
ddk k

r
       .  

We have shown previously that minGk
K  is the proportionality constant. So regardless of 

peculiar velocities   

                     Universe Univmin min merse in
 +  is allways

2
* *

mG Gmk k

m
K dk

r
          

   (2.5. 5) 

Thus Universe Universemin
* * + 

m mGk
    is always proportional to min

dk  and at peculiar 

velocity P
 ; mi minn P

k k & min minP
kdk d . So both min min

&
Gk Gk

   increase as P
  and their 

ratio does not change. The logic of our aguments is not affected by peculiar velocities. The 

same is true for large masses moving at peculiar velocities. In a metric M
 as in section  2.2.2 

(using four blue primes for combined peculiar velocity and metric changes) min minMP
k k    
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and n mimi nMP
d kk d   . Both min min

&
Gk Gk

   increase as P


M
 and again their ratio does not 

change. All the arguments we used in section 2.2.2 do not change and Equ’s. (2.2. 14), (2.2. 

15) & (2.2. 16) still apply in non comoving coordinates providing M
  is the velocity reached 

by a small test mass falling from infinity in the same rest frame as the mass concentration m  

moving at peculiar velocity P
 . We can think of min

0.262
GGk

K  as a constant scalar 

throughout the universe representing the Probability Density of finding a minimum 

wavenumber min minMP
k k   virtual graviton at all points of spacetime. Near mass 

concentrations the metric changes; local clock rates change, and so does the measurement of

min
k , but not the scalar minGk

K . Locally measured infinitesimal volumes increase to 

accommodate the extra locally emitted maximum wavelength gravitons keeping the scalar of 

probability density constant. We argue that General Relativity is consistent with this. If we 

think of the mass in the universe as a dust of density U
 essentially at rest in comoving 

coordinates we can define a tensor (Background)T . In comoving coordinates 

(Background)T has only one non zero term 00
(Background)

U
T  . In any other coordinates 

this same (Background)T  tensor is transformed by the usual tensor transformations that 

apply in GR. If these coordinates move at peculiar velocity
P

  then 
2

00
(Background)

P U
T   

2

00
(Background)

P
T . This all suggests the infinitesimally modified Einstein field equations 

 

                            
4

1 8
(Background)

2

G
G R g R T T

c
    


       

    (2.5. 6) 

 

We argue that Eq. (2.5. 6) is consistent with keeping the scalar min
0.262

GGk
K   constant 

throughout all spacetime as in Figure 2.5. 1. This infinitesimal modification is only relevant 

in the extreme case as T approaches (Background)T . Far from mass concentrations 

(Background)T T  . Space curvature, in these remote voids, is in general somewhere 

between slightly negative and zero; but the causally connected universe is flat on average 

regardless of the value of . . 

 

 

 

    

 

 

 

 

 

 

 

 

minGk

G

K




  

min
k    

min
0.1 0.25k   

very approximately 

@ the Big Bang 

62

min
10k


   

 now 

At any cosmic time T  in any coordinates, and in any metric, 

in the infinitesimal band min
dk , min min minGk Gk

K dk   is always 

true. minGk
K is a constant scalar, but the measurement of min

k  

depends on both local metric clockrates and cosmic time T . 

Future 

 

Figure 2.5. 1 
Past 



38 

 

If there is no inflation, in comoving coordinates, at the Big Bang or slightly after, 
min

k starts at 

just under one and is always close to the inverse of the causally connected horizon radius. It 

is also close to the inverse of cosmic timeT . It is always at its minimum far from mass 

concentrations, but increases with the slower clock rates in the local metric around mass 

concentrations as in Figure 2.5. 1 

2.5.3 Is inflation in this proposed scenario really necessary? 

There are two main reasons, usually given, for why inflation is necessary:  

(a) The average flatness of space.  

(b) The almost uniform temperature of the cosmic microwave background from regions that 

were initially out of causal contact.  

If we put (Local) (Background)T T  in Eq. (2.5. 6), the right hand side is identically zero, 

and 
1

0
2

G R g R      on average throughout all space. The average curvature of all 

space must be zero and space is compelled to be flat on average.  

In section 2.4.4 we found that space naturally expands exponentially as in Eq.(2.4. 18) and 

plotted in Figure 2.4. 4. The value of the constant b  in  3 ( )V Exp bt  has to fit experimental 

observations. But if it is some fundamental constant, which does not seem unreasonable, it 

must be the same for all comoving observers. If this is so the physics is identical for all such 

observers regardless of whether they are in causal contact.  Provided we can assume identical 

starting points everywhere, of say the Planck temperature at cosmic time 0T  , then apart 

from quantum fluctuations, the average background temperature should be some function of 

cosmic time T for all comoving observers, or at least up to the time the universe became 

transparent. The physics controlling this should be identical in each comoving frame. Causal 

contact should not be essential for this. Inflation only guarantees that the starting temperature 

is uniform everywhere when it stops at approximately 0.T   It also has to assume identical 

physics everywhere from 0T   for about the first 375,000 years, or untill the universe is 

transparent. This is virtually identical to what we are proposing in our scenario. 

 

2.5.4 Why do we think virtual particle pairs do not matter? 

This topic is discussed more fully in the first paper [7] on pages 85 & 86. A shortened 

summary goes a bit like this: Virtual particle pairs by definition only last briefly. Zero point 

energies are limited mainly for times similar to the age of the universe.  The conservation of 

energy or in reality 4 momentum says that what we call “real matter or energy” can last for 

close to the age of the universe. It will have mass and by definition it can be weighed. It can 

move around, even close to the speed of light, but it is conserved. Gravitons that last this long 

we have called min
k gravitons and they can only couple to real, or long lasting energy/matter 

that can be weighed in whatever manner. The rotating dark matter in galaxies we cannot 
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weigh directly, but it contributes to the theoretical weight of a galaxy.  We have to allow for 

this mass when studying galaxy dynamics. The gluons that bind quarks are virtual, and form 

the bulk of nuclear mass and all normal matter. They are virtual particles, but protons appear 

to last for at least the age of the universe. They must couple to long lasting 
min

k gravitons.  

We cannot weigh the virtual particle pair background. It may have huge consequences in 

quantum field theory, and we can measure these effects very accurately, but they are all due 

to very brief events. We argue however that they do not couple to
min

k gravitons. If they 

somehow did, the total number of 
min

k gravitons would be so vast it would completely 

outstrip (by about 120
10 ) the supply of min

k quanta supply from the holographic horizon. 

 

2.6 Messing up what was starting to look promising, or maybe not 

2.6.1 The kmin virtual gravitons emitted by the mass interacting with itself 

In section 2 we started out by finding the average min
k graviton probability density in a 

uniform universe. We then placed a mass concentration in it and calculated the extra 

probability density of min
k gravitons (before the dilution due to local space expansion) due to 

the amplitude of this mass by the amplitude of the rest of the mass in the universe. This ended  

up being proportional to /m r  in Planck units. 

  

                min Universe Universe
( * ) ( * ) /

Gk m m
m r         as in Eq.(2.2. 6)  

 

And this is true in weak field metrics, except as we start approaching the Schwarzchild 

Radius because of the extra min
k gravitons from the mass interacting with itself: *

m m
  .  

                            Using Eq. (2.1. 5) 

2 2

2 2
*

r

m m G

k
m k e dk

r k
  




   

                      Also using Eq. (2.1. 4)
2 2

min min
11.644 3.556k k k k      when min

k k  

                                    

min2(3.556 )2

min min

2 2

min

3.556
*

G

k r

m m

k e dkm

r k
 





   

 

The exponential term  m i n m i n2 ( 3 . 5 5 6 ) 7 . 1 1 22 k r k rk r
e e e

  
    and we are only interested in 

radii r  that are small in relation to the observable radius of the Universe 
1

minOU
R k


 , just as 

in the assumptions we made in section 2.2.1.  Thus 0k r   and 2
1

k r
e


  in these regions so 

we can approximate this equation as                           

                                                   

2

min2 2

3.556
*

Gm m

m
dk

r
 


      
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2

min min2
 due to self emission * 0.36

k m GG m

m
dk

r
       

                                                                   

2

min2
1.375 0.262

G

m
dk

r
  

                                                                  

2

min min2
1.375

Gk

m
K dk

r
  using Eq.(2.2. 11)                       

 If the local clock rate is 
00

1

M

g


   as in Eq.(2.2. 13) but with a slightly modified  
00

g  (as 

we will see below), before dilution due to the local space expansion we can measure:     

          Before dilution minGk
 due to *

m m
 

2

2

min min2
1.375

M Gk

m
K dk

r
  

     

    (2.6. 1) 

2.6.2 What does this extra term mean for non rotating black holes? 

When deriving Eq.(2.2. 14) we found (about two equations previous) that due to interactions 

with the rest of the Universe  min min min mi

2 2

n

2
 0.262 2

Gk GkM MG

m m
dk K dk

r r
       

     

2

min min mi2

2

n
Thus  total 2 1.375

Gk GkM

m m
K dk

r r


 
   

 
 in Planck units.   

    (2.6. 2) 

Staying on our current path appears to contradict General Relativity, but temporarily ignoring 

this, let us repeat section 2.2.2 which modifies a non rotating black hole metric to     

                                                 
2

00 2

1 2
1 1.375

rr

m m
g

g r r
     


 

                                                  

2

2

2

2

2 2

2
1.375

1

1 2 / 1.375 /

M

M

m m

r r

m r m r





 


 

 

             

     

 

   (2.6. 3) 

 

 

Where M
  is the velocity reached by a small test mass falling in from infinity in the same 

rest frame.  Applying the same proceedures as in section 2.2.2 we can use Equ’s. (2.6. 3) to 

show that min min minGk Gk
K dk   in this new metric, and we will discuss possible tensions with 

General Relativity in section 2.6.5.  The modified non rotating horizon radius occurs when 

2 2
2 1.375 0r mr m    or the:       

               

                     Modified non rotating horizon radius 2.54r m      (2.6. 4) 

                    This is approximately 27% larger than the Schwarzchild value. 
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2.6.3 What does it mean for rotating black holes? 

In section 2.3 when we looked at the Kerr Metric we used a dimensionless form of the metric 

in Equ’s.(2.3. 2). We also used a dimensionless parameter A where we initially put 2 /A m r . 

We also showed that we could change A  without changing /
tt

g g
    the time component  

in the corotating frame, provided there is a modified 
2

2
1 A

r


    . So again temporarily 

ignoring potential conflicts with General Relativity let us change 
2m

A
r

  to 

2

2

2
1.375

m m
A

r r
   and look at the consequences.  Firstly from Equ’s. (2.6. 3) we can see 

that
2

M
A   where M

 is the radial inward velocity, in a corotating rest frame, of a small test 

mass falling from infinity (in the rest frame of the rotating black hole centre).  The inner 

event horizon is the radius where rr
g    so using Equ’s.(2.3. 2) 

2

rr
g


   


  or   

                                                  

2

2

2 2

2 2

2 2 2

1 0

2
  1 1.375 0

or  2 1.375 0

A
r

m m

r r r

r mr m







    

    

   

 

                                                  
2 2 2

2 4 5.5 4

2

m m m
r

  
  

Event Horizon radius                
2 2

2 9.5 4

2

m m
r

 
  

When 0       
2

2 9.5 2 3.082
2.54

2 2

m m m m
r m

 
    as in the non rotating case. 

Maximum spin is when            2 2
4 9.5m     or    max

1.54m   

At this maximum spin               r m  as in the usual Kerr Metric. 

 

 

   (2.6. 5) 

 

 

The outer horizon occurs when   
2

1 0
tt

A
g


     or 2

0A    and using Equ’s.(2.3. 2) 

                               
2 2 2

2 2

2 2 2

2
1 cos 1 cos 1.375 0

m m
A

r r r r

 
         

                                               2 2 2 2
2 1.375 cos 0r mr m       

                                              
2 2 2 2

2 4 5.5 4 cos

2

m m m
r

   
   
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Figure 2.6.1 Modified Kerr Metric with the dimensionless parameter A changed from  

2m
A

r
  

2

2

2
1.375

m m
A

r r
   . (This conflicts with General Relativity near the horizon.) 

 

 

 

 

         

 

 

 

                  

 

 

 

 

Figure 2.6. 2  Spinning black hole mass m  with angular momentum length parameter  , but 

with the dimensionless parameter A changed from  
2m

A
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2
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r r
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determinant of the metric is independent of A. The denominator terms &g g  , in 

dimensionless form as in Equ’s. (2.3. 2), rapidly tend to one, as does
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Figure 2.6.1 illustrates these changes from the Kerr Metric. The main effect from changing A  

is to allow an increase in maximum spin from m   to 1.54m  , and an 27%  increase in 

the maximum ergosphere radius from 2  to 2.54mr m . It may appear to contradict General 

Relativity, but provided the extra densities of time, 2m    circular and transverse polarized 

min
k gravitons are as in Eq.(2.3. 7) with

2

2

2
1.375

m m
A

r r
   then 

min min minGk Gk
K dk   is still 

true in the rotating space outside the black hole. 

 

Figure 2.6. 2 shows the probability densities of time polarized, circular and transverse 

polarized 2m    
min

k  gravitons as in Eq.(2.3. 7) in this modified metric before the 

expansion of space, which dilutes the probabilies so as to keep the 
min

k  graviton constant 

minGk
K invariant outside the black hole.  

2.6.4 The determinant of the metric and the 
min

k  graviton constant minGk
K   

In a corotating rest frame the metric can be written in diagonal form, as in this frame 0
d

dt


 .  

Working in dimensionless form as in Equ’s.(2.3. 2) and using Eq. (2.3. 3)
tt

g
g


 


 but  

ignoring signs we have  
2 2

2 4 2 2

2
(1 cos )

rr tt
g g g g g

g r
  



 
  


         


  

         In dimensionless form the Determinant of 
2

4 2 2

2
(1 cos )g

r



      

         It is independent of  the dimensionless parameter .A   

 

    

   (2.6. 7)  

Despite possible conflicts with General Relavity, if the determinant of the metric in a 

corotating frame is as in Eq. (2.6. 7) or always 4  then the min
k graviton probability density is 

min min minGk Gk
K dk  at all points outside the rotating black hole, and this is also true if there is 

no rotation.   

 

2.6.5  General Relativity is based on mass not mass squared 

It would appear that including the self interaction term *
m m

  , with its introduction of an 
2 2

/m r  term in the metric, does not naturally relate with General Relativity where the Stress 

Tensor has 00
T  based on mass/energy densities, with no mass squared terms. But if our 

hypothesis that min min minGk Gk
K dk   is to be always true, and we include the *

m m
  term then 

we are forced to accept an 2 2
/m r  term in the metric. The match between an invariant min

k  

graviton constant minGk
K , and an infinitesimally modified General Relativity as in Eq.(2.5. 6) 

4

1 8
(Background)

2

G
R g R T T

c
   


      is remarkably accurate from close to black 

holes to near the cosmic horizon. But not very close to black holes if we include *
m m

  . 
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Einstein based his remarkable equation on the Equivalence principle (the same physics in all 

free falling frames as in empty space) and the covariant derivative behaving correctly in all 

coordinates and throughout all spacetime. His thinking went along similar lines to Gauss’s
2   , but in curved spacetime. This naturally leads to inverse square force laws with 

inverse potentials, but the inclusion of an 2 2
/m r potential term in the metric due to *

m m
 

seems to mess all this up. But does it really? Or alternatively, could it be trying to tell us 

something that we did not want to know, but need to know?   

Quantum mechanics in the form of QED tells us that close to fundamental electric charges 

Gauss’s inverse square force law breaks down and QED takes over with almost unbelievable 

accuracy. The inverse square electric force law had ruled with remarkable accuracy for over a 

century before QED arrived on the scene. In fact it was the announcement of the Lamb Shift 

at the Long Island conference in 1947 that started the big breakthroughs in QED. World War 

II developments in radar had enabled these remarkably accurate experiments. Is it possible 

that similar developments today will allow improvements in Gravitational Wave observation 

accuracy? Developments that may see effects in gravity close to black hole horizons with 

some parallels to those of QED close to electric charges?  

2.6.6 Frame Dragging has to occur in this proposed scenario 

Lense and Thirring [25] were the first to show that General Relativity predicted this about 

two years after Schwarzchild’s solution to Einstein’s field equations. And of course the Kerr 

metric exact solution for rotating black holes also confirms it. In section 2.2.2 we showed that 

the Schwarzchild metric near large non-rotating masses is consistent with the min
k graviton 

constant minGk
K  as in Eq. (2.2. 11) remaining constant. This metric tells us that, as seen from 

a large distance, time at the horizon of a black hole stops, and the velocity of light drops to 

zero. Photons and gravitons are frozen in place. We have argued that the extra min
k gravitons 

near the horizon, due to this mass, cause this warping of spacetime that freezes time on the 

horizon. This effectively locks spacetime to mass on that horizon. The extra min
k gravitons 

just above the horizon can be thought of as due to the adjacent mass immediately below 

them, and in section 2.6.1 we addressed the affect of this *
m m

  self emission. So if space 

time just above the horizon is locked to non-rotating black hole mass, it must also be locked 

to the moving mass of a rotating black hole. We are of course assuming here that, as pointed 

out in the first paper, infinite superpositions cannot exist inside the horizon. This suggests the 

horizon might be a spacetime boundary consisting of a few Planck thicknesses of 

exponentially decreasing Planck density mass. This also implies that the Equivalence 

Principle could possibly breakdown near the horizon if these arguments involving infinite 

superpositions are true. In normal General Relativity this breakdown in the laws of physics is 

seen to occur at the central singularity.  The breakdown has to happen somewhere in this 

region, either at the centre or, as we suggest, it has to be the horizon [19] [20] [21] [22] [23]. 
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2.7 Revisiting some aspects of the first paper that we have now modified 

2.7.1 Infinitesimal rest masses  

This was covered in the first paper but there are some small corrections as we had used the 

expectation value of the superposition number n  when we should have used 2
n . Also 

small corrections we have made in the expansion of the universe have changed the value of 

min OH
k R   in Eq. (2.2. 10) from 0.51   to 0.63  . From Table 4.3.1 page 61 in the first 

paper we find that for spin 1 2
4.095n   and for spin 2 2

3.41n  . Using these new 

values and 0.63   we can redo Table 6.2.1 on page 84 of the first paper [7]. (These 

changes increase infinitesimal rest masses approximately 20% compared with the first paper.) 

 

  Spin 
     2

n       Compton Wavelength c
          Infinitesimal Rest Mass 

    1       4.095               0.58
OH

R                34
7.8 10 .eV


    

    2       3.41               0.49
OH

R              34
9.3 10 .eV


    

Table 2.7. 1               Infinitesimal rest masses of 2N  photons, gluons and gravitons. 

 

2.7.2 Redshifted zero point energy from the horizon behaves differently to local 

Local zero point energies are Lorentz invariant. At high frequencies there is no shortage 

locally to build the high frequency components of superpositions. If a massive 1N   virtual 

pair emerges from the vacuum its life is short and it places little demand on long range 

quanta. If there were no redshifted supply from the horizon there would be only a few modes 

of the local supply of min
1 /

OU
k R  quanta inside the horizon. Because preons are born with 

zero momentum and infinite wavelength they can however absorb a different supply of 

redshifted min
1 /

OU
k R  quanta from the receding horizon as we have discussed. This min

k

quanta redshifted supply behaves differently to normal Lorentz invariant zero point local 

fields. It behaves as 
min min

1.745 "The Quanta required @ Constant"
Qk G

K k of Eq. (2.4. 12) 

Where 
min min min

6.66 "The Graviton Constant"
Qk Gk

K K k   of Eq. (2.2. 11).This redshifted supply 

is only available to preons that are born with zero momentum, or infinite wavelength, in the 

rest frame in which infinite superpositions are built. 

 

2.7.3 Revisiting the building of infinite superpositions 

In section 2 of the first paper we developed equations to determine the probability of each 

mode of a superposition using local zero point fields and in section 2 when we found the 
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cosmic wavelength supply inadequate we switched to a different redshifted supply for long 

range quanta. So how do we justify our use of the local zero point fields to determine mode 

probabilities and behaviours? There is simply a plentifull supply of high frequency local zero 

point fields. This local supply is adequate for high densities of superpositions for all modes 

from the Planck energy 1k   high energy mode cutoffs to somewhere around 20
10k


 or 

near nuclear wavelengths. Thus until we reach somewhere hear nuclear densities there is a 

sufficient supply of local high frequency zero point fields to build infinite superpositions. The 

coupling to local zero point fields in this high frequency region determines the behaviour of 

all the standard model particles. There is however a gradual transition to absorbing quanta 

from the redshifted horizon supply as the wavelength increases. Because the redshifted 

supply of min
k  quanta behaves as the invariants 

min min
or 

Qk Gk
K K above and entirely differently 

to Lorentz invariant local zero point fields, spacetime has to warp around mass concentrations 

and the universe has to expand. 

 

2.8 Gravitational Waves 

Our hypothesis has been throughout, that the warping of spacetime is directly related to 

maintaining the maximum wavelength, or min
k  graviton density min min minGk Gk

G dk   invariant 

throughout all spacetime. Around non-rotating (spherically symmetric) mass concentrations 

this warping decreases inversely with radius (at least well away from black holes) but always 

in a spherically symmetric manner as the extra min
k  gravitons due to this mass are distributed 

in the same spherical way. Likewise we get cylindrical symmetry for rotating mass 

concentrations. Both these types of symmetries are the lowest energy stable state of the 

metric. Disturbances to this stable state will travel as waves at the speed of light. 

2.8.1 Constant transverse areas in low energy waves 

If these mass concentrations accelerate, then just like accelerating electric charges they will 

radiate gravitational energy in the form of real transversely polarized min
2,m k  gravitons. 

This energy is a disturbance or oscillation in this lowest energy state min
k  graviton 

background, but min min minGk Gk
G dk  cannot change during these disturbances, so what is 

going on? Let us imagine a region of spacetime far from mass concentrations where the 

metric g  and using , , ,t x y z  coordinates let 
00

1, 1, 1, 1.
xx yy zz

g g g g        

Ignoring signs the determinant of the metric 1g  .  Let a gravitational wave pass through 

in the z  direction with a tranverse wave in the ,x y  plane. We know that a circular transverse 

ring of particles will oscillate into and out of ellipses perpendicular to each other, in such a 

manner that the enclosed area does not change, or that 1
xx yy

g g   during this oscillation. 

Thus the measured volume of space does not change as the wave passes through and 

min min minGk Gk
G dk  does not change. The determinant of the metric 1g   also does not 

change. This is only approximately true as there are extra real transversely polarized 
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min
2,m k  gravitons passing through due to the energy in the wave, but the error is second 

order unless the amplitude of the wave is quite large.  

2.8.2 What happens in high energy waves? 

We can imagine the extra gravitons around a mass concentration and the background 

gravitons as in section 2.2 (if they are undergoing an acceleration as in binary pairs) 

generating real transversely polarized 2m    gravitons of the same wavenumbers. (This has 

some parallels to what we found in the Kerr metric, but now with real gravitons.)  The 

intensity, or probability density, of these real gravitons will drop as the inverse radius 

squared. We can also show from Equ’s.(2.1. 9) &(2.2. 5) that most of these gravitons are 

close to min
k  wavenumber. About 66% between min

k & 2 min
k  and about 96% between min

k & 

5 min
k . Thus most of this radiated energy is near min

k . Just as measured volumes around mass 

concentrations had to increase to accommodate extra min
k gravitons, the transverse area of the 

wave has to increase very slightly in relation to the oscillating constant area. Ignoring signs 

again 1
xx yy

g g     so 00
1g    to keep the metric determinant 1g  . The small energy 

density in the wave increases infinitesimally the local measurement of min
k , thus allowing  

min min minGk Gk
G dk  to remain invariant as required. Close to orbiting binary black holes or 

neutron stars this radiated energy intensity is huge and the changes in 
00

&
xx yy

g g g become 

large in relation to the oscillating changes. Transverse areas and hence measured volumes 

change significantly. This is in complete contrast to what happens at large distances, such as 

when we observe gravitational waves here on Earth, where the transverse areas are virtually 

constant during these oscillations. 

2.8.3 No connection between wave frequency and radiated quanta energy  

The frequency of the radiated wave is twice the orbital frequency of the binary pair source. 

As most of the energy in the wave is in quanta near min
k there is no connection with the 

frequency of the radiated wave as in spin 1 photons in electromagnetism. In the recently 

observed gravitational waves the wave frequency was 250  cycles per second just before 

merger with wavelengths 1200 kilometres or approximately 41
10  Planck lengths, whereas 

the wavelength of min
k gravitons is 62

min
1/ 10

OU
k R   Planck lengths. The ratio between 

them is 21
10 . This ratio is inverse to the binary pair orbital frequency. It could only 

approach one if the orbital period is approximately twice the age of the universe. 
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3 Conclusions 

If the fundamental particles can be formed from infinite superpositions as outlined in the first 

paper our hypothesis is that the warping of spacetime is directly related to maintaining the 

maximum wavelength, or 
min

k  graviton density 
min min minGk Gk

G dk   invariant throughout all 

spacetime. Thinking in a simple way and using the proportionality symbol as follows:  

In a universe with no mass concentrations   
Universe Universmin e

( * )
Gk

  .  With a concentration 

of mass m ,   
UnUniverse Univers iverse Universemi en

( * * )* ( *) )(
m mm mGk

           but space 

expands locally to restore 
minGk

  back to 
min min minGk Gk

G dk  .  The green term 

Universe Universe
( * * )

m m
     requires 2 /m r  in the metric, and blends well with an 

infinitesimally modified General Relativity. This modification changes the 00
T  component 

from 00
T  , where   is the local mass density, to 

00 U
T    , where 

U
 is the average 

density of the Universe (only a few hyprogen atoms per cubic metre). It matches the 

Schwarzchild metric, and can fit the Kerr metric. In the first paper we focused only on this 

term to illustrate a possible connection with quantum mechanics, provided the fundamental 

particles can be made from infinite superpositions borrowing energy from zero point fields.  

This second paper messes up that nice connection by introducing the troublesome blue term 

( * )
m m

  with its associated 2 2
/m r  in the metric. This does not seem to relate with mass 

densities in Einstein’s stress energy tensor. It may not however alter the event horizon radius 

of a maximum spin black hole, but does seem to allow about 54% more spin. These values as 

with other findings are only approximate however, as for simplicity we assumed a square 

cutoff at min
.k  An exponential cutoff is most likely and will no doubt change these values, 

especially the coefficient of the 2 2
/m r  term in the metric due to ( * )

m m
  . But if our 

conjecture is true this term will not go away. So regardless of these approximations, as most 

black hole mergers are between high spin black holes, this extra term may change the fine 

details of the last few cycles. Testing this has to await future accuracy improvements in 

gravitational wave detectors. It may show up in the fine details of spinning neuton star 

collapse. It may also raise the possibility that there could be a parallel with the breakdown of 

the inverse square law for fundamental charges near the Compton wavelength. Does General 

Relativity hold all the way through the horizon as is normally thought? Most physicists 

believe that it breaks down at the central singularity and an infalling observer sees no change 

as they pass the horizon. However this clashes with both the Firewall paradox and the 

Information paradox [19] [20] [21] [22] [23]. This paper suggests that there may well be 

other reasons to question the current orthodoxy of the central singularity breakdown?  
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