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Abstract: A new quantum mechanical formalism based on the probability
representation of quantum states is proposed. This paper in particular deals with
the special case of the measurement problem, known as Schrödinger’s cat
paradox. We pointed out that Schrödinger’s cat demands to reconcile Born’s rule.
Using new quantum mechanical formalism we find the collapsed state of the
Schrödinger’s cat always shows definite and predictable outcomes even if cat also
consists of a superposition

cat  c1 live cat  c2 death cat

|c1 |2  |c2 |2  1.

Using new quantum mechanical formalism the EPRB-paradox is considered
successfully. We find that the EPRB-paradox can be resolved by nonprincipal and
convenient relaxing of the Einstein’s locality principle.
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Part I.

Schrödinger’s cat paradox resolution using GRW
collapse model. Von Neumann measurement postulate
revisited.

I. Introduction
In his famous thought experiment,Schrôdinger(1935) imagined a cat that

measures the value of an quantum mechanical observable with its life. Since
Schrödinger’s time, no any interpretations or modifications of quantum mechanics
have been proposed which gives clear unambiguous answers to the questions
posed by Schrödinger’s cat of how long superpositions last and when (or whether)
they collapse? In this paper appropriate modification of quantum mechanics are
proposed. We claim that canonical interpretation of the wave function   c11 
c22 is correct only when the supports the wave functions 1 and 2 essentially

overlap. When the wave functions 1 and 2 have separated supports (as in the

case of the experiment that we are considering in this paper) we claim that
canonical interpretation of the wave function   c11  c22 is no longer valid for a

such cat state. Possible solution of the Schrödinger’s cat paradox are
considered.We pointed out that the collapsed state of the cat always shows definite
and predictable outcomes even if cat also consists of a superposition [16]-[17] :

cat  c1 live cat  c2 death cat .

I.1.The canonical interpretations of the Schrödinger
experiment.

As Weinberg recently reminded us [1], the measurement problem remains a



fundamental conundrum. During measurement the state vector of the microscopic
system collapses in a probabilistic way to one of a number of classical states, in a
way that is unexplained, and cannot be described by the time-dependent
Schrödinger equation [1].To review the essentials, it is sufficient to consider
two-state systems. Suppose a nucleus n, whose Hilbert space is spanned by
orthonormal states |sit, i  1,2,where |s1t  undecayed nucleus at instant t

and |s2t  decayed nucleus at instant t is in the superposition state,

|t n  c1|s1t  c2|s2t, |c1 |
2  |c2 |2  1.

1.1.1

A measurement apparatus A, which may be microscopic or macroscopic, is
designed to distinguish between states |sit by transitioning at each instant t into
state |ait if it finds n is in |sit, i  1,2. Assume the detector is reliable, implying
the |a1t and |a2t are orthonormal at each instant t ,i.e., 〈a1t||a2t  0 and
that the measurement interaction does not disturb states |si  -i.e., the measurement
is “ideal”. When A measures |t n, the Schrödinger equation’s unitary time
evolution then leads to the “measurement state” |t nA :

|t nA  c1|a1t  c2|a2t, |c1 |
2  |c2 |2  1.

1.1.2

of the composite system nA following the measurement.
Standard formalism of continuous quantum measurements [2],[3],[4],[5-10]

leads to a definite but unpredictable measurement outcome, either |a1t or |a2t
and that |t n suddenly “collapses” at instant t ′ into the corresponding state |sit ′.
But unfortunately the equation (1.1.2) does not appear to resemble such a
collapsed state at instant t ′?.

The measurement problem is as follows:
(I) How do we reconcile canonical collapse models postulate’s
(II) How do we reconcile the measurement postulate’s definite outcomes with

the
“measurement state” |t nA at each instant t and
(III) how does the outcome become irreversibly recorded in light of the

Schrödinger
equation’s unitary and, hence, reversible evolution?
The Part I of this paper in particular deals with the special case of the

measurement problem, known as Schrödinger’s cat paradox. For a good and
complete explanation of this paradox see Albert [7], Leggett [11], Hobson [12] and
Schrödinger[13], see also [14]-[16].



Pic.1.1.1.Schrödinger’s generic cat.

In his famous thought experiment [11], Schrôdinger(1935) imagined a cat that
measures the value of an quantum mechanical observable with its life. Adapted to
the measurement of position of an alpha particle, the experiment is this. A cat, a
flask of poison, and a radioactive source are placed in a sealed box. If an internal
monitor detects radioactivity (i.e. a single atom decaying), the flask is shattered,
releasing the poison that kills the cat. The Copenhagen interpretation of quantum
mechanics implies that after a while, the cat is simultaneously alive and dead. Yet,
when one looks in the box, one sees the cat either alive or dead, not both alive and
dead.

This poses the question of when exactly quantum superposition ends and
reality collapses into one possibility or the other?

Since Schrödinger’s time, no any interpretations or extensions of quantum
mechanics have been proposed which gives clear unambiguous answers to the
questions posed by Schrödinger’s cat of how long superpositions last and when (or
whether) they collapse.

The canonical interpretations of the Schrödinger
experiment.

I.1.1.The Copenhagen interpretation
The most commonly held interpretation of quantum mechanics is the

Copenhagen interpretation.[14-15] In the Copenhagen interpretation, a system
stops being a superposition of states and becomes either one or the other when an
observation takes place. This thought experiment makes apparent the fact that the
nature of measurement, or observation, is not well-defined in this interpretation.
The experiment can be interpreted to mean that while the box is closed, the system
simultaneously exists in a superposition of the states "decayed nucleus/dead cat"
and "undecayed nucleus/living cat", and that only when the box is opened and an



observation performed does the wave function collapse into one of the two states.
However, one of the main scientists associated with the Copenhagen

interpretation, Niels Bohr, never had in mind the observer-induced collapse of the
wave function, so that Schrödinger’s cat did not pose any riddle to him. The cat
would be either dead or alive long before the box is opened by a conscious
observer [14-15]. Analysis of an actual experiment found that measurement alone
(for example by a Geiger counter) is sufficient to collapse a quantum wave function
before there is any conscious observation of the measurement.[15] The view that
the "observation" is taken when a particle from the nucleus hits the detector can be
developed into objective collapse theories. The thought experiment requires an
"unconscious observation" by the detector in order for magnification to occur.

I.1.2.The Objective collapse theories
According to objective collapse theories, superpositions are destroyed

spontaneously (irrespective of external observation) when some objective physical
threshold (of time, mass, temperature, irreversibility, etc.) is reached. Thus, the cat
would be expected to have settled into a definite state long before the box is
opened. This could loosely be phrased as "the cat observes itself", or "the
environment observes the cat".

Objective collapse theories require a modification of standard quantum
mechanics to allow superpositions to be destroyed by the process of time
evolution. This process, known as "decoherence", is among the fastest processes
currently known to physics [5],[].

I.1.3.The Ensemble interpretation
The ensemble interpretation states that superpositions are nothing but

subensembles of a larger statistical ensemble. The state vector would not apply to
individual cat experiments, but only to the statistics of many similarly prepared cat
experiments. Proponents of this interpretation state that this makes the
Schrödinger’s cat paradox a trivial matter, or a non-issue. This interpretation serves
to discard the idea that a single physical system in quantum mechanics has a
mathematical description that corresponds to it in any way.

Remark 1.1.1. Ensemble interpretation in a good agreement with a canonical
interpretetion of the wave function (-function) in canonical QM-measurement
theory. However under rigorous consideration of the dinamics of the Schrödinger’s
cat this interpretation gives obviously unphysical result, see section III, Proposition
3.1.2.(ii).

I.2.The canonical collapse models.Quantum
Mechanics with Spontaneous Localizations (QMSL)

We remind that Quantum Mechanics with Spontaneous Localizations [2],[3] is
based on the following assumptions:

(1) Each particle of a system of n distinguishable particles experiences, with a
mean rate λi, a sudden spontaneous localization process.



(2) In the time interval between two successive spontaneous processes the
system evolves according to the usual Schrödinger equation.

(3) The sudden spontaneous process is a localization given by:

|
localization


|x
i 

‖|x
i ‖

,x ∈ 3, 1.2.1

where

|x
i   Lxi |. 1.2.2

Here Lxi is a norm-reducing, positive, self-adjoint, linear operator in the n-particle
projective Hilbert space H, representing the localization of particle i around the
point x.

(4) The probability density for the occurrence of a localization at point x is
assumed to be

Pix  ‖|x
i ‖2. 1.2.3

Eq.(1.2.3) requires that d3xLxi 2  1.

(5) The localization operators Lxi have been chosen to have the form:

Lxi  1


3/4
exp − 1

2 
qi − x

2 , 1.2.4

qi being the position operator for particle i.

I.2.1.The classical GRW model
In order to appreciate how canonical collapse models work, and what they are

able to achieve, we briefly review classical GRW model [2]. Let us consider a
system of n particles which, only for the sake of simplicity, we take to be scalar and
spinless; the GRW model is defined by the following postulates: (1) The state of the
system is represented by a wave function tx1,x2, . . . ,xn belonging to the Hilbert
space ℒ23n. (2) At random times, the wave function experiences a sudden jump
of the form:

tx1,x2, . . . ,xn → tx1,x2, . . . ,xn;
xm 

m
xmtx1,x2, . . . ,xn

‖m
xmtx1,x2, . . . ,xn‖2

,

1.2.5

where tx1,x2, . . . ,xn is the state vector of the whole system at time t,
immediately prior to the jump process and n

xm is a linear operator which is
conventionally chosen equal to:

m
xm  rc2

−3/4 exp − 
xm −

xm
2

2rc2
,

1.2.6

where rc is a new parameter of the model which sets the width of the localization
process, and xm is the position operator associated to the m-th particle of the



system and the random variable xm corresponds to the place where the jump
occurs. (3) It is assumed that the jumps are distributed in time like a Poissonian
process with frequency   GRW this is the second new parameter of the model.
(4) Between two consecutive jumps, the state vector evolves according to the
standard Schrödinger equation.

Let us consider a single particle. Suppose it suffers a hitting process: its wave
function |ψ changes it into the new wavefunction |ψx . We do not know where the
hitting occurs, but only the probability for it to occur around position x. Accordingly,
the pure state is transformed into the following statistical mixture:

|〈|   d3xPx |x 〈x |
‖|x ‖2

  d3xLx|〈|Lx  T|〈| 1.2.7

Of course, if the initial state of the particle is not pure but a statistical mixture
given by the operator ρ, the effect of a hitting process is the same as the one
described above: ρ changes into Tρ.We derive now the evolution equation for
ρt. In a time interval dt, the statistical operator evolves in the following way: since
the localization mechanism is Poissonian, there is a probability λdt for a hitting to
occur during that time interval, in which case ρ changes to Tρ, and a probability
1 − λdt for no hittings to occur so that the statistical operator evolves according to
the usual Schrödinger equation:

t  dt  1 − dt t − i


H,t dt  dtTt 1.2.8

Thus 1-particle master equation of the GRW model takes the form [2]-[5]

d
dt
t  − i


H,t − t − Tt.

1.2.9

Here H is the standard quantum Hamiltonian of the particle, and T represents the
effect of the spontaneous collapses on the particle’s wave function. In the position
representation, this operator becomes:

〈q′ |Tt|q′′   exp −
q′−q′′2

4rc2
〈q′ |t|q′′ .

1.2.10

Since, owing to Eq.(1.2.10) 〈q|Tt|q  〈q|t|q,equation (1.2.9) is obviously
trace preserving. Moreover, using equation (1.2.9), it can be proved that

d
dt
Tr2t  0. 1.2.11

This implies that the dynamical evolution transforms pure states into statistical
mixtures.

I.2.2. Tails of Schrödinger’s cat.Schrödinger’s cat
demands to reconcile canonical collapse models



postulates
GRW collapse of the Schrödinger’s cat state considered in [7].The orthodox

account attempts to solve the measurement problem by claiming that in
measurement interactions the quantum state of the measured system plus
measuring system does not evolve in accord with the Schrodinger equation but
instead collapses into one of the states that is an eigenstate of the measurement
observable (i.e. the observable that records the result of the measurement) with a
probability proportional to the square of the coefficient of that state. For example, if
Schrodinger’s cat measures the x-spin, then the post-measurement state |CAT
collapses either into |↑|Alive or |↓|Dead each with a probability proportional to the
square of the coefficient associated with each state. So on the orthodox account,
there are two fundamental laws that govern the evolution of quantum states. In
non-measurement situations, Schrodinger,s deterministic law holds away. But in
measurement situations, the collapse dynamics takes over.

Pic.1.2.1.(i) The GRW collapse of the

Schrödinger’s cat state |CAT :

|CAT
GRW col lapse

 |↑|Alive

Pic.1.2.1.(ii)The GRW collapse of the

Schrödinger’s cat state |CAT :

|CAT
GRW col lapse

 |↓|Dead Adopted from [7].

There are difficulties, however. Look more dosely, for example, at a post
GRW-collapse state like GRWCAT(Alive), illustrated in Pic.1.2.1(i)-(ii). Note that
while most of GRWCAT(Alive)’s amplitude is indeed (as we mentioned above)
concentrated in the "Alive" region of the state space, it also has non-zero tails
which extend into the "Dead" region.

And so it follows from the eigenstate-eigenvalue rule that the cat is, as a matter
of fact, not determinately alive (or dead), when GRWCAT(Alive) obtains, after all.

And so the GRW theory, as we have stated it above, patently fails to solve
Schrodinger’s paradox.

Remark 1.2.1. In order to avoid the problem of the tails of Schrödinger’s cat we
replace now postulate (5) by the next postulate:

(5′) The localization operators Lxi have been chosen to have the form:



Lxi  Lxi , 
1


3/4

exp − 1
2 

qi − x
2 iff ‖qi − x‖ ≤   1,

0 iff ‖qi − x‖  .
1.2.12

Here  ∈ 0,1 and lim→0   .

I.2.3. The stochastic nonlinear Schrödinger
equation

Another modern approach to stochastic reduction is to describe it using a
stochastic nonlinear Schrödinger equation [2]-[10],[46] an elegant simplied example
of which is the following one particle case known as Quantum Mechanics with
Universal Position Localization [QMUPL]:

d|tx  − i

H − k

2
q − 〈qt 2dt |txdt  k q − 〈qt dWt|tx.

1.2.13

Here q is the position operator, 〈qt   〈t |
q|t  it is its expectation value, and k is a

constant, characteristic of the model, which sets the strength of the collapse
mechanics, and it is chosen proportional to the mass m of the particle according to
the formula: k  m/m00, where m0 is the nucleon’s mass and 0 measures the
collapse strength. It is easy to see that Eqn.(1.2.5) contains both non-linear and
stochastic terms, which are necessary to induce the collapse of the wave function.

For an examle let us consider a free particle (H  p2/2m), and a Gaussian state:

tx  exp −atx − xt2  iktx .
1.2.14

It is easy to see that tx given by Eq.(1.2.14) is solution of Eq.(1.2.13), where

dat
dt

 k − 2i
m at2,

dxt
dt

 
m kt 

k
2Reat

Ẇt,
dkt
dt

 − k
Imat
Reat

Ẇt.
1.2.15

The many-particle equation [2]:

d|tx  − i

H −∑

i1

N
ki
2
qi − 〈qi,t 

2dt |txdt 

∑
i1

N

ki 
qi − 〈qi,t dWi,t|tx,

1.2.16

where H is the quantum Hamiltonian of the composite system, the operators qi
(i  1, . . .N) are the position operators of the particles of the system, and Wi,t (i 
1,...N) are N independent standard Wiener processes.



The CSL model is defined by the following stochastic differential equation in the
Fock space [2]:

d|tx  − i

H − k

2
Mx − 〈Mtx

2
dt |txdt 

 k Mx − 〈Mtx dWtx|tx.

1.2.17

The parameter k is a positive coupling constant which sets the strength of the

collapse process, while Mx is a smeared mass density operator:

Mx ∑
j

mjNjx,

Njx   dygy − xj†xjx,
1.2.18

j
†x,jx being, respectively, the creation and annihilation operators of a

particle of type j in the space point y. The smearing function gx is taken equal to

gx  1
2

3/4
exp − x

2

2 1.2.19

where  is the second phenomenological constant of the model. Wtx is an
ensemble of independent Wiener processes, one for each point in space.

I.2.4.The nonclassical collapse models with
spontaneous localizations based on generalized
measurement postulates

The nonclassical collapse models attempt to overcome the difficulties that
standard quantum mechanics meets in accounting for the measurement (or
macro-objectification) problem, an attempt based on the consideration of nonlinear
and nonlocal stochastic modifications of the Schroedinger equation.The proposed
new nonlocal dynamics is characterized by the feature of not contradicting any
known fact about microsystems and of accounting, on the basis of a unique,
universal dynamical principle, for wavepacket reduction and for the classical
behavior of macroscopic systems.

Quantum Mechanics with Nonclassical Spontaneous Localizations is
based on the following assumptions:

(1) Each particle of a system of n distinguishable particles experiences, with a
mean rate λi, a sudden spontaneous localization process.

(2) In the time interval between two successive spontaneous processes the
system evolves according to the usual Schrödinger equation.

(3) Let |cl be the classical pure state correspond to an vector |cl ∈ S
  H



in a non projective Hilbert space H, see Subsection I.7.1, Def I.7.1-I.7.2. Then the
sudden spontaneous process is a localization given by:

|cl
,−localization


|,,x
i cl

‖|,,x
i cl‖

,x ∈ 3,

 ∈ 0,1,  1,

1.2.20

where

|,,x
i cl 


Lx
i
,|cl. 1.2.21

Here

Lx
i
, is a norm-reducing, positive, self-adjoint, linear operator with a symbol

Lxi , in the n-particle non projective Hilbert space H, representing the localization
of particle i around the point x.

Definition 1.2.1. Such localization is called ,-localization or ,-collapse of
the state

|cl.
(4) The probability density pix,, for the occurrence of a localization at point

x is assumed to be

pix,, 
‖|,,x

i cl‖
2


3

‖|,,x
i cl‖

2
d3x

. 1.2.22

(5) Let |n.cl be the nonclassical pure state correspond to an vector

|   | ∈ H\S,
where | ∈ S, || ≠ 1, see Appendix C, Def.C.3. Then the sudden

spontaneous process is a localization given by:

|n.cl
,−localization


|,,x

i n.cl
‖|,,x

i n.cl‖
,x ∈ 3, 1.2.23

where

|,,x
i n.cl 


Lx
i
,|n.cl. 1.2.24

Definition 1.2.2. Such localization is called ,-localization or ,-collapse of
the state

|n.cl.
(6) The probability density pix,,,,  for the occurrence of a localization at

point x ∈ 3 in
acordance to postulate Q.IV.3 (see Subsection I.7.1, Eq.(1.7.8)) is assumed to

be

pix,,,,  
||−6 ,,| |−2x

i

n.cl

2


3

‖|,,x
i cl‖

2
d3x

. 1.2.25

(7) The localization operators

Lx
i
, have been chosen to have the form:




Lx
i
, 

1


3/4

exp − 1
2 

q i − x
2 iff ‖qi − x‖ ≤   1,

0 iff ‖qi − x‖  .
1.2.26

Here  ∈ 0,1 d3xLxi ,2  1 and lim→0   .

Remark 1.2.2. In one dimension case it follows that


Lx
i
, 

1


1/4

exp − 1
2 

qi − x
2 iff |qi − x| ≤   1,

0 iff |qi − x|  .
1.2.27

Remark 1.2.3. Note that from Eq.(1.2.22) and Eq.(1.2.26) follows that a
probability density pix,,,,  for the occurrence of a localization inside sphere
Sx,  qi ∈ 

3|‖qi − x‖ ≤  is given by

pix,, 
‖|,,x

i cl‖
2

,
,,  

3

‖|,,x
i cl‖

2
d3x,

‖|,,x
i cl‖

2  1


3/2


‖qi−x‖≤

d3qiiqiexp −
1
 

qi − x
2 ,

iqi  〈qi ||i cl,

1.2.28

and therefore

pix, 
→0
lim pix,, 

→0
lim −1, 1



3/2


‖qi−x‖≤

d3qiiqiexp −
1
 

qi − x
2  ix.

1.2.29

Remark 1.2.4. In one dimension case it follows that a probability density
pix,,,  for the occurrence of a localization inside interval x − ,x   is given by

pix,,  ‖|,,x
i cl‖

2  1


1/2


|qi−x|≤

d3qiiqiexp − 1 qi − x
2 ,

iqi  〈qi ||i cl,

1.2.30

and therefore

pix, 
→0
lim pix,, 


→0

lim−1, 1


1/2


|qi−x|≤

dqiiqiexp − 1 qi − x
2  ix.

1.2.31

I.2.5.The generalization of nonclassical collapse
models



(8) Let |t cl, t ∈ 0,T be the classical pure states correspond to an
vector-function |t cl : 0,T  S

 → S such that |t cl∈ S
  H

, t ∈ 0,T,where is a non projective Hilbert space H, see Subsection I.7.1, Def
I.7.1-I.7.2. Then the sudden spontaneous process is a localization along classical
trajectory xt : 0,T  3 → 3 given by:

|t cl
,,xt−localization

|t,,,xt
i cl

‖|t,,,xt
i cl‖

,

 ∈ 0,1,  1,xt ∈ 3, t ∈ 0,T.

1.2.32

where

|t,,,xt
i cl 


Lxt
i
,|t cl. 1.2.33

Here

Lxt
i
, is a norm-reducing, positive, self-adjoint, linear operator with a

symbol Lxt
i , in the n-particle non projective Hilbert space H, representing the

localization of particle i at each instant t ∈ 0,T around the point xt.
Definition 1.2.3. Such localization as mentioned above is called

,,xt-localization or
,,xt-collapse of the state |t cl.
(9) The probability density pit,xt,, for the occurrence of a localization at

point xt at
instant t is assumed to be

pit,xt,, 
‖|t,,,xt

i cl‖
2

t,,
,

t,,  
3

‖|,,xt
i cl‖

2
d3x.

1.2.34

(10) Let |t n.cl be the nonclassical pure state correspond to an vector-function

t
  |t  ∈ H\S,where |t  ∈ S, || ≠ 1, t ∈ 0,T see Subsection I.7.1,

Def.I.7.3.
Then the sudden spontaneous process is a localization along classical

trajectory
xt : 0,T  3 → 3 given by:

|t n.cl
,,xt−localization

|t,,,xt
i n.cl

‖|t,,,xt
i n.cl‖

,

xt∈ 3, t ∈ 0,T

1.2.35

where

|t,,,xt
i n.cl 


Lxt
i
,|t n.cl. 1.2.36

Definition 1.2.4. Such localization is called ,,xt-localization or ,,xt-collapse
of the

state |n.cl.



(11) The probability density pit,xt,,,,  for the occurrence of a localization at
point

xt ∈ 3 at instant t ∈ 0,T in acordance to postulate Q.IV.3 (see Subsection
I.7.1,

Eq.(1.7.8)) is assumed to be

pit,xt,,,,  
||−6 t,,,| |−2xt

i

n.cl

2

t,,
,

t,,  
3

‖|,,xt
i cl‖

2
d3x.

1.2.37

(12) The localization operators

Lxt
i
, have been chosen to have the form:


Lxt
i
, 

1


3/4

exp − 1
2 

q i − xt
2 iff ‖qi − xt‖ ≤   1,

0 iff ‖qi − xt‖  .
1.2.38

Here  ∈ 0,1 and lim→0   .
Remark 1.2.5. In one dimension case it follows that


Lxt
i
, 

1


1/4

exp − 1
2 

qi − xt
2 iff |qi − xt | ≤   1,

0 iff |qi − xt |  .
1.2.39

Remark 1.2.6. Note that from Eq.(1.2.34) and Eq.(1.2.38) follows that a
probability density
pit,xt,,,,  for the occurrence of a localization at instant t inside sphere

Sxt,  qi ∈ 
3|‖qi − xt‖ ≤  is given by

pit,xt,, 
‖|t,,,xt

i cl‖
2

t,,

‖|t,,,xt
i cl‖

2  1


3/2


‖qi−xt‖≤

d3qitiqiexp −
1
 

qi − xt
2 ,

tiqi  〈qi ||ti cl,

1.2.40

and therefore

pit,x, 
→0
lim pit,x,, 


→0

lim−1t,, 1


1/2


|qi−x|≤

dqiiqiexp − 1 qi − xt
2  ixt.

1.2.41



I.3.The nonlocal Schrödinger equations and
nonlocal nature of the wave function collapse

In this subsection we introduce new additional QM-postulates namely nonlocal
Schrödinger equations. This nonlocal equations in a good consent with nonlocal
nature of the wave function collapse. We obtain main GRW postulates given by
Eq.(1.2.20) and Eq.(1.2.32) using nonlocal Schrödinger equations (1.3.3) and
(1.3.6).

Assumption 1.3.1.We assume now that a wawe function x, t  〈x|t 
collapses at instant: t  0.

Definition 1.3.1.Let us consider the time-dependent canonical Schrödinger
equation:

i
∂x, t
∂t

 Htx, t,

t ∈ 0,T,x  x1,x2, . . . ,xn  ∈3n.

1.3.1

Let x, t be a classical solution of the equation (1.3.1). The time-dependent
Schrödinger equation (1.3.1) is a weakly well preserved by corresponding to x, t
collapsed along classical trajectory

Xm1,...,mkt, t ′  
xm1t, t ′, . . . ,

xmit, t ′, . . . ,
xmkt, t ′, 1 ≤ i ≤ k

xmit, t ′ 
xmit iff t ′  t ≤ T

0 iff 0 ≤ t ≤ t ′

wave function #x, t, t ′ :

#x1,x2, . . . ,xn, t, t ′ 

#x1,x2, . . . ,xn, t, t ′;
xm1t, t ′, . . . ,

xmkt, t ′ 

m1,...,mk
xm1t, t ′, . . . ,

xmkt, t ′x1,x2, . . . ,xn, t
‖m1,...,mk

xm1t, t ′, . . . ,
xmkt, t ′x1,x2, . . . ,xn, t‖2

,

m1,...,mk
xm1t, t ′, . . . ,

xmkt, t ′ 
i1

k

mi
xmit, t ′,

mi
xmit, t ′ 

−3/4 exp −
xmi −

xmit, t ′
2

2
iff |xmi −

xmit, t ′| ≤ ,

0 iff ‖xm −
xmt, t ′‖  .

1.3.2



in region Γ ⊆ 3d if the estimate


0

T


Γ

i
∂#x, t, t ′

∂t
− Ht#x, t, t ′ d3nx  O, 1/4    1/2,

t ∈ 0,T,x ∈3n,

1.3.3

is satisfied.
Definition 1.3.2.(i) The time-dependent integral equation (1.3.3) is colled the

time- dependent nonlocal Schrödinger equation of the order .
(ii) Such collapsed wave function #x, t, t ′ as mentioned in Definition 1.3.1 is

colled the
- solution of the nonlocal Schrödinger equation (1.3.3) of the order .

Definition 1.3.3.Let us consider the time-independent canonical Schrödinger
equation:

Hx  0,

t ∈ 0,T,x  x1,x2, . . . ,xn  ∈3n.

1.3.4

Let x be a classical solution of the equation (1.3.4). The time-independent
Schrödinger equation (1.3.4) is a weakly well preserved by corresponding to x
collapsed wave function #x :

#x1,x2, . . . ,xn 

x1,x2, . . . ,xn;
xm1 , . . . ,

xmk  


m1,...,mk

xm1 , . . . ,
xmk x1,x2, . . . ,xn

‖m1,...,mk
xm1 , . . . ,

xmk x1,x2, . . . ,xn‖2
,

m1,...,mk
xm1 , . . . ,

xmk  
i1

k

mi
xmi ,

m
xm 

−3/4 exp −
xm −

xm
2

2
iff ‖xm −

xm‖ ≤ ,

0 iff ‖xm −
xm‖  .

1.3.5

in region Γ ⊆ 3d if the estimate


Γ

H#xd3dx  O, 1/4    1/2,

x ∈3n,

1.3.6



is satisfied.
Definition 1.3.4.(i) The stationary integral equation (1.3.6) is called nonlocal

stationary Schrödinger equation of the order .
(ii) Such collapsed wave function #x as mentioned in Definition 1.3.3 is

colled the
- solution of the time-independent nonlocal Schrödinger equation (1.3.6) of

the
order .

Definition 1.3.5.The time-dependent integral equation


0

T


Γ

i
∂#x, t
∂t

− Ht#x, t d3nx  0,

t ∈ 0,T,x ∈3n,

1.3.7

is colled the time-dependent nonlocal Schrödinger equation.
Definition 1.3.6.The stationary integral equation


Γ

H#xd3nx  0,x ∈3n, 1.3.8

is called nonlocal stationary Schrödinger equation
Remark 1.3.1.We have introduced in consideration Eq.(1.3.3) and Eq.(1.3.6) in

order to obtain good approximation of the solutions of the Eq.(1.3.7) and Eq.(1.3.8)
correspondingly.

Lemma 1.3.1.[24].Let  be a function

  
0

a

x−1 exp−xfxdx, 1.3.9

where   1, 0  a  , 0  , 0  .Assume that fx is continuous on
0,a.Then

  −1Γ

 f0  o1−/ 1.3.10

Theorem 1.3.1. We assume now for a short that m  n  1. Let x,x ∈  be a
classical

solution of the equation (1.3.4), where

H  ∂2
∂x2

 Vx. 1.3.11

Assume that

|x|  O−1/4,

|∂x/∂x|  O−5/4.
1.3.12

Then any collapsed wave function #x given by Eq.(1.3.5) with



/  , 1/4    1/2 that is -solution of the time-independent nonlocal

Schrödinger equation (1.3.6) of the order .
Proof. Note that

#x  xx,

x  −1/4 exp −
x − x 2

2
iff |x − x | ≤ ,

x  0 iff |x − x |  .

1.3.13

From Eq.(1.3.13) one obtains

∂x
∂x

 −−1/4−1x − x exp −
x − x 2

2


 x−x −
x     xx −

x −  iff |x − x | ≤ ,
∂x
∂x

 0 iff |x − x |  .

∂2x
∂x2

 −−1/4−1 exp −
x − x 2

2


−1/4−2x − x 2 exp −
x − x 2

2


∂
∂x x−

x − x    ∂
∂x x

x − x −  

 x−
′x − x     x

′x − x −  iff |x − x | ≤ ,
∂2x
∂x2

 0 iff |x − x |  .

1.3.14

and

∂2#x
∂x2


∂2xx

∂x2
 ∂
∂x

x
∂x
∂x

 x
∂x
∂x



2
∂x
∂x

∂x
∂x

 x
∂2x
∂x2

 x
∂2x
∂x2

.

1.3.15

Substitution Eq.(1.3.11) and Eq.(1.3.15) into LHS of the Eq.(1.3.8) gives




Γ

H#xdx  
Γ

2 ∂
2

∂x2
#x  Vx#x dx 

 
Γ

x 2 ∂
2x
∂x2

 Vxx dx  22 
Γ

∂x
∂x

∂x
∂x

dx 

2 
Γ

x
∂2x
∂x2

dx 

22 
Γ

∂x
∂x

∂x
∂x

dx  2 
Γ

x
∂2x
∂x2

dx.

1.3.16

From Eq.(1.3.16) and Eq.(1.3.12) one obtains


Γ

H#xdx ≤ 22 
Γ

∂x
∂x

∂x
∂x

dx  2 
Γ

|x|
∂2x
∂x2

dx ≤

22O−5/4 
Γ

∂x
∂x

dx  2O−1/4 
Γ

∂2x
∂x2

dx ≤

O3/4−1/4−1 
Γ

|x − x | exp − x −
x 2

2
dx 

O3/2−1/4−1 
Γ

exp − x −
x 2

2
dx 

O7/4−1/4−2 
Γ

x − x 2 exp − x −
x 2

2
dx.

1.3.17

Having applied Lemma 1.3.1 to RHS of the (1.3.17) we have finalized the proof.

Theorem 1.3.2.We assume now for a short that m  n  1. Let x, t,x ∈  be
a classical

solution of the equation (1.3.1), where

H  2 ∂
2

∂x2
 Vx, t. 1.3.18

Assume that

|x, t|  O−1/4,

|∂x, t/∂x|  O−5/4,

|∂x, t/∂t|  O−5/4.

1.3.19

Then any collapsed wave function #x, t  #x, t, t ′  0 given by Eq.(1.3.3) with

t ′  0 and /  , 1/4    1/2 that is -solution of the time-dependent

nonlocal Schrödinger equation (1.3.7) of the order .



Proof. Note that

#x, t  x, tx, t,

x, t 
−1/4texp −

x − x t2

2
iff |x − x t | ≤ ,

0 iff |x − x t |  ,

t  ‖x tx, t‖2
−1.

1.3.20

From Eq.(1.3.20) one obtains

∂x, t
∂x

 −−1/4−1x − x ttexp −
x − x t2

2


  x t− x − x t     x t x − x t −  iff |x − x t | ≤ ,
∂x, t
∂x

 0 iff |x − x t |  .

∂2x, t
∂x2

 −−1/4−1texp −
x − x t2

2


−1/4−2x − x t2texp −
x − x t2

2



∂
∂x x t−

x − x t   
∂
∂x x t

x − x t − 

  x t−  ′x − x t     x t  ′x − x t −  iff |x − x t | ≤ ,

∂2x, t
∂x2

 0 iff |x − x t |  .

∂x, t
∂t

 −1/4 ′texp −
x − x t2

2
−

−−1/4tx t′x −
x texp −

x − x t2

2
.

1.3.21

Note that

i
∂#x, t
∂t

− Ht#x, t  i
∂#x, t
∂t

− 2 ∂
2

∂x2
#x, t  Vx, t#x, t .

1.3.22

Substitution Eq.(1.3.20) into LHS of the Eq.(1.3.22) gives



i
∂#x, t
∂t

− Ht#x, t  i
∂x, t
∂t

x, t −

2 2
∂x, t
∂x

∂x, t
∂x

 x, t
∂2x
∂x2

−

x, t i
∂x, t
∂t

− 2 ∂
2x, t
∂x2

− Vx, tx, t 

i
∂x, t
∂t

x, t − 2 2
∂x, t
∂x

∂x, t
∂x

 x, t
∂2x
∂x2

1.3.23

Substitution Eq.(1.3.23) into LHS of the Eq.(1.3.7) gives


Γ

i
∂#x, t
∂t

− Ht#x, t dx 


Γ

i
∂x, t
∂t

x, t − 2 2
∂x, t
∂x

∂x, t
∂x

 x, t
∂2x
∂x2

dx.

1.3.24

From Eq.(1.3.24) we obtain


Γ

i
∂#x, t
∂t

− Ht#x, t dx ≤


Γ


∂x, t
∂t |x, t|  2 2

∂x, t
∂x

∂x, t
∂x

 |x, t|
∂2x
∂x2

dx.

1.3.25

Substitution Eq.(1.3.19),Eq.(1.3.19) into RHS of the (1.3.25) gives


Γ

i
∂#x, t
∂t

− Ht#x, t dx ≤

≤ O−1/4 
Γ

∂x, t
∂t

dx  22O−5/4 
Γ

∂x, t
∂x

dx 

22O−5/4 
Γ

∂x, t
∂x

dx 

O3/4 
Γ

∂x, t
∂t

dx  O3/4 
Γ

∂x, t
∂x

dx  O3/4 
Γ

∂2x, t
∂x2

dx

1.3.26

Substitution Eq.(1.3.20),Eq.(1.3.21) into RHS of the (1.3.26) gives




Γ

i
∂#x, t
∂t

− Ht#x, t dx ≤

O3/4 
Γ

∂x, t
∂t

dx  O3/4 
Γ

∂x, t
∂x

dx  O3/4 
Γ

∂2x, t
∂x2

dx ≤

O3/4−1/4| ′t| 
Γ

dxexp − x −
x t2

2


O3/4−1/4|t|
x t′ 

Γ

dx|x − x t | exp −
x − x t2

2


O1/2−1/4−1|t| 
Γ

dx|x − x t | exp −
x − x t2

2


O3/4−1/4−2|t| 
Γ

dxx − x t2 exp −
x − x t2

2
.

1.3.27

Having applied Lemma 1.3.1 to RHS of the (1.3.27) we have finalized the proof.
Assumption 1.3.2.We assume now that a wawe function x, t  〈x|t 

collapses at instant: t ′  0.
Definition 1.3.7.Let x, t be a classical solution of the equation (1.3.1). The

time- dependent Schrödinger equation (1.3.1) is a weakly well preserved by
corresponding to classical solution x, t collapsed along classical trajectory

Xm1,...,mkt, t ′  
xm1t, t ′, . . . ,

xmit, t ′, . . . ,
xmkt, t ′, 1 ≤ i ≤ k a wave function

#x, t, t ′ given by Eq.(1.3.2) with t ′  0 in region 0,T  Γ ⊆ 0,T  3n, if the
estimate


Γ

d3nx 
0

T

dt i
∂#x, t, t ′

∂t
− Ht#x, t, t ′  O, 0   ≤ 1,

t ∈ 0,T,x ∈3n,

1.3.28

is satisfied.
Definition 1.3.8.(i) The time-dependent integral equation (1.3.28) is colled the

time- dependent nonlocal Schrödinger equation of the order .
(ii) Such collapsed wave function #x, t, t ′ as mentioned in Definition 1.3.7 is

colled the
- solution of the nonlocal Schrödinger equation (1.3.28) of the order .

Definition 1.3.9.The time-dependent integral equation




Γ

d3nx 
0

T

dt i
∂#x, t, t ′

∂t
− Ht#x, t, t ′  0,

t ∈ 0,T,x ∈3n,

1.3.29

is colled the time-dependent nonlocal Schrödinger equation.
Remark 1.3.2.We have introduced in consideration Eq.(1.3.28) in order to

obtain good approximation of the solutions of the time-dependent nonlocal
Schrödinger equation (1.3.29).

Theorem 1.3.4.Then any collapsed wave function #x, t, t ′ given by Eq.(1.3.)
that is - solution of the time-independent nonlocal Schrödinger equation (1.3.29)
of the order .

Proof. The proof similarly as the proof of the Theorem 1.3.2.

I.4. The nonlocal evolution equation for the
statistical operator

Let us consider the evolution equation for the statistical operator [25]:

d
dt
t  − i


H,t . 1.4.1

Here H is the standard quantum Hamiltonian.In the coordinate representation one
has, according to Eq.(1.4.1)

d
dt
t,q′,q′′  − i


Hq′ − Hq′′

∗
t,q′,q′′,

0,q′,q′′  q′,q′′,

q′,q′′ ∈ 3d.

1.4.2

Here

t,q′,q′′  t,q′∗t,q′′ 1.4.3

and t,q′ is the classical solution of the Schrödinger equation (1.3.1), Hq′ is the

Hamiltonian of the system acting on a functions of variable q′ and Hq′′ is the same
Hamiltonian of the system acting on a functions of variable q′′.

Definition 1.4.1.(i) Let t,q′,q′′ be an classical solution of the equation
(1.4.2).Collapsed statistical operator #t,q′,q′′ corresponding to statistical
operator t,q′,q′′ given by

#t,q′,q′′  #t,q′#∗t,q′′ 1.4.4

and where #t,q′ given by Eq.(1.3.2) with t ′  0.
(ii) Let t,q′,q′′ be classical solution of the equation (1.4.2). The

time-dependent equation (1.4.5) is a weakly well preserved by corresponding to
t,q′,q′′ collapsed statistical operator #t,q′,q′′ in region Γ ⊆ 3d if the estimate



d
dt

Γ

#t,q′,q′′d3dq′d3dq′′ 

− i
 

Γ

Hq′ − Hq′′
∗
#t,q′,q′′d3dq′d3dq′′  O,

1/4   ≤ 1/2,

#0,q′,q′′  #q′,q′′,

q′,q′′ ∈ 3d

1.4.5

is satisfied. Here

#q′,q′′  #0,q′#∗0,q′′ 1.4.6

and a function #0,q′ is the solution of the nonlocal stationary Schrödinger
equation (1.3.34).

Definition 1.4.2.(i) The integral equation (1.4.5) is called nonlocal equation of
the order 

for the statistical operator #t,q′,q′′.
(ii) Such collapsed statistical operator #t,q′,q′′ as mentioned in Definition

1.4.1 is called
the - solution of the time-dependent nonlocal equation (1.4.5) of the order .
Definition 1.4.3.The time-dependent integral equation

d
dt

Γ

#t,q′,q′′d3dq′d3dq′′ 

− i
 

Γ

Hq′ − Hq′′
∗
#t,q′,q′′d3dq′d3dq′′,

#0,q′,q′′  #q′,q′′,

q′,q′′ ∈ 3d

1.4.7

is called nonlocal equation for the statistical operator #t,q′,q′′.
Remark 1.4.1.We have introduced in consideration Eq.(1.4.5) in order to obtain

good approximation of the solutions of the Eq.(1.4.7)
Definition 1.4.4.Let t,q1

′ ,q2
′ , . . . ,qn

′ ,q1
′′,q2

′′, . . . ,qn
′′ be an statistical operator.We

define statistical operator #t, t ′,q1
′ ,q2

′ , . . . ,qn
′ ,q1

′′,q2
′′, . . . ,qn

′′ corresponding to
statistical operator t,q1

′ ,q2
′ , . . . ,qn

′ ,q1
′′,q2

′′, . . . ,qn
′′ and collapsed along classical

trajectories



Xm1,...,mk

′
t, t ′  xm1

′ t, t ′, . . . ,xmi
′ t, t ′, . . . ,xmk

′ t, t ′, 1 ≤ i ≤ k,

xmi
′ t, t ′ 

xmi
′ t iff t ′  t ≤ T

0 iff 0 ≤ t ≤ t ′

Xm1,...,mk

′′
t, t ′  xm1

′′ t, t ′, . . . ,xmi
′′ t, t ′, . . . ,xmk

′′ t, t ′, 1 ≤ i ≤ k,

xmi
′′ t, t ′ 

xmi
′′ t iff t ′  t ≤ T

0 iff 0 ≤ t ≤ t ′

1.4.8

by formulae

#t, t ′,q1
′ ,q2

′ , . . . ,qn
′ ,q1

′′,q2
′′, . . . ,qn

′′ 

#x1,x2, . . . ,xn, t, t ′;
xm1t, t ′, . . . ,

xmkt, t ′ 

m1,...,mk
xm1
′ t, t ′, . . . ,xmi

′ t, t ′, . . . ,xmk
′ t, t ′ 

m1,...,mk
xm1
′′ t, t ′, . . . ,xmi

′′ t, t ′, . . . ,xmk
′′ t, t ′t,q1

′ ,q2
′ , . . . ,qn

′ ,q1
′′,q2

′′, . . . ,qn
′′,

m1,...,mk
xm1
′ t, t ′, . . . ,xmi

′ t, t ′, . . . ,xmk
′ t, t ′ 

i1

k

mi
xmi
′ t, t ′,

m1,...,mk
xm1
′′ t, t ′, . . . ,xmi

′′ t, t ′, . . . ,xmk
′′ t, t ′ 

i1

k

mi
xmi
′′ t, t ′,

mi
xmi
′ t, t ′ 

−3/4 exp −
qmi
′ − xmi

′ t, t ′
2

2
iff ‖qmi

′ − xmi
′ t, t ′‖ ≤ ,

0 iff ‖qmi
′ − xmi

′ t, t ′‖  .

mi
xmi
′′ t, t ′ 

−3/4 exp −
qmi
′′ − xmi

′′ t, t ′
2

2
iff ‖qmi

′′ − xmi
′′ t, t ′‖ ≤ ,

0 iff ‖qmi
′′ − xmi

′′ t, t ′‖  .

1.4.9

Let us consider now the 1-particle master equation of the classical GRW model



d
dt
t  − i


H,t − t − Tt.

1.4.10

Here H is the standard quantum Hamiltonian of the particle, and T represents the
effect of the spontaneous collapses on the particle’s wave function. In the position
representation, this equation becomes:

d
dt
t,q′,q′′ 

− i


Hq′ − Hq′′
∗
t,q′,q′′ −  1 − exp −

q′−q′′2

4rc2
t,q′,q′′,

0,q′,q′′  q′,q′′,

q′,q′′ ∈ 3d.

1.4.11

Here Hq′ is the Hamiltonian of the system acting on a functions of variable q′ and

Hq′′ is the same Hamiltonian of the system acting on a functions of variable q′′.

Definition 1.4.5.Let t,q′,q′′ be classical solution of the equation (1.4.11). The
time-dependent equation (1.4.11) is a weakly well preserved by corresponding to
t,q′,q′′ collapsed statistical operator #t,q′,q′′ given by (1.4.9) with t ′  0 in
region Γ ⊆ 3d if the estimate

d
dt

Γ

#t,q′,q′′d3dq′d3dq′′ 

− i
 

Γ

Hq′ − Hq′′
∗
#t,q′,q′′d3dq′d3dq′′ −

− 
Γ

1 − exp −
q′−q′′2

4rc2
#t,q′,q′′d3dq′d3dq′′  O,

1/4   ≤ 1/2,

#0,q′,q′′  #q′,q′′,

q′,q′′ ∈ 3d

1.4.12

is satisfied.
Definition 1.4.6.The time-dependent integral equation



d
dt

Γ

#t,q′,q′′d3dq′d3dq′′ 

− i
 

Γ

Hq′ − Hq′′
∗
#t,q′,q′′d3dq′d3dq′′ −

− 
Γ

1 − exp −
q′−q′′2

4rc2
#t,q′,q′′d3dq′d3dq′′,

1/4   ≤ 1/2,

#0,q′,q′′  #q′,q′′,

q′,q′′ ∈ 3d

1.4.13

is called nonlocal master equation for the statistical operator #t,q′,q′′.
Remark 1.4.2.We have introduced in consideration Eq.(1.4.12) in order to

obtain good approximation of the solutions of the Eq.(1.4.13)
Theorem 1.4.1. We assume now for a short that m  n  1. Let x, t,x ∈  be

a classical solution of the equation (1.3.1), where

H  2 ∂
2

∂x2
 Vx, t. 1.4.14

Assume that

|x, t|  O−1/4,

|∂x, t/∂x|  O−−5/4,

|∂x, t/∂t|  O−−5/4.

1.4.15

Then for any collapsed wave function #x, t  #x, t, t ′  0 given by Eq.(1.3.2)

with t ′  0 and /  , 1/4    1/2 corresponding collapsed statistical operator

#t,q′,q′′ given by Eq.(1.4.4) that is -solution of the time-dependent nonlocal
equation (1.4.5) of the order .

Proof. The proof similarly as the proof of the Theorem 1.3.2.

Let us consider now the equation (1.4.11) in the case in which H is the
Hamiltonian for a free particle; for simplicity we work in one dimension. In the
coordinate representation we get

d
dt
t,q′,q′′ 

i
2m

∂2
∂q′2

− ∂2
∂q′′2

t,q′,q′′ −  1 − exp −
q′−q′′2

4rc2
t,q′,q′′.

1.4.16

One can express the solution of the above equation satisfying given initial
conditions in terms of the solution ρScht,q′,q′′ of the usual Schrödinger equation
(λ  0) satisfying the same initial conditions, according to [3]:



t,q′,q′′  1
2 

−



dk 
−



dyFk,q′ − q′′, tρScht,q′  y,q′′  yexp
iky


,

Fk,q, t  exp −t   
0

t

dexp − 1
4rc2

q − km
2

.

1.4.17

By Theorem 1.4.1 corresponding to t,q′,q′′ given by

#t,q′,q′′  q ′tq ′′tt,q′,q′′,

q ′t 
−1/4 exp −

q ′ − q ′t
2

2
iff q′ − q ′t ≤ ,

0 iff q′ − q ′t  .

q ′′t 
−1/4 exp −

q ′′ − q ′′t
2

2
iff q′′ − q ′′t ≤ ,

0 iff q′′ − q ′′t  .

1.4.18

Assumption 1.4.1.We assume now that a wawe function collapses at

instant t ′  0.
Definition 1.4.7.Let t,q′,q′′ be an classical solution of the equation (1.4.2).

The time-dependent equation (1.4.2) is a weakly well preserved by corresponding
to t,q′,q′′ collapsed statistical operator #t, t ′,q′,q′′ in region 0,T  Γ,Γ ⊆ 3d

iff the estimate


0

T

dt 
Γ

d
dt
#t, t ′,q′,q′′d3dq′d3dq′′ 

− i
 

0

T

dt 
Γ

Hq′ − Hq′′
∗
#t, t ′,q′,q′′d3dq′d3dq′′  OT,

1/4   ≤ 1/2,

#0,q′,q′′  #q′,q′′,

q′,q′′ ∈ 3d

1.4.19

is satisfied.
Definition 1.4.8.The time-dependent integral equation




0

T

dt 
Γ

d
dt
#t, t ′,q′,q′′d3dq′d3dq′′ 

− i
 

0

T

dt 
Γ

Hq′ − Hq′′
∗
#t, t ′,q′,q′′d3dq′d3dq′′,

#0,q′,q′′  #q′,q′′,

q′,q′′ ∈ 3d

1.4.20

is called nonlocal master equation for the statistical operator #t,q′,q′′.
Definition 1.4.9.Let t,q′,q′′ be an classical solution of the equation (1.4.13).

The time-dependent equation (1.4.13) is a weakly well preserved by corresponding
to t,q′,q′′ collapsed statistical operator #t, t ′,q′,q′′ given by (1.4.9) in region
0,T  Γ,Γ ⊆ 3d if the estimate


0

T

dt 
Γ

d
dt
#t,q′,q′′d3dq′d3dq′′ 

− i
 

0

T

dt 
Γ

Hq′ − Hq′′
∗
#t,q′,q′′d3dq′d3dq′′ −

− 
0

T

dt 
Γ

1 − exp −
q′−q′′2

4rc2
#t,q′,q′′d3dq′d3dq′′  OT, ,

1/4   ≤ 1/2,

#0,q′,q′′  #q′,q′′,

q′,q′′ ∈ 3d

1.4.21

is satisfied.
Definition 1.4.10.The time-dependent integral equation


0

T

dt 
Γ

d
dt
#t,q′,q′′d3dq′d3dq′′ 

− i
 

0

T

dt 
Γ

Hq′ − Hq′′
∗
#t,q′,q′′d3dq′d3dq′′ −

− 
0

T

dt 
Γ

1 − exp −
q′−q′′2

4rc2
#t,q′,q′′d3dq′d3dq′′,

1/4   ≤ 1/2,

#0,q′,q′′  #q′,q′′,

q′,q′′ ∈ 3d

1.4.22



is called nonlocal master equation for the statistical operator #t,q′,q′′.

I.5. The nonlocal stochastic nonlinear Schrödinger
equation

Let us consider the stochastic nonlinear Schrödinger equation [9],[10],[46]:

d|tx  − i

H − k

2
q − 〈qt 2dt |txdt  k q − 〈qt dWt|tx.

1.5.1

Here x ∈ r,q is the position operator, 〈qt   〈t |
q|t  it is its expectation value,

and k is a constant.
Definition 1.5.1.Let w,t, ∈ 0,1 be smoothed with respect to r white

noise, (see [20],[21]) and let W,t be Colombeau-Wiener process
Ẇ,t  w,t.

We rewrite now Eq.(1.5.1) in Colombeau-Ito form

d|,tx 

− i

H − k2 

q − 〈q,t 2dt |,txdt  k q − 〈q,t dW,t|,tx

.

1.5.2

Here x ∈ r,q is the position operator, 〈q,t   〈,t |
q|,t  it is its expectation

value, and k is a constant.
Definition 1.5.2. Let ,tx  x, t,x x1,x2, . . . ,xn be an Colombeau

solution of the equation (1.5.2) and let

Xm1,.,mi,..,mkt, t ′,,



xm1t, t ′,,, . . . , 
xmit, t ′,,, . . . , 

xmkt, t ′,, , 1 ≤ i ≤ k
1.5.3

be Colombeau ctochastic trajectory. Then we define collapsed Colombeau solution
,t,t′
# x


corresponding to Colombeau solution ,tx by formula



,t,t′
# x


 ,tx iff t  t ′,

iff t ≥ t ′ :

,t,t′
# x


 

#x, t, t ′ 


#x1,x2, . . . ,xn, t, t ′ 


#x1,x2, . . . ,xn, t, t ′;

xm1t, t ′,,, . . . ,
xmkt, t ′,, 

m1,...,mk
xm1t, t ′,,, . . . ,

xmkt, t ′,,,tx
‖m1,...,mk

xm1t, t ′,,, . . . ,
xmkt, t ′,,,tx‖2 

,

m1,...,mk
xm1t, t ′,,, . . . ,

xmkt, t ′,,  
i1

k

mi
xmit, t ′,,



,

mi
xmit, t ′,, 

−3/4 exp −
xmi −

xmit, t ′,,
2

2


iff ‖xmi −
xmit, t ′,,‖ ≤ ,

0 iff ‖xmi −
xmit, t ′,,‖  .

1.5.4

Definition 1.5.3.Let ,tx be an Colombeau solution of the equation (1.5.2).
The time- dependent Colombeau-Schrödinger equation (1.5.2) is a weakly well
preserved by corresponding to Colombeau solution ,tx collapsed along

Colombeau trajectory Xm1,.,mi,..,mkt, t ′,,

, 1 ≤ i ≤ k a wave function ,t,t′

# x


given by Eq.(1.5.4) with t ′  0 in region 0,T  Γ ⊆ 0,T  3n, if the estimate


Γ

d3nx 
0

T

d ,t,t′
# x,






Γ

d3nx 
0

T

− i

H − k2 

q − 〈q,t,t′ 
2 ,t,t′

# x, dt





k 
Γ

d3x 
0

T

q − 〈q,t,t′ dW,t ,t,t′
# x,



 O,

1/4   ≤ 1/2

1.5.5

is satisfied a.s. Here x ∈ r,q is the position operator, 〈q,t   〈,t |
q|,t  it is

its expectation value, and k is a constant.
Definition 1.5.4.(i)The time-dependent integral equation (1.5.5) is colled the

time-dependent nonlocal Schrödinger equation of the order .
(i) A wave function ,t,t′

# x


is called the - solution of the time-dependent



nonlocal equation (1.5.5) of the order .
Theorem 1.5.1.Let ,t,t′x,x ∈ 

3n be a Colombeau solution of the equation

(1.5.2), where

H

 2∑

i1

3n
∂2
∂xi2

 Vx, t. 1.5.6

Assume that

|,t,t′x|  O−3n/4,

|∂,t,t′x/∂xi |  O−3n/4−1, i  1, . . . , 3n,

|∂,t,t′x/∂t|  O−3n/4−1.

1.5.7

Then any collapsed Colombeau wave function |,t,t′x| given by Eq.(1.5.4) with

/  , 1/4    1/2 that is -solution of the time-dependent nonlocal

Schrödinger equation (1.5.5) of the order .
Proof. The proof similarly as the proof of the Theorem 1.3.2.

I.6. The reconciled Bohr rule. Schrödinger’s cat
through Stern-Gerlach experiment.Schrödinger’s
cat demands to reconcile Bohr rule.

Another known in literature special sort of the Schrödinger cat paradox can be
simply illustrated with the famous Stern-Gerlach experiment (Fig.1.6.1). Silver
atoms boiled off from a furnace are sent through a non-uniform magnetic field, and
impinge on a photographic plate. Instead of a continuous distribution of spots, one
sees two spots, corresponding to spin up and spin down relative to the magnetic
field axis. Each atom goes up OR down, but one cannot predict which in any given
run – the results of the experiment are probabilistic. There is a 50% chance of an
atom going up, and a 50% chance that it will go down.

Fig.1.6.1.Stern-Gerlach experiment.

Adapted from [27].

Remark 1.6.1. We remind that from the point of view of the Schrödinger
equation of quantum theory, this result has no any rigorous explanation.



In quantum theory, the state of the particle is described by its wave function,
and the Schr¨odinger equation says that at a post-measurement final time tf, the
wave function is related to that at a pre-measurement initial time ti, by known
deterministic relation

tf   Utf, titi,

Utf, ti  exp iHtf − ti
1.6.1

with the transition unitary operator U completely specified by the Hamiltonian H. To
explain what is observed, the Schr¨odinger equation must be supplemented by the
reduction postulate and the Born rule. These state that the wave function only gives
a description of probabilities when a measurement is made, with the probabilities
for an “up” outcome and a “down” outcome given by the squares of the coefficients
of the corresponding components in the initial wave function ti,

Fig.1.6.2.The Stern-Gerlach apparatus with

a Schrödinger cat as the outcome registration.

Adapted from [27].

Born’s Rule for Probabilities

ti  cupup  cdowndown,

probup  |cup |
2,probdown  |cdown |2,

|cup |
2  |cdown |2  1.

1.6.2

with the sum of the up and down probabilities equal to one. The reduction postulate
and Born rule are an add-on to the Schrödinger equation. According to the
Copenhagen interpretation of quantum mechanics, the Schrödinger equation
applies when a microscopic system, the silver atom, is time-evolving in isolation.
But when the atom interacts with a macroscopic measuring apparatus, as in the
Stern–Gerlach setup, you have to use the reduction postulate and Born rule.

Remark 1.6.2. This situation leads to puzzles that have been debated for over
eighty years. If quantum mechanics describes the whole universe, then why can’t



one use the Schrödinger equation to describe the system consisting of the silver
atom plus the measuring apparatus? But we never see a superposition state of the
atom plus apparatus. This is Schrödinger’s famous cat paradox. Arrange the
experiment so that an “up” outcome triggers a mechanism that kills the cat, while a
“down” outcome keeps the cat alive. Of course we don’t do this, but if we were to
do it, we would always see a live cat OR a dead one, never a superposition of the
two (Fig. 1.6.2). So we have the problem of definite outcomes: where does the
“either”–“or” dichotomy arise?

We remind now some fundamental notions from probability theory.
Definition 1.6.1. In probability theory, the sample space (observation space) of

an experiment or random trial is the set of all possible outcomes or results of that
experiment. A sample space is usually denoted using set notation, and the possible
outcomes are listed as elements in the set. It is common to refer to a sample space
by the label Ω.

Remark 1.6.3. A well-defined sample space (observation space) is one of three
basic elements in a probabilistic model (a probability space Θ  ,,P); the
other two are a well-defined set of possible events (a sigma-algebra ) and a
probability assigned to each event (a probability measure function P).

Remark 1.6.4. An simply example of a sample phase space and corresponding
probability space closer to our Stern-Gerlach experiment, is a coin toss. Consider
1000 coin tosses. If the coin is tossed without bias, you will find close to 500 heads
and 500 tails, corresponding to probheads  0.5 and probtails  0.5. Here the sample
space consists of the 1000 detailed trajectories of the toss, which your eye cannot
follow,

Fig.1.6.3. An sample space.Trajectories

in a coin toss.Adapted from [27].

but which if analyzed by a very fast computer could predict which toss would
give a head and which a tail (Fig.1.6. 3). Again, the probabilities are just reflections
of our ignorance of the details, but the details are there. So we have the questions
– are there hidden details underlying the probabilities in quantum mechanics? Is
there a hidden sample space and corresponding probability space?

At a phenomenological level, there are very interesting models for the
emergence of probabilities within the usual wave function formulation of
nonrelativistic quantum theory, pioneered by Ghirardi, Rimini, and Weber [2]-[4].
These models postulate that space is filled with a very low level noise with a



coupling to matter proportional to the imaginary unit i, rather than with a
real-valued coupling (more technically, they couple through an anti-Hermitian
Hamiltonian term). For example, there could be a small, rapidly fluctuating
contribution to the gravitational potential or g00 metric component proportional to
the imaginary unit i. If such a theory obeys two general properties, (1) the total
probability of a particle being present remains one for all times (that is, the wave
function normalization is preserved), and (2) there is no faster than light signaling,
then the extra terms in the Schr¨odinger equation equation must have a special
structure. This special structure allows one to prove definite outcomes obeying the
Born rule!

Fig.1.6.4.Different noise histories,in objective

reduction models,can explain “up” and “down”

registrations in the Stern-Gerlach experiment.

Adapted from [27].

In these models, for each repetition of the Stern–Gerlach experiment, the noise
variable takes different values. For a large apparatus, these have a measurable
effect, whereas for an atom not interacting with an apparatus, the effect is not
measurable. The noise leads to different outcomes for different runs, with
probabilities given by the Born rule. The different noises for different runs of the
experiment are analogous, in the coin toss example I gave earlier, to different
details of the tumbling coin trajectories for the different coin tosses (Fig. 1.6.4).

In the de Broglie-Bohm interpretation: a particle has an initial position and
follows a path whose velocity at each instant is given by an classical equation. On
the basis of this assumption we conduct a simulation experiment by drawing
random initial positions of the electrons in the initial wave acket ("quantum
equilibrium hypothesis").



Fig.1.6.5. An sample space in Bohmian QM.

100 electron trajectories for the

Jönsson experiment. Adapted from [55].

Figure 1.6.5 shows, after its initial starting position,100 possible quantum
trajectories of an electron passing through one of the two slits: We have not
represented the paths of the electron when it is stopped by the first screen. Figure
1.6.6 shows a close-up of these trajectories just after they leave their slits.

Fig.1.6.6.Close-up on the 100 trajectories of

the electrons just after the slits.

Adapted from [55].

Remark 1.6.5. The different trajectories explain both the impact of electrons on
the detection screen and the interference fringes. This is the simplest and most
natural interpretation to explain the impact positions: "The position of an impact is
simply the position of the particle at the time of impact." This was the view
defended by Einstein at the Solvay Congress of 1927. The position is the only
measured variable of the experiment.



Fig.1.6.6.Ten silver atom trajectories within initial

spin orientation 0  /3 and initial position z0;

arrows represent the spin orientation θz, t

along the trajectories.Adapted from [55].

Figure 1.6.6. presents, for a silver atom with the initial spinor orientation (θ0
 π3,ϕ0  0), a plot in the (Oyz) plane of a set of 10 trajectories whose initial
position z0 has been randomly chosen from a Gaussian distribution with standard
deviation σ0. The spin orientations θz, t are represented by arrows

Fig.1.6.7.Ten silver atom trajectories where the

initial orientation (θ0,ϕ0) has been randomly

chosen;arrows represent the spin orientation

θz, t along the trajectories.Adapted from [55].

Now let us consider a mixture of pure states where the initial orientation (θ0,ϕ0)
from the spinor has been randomly chosen. These are the conditions of the initial
Stern and Gerlach experiment. Figure 1.6.7 represents a simulation of 10 quantum
trajectories of silver atoms from which the initial positions z0 are also randomly
chosen.

Definition 1.6.2. A probability space consists of three parts:



1. A sample space (observation space) Ω, which is the set of all possible single
outcomes

 ∈ .
2. A set of events , where each event is a set containing  or more outcomes.
3.The assignment of probabilities to the events; that is, a function P from events

to
probabilities.

An outcome is the result of a single execution of the model. Since individual
outcomes might be of little practical use, more complex events are used to
characterize groups of outcomes. The collection of all such events is a σ-algebra .
Finally, there is a need to specify each event’s likelihood of happening. This is done
using the probability measure function, P :  →0,1.

Remark 1.6.6. Note that:
(i) In conventional quantum mechanics we dealing with a probabilities without

any
probability space Θ  ,,P.
(ii) However a wave function  in quantum mechanics is a description of the

quantum state
| of a quantum system . The wave function is a complex-valued probability

amplitude,
and the probabilities for the possible results of measurements of an

observable

Q  Q (represented by oerator Q) made on the system  in state | can be
derived from

a wave function .
(iii) From (ii) follows that there exist an probability space Θ  ,,P and

random
variable Q

Q|
: Ω → E, i.e. X

Q|
is a measurable function from the set of

possible
outcomes Ω to some set E.
Examle 1.6.1.We now, consider as an examle,the simple case of a

non-relativistic single particle, without spin, in one spatial dimension.
Note that:
(i) The state of such a particle is completely described by its position-space

wave function, x where x is position of a particle. This is a complex-valued
function of real variable x.For one spinless particle in 1D, if the wave function is
interpreted as a probability amplitude, the square modulus of the wave function, the
positive real number

|x|2  ∗xx  x

is interpreted as the probability density that the particle is at x.
(ii) If the particle’s position is measured, its location cannot be determined from

the wave function, but is described by a probability distribution. The probability that
its position x will be in the interval a ≤ x ≤ b is the integral of the density over this



interval:

Pa ≤ x ≤ b  
a

b

|x|2dx.

This leads to the normalization condition


−



|x|2dx  1

because if the particle is measured, there is 100% probability that it will be
somewhere.

(iii) Assume that particle in state |. From a statement (ii) follows that the
coordinate x of

the particle wave function, x under measurement by an measuring device is
a random

variable x  Xx |,Xx |Ω| → E | which well defined on an probability

space
Θ |   |, |,P.
(iv) However in conventional quantum mechanics as mentioned above [see

Remark
1.6.6(i)] such probability space Θ |   |, |,P is missing.
Remark 1.6.7. For a given system, the set of all possible normalizable wave

functions (at any given time) forms an abstract mathematical vector space,
meaning that it is possible to add together different wave functions, and multiply
wave functions by complex numbers.

Note that:
(i) Technically, because of the normalization condition, wave functions form a

projective space Hp rather than an ordinary infinite-dimensional vector space H.
Also H is a Hilbert space, because the inner product of two wave functions 1 and
2 can be defined as the complex number

1,2  
−



1
∗x2xdx.

(ii) Hp  S  H.
(iii) The all values of the wave function x are components of an vector |.

There are uncountably infinitely many of them and integration is used in place of
summation. In Bra-ket notation, this vector is written

|  
−



dxx|x,

where 〈x ′ |x  x ′ − x.
Let us consider QM system which consists of one particle with a wave function

x, x ∈ a,b,such that suppx ⊆ a,b and 

|x|2dx  1.We go to

construct now corresponding probability space Θ |   |, |,P. In one
dimension, the position x of a such particle can range over the values a ≤ x ≤ b.



Consider now measurement of coordinate of such QM particle. Obviously a sample
space for such coordinate measurement is Ω|  a,b  a,b.Note that in practice
observable x is measured to an accuracy x determined by the measuring device.
Thus ∀x∀x1∀x2x − x1,x  x2 ⊆ a,b → x − x1,x  x2 ∈  |  and therefore
σ-algebra a,b  Ba,b is the Borel algebra on the set a,b.The probability
measure function, P :a,b→0,1 we choose of the form

PA  
A

xdx, 1.6.3

where A ∈ a,b and dx is the Lebesgue measure.
Definition 1.6.3.The probability measure P |:a,b→0,1 corresponding to a

wave function x,‖x‖2
2  1, we choose in the following form:

P |A  
A

|x|2dx, 1.6.4

where A ∈ a,b and dx is the Lebesgue measure.
Definition 1.6.4. A random variable X | : Ω| → E | is a measurable function

from the set of possible outcomes Ω to some set E |. The technical axiomatic
definition requires Ω| to be a probability space and E | to be a measurable space.
Note that although X | is usually a real-valued function X | : Ω| → a,b, it does
not return a probability. The probabilities of different outcomes or sets of outcomes
(events) in our case are already given by the probability measure P | with which
Ω| is equipped above.

Definition 1.6.5.(Real-valued random variables) In a case mentioned above the
observation space is a set a,b. Recall, a,b,a,b,P is the probability space. For
real observation space, the function X | : Ωa,b → a,b is a real-valued random
variable, i.e. ∀r : X | ≤ r ∈ a,b .

Assumption 1.6.1.We assume now that P |  P, i.e. P | is absolutely

continuous with respect to P. Then by Radon-Nicodym theorem we obtain for any
A ∈ a,b :

P | A  
A

X |
 dP  

A−

X |
− dP  P

|
 A  P

|
− A,

P
|
 A  

A

X |
 dP,P

|
− A  

A−

X |
− dP,

A  A ∩ 0,,A  A ∩ −, 0,

X |
  

dP
|


dP
,X |

−  
dP

|
−

dP
.

1.6.5.a

Using (1.6.5.a) we define random variable X | : Ω| → a,b by formula

X |  X |
  − X |

− . 1.6.5.b

Definition 1.6.6.The cumulative distribution function of a real-valued random
variable



X |  is the function given by

FX | x  P ∈ Ωa,b X |  ≤ x, 1.6.6

where the right-hand side represents the probability that the random variable
X |  takes on a value less than or equal to x. The probability that X |  lies in

the semi-closed interval a1,b1 ⊂ a,b, where a1  b1, is therefore
P |a1  X | ≤ b1  FX | b1 − FX | a1.

We remind that:
(i) The CDF of any continuous random variable X |  X | can be expressed

as the
integral of its probability density function pX| x as follows:

FX | x  
−

x

pX| tdt  
−

x

|t|2dt. 1.6.7.a

(ii) In the case of any random variable X | which has distribution having a
discrete

component at a value b,

PX |  b  FX | b −
x→b−
lim FX | x. 1.6.7.b

(iii) Every cumulative distribution function FX | x is non-decreasing and

right-continuous,
which makes it a càdlàg function.
(iv)

x→−
lim FX | x  0,

x→
lim FX | x  1. 1.6.7.c

The next result from probability theory it well known.
Theorem 1.6.1. (i) Every function FX | x with these properties (i)-(iv) is a CDF,

i.e., for every such function, a random variable can be defined such that the
function is the cumulative distribution function of that random variable.

(ii) If X | is a purely discrete random variable, then it attains values
x1,x2, . . . ,xi, . . . with probability pi  PX |  xi, and the CDF of XB will be
discontinuous at the points xi and constant in between

FX | x  PX | ≤ x  ∑xi≤x
PX |  xi  ∑xi≤x

pX| xi 1.6.7.d

(iii) If the CDF FX | x of a real valued random variable X | is continuous, then

X | is a continuous random variable.

(iv) If furthermore FX | x is absolutely continuous, then there exists a

Lebesgue-integrable function fx such that

FX | x  
−

x

ftdt. 1.6.7.e

In that caseы when P |  P we define random variable X |  X | by using

Theorem 1.6.1. Thus from Eq.(1.6.7.a) we obtain



Ea,bX |  
a,b

X |dP  
−



xpX| xdx. 1.6.8

Using canonical QM-abbreviations (see subsection I.7.2)

|  
−


|x〈x|dx, 1.6.9

where 〈x|  x, | ∈ S  H, from Eq.(1.6.8)-Eq.(1.6.9) we obtain

〈|x |  
a,b

X |dP  
−



xpX | xdx. 1.6.10

Assumption 1.6.2.We assume now that:

(i) for any x ∈ H : (a) 
a,b

|X | |dP  , (b) 
a,b

X |
2 dP  ,

(ii) for any x ∈ H : X | ∈ ℒ1,2dP  ℒ1dP ∩ ℒ2dP.
Definition 1.6.7. We will write the Eq.(1.6.10) in the following form

〈|x |  
a,b

Xx |dP  
−



xpXx | xdx, 1.6.11

where x |  x|. This form remind that continuous random variable X |  X |
corresponds to measurement of the coordinate of an particle with a state vector
|.

Remark 1.6.8. If X | ∈ ℒ1,2dP then for any  ∈  : X | ∈ ℒ1,2dP. From
RHS of the Eq.(1.6.10) by change of random variable: Y  X | we obtain


a,b

X |dP  
a,b

YdP  
−



y−1pX | 
−1ydy. 1.6.12

From LHS of the Eq.(1.6.10) and Eq.(1.6.12) for any  ∈ ℂ\0, we obtain

〈|x |  
a,b

||2X |dP  
a,b

X |dP  
−



y−1pX | 
−1ydy, 1.6.13

where   ||2.
Remark 1.6.9. Formula (1.6.13) allow us to change conventional projective

Hilbert space Hp  S  H (see Remark 1.6.7) by full nonprojective Hilbert space
H.

Definition 1.6.8.The probability measure P|:a,b→0,1 corresponding to a
wave function x, where ||2 ≠ 1, ‖x‖2

2  1, we choose in the following form:

P|A  
A

−1|−1y|2dy, 1.6.14

where   ||2,A ∈ a,b and dx is the Lebesgue measure.
Definition 1.6.9.(Real-valued random variables) In this case the observation

space is a set a,b. Recall, a,b,a,b,P is the probability space. For real
observation space, the function X| : Ωa,b → a′,b′  is a real-valued random



variable if ∀r : X| ≤ r ∈ a,b .
By Radon-Nicodym theorem we obtain for A ∈ a,b :

P|
 A  

A

X|
 dP,

X|
  

dP|


dP
.

1.6.15

The CDF of a continuous random variable X|  X| can be expressed as
the integral of its probability density function pX| y as follows:

FX| y  
−

y

pX| tdt. 1.6.16

From Eq.(1.6.14)-Eq.(1.6.16) we obtain

〈|x |  Ea,bX|  
a,b

X|dP  
−



ypX| ydy 


−



−1|−1y|2ydy  
−



y−1pX | 
−1ydy  

a,b

−1X |dP  
a,b

||2X |dP.

1.6.17

Definition 1.6.10. We will write the Eq.(1.6.17) in the following symbolical form

〈|x |  
a,b

Xx |dP  
−



xpXx | xdx 


a,b

Xx  dP  
−



xpXx  xdx.

1.6.18

This symbolical form remind that continuous random variable
X  X  X corresponds to measurement of the coordinate af an

particle with a wave function x.

The reconciled Bohr rule.
We choose now an constants 1,2, |1 | ≠ 1, |2 | ≠ 1, and an wave functions

1x and 2x such that:
(i) ‖1x‖2

2  1,‖2x‖2
2  1,

(ii) supp1x ⊂ a1,b1 ,supp2x ⊂ a2,b2 ,
(iii) a1,b1  ∩ a2,b2   
(iv) we assum that: if 1,2x1,x2 is a two particles wave function,then
1,2x1,x2  1x12x2.
Therefore we obtain

〈11  22 |
x |11  22   〈11 |

x |11   〈22 |
x |22 . 1.6.17



Substituting Eq.(1.6.16) into Eq.(1.6.17) gives

〈11  22 |
x |11  22   〈11 |

x |11   〈22 |
x |22  


a1,b1

X1|1 dP  
a2,b2

X2|2 dP 


a1,b1a2,b2

X1|1   X2|2 dP 


−



x pXx |11  x  pXx |21  x dx  
−



x pXx |11  x ∗ pXx |21  x dx 


−



y1−12−1 |11−1y|
2 ∗ |22−1y|

2 dy,

1.6.18

where 1  |1 |2,2  |2 |2.From Eq.(1.6.18) follows that if particle in a state
|11  22  then the probability density px that the particle is at x is given by
formula

px  1−12−1 |11−1x|
2 ∗ |22−1x|

2 1.6.19

but not by conventional formula

px  |1 |2|1 |
2  |2 |2|2 |

2 1.6.20

even if |1 |2  |2 |2  1.
Remark 1.6.10. Obviously formula (1.6.19) forced us to changed not only

conventional
Born’s rule (1.6.2) but even conventional interpretation of the wave function of

the QM
particle must be changed if particle consist of superposition such that

mentioned above.
Remark 1.6.11. An canonical quantum mechanical formalism based on the

probability representation of states was also proposed S.Mancini and V.I.Man’ko in

[28]-[37]. Note that the distribution wX,, of the observable X  q  p one can

expressed by the relation [32]:

wX,,  2−2  dkdqdpWq,pexp−ikX − q − p, 1.6.21

where Wq,p that is a Wigner function, operators q and p that is operator of
coordinate and momentum operator correspondingly.Note that [32]:

Wq,p  2−2  dddXwX,,exp−ikq  p − X. 1.6.22

Because the Wigner function completely determains the quantum system and the
distribution wX,, completely determains the Wigner function Wq,p the
classical disribution of componets completely determains the quantum system. In
fact we can say that the quantum system states is known if the distribution



wX,, is known.
Remark 1.6.12. An general quantum mechanical formalism based on the

probability representation of states was also proposed by A.Yu.Khrennikov [37].In
[37] the main structures of quantum theory (interference of probabilities, Born’s
rule, complex probabilistic amplitudes, Hilbert state space, representation of
observables by operators) are present in a latent form in the Kolmogorov model. In
particular, “interference of probabilities” is obtained without appealing to the Hilbert
space formalism.

However in this paper we dealing by using axiomatical approach, see section
I.7 bellow.We have to combined canonical QM approach based on a Hilbert state
space, representation of observables by operators, etc. and Kolmogorov
probabilistic model which completed canonical QM postulates.

I.7. A new quantum mechanical formalism based on
the probability representation of quantum states.
I.7.1.Generalized Postulates for Continuous Valued
Observables.

Suppose we have an n-dimensional physical quantum system.

I.Then we claim the following:
Q.I.1. Any given n-dimensional quantum system is identified by a set Q :

Q  〈H,ℑ,,ℒ2,1,ℑ∗H,G, |t 

where:
(i) H that is some infinite-dimensional complex Hilbert space,
(ii) ℑ  ,ℱ,P that is complete probability space,
(iii)   n, that is measurable space,
(iv) ℒ2,1 that is complete space of random variables X :  → n such that



‖X‖dP  , 


‖X‖2dP   1.7.1

(v) G : C∗HH → ℒ2,1 that is one to one correspondence such that

〈|Q|  


G Q, |  dP  E G Q|  ,

G

1, |   1

1.7.2

for any | ∈ H and for any Hermitian adjoint operator

Q : H → H,Q ∈ C∗H,where C∗H is C∗- algebra of the Hermitian adjoint
operators in H and ℑ∗H an commutative subalgebra of C∗H.

(vi) |t  is an continuous vector function |t  :  → H which representedthe
evolution of the quantum system Q.

Q.I.2. For any |1 , |2  ∈ H and for any Hermitian operator Q : H → H such
that



1 Q 2  2 Q 1  0 1.7.3

valid the equality

G Q|1   |2    G Q|1    G Q|2  . 1.7.4

Definition 1.7.1. A random variable X :  → E is a measurable function from
the set of

possible outcomes  to some set E.
Definition 1.7.2. Given a probability space ℑ  ,ℱ,P and a measurable

space   n,, any n-valued stochastic process that is a collection of
n-valued random variables on , indexed by a totally ordered set T ("time"). That
is, a stochastic process Xt is a collection Xt|t ∈ T,where each Xt is an
n-valued random variable on . The space n is then called the state space of the
process.

Q.I.3. Suppose that the evolution of the quantum system is represented by
continuous vector function |t  :  → H.Then any process of continuous

measurements on measuring observable Q for the system in state |t  one can to
describe by an continuous n-valued stochastic process

Xt  Xt ; Qt  X
Qt



given on probability space ,ℱ,P and a measurable space n,.
Remark 1.7.1.We assume now for short but without loss of generality that

n  1.
Remark 1.7.2. Let X be random variable X ∈ ℒ2,1 such that

X  G|, then we denote such random variable by X |. The probability
density of random variable X | we denote by p |q,q ∈ .

Definition 1.7.3. The classical pure states correspond to vectors v ∈ H of norm
‖v‖≡1. Thus the set of all classical pure states corresponds to the unit sphere
S ⊂ H in a Hilbert space H.

Definition 1.7.4. The projective Hilbert space PH of a complex Hilbert space
H is the set of equivalence classes v of vectors v in H, with v ≠ 0, for the
equivalence relation given by v Pw  v w for some non-zero complex
number  ∈ ℂ.The equivalence classes for the relation P are also called rays or
projective rays.

Remark 1.7.3.The physical significance of the projective Hilbert space PH is
that in canonical quantum theory, the states | and | represent the same
physical state of the quantum system, for any  ≠ 0. It is conventional to choose a
state | from the ray | so that it has unit norm 〈|  1.

Remark 1.7.4. In contrast with canonical quantum theory we have used instead
contrary to P equivalence relation Q, a Hilbert space H, see Definition 1.7.7.

Definition 1.7.5.The non-classical pure states correspond to the vectors v ∈ H
of a norm ‖v‖≠1. Thus the set of all non-classical pure states corresponds to the
set H\S ⊂ H in the Hilbert space H.



Suppose we have an observable Q of a quantum system that is found through
an exhaustive series of measurements, to have a set ℑ of values q ∈ ℑ such that
ℑ  i1m 1i ,2i ,m ≥ 2, 1i ,2i  ∩ 1

j ,2
j  , i ≠ j.Note that in practice any

observable Q is measured to an accuracy q determined by the measuring device.
We represent now by |q the idealized state of the system in the limit q → 0, for
which the observable definitely has the value q.

II.Then we claim the following:
Q.II.1.The states |q : q ∈ ℑ form a complete set of -function normalized

basis states
for the state space Hℑ of the system.That the states |q : q ∈ ℑ form a

complete set of
basis states means that any state |ℑ ∈ Hℑ of the system can be expressed

as:

|ℑ  
ℑ
cℑqdq, 1.7.5

where suppcℑq ⊆ ℑ and while -function normalized means that 〈q|q′ 
 q − q′

from which follows cℑq  〈q|ℑ so that

|ℑ  
ℑ
|q〈q|ℑdq. 1.7.6

The completeness condition can then be written as


ℑ
|q〈q|dq 


1Hℑ . 1.7.7

Q.II.2.For the system in state |ℑ the probability Pq,q  dq; |ℑ of
obtaining the result
q ∈ ℑ lying in the range q,q  dq ⊂ ℑ on measuring observable Q is given by

Pq,q  dq; |ℑ  p |ℑqdq 1.7.8

for any |ℑ ∈ Hℑ.
Remark 1.7.5. Note that in general case p |ℑq ≠ |cℑq|

2.

Q.II.3.The observable Qℑ is represented by a Hermitian operator Qℑ : Hℑ→ Hℑ

whose eigenvalues are the possible results q : q ∈ ℑ, of a measurement of Qℑ,

and the associated eigenstates are the states |q : q ∈ ℑ, i.e. Qℑ|q  q|q,q ∈ ℑ.

Remark 1.7.6. Note that the spectral decomposition of the operator Qℑ is then

Qℑ  
ℑ
q|q〈q|dq. 1.7.9

Definition 1.7.6. A connected set in  is a set X ⊂  that cannot be partitioned
into two nonempty subsets which are open in the relative topology induced on the
set. Equivalently, it is a set which cannot be partitioned into two nonempty subsets
such that each subset has no points in common with the set closure of the other.

Definition 1.7.7. The well localized pure states |Θ with a support
Θ  1,2 correspond to vectors of the norm 1 and such that: suppcΘq  Θ
is a connected set in  Thus the set of all well localized pure states corresponds to
the unit sphere SΘ

  S ⊂ H in the Hilbert space HΘ  H.



Suppose we have an observable QΘ of a system that is found through an
exhaustive series of measurements, to have a continuous range of values q :
1  q  2.

III.Then we claim the following:
Q.III.1.For the system in well localized pure statestate |Θ such that:
(i) |Θ ∈ SΘ and
(ii) suppcΘq  q|cΘq ≠ 0 is a connected set in , then the probability
Pq,q  dq; |Θ of obtaining the result q lying in the range q,q  dq on

measuring
observable QΘ is given by

Pq,q  dq; |Θ  |〈q|Θ|2dq  |cΘq|
2dq. 1.7.10

Q.III.2. p |Θqdq  |〈q|Θ|2dq  |cΘq|
2dq.

Q.III.3.Let |Θ1  and |Θ2  be well localized pure states with Θ1  11,21
and

Θ2  12,22 correspondingly. Let X1  X |Θ1  and X2  X |Θ2 
correspondingly. Assume that Θ1 ∩ Θ2   (here the closure of Θi, i  1,2 is

denoted by
Θi, i  1,2) then random variables X1 and X2 are independent.
Q.III.4. If the system is in well localized pure state |Θ the state |Θ

described by a
wave function q,Θ  〈q||Θ and the value of observable QΘ is measured

once each
on many identically prepared system, the average value of all the

measurements will be

〈QΘ  


Θ

q|q,Θ|2dq


Θ

|q,Θ|2dq
.

1.7.11

The completeness condition can then be written as 
Θ
|q〈q|dq 


1HΘ .

Completeness means that for any state |Θ ∈ SΘ it must be the case that

Θ
|〈q|Θ|2dq ≠ 0, i.e. there must be a non-zero probability to get some result on

measuring observable QΘ.
Q.III.5.(von Neumann measurement postulate) Assume that
(i) | ∈ SΘ and (ii) suppcq  Θ is a connected set in . Then if on

performing a measurement of QΘ with an accuracy q, the result is obtained in the
range q − 1

2 q,q 
1
2 q, then the system will end up in the state



Pq,q|Θ

〈|Pq,q|Θ


q−q′ ≤q/2

|q′ 〈q′ ||Θdq′


q−q′ ≤q/2

|〈q′ ||Θ|2dq′
. 1.7.12

IV.We claim the following:

Q.IV.1 For the system in state |aΘ  a|Θ ∈ HΘ, where: (i)
|Θ ∈ SΘ, |a| ≠ 1,

(ii) suppcΘq is a connected set in  and (iii) |Θ  
1

2 cΘq|qdq

G QΘ|
aΘ  |a|2G QΘ|Θ . 1.7.13

Q.IV.2. Assume that the system in state |aΘ  a|Θ ∈ HΘ, where (i)
|Θ ∈ SΘ,

|a| ≠ 1, (ii) suppcΘq is a connected set in  and (iii)

|Θ  
1

2 cΘq|qdq.

Then if the system is in state |aΘ described by a wave function
aq;Θ  〈q||aΘ and the value of observable QΘ is measured once each on
many identically prepared system, the average value of all the measurements will
be

〈QΘ   
Θ

q|aq;Θ|2dq. 1.7.14

Q.IV.3. The probability Pq,q  dq; |aΘdq of obtaining the result q lying in the
range

q,q  dq on measuring QΘ is

Pq,q  dq; |aΘdq  |a|−2|cΘq|a|−2|
2dq.

1.7.15

Remark 1.7.7.Note that Q.IV.3 immediately folows from Q.IV.1 and Q.III.2.
Q.IV.4. (Generalized von Neumann measurement postulate) If on

performing a measurement of observable QΘ with an accuracy q, the result is
obtained in the range q − 1

2 q,q 
1
2 q, then the system immediately after

measurement will end up in the state



Pq,q|aΘ

〈|Pq,q|Θ


q−q′ ≤q/2

|q′ 〈q′ ||aΘdq′


q−q′ ≤q/2

|〈q′ ||Θ|2dq′


a 
q−q′ ≤q/2

|q′ 〈q′ ||Θdq′


q−q′ ≤q/2

|〈q′ ||Θ|2dq′
∈ HΘ.

1.7.16

Q.V.1. Let |a1,a2Θ1,Θ2   |1
a1Θ1   |2

a2Θ2  ∈ H1,2  HΘ1 ⊕ HΘ2  H,
where

(i) |i
aiΘi   ai|iΘi  ∈ HΘi , |i   |iΘi  ∈ SΘi

 , |ai | ≠ 1, i  1,2;
(ii) suppciΘi q, i  1,2 is a connected sets in ;
(iii) suppc1Θ1 q ∩ suppc2Θ2 q   and

(iv) |iΘi   
1

2 ciΘi q|qdq, i  1,2.

Then if the system is in a state |a1,a2Θ1,Θ2  described by a wave function
a1,a2q;Θ1,Θ2  〈q||a1,a2Θ1,Θ2 ,q ∈ Θ1  Θ2 and the value of observable

QΘ1,Θ2 is measured once each on many identically prepared system, the average
value of all the measurements will be

〈QΘ1,Θ2   
Θ1Θ2

q|a1,a2q;Θ1,Θ2|2dq. 1.7.17

Q.V. 2. The probability of getting a result q with an accuracy q such that
q − 1

2 q,q 
1
2 q ∈ suppc1q or q − 1

2 q,q 
1
2 q ∈ suppc2q given by


q−q′ ≤q/2

|〈q′ ||1
a1Θ1 |

2 ∗ |〈q′ ||2
a2Θ2 |

2 dq′. 1.7.18

Remark 1.7.8.Note that Q.IV.3 immediately folows from Q.III.3.
Q.V. 3. Assume that the system is initially in the state |a1,a2Θ1,Θ2 . If on

performing a measurement of QΘ1,Θ2 with an accuracy q, the result is obtained in
the range q − 1

2 q,q 
1
2 q, then the state of the system immediately after

measurement given by



Pqi,q|a1,a2Θ1,Θ2 

〈|Pqi,q|



qi−q′ ≤q/2

|q′ 〈q′ ||1
a1Θ1   |q′ 〈q′ ||2

a2Θ2 dq′


qi−q′ ≤q/2

|〈q′ ||1Θ1 |
2  |〈q′ ||2Θ2 |

2 dq′



qi−q′ ≤q/2

a1|q′ 〈q′ ||1Θ1   a2|q′ 〈q′ ||2Θ2 dq′


qi−q′ ≤q/2

|〈q′ ||1Θ1 |
2  |〈q′ ||2Θ2 |

2 dq′
∈ HΘi ,

qi ∈ Θi, i  1,2.

1.7.19

Definition 1.7.8. Let H1,2 be H1,2  HΘ1 ⊕ HΘ2 .
Definition 1.7.9. Let |a  be a state |a   a|, where | ∈ S, |a| ≠ 1 and

|  
1

2 cq|qdq.Let |a  be an state such that |a  ∈ S.States |a  and |a  is

a Q-equivalent: |a  Q |a  iff

Pq,q  dq; |a   |a|−2|cq|a|−2|
2dq  Pqq  dq; |a dq

1.7.20

Q.V.For any state |a   a|,where | ∈ S, |a| ≠ 1 and |  
1

2 cq|qdq

there exist an state |a  ∈ S such that: |a  Q |a .
Definition 1.7.10. Let |a  be a state |a   a|, where | ∈ S, |a| ≠ 1 and

|  
1

2 cq|qdq.Let |a  be an state such that |a  ∈ S.States |a  and |a  is

a Q-equivalent (|a  
Q
|a ) iff: 〈a | Q|a   〈a | Q|a .

Q.VI.For any state |a   a|,where | ∈ S, |a| ≠ 1 and |  
1

2 cq|qdq

there exist an state |a  ∈ S such that: |a  
Q
|a .

I.7.2. The Position Representation.Position
observable of a particle in one dimension.

The position representation is used in quantum mechanical problems where it is
the position of the particle in space that is of primary interest. For this reason, the
position representation, or the wave function, is the preferred choice of
representation.

P.1. In one dimension, the position x of a particle can range over the values
−  x  . Thus the Hermitean operator x corresponding to this observable will
have eigenstates |x and associated eigenvalues x such that:
x |x  x|x,−  x  .



P.2. As the eigenvalues cover a continuous range of values, the completeness
relation will be expressed as an integral: |t   −


|x〈x|t dx,where 〈x|t   x, t

is the wave function associated with the particle at each instant t. Since there is a
continuously infinite number of basis states |x, these states are -function
normalized: 〈x|x ′   x − x ′.

P.3. The operator x itself can be expressed as: x  
−


x|x〈x|dx.

Definition 1.7.11. A connected set is a set X ⊂  that cannot be partitioned into
two nonempty subsets which are open in the relative topology induced on the set.
Equivalently, it is a set which cannot be partitioned into two nonempty subsets such
that each subset has no points in common with the set closure of the other.

P.4.The wave function is, of course, just the components of the state vector
|t  ∈ S with respect to the position eigenstates as basis vectors. Hence, the
wave function is often referred to as being the state of the system in the position
representation. The probability amplitude 〈x|t  is just the wave function, written
〈x|t   x, t and is such that |x, t|2dx is the probability Px, t; |t  of the particle
being observed to have a coordinate in the range x to x  dx

Definition 1.7.12. Let |ta , t ∈ 0, be a state |ta   a|t , where
|t  ∈ S, |a| ≠ 1 and

|t   −

x, t|xdx.Let |t,a , t ∈ 0, be an state such that |t,a  ∈ S,

t ∈ 0,.
States |ta  and |t,a  is x-equivalent (|ta  x |t,a ) iff

Px, t; |ta dx  |a|−2|x|a|−2, t|2dx  Px, t; |t,a dx
1.7.21

P.5.From postulate Q.V above (see subsection 1.7.1) follows: for any state
|ta   a|t ,where |t  ∈ S, |a| ≠ 1, t ∈ 0, and |t   −


x, t|xdx there exist

an state |t,a  ∈ S, t ∈ 0, such that: |ta  x |t,a .
Definition 1.7.13.Let |ta , t ∈ 0, be a state |ta   a|t , where

|t  ∈ S, |a| ≠ 1 and |t   −

x, t|xdx.Let |t,a , t ∈ 0, be an state such

that |t,a  ∈ S, t ∈ 0,. States |ta  and |t,a  is x-equivalent (|ta  x |t,a ) iff:
〈ta |

x |ta   〈t,a |
x |t,a .

D.6.From postulate C.7 (see Appendix C) follows: for any state
|ta   a|t ,where |t  ∈ S, |a| ≠ 1, t ∈ 0, and |t   −


x, t|xdx there exist

an state |t,a  ∈ S, t ∈ 0, such that: |ta  x |t,a .
Definition1.7.14.The pure state |t  ∈ S, t ∈ 0,, |t   −


x, t|xdx is a

weakly
Gaussian in the position representation iff

|x, t|2dx  1
t 2

exp − x − xt
2

t2
dx,

1.7.22



where xt and t an given functions which depend only on variable t.
P.7.From statement P.5 follows: for any state |ta   a|t ,where

|t  ∈ S, |a| ≠ 1, t ∈ 0, and |t   −

x, t|xdx is a weakly Gaussian state

there exist an weakly Gaussian state |t,a  ∈ S, t ∈ 0, such that:

Px, t; |ta dx  |a|−1|x|a|−1, t|2dx 

 1
|a|t 2

exp − x − |a|xt
2

|a|2t2
dx.

1.7.23

I.8. The EPR paradox
In 1935, Einstein, Podolsky and Rosen (EPR) originated the famous “EPR

paradox” [38]. This argument concerns two spatially separated particles which have
both perfectly correlated positions and momenta, as is predicted possible by
quantum mechanics. The EPR paper spurred investigations into the nonlocality of
quantum mechanics, leading to a direct challenge of the philosophies taken for
granted by most physicists.The EPR conclusion was based on the assumption of
local realism, and thus the EPR argument pinpoints a contradiction between local
realism and the completeness of quantum mechanics.

I.8.1. Einstein’s 1927 gedanken experiment
Einstein never accepted orthodox quantum mechanics because he did not

believe that its nonlocal collapse of the wavefunction could be real. When he first
made this argument in 1927 [39],he considered just a single particle. The particle’s
wavefunction was diffracted through a tiny hole so that it ‘dispersed’ over a large
hemispherical area before encountering a screen of that shape covered in
photographic film. Since the film only ever registers the particle at one point on the
screen, orthodox quantum mechanics must postulate a ‘peculiar mechanism of
action at a distance, which prevents the wave... from producing an action in two
places on the screen. That is, according to the theory, the detection at one point
must instantaneously collapse the wavefunction to nothing at all other points.

Remark 1.8.1. It was only in 2010, nearly a century after Einstein’s original
proposal, that a scheme to rigorously test Einstein’s ‘spooky action at a distance
[39],[40] using a single particle (a photon), as in his original conception, was
conceived [41]. In this scheme, Einstein’s 1927 gedankenexperiment is simplified
so that the single photon is split into just two wavepackets, one sent to a laboratory
supervised by Alice and the other to a distant laboratory supervised by Bob.
However, there is a key difference, which enables demonstration of the nonlocal
collapse experimentally: rather than simply detecting the presence or absence of
the photon, homodyne detection is used. This gives Alice the power to make
different measurements, and enables Bob to test (using tomography) whether
Alice’s measurement choice affects the way his conditioned state collapses,



without having to trust anything outside his own laboratory.

Рiс.Рiс.1.8.1.Simplified version of Einstein’s original

gedankenexperiment Adapted from [42].

Simplified version of Einstein’s original gedankenexperiment [42]. A single
photon is incident on a beam splitter of reflectivity R and then subjected to
homodyne measurements at two spatially separated locations. Alice is trying to
convince Bob that she can steer his portion of the single photon to different types
of local quantum states by performing various measurements on her side. She
does this by using different values of her LO phase θ, and extracting only the sign
s ∈ ,− of the quadrature she measures. Meanwhile, Bob scans his LO and
performs full quantum-state tomography to reconstruct his local quantum state. He
reconstructs unconditional and conditional local quantum states to test if his portion
of the single photon has collapsed to different states according to Alice’s LO setting
θ, and result s see Рiс.1.8.1.

The key role of measurement choice by Alice in demonstrating ‘spooky action at
a distance’ was introduced in the famous Einstein–Podolsky–Rosen (EPR) paper
[38] of 1935. In its most general form, this phenomenon has been called
EPR-steering, to acknowledge the contribution and terminology of Schrödinger
[43], who talked of Alice ‘steering’ the state of Bob’s quantum system. From a
quantum information perspective, EPR-steering is equivalent to the task of
entanglement verification when Bob (and his detectors) can be trusted but Alice (or
her detectors) cannot. This is strictly harder than verifying entanglement with both
parties trusted [44], but strictly easier than violating a Bell inequality [45], where
neither party is trusted [44].

Remark 1.8.2. A recent experimental test of entanglement for a single photon
via an entanglement witness has no efficiency loophole [46] however, it
demonstrates a weaker form on nonlocality than EPR-steering. In [42], it was
demonstrated experimentally that there exist Einstein’s elusive ‘spooky action at a
distance’ for a single particle without opening the efficiency loophole without claim
to have closed the separation loophole. That is the one-sided device-independent
verification of spatial-mode entanglement for a single photon.

I.8.2.The continuous variable EPR



paradox.EPR-Reid’s criteria
We remind that EPR treated the case of a non-factorizable pure state | which

describes the results for measurements performed on two spatially separated
systems at A and B (Fig.1.8.2). “Non- factorizable” means “entangled”, that is, we
cannot express | as a simple product |  |A ⊗ |B, where |A and |B are
quantum states for the results of measurements at A and B, respectively.

Fig.1.8.2.The original EPR gedanken experiment.Two particles move

from the source into spatially separated regions A and B, and yet

continue to have maximaly correlated positions: xA  x0  xB and

anti-correlated momenta: pA  −pB.Adapted from [47].

In the first part of their paper, EPR point out in a general way the problematic
aspects of such entangled states. The key issue is that one can expand | in
terms of more than one basis, that correspond to different experimental settings,
which we parametrize by . Let us consider the state

|  dx|x ,A ⊗ |ux ,B , 1.8.1

where the eigenvalue x could be continuous or discrete. The parameter setting  at
the detector B is used to define a particular orthogonal measurement basis |ux ,B.

On measurement at B, this projects out a wave-function |x ,A at A, the process

called “reduction of the wave packet”.
Remark 1.8.3. The locality assumption postulates no action-at-a-distance, so

that measurements at a location B cannot immediately “disturb” the system at a
spatially separated location A .

Remark 1.8.4. The problematic issue is that different choices of measurements
 at B will cause reduction of the wave packet at A in more than one possible way.
EPR state that, “as a consequence of two different measurements” at B,
the “second system may be left in states with two different wavefunctions”. Yet, “no
real change can take place in the second system in consequence of anything that
may be done to the first system”.

The problem was established by EPR by a specific example, shown in
Fig.1.8.2. EPR considered two spatially separated subsystems, at A and B, each
with two observables x̂ and p̂ where x̂ and p̂ are non-commuting quantum



operators, with commutator

x̂, p̂  x̂p̂ − p̂x̂  2C ≠ 0. 1.8.2

The results of the measurements x̂ and p̂ are denoted x and p respectively, and this
convention we follow throughout the paper. We note that EPR assumed a
continuous variable spectrum and considered wavefunction  defined in a position
representation by

x,xB   eip/x−xB−x0 dp , 1.8.3

where x0 is an constant implying space-like separation. Here the pairs x and p refer
to the results for position and momentum measurements at A, while xB and pB

denote the position and momentum measurements at B. We leave off the
superscript for system A, to emphasize the inherent asymmetry that exists in the
EPR argument, where one system A is steered by the other, B.

Remark 1.8.5. According to canonical quantum mechanics, one can “predict

with certainty” that a measurement x̂ will give result xB  x0, if a measurement x̂B,
with result xB, was already performed at B. One may also “predict with certainty”
the result of measurement p̂, for a different choice of measurement at B. If the
momentum at B is measured to be p, then the result for p̂ is −p. These predictions
are made “without disturbing the second system” at A, based on the assumption,
implicit in the original EPR paper, of “locality”.

Remark 1.8.6.The locality assumption can be strengthened if the measurement
events at A and B are causally separated (such that no signal can travel from one
event to the other, unless faster than the speed of light)

Remark 1.8.7.The remainder of the EPR argument may be summarized as
follows. Assuming local realism, one deduces that both the measurement
outcomes, for x and p at A, are predetermined. The perfect correlation of x with
xB  x0 implies the existence of an “element of reality” for the measurement x̂.
Similarly, the correlation of p with −pB implies an “element of reality” for p̂. Although
not mentioned by EPR, it will prove useful to mathematically represent
the “elements of reality” for x̂ and p̂ by the respective variables xA and pA ,
whose “possible values are the predicted results of the measurement”

Remark 1.8.8.To continue the argument, local realism implies the existence of
two elements of reality, xA and pA, that simultaneously predetermine, with absolute
definiteness, the results for measurement x or p at A. These “elements of reality” for
the localized subsystem A are not themselves consistent with quantum mechanics.
Simultaneous determinacy for both the position and momentum is not possible for
any quantum state. Hence, assuming the validity of local realism, one concludes
quantum mechanics to be incomplete or even inconsistent!

Remark 1.8.9.We claim that any assumption of local realism is completely
wrong.

Such claim meant as minimum the weak postulate of nonlocality.

The weak postulate of nonlocality for continuous variables.
The Heisenberg uncertainty relations



ΔxAΔpA ≥ 1 1.8.4

cannot be violated in any cases:
(i) of course according to quantum mechanics, the Heisenberg uncertainty

relations (1.8.4)
cannot be violated if the coordinate xA and momentum pA of the particle A are

measured
directly by measurements performed on the particle A,
(ii) the Heisenberg uncertainty relations (1.8.4) cannot be violated even if the

coordinate xA

and momentum pA of the particle A are measured indirectly, i.e. by using
measurement on

particle B, as required in EPR gedanken experiment,
(iii) in any cases true coordinate xA and momentum pA of the particle A cannot

be predicted
samultaneously with a sufficiently small uncertainty ΔxA and ΔpA such that the

Reid’s
inequality [50]:

ΔxAΔpA  1 1.8.5

based on local realism would be satisfied, i.e., alwais

ΔxAΔpA  1. 1.8.6

We claim strictly stronger assumptions of nonlocality than mentioned above.
The strong postulate of nonlocality for continuous variables.
Let |tx A and |tx B be a state vector in x-representation at instant t of the

particle A and
particle B correspondingly.
Let |t

p A and |t
p B be a state vector in p-representation at instant t of the

particle A and
particle B correspondingly.
Let tAx  〈x|tx A,t

Bx  〈x|tx B be a wave functions in x-representation of
the

particle A and particle B correspondingly.
Let tAp  〈p|t

p A,t
Bp  〈p|t

p B be a wave functions in p-representation of

the
particle A and particle B correspondingly.
Let t

A/BxA,xB be corresponding two-particle wave function in x-representation
and let

t
A/BpA,pB be corresponding two-particle wave function in p-representation.

We claim that:
(i) whenever a measurement of the coordinate x of a particle B is performed at

instant
t with result x̄B ∈ xB − ,xB  ,  1, then:
(a) according to quantum mechanics a state vector |tx B collapses at instant t to



the state
vector

t,,,xB
x

B
~

LxB
B
,|tx B 1.8.7

given by law (1.2.20), where

LxB
B
, is a norm-reducing, positive, self-adjoint,

linear
operator in the 2-particle non projective Hilbert space H, representing the

localization of
particle B around the point xB, (see subsection I.2.4),
(b) according postulate of nonlocality a state vector |tx A immediately collapses

at instant t
to the state vector

t,,,xA
x

A
~

LxBx0
A

,|tx A 1.8.8

given by law (1.2.20) and this is true independent of the distance in Minkovski
spacetime
M4  1,3 that separates the particles. Thus

|tx B
col lapse
 t,,,xB

x
B
 |tx A

col lapse
 t,,,xBx0

x
A

1.8.9

(ii) under conditions given by Eq.(1.8.7)-Eq.(1.8.9) two-particle wave function
t
A/BxA,xB collapses at instant t by law

t
A/BxA,xB

col lapse



LxBx0
A 

LxB
B
,t

A/BxA,xB 1.8.10

(iii) whenever a measurement of the momentum pB of a particle B is performed
at instant
t with result p̄B ∈ pB − ,pB  ,  1, then:
(a) according to quantum mechanics a state vector |t

p B collapses at instant t

to the state
vector

t,,,pB
p

B
~

LpB
B
,|t

p B, 1.8.11

where

LpB
B
, is a norm-reducing, positive, self-adjoint, linear operator in the

2-particle
non projective Hilbert space H, representing the localization of momentum of

the particle B

around the value pB.The localization operators

LpB
B
, have been chosen to

have the
following form:


LpB
B
,  1



3/4

exp − 1
2 

p − pB2 1.8.12

where  ∈ 0,1 and lim→0   .
(b) according postulate of nonlocality a state vector |t

p A immediately collapses

at instant t



to the state vector

t,,,xA
p

A
~

L−pB
A
,|t

p A 1.8.13

and this is true independent of the distance in Minkovski spacetime M4  1,3

that
separates the particles. Thus

|t
p B

col lapse
 t,,,pB

p

B
 |t

p A
col lapse
 t,,,−pB

p

A
1.8.14

(iv) under conditions given by Eq.(1.8.11)-Eq.(1.8.13) two-particle wave function
t
A/BpA,pB collapses at instant t by law

t
A/BpA,pB

col lapse



L−pB
A 
LpB
B
,t

A/BpA,pB. 1.8.15

Remark 1.8.10. Let ptA and ptB be the momentum at instant t of the particle A
and particle

B correspondingly. Note that whenever a measurement of the coordinate x of a
particle B is

performed at instant t with an accuracy xB  1 then:
(i) immediately after this measurement the momentum ptB at instant t changed

according
to quantum mechanics by the Heisenberg uncertainty relations (1.8.4);
(ii) immediately after this measurement the momentum ptA at instant t changed

according
to postulate of nonlocality by the Heisenberg uncertainty relations (1.8.4)
Remark 1.8.11.Let xtA and xtB be the coordinate at instant t of the particle A and

particle
B correspondingly. Note that whenever a measurement of the momentum p of a

particle B
is performed at instant t with an accuracy pB  1 then:

(i) immediately after this measurement the coordinate xtB at instant t changed

according
to quantum mechanics by the Heisenberg uncertainty relations (1.8.4);
Remark 1.8.12.Schrödinger [43] pointed out that the EPR two-particle

wavefunction in Eq.(1.8.3) was verschränkten - which he later translated as
entangled - i.e., not of the separable form AB. Schrödinger considered as a
possible resolution of the paradox that this “entanglement” degrades as the
particles separate spatially, so that EPR correlations would not be physically
realizable.

Definition 1.8.1.Quantum inseparability (entanglement) for a general mixed
quantum state is defined as the failure of

  dP
A ⊗ 

B , 1.8.16

where dP  1 and  is the density operator. Here  is a discrete or continuous



label for component states, and 
A and 

B correspond to density operators that are
restricted to the Hilbert spaces A and B respectively.

Remark 1.8.13.The definition of inseparability extends beyond that of the EPR
situation, in that one considers a whole spectrum of measurement choices,
parametrized by  for those performed on system A, and by  for those performed
on B. We use canonical notation x̂A and x̂

B to describe all measurements at A and

B. Denoting the eigenstates of x̂A by |xA, we define PQxA|,  〈xA|

A|xA and

PQxB|,  〈xB|

B|x

B, which are the localized probabilities for observing results xA

and x
B respectively. The separability condition (1.8.9) then implies that joint

probabilities PxA,xB are given as [50]:

PxA,xB  dPPQxA|PQxB| . 1.8.17

Remark 1.8.14.We note the canonical restriction

Δ2xA|Δ2pA| ≥ 1 1.8.18

where Δ2xA| and Δ2pA| are the variances of PQxA|, for the choices 
corresponding to position x and momentum p, respectively. Thus

Δ2xA|Δ2pA|  1 1.8.19

is an EPR criterion, meaning that this would imply an EPR "paradox".
Remark 1.8.13.Note that the original EPR state of Eq. (1.8.3) is not separable.
Suppose that, based on a result xB for the measurement at B, an estimate

xestxB is made of the result x at A. We may define the average error Δinfx of this
inference as the root mean square (RMS) of the deviation of the estimate from the
actual value, so that [50]:

Δinf
2 x  dxdxBPtx,xBx − xestxB2 . 1.8.20

An inference variance Δinf
2 p is defined similarly,i.e.

Δinf
2 p  dpdpBPtp,pBp − pestpB2 . 1.8.21

Remark 1.8.14.Let t
A/BxA,xB be corresponding two-particle wave function in

x-representation and let t
A/BpA,pB be corresponding two-particle wave

function in
p-representation.Note that:
(i) Ptx,xB is the joint probability of obtaining an outcome x at A and xB at B at

instant t is
of the form

Ptx,xB  t
A/BxA,xB

2
, 1.8.22

(ii) Ptp,pB is the joint probability of obtaining an outcome p at A and pB at B at
instant t is

of the form

Ptp,pB  t
A/BpA,pB

2
. 1.8.23

The best estimate, which minimizes Δinfx, is given by choosing xest for each xB



to be the mean 〈x|xB of the conditional distribution Ptx|xB . This is seen upon
noting that for each result xB, we can define the RMS error in each estimate as

Δinf
2 t,x|xB   dxPtx|xB x − xestxB2 . 1.8.24

The average error in each inference is minimized for xest  〈x|xB , when each
Δinf
2 t,x|xB  becomes the variance Δ2t,x|xB of Ptx|xB . We thus define the

minimum inference error Δinfx for position, averaged over all possible values of xB,
as

VA|B
x  minΔinf

2 x  dxBPtxBΔ2t,x|xB  , 1.8.25

where PxB is the probability density for a result xB upon measurement of x̂B. This
minimized inference variance is the average of the individual variances for each

outcome at B. Similarly, we can define a minimum inference variance, VA|B
p , for

momentum,i.e.

VA|B
p  minΔinf

2 p  dpBPtpBΔ2t,p|pB  . 1.8.26

Remark 1.8.14.Let t
A/BxA,xB be corresponding two-particle wave function in

x-representation and let t
A/BpA,pB be corresponding two-particle wave

function in
p-representation.Note that:
(i) according to local realism the conditional distributions densities P locx|xB  and

P locp|pB 
are given by formulae

P locx|xB ~

LxB
B
,t

A/Bx,xB 1.8.27

and

P locp|pB  ~

LpB
B
,t

A/BpA,pB. 1.8.28

(ii) distributions densities Ploct,xB and P loct,pB are given by formulae

P loct,xB   dxPloct,x|xB 1.8.29

and

P loct,pB   dpP loct,p|pB . 1.8.30

Remark 1.8.15.Let t
A/BxA,xB be corresponding two-particle wave function in

x-representation and let t
A/BpA,pB be corresponding two-particle wave

function in
p-representation.Note that:
(i) according to postulates of nonlocality the conditional distributions densities

Pn.loct,x|xB 
and Pn.loct,p|pB  are given by formulae

Pn.loct,x|xB 

LxBx0
A 

LxB
B
,t

A/Bx,xB 1.8.31



and

Pn.loct,p|pB  ~

L−pB
A 
LpB
B
,t

A/Bp,pB, 1.8.32

see Eq.(1.8.10) and Eq.(1.8.15) respectively.
(ii) distributions Pn.loct,xB and Pn.loct,pB are given by formulae

Pn.loct,xB   dxPn.loct,x|xB 1.8.33

and

Pn.loct,p|B    dpPn.loct,p|pB  1.8.34

Thus we can define corresponding RMS errors as

Δloc.inf
2 t,x|xB   dxPloct,x|xB x − xestxB2

Δloc.inf
2 t,p|pB   dxPloct,p|pB p − xestpB2

1.8.35

and

Δn.loc.inf
2 t,x|xB   dxPloct,x|xB x − xestxB2,

Δn.loc.inf
2 t,p|pB   dxPloct,p|pB p − xestpB2

1.8.36

respectively.We thus define the minimum inference error Δinfx for position,
averaged over all possible values of xB and pB as

minΔloc.inf
2 x  dxBP loct,xBΔloc.

2 t,x|xB  ,

minΔloc.inf
2 p  dpBP loct,pBΔloc.

2 t,p|pB 
1.8.37

and

minΔn.loc.inf
2 x  dxBPn.loct,xBΔn.loc.

2 t,x|xB  ,

minΔn.loc.inf
2 p  dpBPn.loct,pBΔn.loc.

2 t,p|pB .
1.8.38

respectively.From Eq.(1.8.37) and Eq.(1.8.38) we obtain the EPR-nonlocality
criteria

min∆loc.inf.2 x − min ∆n.loc.inf.2 x 

dxBP loct,xBΔloc.
2 t,x|xB  − Pn.loct,xBΔn.loc.

2 t,x|xB   0,

min∆loc.inf.2 p − min∆n.loc.inf.2 p 

dpBP loct,pBΔloc.
2 t,p|pB  − Pn.loct,pBΔn.loc.

2 t,p|pB   0

1.8.39

and

min∆loc.inf.2 x min∆loc.inf.2 p − min ∆n.loc.inf.2 x Δn.loc.inf
2 p  0. 1.8.40

I.9.The EPR-Bohm paradox. Reid’s criteria for
EPR-Bohm paradox.



Bohm [49] considered two spatially-separated spin-1/2 particles at A and B
produced in an entangled singlet state (often referred to as the “EPR-Bohm state”
or the “Bell-state”):

|  1
2

1
2 A

− 1
2 B

− − 1
2 A

1
2 B

1.9.1 Here | 1
2 A

are eigenstates of the spin operator

J z
A
, and we use


J z
A

,

J x
A

,

J y
A

to define the
spin-components measured at location A. The spin-eigenstates and measurements
at B are defined similarly. By considering different quantization axes, one obtains
different but equivalent expansions of | in Eq. (1.8.1), just as EPR suggested.

Fig.1.9.1.The Bohm gedanken EPR experiment.Two

spin-1/2 partiles prepared in a singlet state from the

source into spatially separated regions A and B,and

give anti-correlated outomes for JA and JB,where θ is

x,y or z.Adapted from [50].

Bohm’s paradox is based on the existence, for Eq. (1.9.1), of a maximum

anti-correlation between not only

J z
A

and

J z
B
, but


J y
A

and

J y
B
, and also


J x
A

and

J x
B
. An

assumption of local realism would lead to the conclusion that the three spin
components of particle A were simultaneously predetermined, with absolute
definiteness. Since no such quantum description exists, this is the situation of an
EPR paradox.

Remark 1.9.1.Bohm’s paradox is based on the existence, for Eq. (1.9.1), of a
maximum

anti-correlation between not only

J z
A

and

J z
B
, but


J y
A

and

J y
B
, and also


J x
A

and

J x
B
.

Remark 1.9.2. Note that an assumption of local realism would lead to the
conclusion that

the three spin components of particle A were simultaneously predetermined,
with absolute

definiteness. Since no such quantum description exists, this is the situation of
an EPR

paradox.
Remark 1.9.3.Criteria sufficient to demonstrate Bohm’s EPR paradox can be

derived using



Reid’s canonical inferred uncertainty approach [41]. Using the Heisenberg spin
uncertainty

relation

ΔJxAΔJyA ≥ |〈JzA |/2, 1.9.2 one obtains the

following canonical spin-EPR criterion that is useful for the Bell state given by
Eq. (1.9.1)

ΔinfJxAΔinfJyA  1
2 ∑JzB

PJzB 〈JzA JzB . 1.9.3

Here 〈JzA JzB is the mean of the conditional distribution PJzA|JzB.Calculations for

Eq.(1.9.1) including the effect of detection efficiency  reveals this EPR criterion to
be satisfied for   0.62.The concept of spin-EPR has been experementally tested
in the continuum limit with purely optical systems for states with 〈JzA  ≠ 0. In this
case the EPR criterion linked closely to definition of spin squeesing

ΔinfJxAΔinfJyA  |〈JzA |. 1.9.4

Remark 1.9.4.We claim that any assumption of local realism is completely
wrong.The

three spin components of particle A were simultaneously predetermined, does
not with

absolute definiteness but only with uncertainties which requred by Heisenberg
spin

uncertainty relations (1.9.5). Such claim meant as minimum the weak postulate
of

nonlocality.
The weak postulate of nonlocality.
The Heisenberg spin uncertainty relations

ΔJxAΔJyA ≥ |〈JzA |/2,

ΔJxAΔJzA ≥ |〈JyA |/2,

ΔJzAΔJyA ≥ |〈JxA |/2

1.9.5

does not violated in any cases:
(i) if the three spin components of the particle A are measured directly by

measurements
performed on the particle A
(ii) and even if some spin components of the particle A are measured indirectly

as required
in Bohm gedanken EPR experiment.
Think of the following situation: a particle with zero spin decays into two

particles (A and B), each with 1/2-spin. Due to the fact that spin angular momentum
must be conserved during the decay, if initially the total spin angular momentum



was zero, then after the decaying process it must still be zero. Therefore, particles
A and B have opposite spin.Take as an example the dissociation of an exited
hydrogen molecule into two hydrogen atoms. If the decaying mechanism does not
change total angular momentum, then the spins on the hydrogen atoms will be
anti-correlated.

Remark 1.9.5.Whenever a measurement of the spin of A is found to be positive
with respect of the z-axis (we shall note this state as |↑z, then,under local

realism,we could infer that the spin of the B particle must be negative |↓z, and this
is true independent of the distance that separates the particles. The spin of these
particles are then entangled.

Remark 1.9.6. We claim again that any assumption of local realism is
completely wrong.

The strong postulate of nonlocality.
Let |t A and |t B a state at instant t of the particle A and particle B

correspondingly.
Let |↑z,A/B be eigenstates of the spin operator SA/B

z :

SA/B
z 

1 0

0 −1
1.9.6

We claim that:
(i) whenever a measurement of the spin of a particle A is performed at instant

t1 ≥ t and
particle A is found in the state |↑z, i.e., a state |t1 A collapses at instant t1 to

the state
|↑z,A with respect of the Heisenberg spin uncertainty relations (1.9.5), then a

state |t1 B
immediately collapses at instant t1 to the state |↓z,B with respect of the

Heisenberg spin
uncertainty relations (1.9.5), and this is true independent of the distance in

Minkovski
spacetime that separates the particles:

|t1 A
col lapse
 |↑z,A  |t1 B

col lapse
 |↓z,B 1.9.7

(ii) whenever a measurement of the spin of a particle A is performed at instant
t1 ≥ t and

particle A is found in the state |↓z, i.e., a state |t1 A collapses at instant t1 to
the state

|↓z,A with respect of the Heisenberg spin uncertainty relations (1.9.5), then a

state |t1 B
immediately |t B collapses at instant t1 to the state |↑z,B with respect of the

Heisenberg
spin uncertainty relations (1.9.5), and this is true independent of the distance in

Minkovski



spacetime that separates the particles:

|t1 A
col lapse
 |↓z,A  |t1 B

col lapse
 |↑z,B 1.9.8

Note that,we can not predict which spin will be positive (or negative) with
respect of the
z-axis, so the state that describes the spins of the particles could be for instance

the spin
singlet state

|  1
2
|↓↑ − |↑↓ 1.9.9

We have a probability of 50% for the spin of particle A to be positive (and the spin
of B negative) and a probability of 50% of it being the other way around.

Remark 1.9.7. So far we have assumed that we are performing a measurement
along the z-axis, but measurements are not restricted to this particular election, we
could measure for instance the spin of particle A along the a-axis and the spin of B
along the b-axis. Let’s see what happens if we decide to measure the spin along
the x-axis: a  b  x. As it known for 1/2-spins, the spin operator SA/B

x can be
represented by the 2  2 hermitian matrix

SA/B
x 

0 1

1 0
1.9.10

By performing a change of basis we can rewrite the state | in terms of the
eigenstates of the spin operator SA/B

x :

|u  1
2
|↓  |↑, |v  1

2
|↓ − |↑, 1.9.11

and using Eq. (1.9.10), we can rewrite the state | as

|  1
2
|vu − |uv. 1.9.12

The strong postulate of nonlocality in this case takes the form similarly
mentioned above.Just like before, by choosing to measure the spin of A along the

x-axis we can determine it’s value and infer the value of the spin of particle B

B ≠ B in the state |x,B  |ux,B ≠ |x,B without the need to measure it (and vice

versa).
Furthermore, it turns out that this is the case independent of the election of the

axis we choose to measure! (Provided that a  b  v).
This is exactly the same situation such that a simple choice of the axis along

which to measure the spin A allow us to establish the value of the spin of B along
this same axis without the need to measure it. And this is also the case (as we
already saw) for physical properties described by non-commuting operators (Sx and
Sz do not commute).



II.Generalized Gamow theory of the alpha decay via
tunneling using GRW collapse model.Nonlocal
Schrödinger equation corresponding to alpha
decay.

II.1.Generalized Gamow theory of the alpha decay
via tunneling using GRW collapse model.

By 1928, George Gamow had solved the theory of the alpha decay via
tunneling [42]. The alpha particle is trapped in a potential well by the nucleus.
Classically, it is forbidden to escape, but according to the (then) newly discovered
principles of quantum mechanics, it has a tiny (but non-zero) probability of
"tunneling" through the barrier and appearing on the other side to escape the
nucleus. Gamow solved a model potential for the nucleus and derived, from first
principles, a relationship between the half-life of the decay, and the energy of the
emission.

The -particle has total energy E and is incident on the barrier from the right to

left.

Рiс.2.1.1.The particle has total energy E and

is incident on the barrier Vx from right to left.

Adapted from [42].

The Schrödinger equation in each of regions I  x|x  0, II  x|0 ≤ x ≤ l
and III  x|x  l takes the folloving form

∂2x
∂x2

 2m
2

E − Uxx  0,
2.1.1

where



Ux 

0 for x  0

U0 for 0 ≤ x ≤ l

0 for x  l

2.1.2

The solutions reads [8]:

IIIx  C expikx  C− exp−ikx,

IIx  B expk ′x  B− exp−k ′x,

Ix  Acoskx  A
2
expikx  exp−ikx,

2.1.3

where

k  2


2mE ,

k ′  2


2mU0 − E .
2.1.4

At the boundary x  0 we have the following boundary conditions:

I0|x0  II0|x0,
∂Ix
∂x x0


∂IIx
∂x x0

.
2.1.5

At the boundary x  l we have the following boundary conditions

IIl|xl  IIIl|xl,
∂IIx
∂x xl


∂IIIx
∂x xl

.
2.1.6

From the boundary conditions (2.1.5)-(2.1.6) one obtains [42]:

B  A
2

1  i k
k ′

,B−  A
2

1 − i k
k ′

,

C  Achk ′l  iDshk ′l,C−  iASshk ′lexpikl,

D  1
2

k
k ′
− k

′

k
,S  1

2
k
k ′

 k
′

k
.

2.1.7

From Eqs.(2.1.7) one obtains the conservation law

|A|2  |C |2 − |C− |2.

Let us introduce now a function EIIx, l  2x, lE2x, l where



E2x, l 
rc2

−1/4 exp − x
2

2rc2
for −   x  l

2

rc2
−1/4 exp − x − l

2

2rc2
for l

2
≤ x  

2x, l 
1 for x ∈ 0, l
0 for x ∉ 0, l

2.1.8

Assumption 2.1.1. We assume now that:
(i) at instant t  0 the wave function Ix experiences a sudden jump of the

form

Ix → I
#x 

I
x Ix

‖I
x Ix‖2

,
2.1.9

where I
x  is a linear operator which is chosen equal to:

I
x   rc2

−1/41
x , lexp −

x 2

2rc2
;

2.1.10

where

1x, l 
1 for x ∈ −l, 0,

0 for x ∉ −l, 0.

Remark 2.1.1. Note that: suppI
#x ⊆ −l, 0

(ii) at instant t  0 the wave function IIx experiences a sudden jump of the
form

IIx → II
# x 

II
x IIx

‖II
x IIx‖2

,
2.1.11

where II
x  is a linear operator which is chosen equal to:

II
x   EII

x , l;
2.1.12

Remark 2.1.2.Note that: suppII
# x ⊆ 0, l.

(iii) at instant t  0 the wave function IIIx experiences a sudden jump of the
form



IIIx → III
# x 

III
x IIIx

‖III
x IIIx‖2

,
2.1.13

where III
x  is a linear operator which is chosen equal to:

III
x   rc2

−1/4 exp − 
x − l2

2rc2
.

2.1.14

Remark 2.1.3. Note that. We have choose operators (2.1.10),(2.1.12) and
(2.1.14) such that the boundary conditions (2.1.5),(2.1.6) is satisfied.

II.2.The nonlocal Schrödinger equation
corresponding to alpha decay.

Note that -particle moves through some medium and therefore the states of
the atoms of the medium are changed as a result of the interaction with it. As a
result, information about positions of the particle at different instants of time is
recorded in the state of the medium. This means that the position is monitored.
Simultaneously the motion of the particle is influenced by the medium. The
resulting influence of the medium leads to the decoherence of the -particle.

Рiс.2.2.1.Quantum diffusion:Decoherence by the

structure of atoms.Adopted from [9].

The following master equation was derived for the density matrix of the such

-particle [9]:

̇  − i

H, − k

2
r, r,,

k  2
l2

,
2.2.1

where l is the distance at which the particle excites an atom and  a characteristic
time of interaction between the atom and the -particle. In this case decoherence is
caused by the internal structure of atoms. This illustrated by the Рiс.2.2.1.The
medium to be considered is a system of an infinite number of non-interacting



quantum oscillators located at the nodes of a cubic lattice.The oscillators are
labelled by the index kk  1,2, . . . . The interaction of the k-th oscillator with the
measured particle given by the following simple Hamiltonian [9]:

Hint  ∑k
Hk  ∑k

qk exp −
r − ck2

l2
, 2.2.2

where qk is a canonical coordinate of the oscillator while ck is its location,  is the
interaction constant, l characterizes its range, and r is the coordinate of the
-particle.The complete Hamiltonian of the problem has the form

H  P2

2M
 Vr ∑k

pk
2

2m
∑k

m2qk
2

2
 Hint, 2.2.3

where P,M are the linear momentum and the mass of the -particle.
Remark 2.2.1. (i) In classical handbooks it assumed that collapse of -particle

is caused
only by the interection with atoms of the medium, see for example [9].
(ii) In contrast with a classical case we assume that -particle immediately

collapses after
decay in accordance with nonclassical collapse models, see subsection

I.2.4-I.2.5.
Remark 2.2.2. Schrödinger equation (2.1.1) can be solved by canonical

Feynman propagator [9],[26].
Definition 2.2.1. Let x be an solution of the Schrödinger equation (2.1.1).

The stationary Schrödinger equation (2.1.1) is a weakly well preserved in region
Γ ⊆  by collapsed wave function #x if the estimate


Γ

∂2#x
∂x2

 2m
2

E − Ux#x dx  O, 2.2.4

where 1/4   ≤ 1/2, is satisfied.
Definition 2.2.2.The stationary integral equation (2.2.4) is called nonlocal

Schrödinger equation of the order  (corresponding to alpha decay).
Proposition 2.2.1.The Schrödinger equation (2.1.1) in each of regions I, II, III

is a weakly well preserved by collapsed wave function I
#x,II

# x and III
# x

correspondingly.
Proof. See Appendix B.
Definition 2.2.3.Let us consider the time-dependent Schrödinger equation:

i
∂x, t
∂t

 Hx, t,H  ∂2
∂x2

 2m
2

E − Ux,

t ∈ 0,T,x∈.

2.2.5

The time-dependent Schrödinger equation (2.2.5) is a weakly well preserved by
corresponding to x, t collapsed wave function #x, t



#x, t  x, t;x  
x x, t

‖x x, t‖2
,

x   rc2
−3/4 exp − 

x − x 2

2rc2
,

in region Γ ⊆  if the estimate


Γ

i
∂#x, t
∂t

− H#x, t dx  O, 1/4   ≤ 1/2,

t ∈ 0,T,x∈,

2.2.6

is satisfied.
Definition 2.2.4.The time-dependent integral equation (2.2.6) is colled the

time-dependent nonlocal Schrödinger equation of the order .
Definition 2.2.5. Let #x, t#x1,x2, . . . ,xd, t be a function
x1,x2, . . . ,xd, t;

x 1 , . . . ,
x d .Let us consider the Probability Current Law

∂
∂t
PΓ, t  

∂Γ

Jx1,x2, . . . ,xd, t  nd2dx  0,

Jx1,x2, . . . ,xd, t  x, t∇x, t − x, t∇x, t,

t ∈ 0,T,x ∈3d,

2.2.7

corresponding to Schrödinger equation (2.2.16). Probability Current Law (2.2.7) is a

weakly well preserved by corresponding to x, t collapsed wave function #x, t
in region Γ ⊆ 3d if there exist an wave function x, t such that the estimate

∂
∂t
PΓ, t  

∂Γ

J#x1,x2, . . . ,xd, t  nd2dx  O,

J#x1,x2, . . . ,xd, t  #x, t∇#x, t − #x, t∇#x, t

 O, 1/4   ≤ 1/2,

t ∈ 0,T,x ∈3d,

2.2.8

is satisfied.
Proposition 2.2.2. Assume that there exist an wave function x, t such that

the estimate
(2.2.7) is satisfied. Then Probability Current Law (2.2.4) is a weakly well



preserved by corresponding to x, t collapsed wave function #x, t in region
Γ ⊆ 3d, i.e. the estimate (2.2.8) is satisfied on the wave function #x, t.

Definition 2.2.6.The time-dependent integral equation (2.2.9)


Γ⊂3d

i
∂x, t
∂t

− Hx, t d3dx  0,

H  ∂2
∂x2

 2m
2

E − Ux

t ∈ 0,T,x∈,

2.2.9

is colled the time-dependent nonlocal Schrödinger equation corresponding to alpha
decay.

II.3.The nonlocal stochastic nonlinear Schrödinger
equation corresponding to alpha decay

Let us consider the nonlocal stochastic nonlinear Colombeau-Schrödinger
equation describing the (one-dimensional) evolution of a free quantum particle
subject to spontaneous localizations in space. The stochastic dynamics is
governed by a standard Colombeau-Wiener process W,t, defined on the
probability space ,F,P with the natural filtration Ft : t ≥ 0 defined on i




dx,Tx − ,0x







dx 


0

T

− i


p2

2m
dt   q − 〈q,t ,txdW,t − 

2 
0

T

q − 〈q,t2,txdt



,

2.3.1

where q and p are the position and momentum operators, respectively, and
〈q,t ≡ 〈,t|

q|,t.
In order to obtain let us consider corresponding stochastic nonlinear

Colombeau- Schrödinger equation

,Tx − ,0x  
0

T

− i


p2

2m
,tx − 

2
q − 〈q,t2,tx dt





 
0

T

 q − 〈q,t,txdW,t



.

, 2.3.2

In order to obtain an solution of the Eq.(2.3.2) Let us consider the following
Colombeau linear stochastic differential equation



d,tx  − i

p2

2m
dt   q d,t − 

2
q2dt ,tx


, 2.3.3

where ,t is a standard Colombeau-Wiener process defined on the probability
space ,F,Q, where Q is a new probability measure, whose connection with P

will be clear in what follows. Contrary to Eq.(2.3.2), the above equation does not
preserve the norm of statevectors, so let us define the normalized vectors:

,t 


,t/‖,t‖ if ‖,t‖ ≠ 0

a fixed unit vector if ‖,t‖  0
2.3.4

By using Colombeau-Itô calculus, it is not difficult to show that ,t 
defined by

(2.3.4) is a solution of Eq. (2.3.2), whenever ,t solves Eq. (2.3.3). We now
briefly explain the relations between the two probability measures Q and P, and

between the two Colombeau-Wiener processes ,t and W,t.
The key property of Eq.(2.3.3) is that p,t ≡ ‖,t‖

2 is a martingale

satisfying the following Colombeau stochastic differential equation

dp,t  2  〈q,t p,t d,t, 2.3.5

with 〈q,t  〈,t|q|,t. As a consequence of the martingale property (and

assuming, as we shall always do, that ‖,0‖ 1) p,t can be used to generate a
new probability measure P̃ on ,F We choose now Q in such a way that the new

measure P̃ coincides with P.Given Girsanov’s theorem provides a simple relation
between the Colombeau-Wiener process ,t defined on ,F,Q, and the

Colombeau-Wiener process W,t defined on ,F,P
W,t  ,t − 2  

0

t
〈q,s ds


. 2.3.6

The above results imply that one can find the solution ,t of Eq.(2.3.2), given
the initial condition ,0, by using the following procedure:(i) find the solution
,t of Eq. (2.3.3), with the initial condition ,0  ,0, (ii) normalize the
solution:,t → ,t  ,t/‖,t‖,(iii) make the substitution:

d,t → dW,t  2  〈q,t.We choose now, as a solution, a single-Gaussian

wavefunction:

,tx  −atx − x,t
2  ik,tx  ,t , 2.3.7

where at and ,t are supposed to be complex functions of time, while x,t and

k,t are taken to be real. By inserting (2.3.7) into Eq.(2.3.3), one finds the

following sets of Colombeau stochastic differential equations for the relevant
parameters:



dat   − 2i
m at2 dt,

dx,t 

m k,t dt 


2Reat

d,t 
− 2  x,t dt ,

dk,t  − 
Imat
Reat

d,t 
− 2  x,t dt ,

dRe,t  x,t2  

m Imat dt   x,t d,t − 2  x,t dt 

d Im,t  − m Reat − 
2m

k,t
2


dt  

Imat
Reat

x,t d,t − 2  x,t dt 
.

2

For a single–Gaussian wavefunction, the two equations for ,t can be omitted
since the real part of ,t is absorbed into the normalization factor, while the
imaginary part gives an irrelevant global fase.The normalization procedure is trivial,
and also the Girsanov transformation (2.3.6) is easy since, for a Gaussian
wavefunction like (2.3.7), one simply has 〈q,t  x,t. We then have the

following set of stochastic differential equations for the relevant parameters:

dat   − 2i
m at2 dt,at |t0  a0,

dxt  
m kt dt 


2Reat

dWt,xt |t0  x0,

dkt  − 
Imat
Reat

dWt,kt t0  k0.

2.3.9

Eq. (2.3.9) for at can be easily solved

at  c tanhb t  k, 2.3.10

with:

c  1 − i 1
2

m


, b  1  i 
m ,k  tanh−1 a0

c . 2.3.11

After some algebra, one obtains the following analytical expressions for the real
and the imaginary parts of at:

Reat  


sinht  1  sint  2
cosht  1  cost  2

,

Imat  − 
sinht  1 − sint  2
cosht  1  cost  2

.
2.3.12

An important property of Reat t is positivity: a0  0  at  0.
The quantities 〈q,t  x,t and 〈p,t  k,t, corresponding to the peak

of the Gaussian wavefunction in the position and momentum spaces, respectively,
satisfy the following stochastic differential equations:



d〈q,t 
1
m 〈p,tdt   1

2Reat
dW,t,

d〈p,t  −  
Imat
Reat

dW,t.
2.3.13

We now study the time evolution of the superposition of two Gaussian
wavefunctions; such an analysis is interesting since it allows to understand in a
quite simple and clear way how the reduction mechanism works, i.e. how the
superposition of two different position states is reduced into one of them. To this
purpose, let us consider the following wavefunction:

tDx  1tx  2tx 

 −a1tx − x1t2  ik1tx  1t 

−a2tx − x2t2  ik2tx  2t ;

2.3.14

we follow the strategy outlined in Sec. II, by first finding the solution of the linear
equation.

Because of linearity, tDx is automatically a solution of Eq. (ref: le), provided
that its

II.4.Einstein’s 1927 gedanken experiment revisited.
During the famous 5th Solvay conference in 1927, Einstein [39] considered a

single particle which, after diffraction in a pin-hole encounters a “detection plate”
(e.g. in the case of photons, a photographic plate), see Fig 2.2.1. We simplify this
thought experiment, though keeping the essence, by replacing the “detection plate”
by two detectors. Einstein noted that there is no question that only one of them can
detect the particle, otherwise energy would not be conserved. However, he was
deeply concerned about the situation in which the two detectors are space-like
separated, as this prevents - according to relativity - any possible coordination
among the detectors: “It seems to me,” Einstein continued, “that this difficulty
cannot be overcome unless the description of the process in terms of the
Schr¨odinger wave is supplemented by some detailed specification of the
localization of the particle during its propagation. I think M. de Broglie is right in
searching in this direction.”



Рiс.2.4.1.Einstein’s 1927 gedanken experiment.

A and B are points on the photographic plate,

for which the events of detection can be space-

like separated from each other.Adapted from [39].

But what happened to Einstein’s original “Gedanken experiment”? This simple -
with today’s technology - experiment had been done originally by T. Guerreiro, B.
Sanguinetti, H. Zbinden N. Gisin, and A. Suarez, see [53].This experiment consists
in verifying that when a single photon is thrown at a beam splitter, it is detected in
only one arm, i.e. the probability PA∧B of getting a coincidence between the two
detectors A and B is much smaller than the product of the probabilities of detection
on each side PA  PB, as would be expected in the case of uncorrelated events.The
experimental setup is shown in Fig. 2.2.2 and consists of a source of heralded
single photons which is coupled into a single mode fiber and injected into a fiber
beamsplitter (BS). Each of the two outputs of the beamsplitter goes to a single
photon detector (IDQ ID200), detector A being close to the source and detector B
being separated by a distance of approximately 10 meters.



Рiс.2.2.2.Experimental setup: photon pairs a regenerated by Spontaneous Parametric

Down Conversion at the wavelengths of 1550 nm and 810 nm. These pairs are split by

a dichroic mirror (DM), and the 810 nm photon is sent to detector D,used to herald

the presence of the1550 nm photon which follows to the beam splitter (BS). Arbitrary

electronic delays were applied beforeTDC to ensure the coincidence peak swould

remain on scale. Adapted from [53].

If we ensure that the fiber lengths before each detector are equal by inserting a
10 m (50ns) fiber delay loop before detector A, the detections will happen
simultaneously in some reference frame, thus being space-like separated (a signal
would take 33 ns to travel between the two detectors at the speed of light;
simultaneity of detection is guaranteed to within 1ns by the matched length of fiber
both before and inside the detectors). It is also possible to make the detections
time-like separated by removing the 10m delay line from detector A and adding it to
detector B.

Рiс.2.2.4.[53]. Spacetime diagrams for

spacelike (i) and timelike (ii) configurations.

A and B represent the locations of the

detectors. Adapted from [53].

First one measure the probabilities of detecting a photon at detector A or at
detector B given that a heralding photon has been detected at H. We denote RHA
the total number of coincident counts at detector H and detector A during the time



of measurement, and RHA the total number of counts at detector H alone during
the same measurement; RHB and RHB denote similar quantities for the
measurement with H and B. Next we measure the probability of detectors A and B
clicking at the same time, again given a heralding signal. RHAB denotes the number
of triple coincident counts at the detectors H, A and B, and RHAB the total number
of counts at detector H alone during the same measurement. All these quantities
are measured directly for both a space-like configuration and a time-like
configuration.

Next one measure the probability of detectors A and B clicking at the same
time, again given a heralding signal. RHAB denotes the number of triple coincident
counts at the detectors H, A and B, and RHAB the total number of counts at
detector H alone during the same measurement. All these quantities are measured
directly for both a space-like configuration and a time-like configuration.

Рiс.2.2.5.Coincidences between the

heralding detector and each of the

detectors A (red) and B (blue) with

spacelike separation,measured in a

window of 1ns during a time period

of 10 minutes. RHA  9.49  104/10 min,

RHB  6.39  104/10 min.The noise is on

average:RN  50/10 min. Adapted from [53].



Рiс.2.2.6.Coincidences between the

heralding detector and each of the

detectors A (red) and B (blue) with

timelike separation,measured in a

window of 1ns during a time period

of 10 minutes. RHA  9.90  104/10 min,

RHB  6.22  104/10 min. Adapted from [53].

The raw TDC data is shown in Figures 5-6 and the results are summarized in Table
I.

Table I.Summary of results.Values obtained for

the different counting rates and corresponding

probabilities defined inthetext,measured with

spacelike and timelike separation. Adapted from [53].

The number of counts given by detector noise and twophoton events can be
estimated by looking at the counts away from the peak. As an example, for the
space-like configuration (Figure 2.2.5.) in a window of 1ns the noise rate is on
average RHN  50 (7) for a 10 minutes integration time. This corresponds to a noise
probability PN  9· 10−6(1.3·10−6). From the values in Table 1 one derives the
following probability values for spacelike separation:



PA
SL  PBSL  1.86  0.01·10−4,

PA∧B
SL  0.002  0.001·10−4.

2.2.1

For timelike separation one derives the values:

PA
TL·PBTL  1.65  0.01·10−4,

PA∧B
TL  0.002  0.001·10−4.

2.2.2

For the probability PN
SL that A and B detect photons coming from different pairs

(noise) one derives the value:

PN
SL1,1  PN

SL·PA
SL  PNSL·PBSL ≈

0.0025  0.0026·10−4
2.2.3

Definition 2.2.1.[54].A measure algebra ℱ  B,P with a probability measure
P, is a

Boolean algebra B with a countably additive probability measure.
Definition 2.2.2.(i) A measure algebra of physical events ℱph  B,P with a
probability measure P, is an Boolean algebra of physical events B with an

countably
additive probability measure.
(ii) A Boolean algebra of physical events can be formally defined as a set B of

elements
a,b, . . . with the following properties:
1. B has two binary operations, ∧ (logical AND, or "wedge") and ∨ (logical OR,

or "vee"),
which satisfy:
the idempotent laws:
(1) a ∧ a  a ∨ a  a,
the commutative laws:
(2) a ∧ b  b ∧ a,
(3) a ∨ b  b ∨ a,
and the associative laws:
(4) a ∧ b ∧ c  a ∧ b ∧ c,
(5) a ∨ b ∨ c  a ∨ b ∨ c.
2. The operations satisfy the absorption law:
(6) a ∧ a ∨ b  a ∨ a ∧ b  a.
3. The operations are mutually distributive
(7) a ∧ b ∨ c  a ∧ b ∨ a ∧ c,
(8) a ∨ b ∧ c  a ∨ b ∧ a ∨ c.
4. B contains universal bounds 0 and 1 which satisfy
(9) 0 ∧ a  0
(10) 0 ∨ a  a
(11) 1 ∧ a  a
(12) 1 ∨ a  1.



5. B has a unary operation a (or a′) of complementation (logical negation),
which

obeys the laws:
(13) a ∧ a  0
(14) a ∨ a  1
All properties of negation including the laws below follow from the above two

laws alone.
6. Double negation law: a  a
7.De Morgan’s laws: (i) a ∧ b  a ∨ b, (ii) a ∨ b  a ∧ b.
8.Operations composed from the basic operations include the following

importent
examples:
The first operation, a → b (logical material implication):
(i) a → b  a ∨ b.
The second operation, a ⊕ b, is called exclusive. It excludes the possibility of

both a and b
(ii) a ⊕ b  a ∨ b ∧ a ∧ b.
The third operation, the complement of exclusive or, is equivalence or Boolean

equality:
(iii) a ≡ b  a ⊕ b
9. B has a unary predicate Occa, which meant that event a has occurred, and

which
obeys the laws:
(i) Occa ∧ b  Occa ∧ Occb,
(ii) Occa ∨ b  Occa ∨ Occb,
(iii) Occa  Occa.
Remark 2.2.4. A probability measure P on a measure space , gives a

probability
measure algebra ℱ  ,,P on the Boolean algebra of measurable sets

modulo null
sets.
Definition 2.2.3.(i) Let B be a Boolean algebra of physical events. A Boolean

algebra BM4

of physical events in Minkowski spacetime M4  1,3 that is cartesian product
BM4  B M4.
(ii) Let BM4 be a Boolean algebra of physical events in Minkowski spacetime. A

measure
algebra of physical events ℱM4

ph  BM4 ,P in Minkowski spacetime that is a
Boolean

algebra BM4 with a probability measure P.
(iii) Let BM4 be Boolean algebra of the all physical events in Minkowski

spacetime and let
ℱM4

ph be an measure algebra ℱM4

ph  BM4 ,P with a probability measure P.We
denote such



physical events by Ax,Bx, . . . etc.,where x  t,x1,x2,x3 ∈ M4 or A,B, . . .etc.
(iv) We will be write for a short AOcx,BOcx, . . . etc., instead

OccAx,OccBx, . . . etc.
Definition 2.2.4. Let AutPBM4  be a set of the all measure-preserving

automorphism of
BM4 .This is a group,being a subgroup of the group AutBM4  of all Boolean

automorphism
of BM4 .Let P ↑


be Poincaré group.

Remark 2.2.5. We assume now that: any element Θ  ,a ∈ P ↑

induced an

element

Θ ∈ AutPBM4  by formula Θ  ΘAx  Ax  a ∈ BM4 .
Definition 2.2.5. Given two events A and B from the algebra ℱM4

ph  BM4 ,P the
conditional probability of A given B is defined as the quotient of the probability of
the joint of events A and B, and the probability of B :

PA|B 
PA ∧ B
PB

 PA∧B
PB

 PA|B, 2.2.4

where PB ≠ 0.
Definition 2.2.6. (i) Events A and B from the algebra ℱM4

ph  BM4 ,P are defined
to be statistically independent or uncorrelated iff

PA∧B  PA  PB, 2.2.5

where PB ≠ 0, then this is equivalent to the statement that PA|B  PA.Similarly, if PA
is not zero, then PB|A  PB is also equivalent.

(ii) Events A and B from the algebra ℱ  BM4 ,P are defined to be statistically
almost independent or almost uncorrelated iff

PA∧B ≈ PA  PB,

PA∧B  PA  PB − A,B, 0  A,B  PA  PB.
2.2.6

Remark 2.2.6. Note that

PA∨B  PA  PB − PA∧B. 2.2.7

Although mathematically equivalent, this may be preferred philosophically;
under major probability interpretations such as the subjective theory, conditional
probability is considered a primitive entity. Further, this "multiplication axiom"
introduces a symmetry with the summation axiom for mutually exclusive events, i.e.

PA∨B  PA  PB − P̸A∧B. 2.2.8

Definition 2.2.7. (i) Events A1,A2, . . . ,An ∈ ℱM4

ph  BM4 ,P are said to be exactly
mutually exclusive if the occurrence of any one of them implies the non-occurrence
of the remaining n − 1 events. Therefore, two mutually exclusive events cannot both



occur. Formally said, the conjunction of each two of them is 0 (the null event):
A ∧ B  0. In consequence, exactly mutually exclusive events A and B have the
property:

PA ∧ B  0. 2.2.9

(ii) Events A1,A2, . . . ,An ∈ ℱM4

ph  BM4 ,P are said to be almost mutually
exclusive if
A1,A2, . . . ,An have the property:

PA1 ∧ A2 ∧. . .∧An ≈ 0,

PA1 ∧ A2 ∧. . .∧An  PA1  PA2    PAn.
2.2.10

In consequence, almost mutually exclusive events A and B have the property:

PA ∧ B ≈ 0,

PA ∧ B  PA  PB.
2.2.11

Remark 2.2.7. Let Aph,Bph be events such that detectors A,B detect photon at
an instants t1 and t2 correspondingly. Note that (2.2.1) and (2.2.2) show that
whether the separation between the detectors is timelike or spacelike, the number
of coincidences is three orders of magnitude smaller than what would be expected
had the events been statistically almost uncorrelated, i.e., PA∧B ≈ PA  PB, see
Def.2.2.5(ii).

Remark 2.2.8. Let Aph,Bph be events such that detectors A,B detect photon at
an instants t1 and t2 correspondingly. Note that:

(i) from Eq.(2.2.1) follows probability value for spacelike separation:

PAph∧Bph
SL  0.002  0.001·10−4 ≠ 0, 2.2.12

(ii) from Eq.(2.2.2) follows probability value for timelike separation:

PAph∧Bph
TL  0.002  0.001·10−4 ≠ 0. 2.2.13

Therefore in both cases the property (2.2.9) are violated, i.e. PAph∧Bph ≠ 0 but
however in both cases the property (2.2.11) is satisfied

0.002  0.001·10−4  PAph∧Bph
SL  PAph

SL  PBph
SL  1.86  0.01·10−4,

0.002  0.001·10−4  PAph∧Bph
TL  PAph

TL  PBph
TL  1.65  0.01·10−4

2.2.12

and therefore in both cases the events Aph,Bph are almost mutually exclusive
events.

Beamsplitter transformation.
A beamsplitter is the most simple way to mix two modes, see Figure 2.2.7.

From classical electrodynamics, one gets the following amplitudes for the outgoing
modes:

a1

a2
in


A1

A2
out


t r

r′ t ′
a1

a2
in

. 2.2.13



Рiс.2.2.7.Mixing of two modes by a

beam splitter.

The recipe for quantization is now: ‘replace the classical amplitudes by
annihilation operators’. If the outgoing modes are still to be useful for the quantum
theory, they have to satisfy the commutation relations:

Aiout,Ajout   ij 2.2.14

These conditions give constraints on the reflection and transmission amplitudes,
for example |t ′|2  |r′|2  1. We are now looking for an unitary operator S [the
S-matrix] that implements this beamsplitter transformation in the following sense:

Ai  S†aiS, i  1,2. 2.2.15

Let us start from the general transformation (summation over double indices)

ai  Ai  Bijai, a  A  Ba 2.2.16

where we have introduced matrix and vector notation. Using this S-matrix one can
also compute the transformation of the states: |out  S|in.For the unitary
transformation, we make the ansatz

S  expiJkiak
†ai 2.2.17

with Jkl a hermitean matrix (ensuring unitarity). The action of this unitary on the
photon mode operators is now required to reduce to

ai  Ai  S†aiS Bijaj. 2.2.18

We compute this ‘operator conjugation’ by using a differential equation:

dAi
d

 iJkiAi. 2.2.19

This is a system of linear differential equations with constant coefficients, so that
one obtains a solution

A  expiθJ. 2.2.20

We thus conclude that the so-called generator J of the beam splitter matrix is fixed
by equatuon

B  expiθJ. 2.2.21

If the transformation B is part of a continuous group and depends on θ as a



parameter, we can expand it around unity. Doing the same for the matrix
exponential, we get

B  1  iθJ . . . . 2.2.22

Equation (2.2.22) explains the name generator for the matrix J: it actually
generates a subgroup of matrices B  Bθ parametrized by the angle θ. The
unitary transformation we are looking for is thus determined via the same generator
J. For the two-mode beam splitter, an admissible transformation is given by

Bθ 
t r

r′ t ′


cos i sin

i sin cos
2.2.23

The factor i is just put for convenience so that the reflection amplitudes are the
same for both sides, r  r′, as expected by symmetry. Expanding for small θ, the
generator is

J 
0 1

1 0
 1 2.2.24

so that the unitary operator for this beamsplitter is

S  expia1
†a2  a2

†a1. 2.2.25 Therefore, the

effective Hamiltonian of the beam splitter is given by

Heff  a1
†a2  a2

†a1. 2.2.26

Splitting a two-photon state

Let us consider two single photon states |in  |1, 1 incident on the beam
splitter such that mentioned above.Then

|  |out  S|in  Sa1
†S†Sa2

†S†S|0, 0 

a1
† cosθ  ia2

† sinθa2
† cosθ  ia1

† sinθ|0, 0 

|2, 0 − |0, 2 sinθ
2

 |1, 1cosθ.
2.2.27

Let H be a complex Hilbert space such that

∀|cl ∈ H,

∀∀ ∈ 0,1∀ ∈ 0,1 |,,x
i cl ∈ H ,

|,,x
i cl  Lx

i ,|cl.

2.2.28

By postulate C.I (see Appendix C) quantum system wih Hamiltonian given by

Eq.(2.2.26) is identified by a set   H,Heff,ℑ,,ℒ2,1,G, |t  , where

(i) H that is a complex Hilbert space defined above,
(ii) ℑ  ,ℱ,P that is complete probability space,
(iii)   n, that is measurable space ,



(iv) ℒ2,1 that is complete space of random variables X :  → n such that



‖X‖dP  , 


‖X‖2dP  , 2.2.29

(v) G : H → ℒ2,1 that is one to one correspondence such that

〈|Q|  


G Q|  dP  E G Q|  2.2.30

for any | ∈ H and for any Hermitian operator Q : H → H,
(vi) |t  is an continuous vector function |t  :  → H which representedthe

canonical evolution of the quantum system .
Remark 2.2.9. Note that ℑM4

ph  ℱ  M4  ,,P  M4,where ℱ is a probability
measure

algebra ℱ  ,,P on the Boolean algebra of measurable sets modulo null
sets, see

Remark 2.2.4.
Let BM4 be Boolean algebra of the all physical events in Minkowski spacetime

M4 and let

ℱM4 be an measure algebra ℱM4  BM4 ,P with a probability measure P, see

Definition 2.2.2 (vii).

We assume now that there exist subalgebra ℱM4
#  ℱM4 and isomorphism

 : ℱM4
#  ℑM4

ph such that for any event Ax ∈ ℱM4
# ,x  t,x1,x2,x3 ∈ M4 (see

Definition
2.2.2):

Ax  Ax,

PAx  PAx  PAx.
2.2.31

Proposition 2.2.1.Suppose that A and B are events in measure algebra

ℱM4  BM4 ,P . Then following properties is satisfied:

1.PA|B  PA  PB|A  PB  PA ∧ B  PAPB

2.PA|B  PA  PB|A  PB  PA ∧ B  PAPB

3.PA|B  PA  PB|A  PB  PA ∧ B  PAPB

2.2.32

Proposition 2.2.2.Suppose that A and B are events in measure algebra
ℑM4  ,ℱ,P.

Then following properties is satisfied:

1.PA|B  PA  PB|A  PB  PA ∩ B  PAPB

2.PA|B  PA  PB|A  PB  PA ∩ B  PAPB

3.PA|B  PA  PB|A  PB  PA ∩ B  PAPB

2.2.33

Definition 2.2.8.In case (1), A and B are said to be positively correlated.
Intuitively, the occurrence of either event means that the other event is more

likely.



In case (2), A and B are said to be negatively correlated.
Intuitively, the occurrence of either event means that the other event is less

likely.
In case (3), A and B are said to be uncorrelated or independent.
Intuitively, the occurrence of either event does not change the probability of the

other event.
Remark 2.2.10. Suppose that A and B are events in measure algebra

ℑM4  ,ℱ,P.
Note from the result above that if A ⊆ B or B ⊆ A then A and B are positively

correlated. If
A and B are disjoint then A and B are negatively correlated.
Proposition 2.2.3.Suppose that A and B are events in measure algebra

ℱM4  BM4 ,P . Then:

(i) A and B have the same correlation (positive, negative, or zero) as A and
B.

(ii) A and B have the opposite correlation as A and B (that is, positive-negative,
negative-positive, or zero-zero).
Proposition 2.2.4.Suppose that A and B are events in measure algebra

ℑM4  ,ℱ,P.
Then:
(i) A and B have the same correlation (positive, negative, or zero) as Ac and Bc.
(ii) A and B have the opposite correlation as A and Bc (that is, positive-negative,
negative-positive, or zero-zero).
Definition 2.2.9.Let Ax1  At1,r1 and Bx2  Bt2,r2 be an events
Ax1 ∈ ℱM4

# which occurs at instant t1 and Bx2 ∈ ℱM4
# at instant t2

correspondingly.
Let x1,2 be a vector: x1,2 

ct1 − t2,r1 − r2  ct1,2,r1,2, t1,2  t1 − t2,r1,2  r1 − r2.
Vectors x1,2  ct1,2,r1,2 are classified according to the sign of c2t1,2

2 − r1,22 . A
vector is

(i) timelike if c2t1,2
2  r1,22 , (ii) spacelike if c2t1,2

2  r1,22 , and null or lightlike if (iii)
c2t1,2

2  r1,22 .
Pairs of events At1,r1,Bt2,r2 ∈ ℱM4

# ℱM4
# are classified according to the

sign of
c2t1,2

2 − r1,22 :
(i) a pair At1,r1,Bt2,r2 is timelike separated if c2t1,2

2  r1,22 ,
and we denoted such pairs by At1,r1,Bt2,r2t.l.s.
(ii) a pair At1,r1,Bt2,r2 is spacelike separated if c2t1,2

2  r1,22 ,
and we denoted such pairs by At1,r1,Bt2,r2s.l.s.
(iii) a pair At1,r1,Bt2,r2 is null or lightlike separated if c2t1,2

2  r1,22 .
and we denoted such pairs by At1,r1,Bt2,r2l.l.s.
Definition 2.2.10.(i) Let ℱM4

# ,t1,r1, t2,r2t.l.s. be a set of the all timelike

separated



pairs At1,r1,Bt2,r2t.l.s. which are corresponding to a given vector
t1,r1, t2,r2 ∈ M4  M4, i.e.,

ℱM4
# ,t1,r1, t2,r2s.l.s. 

At1,r1,Bt2,r2 ∈ ℱM4
# ℱM4

# |c2t1,2
2  r1,2

2 .
2.2.34.a

(ii) Let ℱM4
# ,t1,r1, t2,r2s.l.s. be a set of the all spacelike separated

pairs At1,r1,Bt2,r2s.l.s. which is corresponding to a given vector
t1,r1, t2,r2 ∈ M4  M4, i.e.,

ℱM4
# ,t1,r1, t2,r2s.l.s. 

At1,r1,Bt2,r2 ∈ ℱM4
# ℱM4

# |c2t1,2
2  r1,2

2 .
2.2.34.b

Remark 2.2.11. Let ℱM4
# ,t,r1, t,r2s.l.s. be a set of the all pairs

At,r1,Bt,r2
which is corresponding to a given vector t,r1, t,r2 ∈ M4  M4, r1 ≠ r2, i.e.,

ℱM4
# ,t,r1, t,r2s.l.s. 

At,r1,Bt,r2 ∈ ℱM4
# ℱM4

# |0  r1,2
2 ,

r1,2  r1 − r2.

2.2.35

Such pairs obviously is spacelike separated. Note that

∀t∀r1∀r2r1 ≠ r2 ℱM4
# ,t,r1, t,r2s.l.s. ≠  . 2.2.36

Definition 2.2.11. Let At1  Ax1  At1,xA and Bt2  Bx2  Bt2,xB be a
symbols such that At1 and Bt2 represent there is detection events Ax1 ∈ ℱM4

# at
instant t1 and Bx2 ∈ ℱM4

# at instant t2 correspondingly, where symbols xA and xB
represent the locations of the detectors A and B correspondingly (see Рiс.2.2.4).
We assume that

At1 ,Bt2 ∈ ℱM4
# ,t1,xA, t2,xBs.l.s.. 2.2.37

Remark 2.2.12. We assume now without loss of generality that t1  t2  t,note
that such assuption valid by properties: Ax1 ∈ ℱM4

# and Bx2 ∈ ℱM4
# , required

above,see Remark 2.2.5.

Einstein’s 1927 gedanken experiment resolution
In classical case considered by A. Einstein in his 1927 gedanken experiment,

by postulates of canonical QM, both events At ∈ ℱM4
# and Bt ∈ ℱM4

# cannot occur
simultaneously, i.e. that is mutually exclusive events with a probability  1,and
therefore At ∧ Bt  0.Such exactly mutually exclusive events have the property:

PAt ∧ Bt  0, 2.2.38

see Definition 2.2.6.
We remind that the probability density pphx,, for the occurrence of a photon

localization at point x is assumed to be



pphx,,  ,,x
ph 

cl

2
,

 ∈ 0,1, ∈ 0,1,
2.2.39

where

,,x
ph

cl
 Lx,|phcl. 2.2.40

and where the localization operators Lx, have been chosen to have the form:


Lx

q,, 
1


1/4

exp − 1
2 

q − x2 iff |q − x| ≤   1,

0 iff |q − x|  .
2.2.41

see subsection I.2.4.
Remark 2.2.13. Note that: (i) from (2.2.28) follows that ,,x

ph 
cl
∈ H,

(ii) from (2.2.39) and (2.2.41) where   1 follows that

pphx,,  ,,x
ph 

cl

2
  dq ,,x

ph  |q〈q| ,,x
ph  

 dq 
Lx

q,,ph |q〈q|

Lx

q,,ph 

 dqLx2q,,〈ph||q〈q||ph  ‖〈x||phcl‖
2
 O 

 ‖〈x||phcl‖
2
,

  1, ∈ 0,1,

2.2.42

From postulate C.I.3 follows that there exist unique random
variable X ; |phcl given on a probability space ,ℱ,P and a measurable

space n, by formula

X ; |phcl  X ph  G |phcl 1.2.43

The probability density of random variable X ph we denote by

p phq,q ∈ .
Remark 2.2.14. From postulate Q.II.2 (see subsection I.7.1) follows that for the

system in state |phcl the probability P q,q  dq; |phcl of obtaining the

result q lying in the range q,q  dq on measuring observable q given by

P q,q  dq; |phcl  p ph
cl
qdq  c phcl 

q
2
 〈q|phcl

2
2.2.44

Now we go to explain Einstein’s 1927 gedanken experiment. Let Apht,xA and
Bpht,xA be events such that detectors A,B detect photon at an instant t
correspondingly. By properties (2.2.31) we obtain



P A
pht,xA  PAph t,xA  PApht,xA,

P B
pht,xB  PBph t,xB  PBpht,xB.

2.2.45

Note that

At  A
pht,xA  |xA −  ≤ X ph ≤ xA −  ,

Bt  B
pht,xB  |xB −  ≤ X ph ≤ xB −  ,

 ∈ 0,,  1,

2.2.46

where a small parameter   |xA − xB | dependent on measuring device. Thus by
general definition of random variable one obtains directly

A
pht,xA ∩ B

pht,xB   2.2.47

and therefore

P A
pht,xA ∩ B

pht,xB  0 2.2.48

The property (2.2.48) follows directly from (2.2.45).

Рiс.2.2.8.The plot of the random variable X ph.

At  A
pht,xA,Bt  B

pht,xB,At ∩ Bt  .

Remark 2.2.15. Let ℱM4
# ,t,xA, t,xBs.l.s. be a set of the all pairs

At,xA,Bt,xB
which is corresponding to a given vector t,xA, 0, 0, t,xB, 0, 0 ∈ M4  M4,

xA ≠ xB, i.e.,

ℱM4
# ,t,xA, t,xBs.l.s. 

At,xA,Bt,xB ∈ ℱM4
# ℱM4

# |0  xA − xB2.
2.2.49

Such pairs obviously is spacelike separated. Note that

∀t∀xA∀xBxA ≠ xB ℱM4
# ,t,xA, t,xBs.l.s. ≠  . 2.2.50



Now we go to explain non zero result PAt ∧ Bt ≠ 0 given above by (2.2.1) and
(2.2.2):

PAt∧Bt
TL

 0.002  0.001·10−4,PAt
TL·PBt

TL  1.65  0.01·10−4,

PAt∧Bt
SL

 0.002  0.001·10−4.PAt∧Bt
SL  0.002  0.001·10−4.

2.2.51

We consider this problem in general case.
Remark 2.2.16. Note that: (i) a probability density px,A,,  for the occurrence

of a localization inside interval x − ,x   in arm with detector A (see Рiс.2.2.2) is
given by formula (see Remark 1.2.4)

px,A, 
‖|A,,x cl‖

2

ΔA,
, 2.2.52

where

‖|A,,x cl‖
2  1

AA

1/2


|q−x|≤

dq|q|2 exp − 1
A

q − x2 ,

q  〈q||,

ΔA,  
−



‖|A,,x cl‖
2dx,

2.2.53

and where parametr A depend on arm with detector A.
(ii) a probability density px,B,,  for the occurrence of a localization inside

interval x − ,x   in arm with detector B (see Рiс.2.2.2) is given by formula (see
Remark 1.2.4)

px,B, 
‖|B,,x cl‖

2

ΔB,
, 2.2.54

where

‖|B,,x cl‖
2  1

BB

1/2


|q−x|≤

dq|q|2 exp − 1
B

q − x2 ,

q  〈q||,

ΔB,  
−



‖|B,,x cl‖
2dx,

2.2.55

and where parametr B depend on arm with detector B.
Remark 2.2.17.Note that parametr  in formula (1.2.27) (see Remark 1.2.4) of

course depend on measurement device and there no exist two equivalet devices
such that A  B.

We assume now that



A ≃ B  1,

0  |A − B |,


−


|x|2

′′
dx  ,

2.2.56

From Eq.(2.2.53) and (2.2.56) by using laplace method [24], we obtain:

‖|A,,x cl‖
2  1

AA

1/2


|q−x|≤

dq|q|2 exp − 1
A

q − x2 ≈

≈ |x|2  AO |x|2
′′

 |x|2  Ac1A |x|2
′′
,

ΔA,  
−



‖|A,,x cl‖
2dx  1  c2AA,c2A  O −


|x|2

′′
dx .

2.2.57

From Eq.(2.2.55) and (2.2.56) by using laplace method [24], we obtain:

‖|B,,x cl‖
2  1

BB

1/2


|q−x|≤

dq|q|2 exp − 1
B

q − x2 ≈

|x|2  BO |x|2
′′

 |x|2  Bc1B |x|2
′′
,

ΔB,  
−



‖|B,,x cl‖
2dx  1  c2BB,c2B  O −


|x|2

′′
dx .

2.2.58

From Eq.(2.2.52) and Eq.(2.2.56) we obtain

px,A, 
‖|A,,x cl‖

2

ΔA,


|x|2  Ac1A |x|2
′′

1  c2AA,
. 2.2.59

From Eq.(2.2.54) and Eq.(2.2.57) we obtain

px,B, 
‖|B,,x cl‖

2

ΔB,


|x|2  Bc1B |x|2
′′

1  c2BB,
. 2.2.60

Definition 2.2.12.We define now the probability measures P A,,x
At and

P B,,x
At by formulae

P A,,x
At  

At

px,A,dx,

P B,,x
At  

At

px,B,dx,
2.2.61

where At ∈ a,b and dx is the Lebesgue measure and a,b  Ba,b is the Borel
algebra on a set a,b, (see subsection I.6 Definition 1.6.3).

Definition 2.2.13.We assume now that P
A,,x

 P and P
B,,x

 P, i.e. P | is

absolutely continuous with respect to P (see subsection I.6,Eq.(1.6.5)).By



Radon-Nicodym theorem we obtain for any At ∈ a,b :

P A,,x
At  

At

X
A,,x

dP,

X
A,,x

 
dP

A,,x

dP
,

P A,,x
At  

At

X
A,,x

dP,

X
A,,x

 
dP

A,,x

dP
.

2.2.62

We write below for a short

X 1  X
A,,x

,X 2  X
B,,x

. 2.2.63

Remark 2.2.18.We assume now without loss of generality that

X 2 − X 1 ≥ 0 a.s. 2.2.64

see Рiс.2.2.9.

Let us consider now the quantity

1,2  


|X1 − X2|dP  


X 2 − X 1dP. 2.2.65

We assume now that


−


x|x|2dx  , 

−


x |x|2

′′
dx  , 2.2.66

From Eq.(2.2.65) by using Eq.(2.2.59) and Eq.(2.2.60) we obtain



1,2 




xpx,B,dx − 


xpx,A,dx  1
1  c2BB




x |x|2  Bc1B |x|2
′′
dx −

− 1
1  c2AA




x |x|2  Ac1A |x|2
′′
dx ≃

1 − c2BB 


x |x|2  Bc1B |x|2
′′
dx −

−1 − c2AA 


x |x|2  Ac1A |x|2
′′
dx 

Bc1B 


x |x|2
′′
dx − c2BB 



x|x|2dx − B2c1Bc2B 


x |x|2
′′
dx −

−Ac1A 


x |x|2
′′
dx  c2AA 



x|x|2dx  A2c1Ac2A 


x |x|2
′′
dx 

Bc1B − Ac1A − B2c1Bc2B  A2c1Ac2A 


x |x|2
′′
dx  c2AA − c2BB 



x|x|2dx ≃

1c2AA − c2BB  2Bc1B − Ac1A,

2.2.67

where

1  


x|x|2dx,2  


x |x|2
′′
dx. 2.2.68

Lemma 2.2.1. Let ,Σ,P be a measure space, and let f be an real-valued
measurable function defined on . Then for any real number t  0 :

P ∈ ||f| ≥ t ≤ 1
t 

|f |≥t

f  dP. 2.2.69

From inequality (2.2.69) and Eq.(2.2.67) we obtain

P  ∈  : |X 1 − X 2| ≥ t ≤ 1
t 

X1−X2 ≥t

|X 1 − X 2|dP

 1
t2



X 1 − X 2 
1,2
t ≃

1c2AA − c2BB  2Bc1B − Ac1A
t .

2.2.70

We define now

At  A
pht,xA  |xA −  ≤ X 1 ≤ xA − ,

Bt  B
pht,xB  |xB −  ≤ X 2 ≤ xB − ,

2.2.71

and chose in (2.2.68) number t  xB − xA  1.



Рiс.2.2.9.The plot of the random variables X 1 and X 2.

At  A
pht,xA,Bt  B

pht,xB,At ∩ Bt  Bt.

Note that PAt ∩ Bt ≤ PBt, see Рiс.2.2.9. From (2.2.68) follows that

PAt ∩ Bt 
1c2AA − c2BB  2Bc1B − Ac1A

xB − xA2
 1. 2.2.70

III. Schrödinger’s Cat paradox resolution
In this section we shall consider the problem of the collapse of the cat state

vector on the basis of two different hypotheses:
(A) The canonical postulate of QM is correct in all cases.
(B) The canonical interpretation of the wave function   c11  c22 is correct

only when the supports the wave functions 1 and 2 essentially overlap. When

the wave functions 1 and 2 have separated supports (as in the case of the

experiment that we are considering in section II) we claim that canonical
interpretation of the wave function   c11  c22 is no longer valid for a such cat

state, for details see Appendix C.

III.1. Considerationtion of the Schrödinger’s cat
paradox using canonical von Neumann postulate

Let |s1t and |s2t be



|s1t  undecayed nucleus at instant t ,

|s2t  decayed nucleus at instant t .

3.1.1

In a good approximation we assume now that

|s10  
−


II

# x|xdx
3.1.2

and

|s20  
−


I

#x|xdx.
3.1.3

Remark 3.1.1. Note that: (i) |s20  decayed nucleus at instant 0 
 free -particle at instant 0 . (ii) Feynman propagator of a free -particle are [52]:

K2x, t,x0  m
2it

1/2
exp i


mx − x02

2t
. 3.1.4

Therefore from Eq.(3.1.3),Eq.(2.1.9) and Eq.(3.1.4) we obtain



|s2t  
−


I

#x, t|xdx,

I
#x, t  

−

0

I
#x0K2x, t,x0dx0 

rc2
−1/4  m

2it

1/2
 
−

0

1x0, lexp −
x0
2

2rc2
exp −i 2


2mE x0 

exp i


mx − x02

2t
dx0 

rc2
−1/4  m

2it

1/2

 
−l

0

1x0, lexp −
x0
2

2rc2


exp i


mx − x02

2t
−  4mE x0 dx0 

rc2
−1/4  m

2it

1/2
 
−l

0

1x0, lexp −
x0
2

2rc2
 exp i


St,x,x0 dx0,

3.1.5

where

St,x,x0 
mx − x02

2t
−  8mE x0.

3.1.6

We assume now that

  2rc2  l2  1. 3.1.7

Oscillatory integral in RHS of Eq.(3.1.5) is calculated now directly using stationary
phase approximation. The phase term Sx,x0 given by Eq.(3.1.6) is stationary
when

∂St,x,x0
∂x0

 − mx − x0t −  8mE  0. 3.1.8

Therefore

− mx − x0t −  8mE  0,

−x − x0  t 8E/m ,
3.1.9

and thus stationary point x0t,x are



x0t,x  t 8E/m  x.
3.1.10

Thus from Eq.(3.1.5) and Eq.(3.1.10) using stationary phase approximation we
obtain

|s2t  
−


I

#x, t|xdx,

I
#x, t 

rc2
−1/4  1x0t,x, lexp −

x0
2t,x
2rc2

 exp i

St,x,x0t,x  O,

3.1.11

where

Sx,x0t,x 
mx − x0t,x2

2t
−  8mE x0t,x.

3.12

From Eq.(3.10) we obtain

I
#x, tI

#x, t ≃ rc2
−1/2  1 x  t 8E/m , l exp −

x  t 8E/m
2

rc2
. 3.1.13

Remark 3.1.2. From the inequality (3.1.7) and Eq.(3.1.13) follows that -particle
at each instant t ≥ 0 moves quasiclassically from right to left by the law

xt  −t 8E/m , 3.1.14

i.e. i.e.,estimating the position xt,x0, t0; at each instant t ≥ 0 with final error rc
gives |〈xt − xt| ≤ rc, i  1, . . . ,d with a probability

P|〈xt, 0, 0; − xt| ≤ rc  1.

Remark 3.1.3. We assume now that a distance between radioactive source and
internal monitor which detects a single atom decaying (see Pic.1.1.1) is equal to L.

Proposition 3.1.1. After -decay at instant t  0 the collaps:
live cat → death cat arises at instant

T  L
 8E/m

3.1.15

with a probability PT death cat to observe a state death cat at instant T is

PT death cat  1.

Proof. Note that. In this case Schrödinger’s cat in fact permorm the single
measurement of -particle position with accuracy of x  l at instant t  T (given by



Eq.(3.1.15)) by internal monitor (see Pic.1.1.1.). The probability of getting a result L

with accuracy of x  l given by


|L−x|≤l/2

|〈x||s2T|2dx  1. 3.1.16

Therefore at instant T the -particle kills Schrödinger’s cat with a probability
PT death cat  1.

Remark 3.1.4.Note that. When Schrödinger’s cat has permormed this
measurement the immediate post measurement state of -particle (by von
Neumann postulate Q.III.5, see subsection I.7.1) will end up in the state

|T  

|L−x|≤l/2

|x〈x||s2Tdx


|L−x|≤l/2

|〈x||s2T|2dx
 

|L−x|≤l/2
|x〈x||s2Tdx ∈ SΘ,Θ  x||L − x| ≤ l/2 3.1.17

From Eq.(3.1.17) one obtains

〈x ′ ||T   
|L−x|≤l/2

〈x ′ ||x〈x||s2Tdx  
|L−x|≤l/2

x ′ − x〈x||s2Tdx  I
#x ′, t. 3.1.18

Therefore the state |T  again kills Schrödinger’s cat with a probability
PT death cat  1.

Suppose now that a nucleus n, whose Hilbert space is spanned by orthonormal
states |sit, i  1,2,where |s1t  undecayed nucleus at instant t and

|s2t  decayed nucleus at instant t is in the superposition state

|t n  c1|s1t  c2|s2t, |c1 |
2  |c2 |2  1.

3.1.19

Remark 3.1.5. Note that: (i) |s10  undecayed nucleus at instant t  0 
 -particle iside region 0, l at instant t  0 . (ii) Feynman propagator of

-particle inside region 0, l are [52]:

K2x, t,x0  m
2it

1/2
exp i


St,x,x0 ,

3.1.20

where

St,x,x0 
mx − x02

2t
 mtU0 − E.

3.1.21

Therefore from Eq.(2.1.11)-Eq.(2.1.12) and Eq.(3.1.20)-Eq.(3.1.21) we obtain



|s1t  
−


II

# x, t|xdx,

II
# x, t  

0

l

II
# x0K2x, t,x0dx0 

m
2it

1/2 
0

l

Ex0, lIIx0lx0exp i

St,x,x0 dx0,

3.1.22

where

lx 
1 for x ∈ 0, l
0 for x ∉ 0, l

Remark 3.1.6.We assume for simplification now that

k ′ ≤ 1. 3.1.23

Therefore oscillatory integral in RHS of Eq.(3.1.22) is calculated now directly using
stationary phase approximation. The phase term Sx,x0 given by Eq.(3.21) is
stationary when

∂St,x,x0
∂x0

 − mx − x0t  0. 3.1.24

and thus stationary point x0t,x are

−x  x0  0

x0t,x  x.
3.1.25

Thus from Eq.(3.1.22) and Eq.(3.1.25) using stationary phase approximation we
obtain

II
# x, t 

Ex0t,x, lIIx0t,xlx0t,xexp i

St,x,x0t,x  O 

 Ex, lIIxlxexp i

mtU0 − E  O 

Ex, llxO1exp i

mtU0 − E  O.

3.1.26

Therefore from Eq.(3.22) and Eq.(3.26) we obtain

|II
# x, t|2  E2x, llxO1  O.

3.1.27

Remark 3.1.7. Note that for each instant t  0 :



suppII
# x, t ∩suppI

#x, t  .
Remark 3.1.8. Note that. From Eq.(3.1.11),Eq.(3.1.13), Eq.(3.1.19),

Eq.(3.1.22)-Eq.(3.1.27) and Eq.(A.13) by Remark 3.1.7 we obtain

n〈t |
x |t n  |c1 |2〈s1t|

x |s1t  |c2 |2〈s2t|
x |s2t 

c1c2
∗〈s2t|

x |s1t  c1∗c2〈s2t|
x |s1t∗ 

|c1 |2〈s1t|
x |s1t  |c2 |2〈s2t|

x |s2t  |c1 |2l  |c2 |2T 8E/m .

3.1.28

Proposition 3.1.2. (i) Suppose that a nucleus n is in the superposition state
|t n (|t n-particle) given by Eq.(3.19). Then the collaps: live cat → death cat

arises at instant

Tcol ≈ L  l
|c2 |2 82E/m

. 3.1.29

with a probability PTcol death cat to observe a state death cat at instant Tcol is

PTcol death cat  |c2 |2.

(ii) Assume now a Schrödinger’s cat has performed the single measurement of
|t n-particle position with accuracy of x  l at instant T  Tcol (given by
Eq.(3.1.29)) by internal monitor (see Pic.1.1.1) and the result x ≈ L  l is not
observed by Schrödinger’s cat. Then the collaps: live cat → death cat never

arises at any instant T  Tcol and a probability PTTcol death cat to observe a

state death cat at instant T  Tcol is PTTcol death cat  0.

Proof. (i) Note that for t  0 the marginal density matrix t is diagonal

t 
|c1 |2 |II

# x, t|2dx 0

0 |c2 |2 |I
#x, t|2dx

In this

case a Schrödinger’s cat in fact perform the single measurement of |t n-particle
position with accuracy of x  l at instant t  Tcol (given by Eq.(3.1.29)) by internal
monitor (see Pic.1.1.1). The probability of getting a result L at instant T ≈ Tcol with

accuracy of x  l given by


|L−x|≤l/2

|〈x||T n |
2dx  

|L−x|≤l/2
|〈x|c1|s1T  c2|s2T|2dx 


|L−x|≤l/2

|c1〈x||s1T  c2〈x||s2T|2dx 


|L−x|≤l/2

|c1
2II

#2x,T  c22I
#2x,T  2c1c2I

#x,TII
# x,T|dx.

3.1.30



From Eq.(3.1.30) by Remark 3.1.7 and Eq.(3.1.13) one obtains


|L−x|≤l/2

|〈x||T n |
2dx  

|L−x|≤l/2
|c2
2I

#2x,T|dx  |c2 |2 
|L−x|≤l/2

|I
#x,T|2dx  |c2 |2. 3.1.31

Note that. When Schrödinger’s cat has permormed this measurement and the
result x ≈ L  l is observed, then the immediate post measurement state of
-particle (by von Neumann measurement postulate Q.III.5, see subsection I.7.1.)
will end up in the state

|Tcol n 

|L−x|≤l/2

|x〈x||Tcol ndx


|L−x|≤l/2

|〈x||Tcol n |
2dx



|L−x|≤l/2

|x〈x|c1|s1Tcol  c2|s2Tcoldx


|L−x|≤l/2

|〈x||Tcol n |
2dx



c1 
|L−x|≤l/2

|x〈x||s1Tcol  c2 
|L−x|≤l/2

|x〈x||s2Tcoldx


|L−x|≤l/2

|〈x||Tcol n |
2dx

∈ SΘ,Θ  x||L − x| ≤ l/2.

3.1.32

From Eq.(3.1.32) by Eq.(3.1.31) and by Remark 3.1.7 one obtains

|Tcol n 


|L−x|≤l/2

|x〈x||Tcol ndx


|L−x|≤l/2

|〈x||Tcol n |
2dx



|L−x|≤l/2

|x〈x|c1|s1Tcol  c2|s2Tcoldx


|L−x|≤l/2

|〈x||Tcol n |
2dx



 c2
|c2 |

|L−x|≤l/2

|x〈x||s2Tcoldx.

3.1.32

Obviously by Remark 3.1.4 the staite |Tcol n kills Schrödinger’s cat with a
probability PTcol death cat  1.

Proof. (ii) The probability of getting a result L at any instant T  Tcol with

accuracy of x  l by Eq.(3.1.31) and Eq.(3.1.13) given by


|L−x|≤l/2

|〈x||T n |
2dx  

|L−x|≤l/2
|c2
2I

#2x,T|dx  |c2 |2 
|L−x|≤l/2

|I
#x,T|2dx 

 rc2
−1/2 

|L−x|≤l/2
1 x  T 8E/m , l exp −

x  T 8E/m
2

rc2
 0.

3.1.33

Thus standard formalism of continuous quantum measurements [2],[3],[4],[5] leads
to a definite but unpredictable measurement outcomes, and therefore |t n
suddenly “collapses” at unpredictable instant t ′ into one of the states |sit ′, i  1,2.

III.2.Resolution of the Schrödinger’s cat paradox
using generalized von Neumann postulate.

Proposition 3.2.1. Suppose that a nucleus n is in the superposition state given
by Eq.(3.1.19). Then the collaps: live cat → death cat arises at instant



T  L
|c2 |2 82E/m

. 3.2.1

with a probability PT death cat to observe a state death cat at instant T is

PT death cat  1.

Proof. Let us consider now a state |t n given by Eq.(3.1.19). This state
consists of a summ of two wave packets c1II

# x, t and c2I
#x, t. Wave packet

c1II
# x, t present an II-particle which lives in region II with a probability |c1 |2 (see

Рiс.2.1.1). Wave packet c2I
#x, t present an I-particle which lives in region I with

a probability |c2 |2 (see Рiс.2.1.1) and moves from the right to the left. Note that
I ∩ II  . From Eq.(3.1.28) follows that I-particle at each instant t ≥ 0 moves
quasiclassically from right to left by the law

xt  −|c2 |2t 8E/m , 3.2.2

From Eq.(3.2.2) one obtains

T  Tcol ≃ L
|c2 | 82E/m

. 3.2.3

Note that. In this case Schrödinger’s cat in fact permorm a single measurement of
|t n-particle position with accuracy of x  l at instant t  T  Tcol given by
Eq.(3.2.3), by internal monitor (see Pic.1.1.1). The probability PL, l,Tcol of getting

the result L at instant t  Tcol with accuracy of x  l [by Remark 3.1.7 and by
Generalized von Neumann measurement postulate Q.IV.4 and by postulate Q.IV.3
(see subsection 1.7.1) and by reconcile Bohr rule, see section 1.6, Eq.(1.6.19)] is
given by formula

PL, l,Tcol  
|L−x|≤l/2

|〈x|c1|s1Tcol|2 ∗ |〈x|c2|s2Tcol|2 dx 


|L−x|≤l/2

|c2 |−2|c1 |−2 |〈x|c1 |−2 ||s1Tcol|
2 ∗ |〈x|c2 |−2 ||s2Tcol|

2 dx 


|L−x|≤l/2

|c2 |−2|c1 |−2 |I
#x|c2 |−2,Tcol|

2 ∗ |II
# x|c1 |−2,Tcol|

2 dx  1.

3.2.4

Note that. When Schrödinger’s cat has permormed this measurement and the
result x ≈ L  l is observed, then the immediate post measurement state of
-particle (by generalized von Neumann postulate Q.IV.4, see subsection 1.7.1) will
end up in the state

|Tcol n 


|L−x|≤l/2

|x〈x||Tcol ndx


|L−x|≤l/2

|〈x||s1Tcol|2  |〈x||s2Tcol|2 dx


|c2 |−2 
|L−x|≤l/2

|x〈x||s2Tcoldx


|L−x|≤l/2

|〈x||s2Tcol|2 dx
∈ HΘ,

Θ  x||L − x| ≤ l/2.

3.2.5

The staite |Tcol n again kills Schrödinger’s cat with a probability



PTcol death cat  1.

Thus is the collapsed state of the cat always shows definite and
predictable

outcomes even if cat also consists of a superposition:
cat  c1 live cat  c2 death cat .

Contrary to van Kampen’s [10] and some others’ opinions, “looking” at the
outcome changes nothing, beyond informing the observer of what has already
happened.

We remain: there are widespread claims that Schrödinger’s cat is not in a
definite alive or dead state but is, instead, in a superposition of the two. van
Kampen, for example, writes “The whole system is in a superposition of two states:
one in which no decay has occurred and one in which it has occurred. Hence, the
state of the cat also consists of a superposition:
cat  c1 live cat  c2 death cat . The state remains a superposition until an

observer looks at the cat” [10].

III.3.Schrödinger’s cat does not a live cat and dead
cat samultaniously.

In this subsection we prove that Schrödinger’s cat does not a live cat and dead
cat samultaniously.Being interested only in distinction in changes of macroscopical
and microscopic variables, it is easy to show that the macroscopical variable under
suitable conditions can be described own wave function and the own Shrödinger
equation i.e. if X,Y  y1, . . . ,yn designates an macroscopic coordinates, and
x x1, . . . ,xm is a set of microscopic variables then own functions of system
corresponding to an value of energy, contain functions of the form [6]

X,Y,x, t  X,Y, tx, t, 3.3.1

Here X,Y, t is a "macroscopic" wave function such that

i
∂X,Y, t

∂t
 − 2

2M
∇2X,Y, t  VX,YX,Y, t, 3.3.2

Where the variable X unequivocally corresponds to live or dead cat, VX,Y is a
conservative potential. Further, for the purpose of simplifications, we will assume
that macroscopic wave function X,Y, t depends only on one variable X. Вy
variable X it is possible to choose body temperature of a cat, i.e. X   if it is a
question of the real cat. Then we obtain Shrödinger equation

i
∂,Y, t
∂t

 − 2
2M
∇2,Y, t  V,Y,Y, t,

,Y, 0  0,Y.
3.3.3

Definition 3.3.1. Let -supp,Y, t be a set such that

∀  ∈ -supp,Y, t iff ,Y, t ≠ 0 . 3.3.4

Assumption 3.3.1.We assume now that:



(i) for a live cat any observer which measured body temperature of a cat always
obtains result


 such that


 ∈ 1live,2live , where 0  1live  2live,

(ii) for a dead cat any observer which measured body temperature of a cat
always obtains result


 such that


 ∈ 1dead,2dead , where 2dead ≤ 0 and

(iii) for a sick but a live cat any observer which measured body temperature of a
cat always obtains result


 such that


 ∈ 2dead,1live.

Let live,Y, 0  0
live,Y be a wave function of a live cat at instant

t  0.Then obviously


1
live

2
live


n

‖0
live,Y‖2ddnY  1 ∈ 1live,2live  3.3.5

and -supp,Y, t  1live,2live .
Let dead,Y, 0  0

dead,Y be a wave function of a dead cat at instant
t  0.Then obviously


1
dead

2
dead


n

‖0
dead,Y‖2ddnY  2 ∈ 1dead,2dead  3.3.6

We assume now that


n

‖0
live,Y‖2dnY  1,


n

‖0
dead,Y‖2dnY  2,

3.3.7

where

1 
1

2

1/4

exp − 1
4 

 − 1
2 iff | − 1 | ≤   1,

0 iff | − 1 |  
3.3.8

and

2 
1

2

1/4

exp − 1
4 

 − 2
2 iff | − 2 | ≤   1,

0 iff | − 2 |  
3.3.9

We assume now that at instant t  0 cat сonsist of superposition

0,Y  c10
live,Y  c20

dead,Y,

|c1 |2  |c2 |2  1.
3.3.10

Let  be a function

  
n

0,YdnY. 3.3.11

Thus

  c11  c22. 3.3.12



Let p,1,2, 1  |c1 |2,2  |c2 |2 be a probability density to observe at instant
t  0 a body temperature of a cat with result .By reconcile Bohr rule, [see section
1.6, Eq.(1.6.19)]

p,1,2  p1,1 ∗ p2,2,

p,1  1−1 1

1

2
,p2,2  2−1 2


2

2
.

3.3.13

Thus from Eq.(3.3.8)-Eq.(3.3.9) we obtain

p1,1 

1−1 1
2

1/2

exp − 1
212

 − 11
2 iff 

1 − 1 ≤   1,

0 iff 
1 − 1  

3.3.14

and

p2,2 

2−1 1
2

1/2

exp − 1
222

 − 22
2 iff 

2 − 2 ≤   1,

0 iff 
2 − 2  .

3.3.15

From Eq.(3.3.13)-Eq.(3.3.15) by using formulae

f1x  1
1 2

exp − x − m1
21

2 , f2x  1
2 2

exp − x − m22

22
2 ,

f1x ∗ f2x  1
21

2  2
2

exp − x − m1  m22

21
2  2

2

3.3.16

we obtain

p,1,2 

1
 212  22

exp −
 − 11  22

2

2212  22
iff | − 11  22| ≤   1,

p,1,2  0 iff | − 11  22|  

3.3.17

We assume now that potential V,Y is a polynomial function of variables
z  z1, . . . , zn1  ,Y  ,y1, . . . ,yn.Using replacement

zi →
yi

1  2k|x|2k
, i  1, . . . ,n  1,

 ∈ 0,1,k ≥ 1,
3.3.18

we obtain from potential Vz  V,Y regularized potential Vz, ∈ 0,1, such
that V0z  Vz and



supz∈n1|Vz|  , ∈ 0,1. 3.3.19

Finally we obtain from Schrödinger equation (3.3.3) regularized Schrödinger
equation of the Colombeau form

i
∂z, t
∂t 

 − 2
2M

∇2z, t  Vzz, t,

z, 0  0z.
3.3.20

Theorem 3.3.1.Let us consider Cauchy problem (3.3.20) with 0z given by
formula

0z 
1

2

1/4

exp − 1
4 

z − z02 iff ||z − z0 || ≤ 1  1,

0 iff ||z − z0 ||  1,
3.3.21

1.We assume that:
(i) Vεzε ∈ Gn1,
(ii) function V(x) is a polynomial on variable z  z1,… , zn1, i.e.
Vz  ∑‖α‖≤mgαzα,α  i1,… , in1, zα  z1

i1 …zn1
in1 ,‖α‖ ∑r1

n1ir
2.Let uτ, t,λ, z,y  u1τ, t,λ, z,y,… ,un1τ, t,λ, z,y be the solution of the

boundary
problem:

∂2uTτ, t,λ, z,y
∂τ2

 HessVλ, τuTτ, t,λ,x,y  V ′λ, τT,

u0, t,λ, z,y  y,ut, t,λ, z,y  z.
3.3.22

Here

λ  λ1,… ,λn1 ∈ n1,uTτ, t,λ, z,y  u1τ, t,λ, z,y,… ,un1τ, t,λ, z,yT,

V ′λ, τ  ∂Vz, t/∂z1zλ,… , ∂Vz, t/∂zn1zλ,

HessVλ, τ  ∂2Vz, t/∂xi∂xjxλ

3.3.23

3.Let St,λ, z,y be the function given by formula

St,λ, z,y  
0

t

ℒu̇τ, t,λ, z,y,uτ, t,λ, z,y, τdτ, 3.3.24

where master Lagrangian ℒu̇,u, τ is

ℒu̇,u, τ  m/2u̇2τ, t,λ, z,y − Vuτ, t,λ, z,y, τ, u̇ 

∂u1/∂τ,… , ∂un1/∂τ, u̇2  〈u̇, u̇,

Vuτ, t,λ, z,y, τ  uτ, t,λ, z,yHessVλ, τuTτ, t,λ, z,y  V ′λ, τuTτ, t,λ, z,y.

3.3.25

4.Let ycr  ycrt,λ, z ∈ n1 be solution of the linear system of the algebraic
equations

∂St,λ, z,y/∂yiyycr  0, i  1,… ,n  1. 3.3.26



5. Let z  zt,λ, z0 ∈ n1 be solution of the linear system of the algebraic
equations

ycrt,λ,
z  λ − z0  0. 3.3.27

6.Assume that: for a given values of the parameters t,λ, z0 the point
z  zt,λ, z0 is not a focal point on a corresponding trajectory is given by
corresponding solution of the boundary problem (3.3.22). Then:

(i) for the limiting quantum average given by formula

lim→0〈i, t, z0,;ε 

lim→0  zi|Ψεz, t;|2dzε, ε ∈ 0,1, z ∈ n1, i  1,… ,n  1.
3.3.28

the following inequalities are satisfies

lim→0
ε→0

|〈i, t, z0,; − λit, z0| ≤

2|detSycrycrt,λ,
zt,λ, z0,ycrt,λ,

zt,λ, z0|
−1|z it,λ, z0|,

Syi,cryj,cr   ∂St,λ, z,y/∂yi∂yjyiyi,cr,yjyj,cr
i, j  1,… ,n  1.

3.3.29

(ii) therefore one can to calculate the limiting quantum trajectories zi∗t, z0, t0

zi∗t, z0, t0  λit, z0, i  1,… ,n  1 3.3.30

corresponding to potential Vz, t by using following sistem of the transcendental
master equations

z it,λ, z0  0, i  1,… ,n  1. 3.3.31

(iii) In the limit  → 0, ε → 0 Schrödinger equation Eq.(3.3.20) completely evolve
quasiclassically i.e. for expectation value of the position 〈zi t,x0, t0,;i1

n1 at
each instant t the inequality

lim→0
ε→0

|〈zi t, z0, t0,; − zi∗t, z0, t0| ≤   1, i  1, . . . ,n  1, 3.3.32

is satisfied with a probability 1, e.g.,

lim→0
ε→0

P|〈zi t, z0, t0,; − zi∗t, z0, t0| ≤   1. 3.3.33

Proof. The proof completely similarly as the proof of the theorem 3.1 from
paper [19].

Theorem 3.3.2. Let us consider Cauchy problem (3.3.20) with 0z given by
formula

0z  c11,0z  c22,0z,

|c1 |2  |c2 |2  1,
3.3.34

where



1,0z 
1

2

1/4

exp − 1
4 

z − z1,02 iff ||z − z0 || ≤ 1  1,

0 iff ||z − z0 ||  1,
3.3.35

and

2,0z 
1

2

1/4

exp − 1
4 

z − z2,02 iff ||z − z2,0 || ≤ 1  1,

0 iff ||z − z0 ||  1,
3.3.36

Then
(i) in the limit  → 0, ε → 0 Schrödinger equation Eq.(3.3.33)-Eq.(3.3.35)

completely evolve quasiclassically i.e. for expectation value of the observable
〈zi t,x0, t0,;i1

n1 at each instant t, the inequality

lim→0
ε→0

|〈zi t, z0, t0,; − zi∗t, z0, t0| ≤   1, i  1, . . . ,n  1,

z0  1z1,0  2z2,0,

1  |c1 |2,2  |c2 |2

3.3.37

is satisfied with a probability 1, e.g.,

lim→0
ε→0

P|〈zi t, z0, t0,; − zi∗t, z0, t0| ≤   1. 3.3.38

(ii) here zi∗t, z0, t0, i  1, . . . ,n  1 given by Eq.(3.3.30)-Eq.(3.3.31) with
z0  1z1,0  2z2,0,

1  |c1 |2,2  |c2 |2.
Proof. Let 1z, t be a solution of the Cauchy problem (3.3.20) with

0z  1,0z given by Eq.(3.3.35) and let 2z, t be a solution of the Cauchy
problem (3.3.20) with 0z  2,0z given by Eq.(3.3.36). From Theorem 3.3.2
follows that

∀tt ≥ 0 supp1z, t ∩ supp2z, t   3.3.39

Let pz, t, z1,0, z2,0,1,2, 1  |c1 |2,2  |c2 |2 be a probability density to observe
at instant t vector z with result z.By reconcile Bohr rule, [see section 1.6,
Eq.(1.6.19)] we obtain

pz, t, z1,0, z2,0,1,2  p1z, t, z1,0,1 ∗ p2z, t, z2,0,2,

pz, t, z1,0,1  1
−n1|11−1z, t, z1,0|

2,

p2z, t, z2,0,2  2
−n1|22−1z, t, z2,0, |

2.

3.3.40

In order to obtain the inequality (3.3.37) we need to estimate the quantities

〈zi t, z1,0, z2,0, t0,1,2,;  n1 |zi − i |pz, t, z1,0, z2,0,1,2dz
n1. 3.3.41

In order to estimate the quantities we dealing completely similarly as in the proof of
the theorem 3.1 from paper [19].



Quasiclassical quantum "cat" with a cubic potential
supplemented by additive sinusoidal driving.

As an example we calculate now exact quasi-classical asymptotic for quantum
cat with a cubic potential supplemented by additive sinusoidal driving. Using
Theorem3.3.2 we obtain limiting quantum trajectories given given by
Eq.(3.3.30)-Eq.(3.3.31) with z0  1z1,0  2z2,0, 1  |c1 |2,2  |c2 |2. Let us
consider quantum cat with a cubic potential

V  mω2/22 − a3  b, ∈ 1,2 ,a,b  0 3.3.42

supplemented by additive sinusoidal driving

V  mω2

2
2 − a3  b − A sinΩt. 3.3.43

The corresponding master Lagrangian given by Eq.(3.3.25),is

Lu, u̇, τ  m/2u̇2 − mω2/2  3aλ/mu2 − mω²λ  3aλ² − b − A sinΩtu. 3.3.44

We assume now that: ω2/2  3aλ/m ≥ 0 and rewrite (3.3.44) in the following form

Lu̇,u, τ  m/2u̇² − mϖ²λ/2u²  gλ, tu, 3.3.45

where ϖλ  2|ω2/2  3aλ/m| and gλ, t  −mω²λ  3aλ² − b − A sinΩt.The

corresponding master action St,λ,x,y given by Eq.(3.3.24), is

St,λ,x,y  mϖ
2sinϖt

cosϖty²  x² − 2xy  2x
mϖ 0

t
gλ, τ sin  ϖτdτ 

 2y
mϖ 0

t
gλ, τ sin  ϖt − τdτ − 2

m2ϖ2

0

t 
0


gλ, τgλ, s sinϖt − τ sin  ϖsdsdτ .

3.3.46

Therefore a linear system of the algebraic equations(3.3.) is

∂St,λ,x,y/∂y  2ycosϖt − 2x  2
mϖ 0

t
gλ, tsinϖt − τdτ  0. 3.3.47

Therefore

ycrt,λ,x  x
cosϖt −

1
mϖcosϖt 0

t
gλ, t sinϖt − τdτ. 3.3.48

The linear system of the algebraic equations (3.3.26) is
x

cosϖt −
1

mϖcosϖt 0
t
gλ, t sinϖt − τdτ  λ − 0  0. 3.3.49

Therefore solution of the linear system of the algebraic equations (3.3.49) is

xt,λ,0  1
mϖ 0

t
gλ, t sinϖt − τdτ  λ − 0cosϖt. 3.3.50

Transcendental master equation (3.3.31) is


0

t
gλ, t sinϖt − τdτ  mϖλ − 0cosϖt  0 3.3.51

Finally from Eq.(3.3.51) we obtain

dλtcosϖt/ϖ − 1/ϖ  AϖsinΩt − Ωsinϖt/ϖ2 − Ω2 −

λt − x_0mϖcosϖt  0,
3.3.52



where dλ  mω²λ  3aλ² − b.
Numerical Example. 0  0,m  1,Ω  0,ω  9,a  3,b  10,A  0.

Pic. 1.Limiting quantum trajectory t  λt.

III.4. Stern-Gerlach experiment revisited and
Schrödinger’s cat paradox resolution.
III.4.1. Stern-Gerlach experiment revisited

In 1922, by studying the deflection of a beam of silver atoms in a strongly
inhomogeneous magnetic field (cf. Fig. 3.4.1) Otto Stern and Walter Gerlach
obtained an experimental result that contradicts the common sense prediction: the
beam, instead of expanding, splits into two separate beams giving two spots of
equal intensity N and N− on a detector, at equal distances from the axis of the
original beam. Historically, this is the experiment which helped establish spin
quantization. Theoretically, it is the seminal experiment posing the problem of
measurement in quantum mechanics.

Fig.3.4.1.Schematic configuration of the Stern-Gerlach experiment.

Adapted from [55].

z,y, t|t0  0z,y  1
0z2

0y. 3.4.1



We assume now that both density 0z and 0y is very narrow, in fact
constrained such that

1
0z  1

0z,  0 iff |x| ,

2
0y  2

0y,  0 iff |y| ,
3.4.2

and

1
0z  1

0z,  200
2−

1
4 e
− z2

40
2

cos 0
2
e−i

0
2

sin 0
2
ei

0
2

iff |z|≤ ,

‖1
0z,‖

2
2  1;

2
0y  2

0y,  200
2−

1
4 e
− y2

40
2 iff |y|≤ ,

‖2
0y,‖

2
2  1

0  1.

3.4.3

Silver atoms contained in the oven E (Fig.3.4.1. ) are heated to a high temperature
and escape through a narrow opening. A second aperture, T, selects those atoms
whose velocity, v0, is parallel to the y-axis. The atomic beam crosses the gap of the
electromagnet A1 before condensing on the detector, P1.Before crossing the
electromagnet, the magnetic moment of each silver atom is oriented randomly
(isotropically). In the beam, we represent each atom by its wave function; one can
assume that at the entrance to the electromagnet, A1, and at the initial time t  0,
each atom can be approximatively described by a quasi-Gaussian spinor in plain
z,y given by Eqs.(3.4.1-3.4.3) corresponding to a pure state. As will be it is
proved later the variable y will be treated strictly quasiclassically, i.e. almost
classically, with

P y − vyv0,0t    1,

P y − vyv0,0t ≥   0
3.4.4

and 0 ≤ 0
′  10−4m, where 0

′ corresponds to the size of the slot T along the
z-axis and where the expression of the functions vyv0,0 and vy−v0,0will be
given later.

The approximation by a quasi-Gaussian initial spinor will allow explicit
calculations. Because the slot is much wider along the x-axis, the variable z will be
also treated strictly quasiclassically with

P z − zΔ − vzu,0t ≤   1,

P z − vzu,0t    0,
3.4.5

where the expression of the functions vzu,0,u 
BB0

′ Δt
m will be given later. In

order to obtain an explicit solution of the Stern-Gerlach experiment, we take for the
silver atom, we have m  1.8  10−25kg,v0  500 m/s (corresponding to the



temperature of T  1000°K). In equation (3.4.3.) and in figure 3.4.2., 0 and 0 are
the polar angles characterizing the initial orientation of the magnetic moment, 0
corresponds to the angle with the z-axis. The experiment is a statistical mixture of
pure states where the 0 and the 0 are randomly chosen: 0 is drawn in a uniform
way from 0, and that 0 is drawn in a uniform way from 0,2.

Fig.3.4.2.Orientation of the magnetic moment θ0

and ϕ0 are the polar angles characterizing the

spin vector in the de Broglie-Bohm interpretation.

Adapted from [55].

Assumption 3.4.1.We assume that a particle collapses in a magnetic field B
at some instant t ′ by two particle,i.e.the spinor z,y, t collapses in a magnetic

field B
at some instant t ′ by two spinors z,y, t, t ′, and −z,y, t, t ′, given by
Eq.(3.4.9.a)-Eq.(3.4.9.b). Note that such collapse obviously occurs except

spinors such

that: 2−1 
z  −z  

x,etc.

Remark 3.4.1.Note that standard assumption consist that spinor collapses on
detector P1

with respect of the Born rule.
Thus the evolution of the spinor

z,y, t, t ′ 
z,y, t, t ′

−z,y, t, t ′

in a magnetic field B is then given by the nonlocal Pauli equation:



i
 dzdy  dt ∂z,y, t, t ′

∂t

 dzdy  dt ∂−z,y, t, t
′

∂t



 − 
2

2m  dt  dzdyΔ
z,y, t, t ′

−z,y, t, t ′
 B  dt  dzdyB z,y, t, t ′

−z,y, t, t ′

3.4.6

where B  e
2me

is the Bohr magneton and where   x,y,z corresponds to

the three Pauli matrices.
Remark 3.4.2.The particle first enters an electromagnetic field B directed along

the z-axis, Bx  B0
′ x,By  0,Bz  B0 − B0

′ z, with B0  5 Tesla,
B0
′  ∂B

∂z  103 Tesla/m over a length Δl  1 cm.

Remark 3.4.3. On exiting the magnetic field, the both particles is free until it
reaches the detector P1 placed at a D  20 cm distance.

The particles stays within the magnetic field for a time Δt with

Δt  Δl
v0 . 3.4.7

Assumption 3.4.2.We assume now for simplification that

t ′ ≈ Δt. 3.4.8

Thus during this time t ∈ 0, t ′ ≈ 0,Δt, the spinor z,y, t, t ′, is:

z,y, t, t ′, 
z,y, t, t ′,

−z,y, t, t ′,


z, t, t ′,y, t, t ′,

−z, t, t ′,y, t, t ′,
, 3.4.9.a

where



z, t, t ′,  cos 0
2
e−i

0
2 20

2−
1
2 exp −

z − BB0
′

2m
t2

2

40
2 

exp i
BB0

′ tz − B
2B0

′2

6m t3  BB0t  0.50


iff z − BB0

′

2m
t2 ≤ ,

z, t,  0 iff z − BB0
′

2m
t2  ,

−z, t, t ′,  i sin
0
2
ei

0
2 20

2−
1
2 exp −

z 
BB0

′

2m
t2

2

40
2 

exp i
−BB0

′ tz − B
2B0

′2

6m t3 − BB0t − 0.50


iff z 

BB0
′

2m
t2 ≤ ,

−z, t, t ′,  0 iff z 
BB0

′

2m
t2  ;

y, t, t ′,  20
2−

1
2 exp − y − v0t

2

40
2 iff |y − v0t|≤ ,

y, t, t ′,  0 iff |y − v0t|  .

3.4.9.b

After the magnetic field, at time t  Δt t  0 in the free space, the both spinors
becomes:

z,y, t  t ′, ≃ z,y, t  Δt,  z, t  Δt,y, t  Δt, 3.4.10

and

−z,y, t  t ′, ≃ −z,y, t  Δt,  −z, t  Δt,y, t  Δt,. 3.4.11

Here

z, t  Δt, ≃

cos 0
2
20

2−
1
2 exp − z − zΔ − ut

2

40
2 ei

muz
 iff |z − zΔ − ut| ≤ ,

0 iff |z − zΔ − ut|  

3.4.12

and



−z, t  Δt, ≃

sin 0
2
20

2−
1
4 exp − z  zΔ  ut

2

40
2 ei

−muz−
 iff |z  zΔ  ut| ≤ ,

0 iff |z  zΔ  ut|  ,

3.4.13

and

y, t,  20
2−

1
4 exp − y − v0t  Δt

2

40
2 iff |y − v0t  Δ0 t|≤ ,

y, t,  0 iff |y − v0t  Δt| .

3.4.14

where

zΔ 
BB0

′ Δt2

2m
, u 

BB0
′ Δt
m . 3.4.15

From Eq.(3.4.10),Eq.(3.4.12) and Eq.(3.4.14) we obtain

z,y, t  Δt, 

cos 0
2 20

2−
1
2 exp − z − zΔ − ut

2

40
2 ei

muz
 

exp − y − v0t  Δt
2

40
2

iff

|z − zΔ − ut| ≤ 

and

|y − v0t  Δt|≤ 

0 otherwise

3.4.16

From Eq.(3.4.16) by postulate Q.IV.3 for the probability density with respect to
observable z we obtain the expression

c | z, t 

20
2−

1
2 exp −

z
0
 − zΔ − ut

2

20
2 iff z

0
 − zΔ − ut ≤ 

0 otherwise

0
  cos2 0

2

3.4.17

and with respect to observable y we obtain the expression



c | y, t 

20
2−

1
2 exp −

y
0
 − v0t  Δt

2

40
2 iff

y
0
 − v0t  Δt ≤ 

0 otherwise

0
  cos2 0

2

3.4.18

and therefore corresponding particle movin by strictly quasiclassical law

P zt − zΔ − vzu,0t ≤   1,

P zt − zΔ − vzu,0t    0,

P|yt − vyv0,0t  Δt| ≤   1,

P|yt − vyv0,0t  Δt|    0,

zΔ  0
 zΔ,

vz0  0
 u,vy0  0

 v0.

3.4.19

From Eq.(3.4.11),Eq.(3.4.13) and Eq.(3.4.14) we obtain

−z,y, t  Δt, 

sin 0
2
20

2−
1
4 exp − z  zΔ  ut

2

40
2 ei

−muz−
 

exp − y − v0t  Δt
2

40
2

iff

|z  zΔ  ut| ≤ 

and

|y − v0t  Δ0 t|≤ 

0 otherwise

3.4.20

From Eq.(3.4.20) by postulate Q.IV.3 for the probability density with respect to
observable z we obtain the expression

c |− z, t 

20
2−

1
2 exp −

z
0
−  zΔ  ut

2

20
2 iff z

0
−  zΔ  ut ≤ 

0 otherwise

0
−  sin2 0

2

3.4.21

and with respect to observable y we obtain the expression



c |− y, t 

20
2−

1
2 exp −

y
0
− − v0t  Δt

2

40
2 iff

y
0
− − v0t  Δ0 t ≤ 

0 othervice

0
−  sin2 0

2

3.4.22

and therefore corresponding particle movin by strictly quasiclassical law

P z−t  zΔ−  vz−u,0t ≤   1,

P z−t  zΔ−  vz−u,0t    0,

P|y−t − vy−v0,0t  Δt| ≤   1,

P|y−t − vy−v0,0t  Δt|    0,

zΔ−  0
− zΔ,

vz−u,0  0
− u,vy−v0,0  0

− v0.

3.4.23

All interpretations are based on the equations (3.4.18)-(3.4.21).One deduce from
Eq.(3.4.18)-Eq.(3.4.21) the probability density of a pure state in the free space after
the electromagnet:

0z,y, t  Δt  20
2−

1
2 0z, t  Δ0 t∑



exp −

y
0
 − v0t  Δt

2

40
2 ;

0z, t  Δt  20
2−

1
2 cos−2 0

2
20

2−
1
2 exp −

 z
0
 − zΔ − ut2

20
2 

sin−2 0
2
20

2−
1
2 exp −

 z0
−  zΔ  ut2

40
2 .

3.4.24

The decoherence time tdec, where the two spots N and N−are separated, is then
given by the equation:

tdec  30 − zΔ
u0

  0
− 

 30 − zΔ
u . 3.4.25

This decoherence time is usually the time required to diagonalize the marginal
density matrix 0

S t, of spin variables associated with a pure state



0
S t, 

|z,y, t  Δt,|2dzdy −∗z,y, t  Δt,z,y, t  Δt,dzdy

−z,y, t  Δt,
∗z,y, t  Δt,dzdy |z,y, t  Δt,|2dzdy

3.4.26

For t ≥ tdec, the product −z,y, t  Δt,
∗z,y, t  Δt, is null and the density matrix

0
S t, is diagonal. We then obtain atoms with a spin oriented only along the z-axis

(positively or negatively). Let us consider the spinor z,y, t  Δt, given by
equations (3.4.10)-(3.4.15).

Remark 3.4.4. Experimentally, we do not measure the spin directly, but the z
position of the particle impact on the detector P1 (Fig.3.4.3.).

Fig.3.4.3.Silver atom impacts on the detector P1.

Adapted from [55].

Remark 3.4.5. Note that if we measure the z-position of the particle at instant t,
we also measure the y-position of the particle at the same instant t.

Remark 3.4.6. Let P tD − ,D,yt be the probability of obtaining the result yt at
instant t, lying in the range D − ,D on measuring observable y in respect to
spinor z,y, t  Δt,. From Eq.(3.4.19) we obtain

PtD − ,D  ,yt  1 iff

yt  D and |yt − vyv0,0t  Δt| ≤ .
3.4.27

From Eq.(3.4.27) follows that:

PtD − ,D  ,yt  1

if

t  tD ≈ D
vyv0,0

 D

v0 cos2
0
2

.
3.4.28

Remark 3.4.7. Let P t
z  − ,z   , zt be the probability of obtaining the result

zt at instant t, lying in the range z  − ,z   ,z  ∈ N on measuring observable z
in respect to spinor z,y, t  Δt,.From Eq.(3.4.19) we obtain

P t
z  − ,z   , zt  1 iff

zt  z  and |zt − zΔ − vzu,0t| ≤ .
3.4.29



From Eq.(3.4.29) follows that:

P t
z  − ,z   , zt  1

if

t  tz  ≈
z 

vzu,0


z 
ucos2 0

2

.
3.4.30

Remark 3.4.8.Note that from Remark 3.4.5 it follows that tz  ≈ tD and
therefore

from Eq.(3.4.28) and Eq.(3.4.30) one obtains

z 
ucos2 0

2

≈ D

v0 cos2
0
2


z 
u ≈ D

v0 3.4.31

as it should be, because the equality
z 
u ≈ D

v0 is required by the condition of the

Stern-Gerlach experiment.
Remark 3.4.9. Let P tD − ,D,yt− be the probability of obtaining the result yt− at

instant t, lying in the range D − ,D on measuring observable y in respect to
spinor −z,y, t  Δt,. From Eq.(3.4.23) we obtain

PtD − ,D  ,yt−  1 iff

y−t  D and |y−t − vy−v0,0t  Δt| ≤ .
3.4.32

From Eq.(3.4.32) follows that:

PtD − ,D  ,yt−  1

if

t  t−D ≈ D
vy−v0,0

 D

v0 sin2
0
2

.
3.4.33

Remark 3.4.10. Let P t
z − − ,z −  , zt− be the probability of obtaining the

result zt− at instant t, lying in the range z − − ,z −  ,z − ∈ N− on measuring
observable z in respect to spinor −z,y, t  Δt,.From Eq.(3.4.32) we obtain

P t
z − − ,z −  , zt−  1 iff

z−t  z − and |z−t − zΔ− − vz−u,0t| ≤ .
3.4.34

From Eq.(3.4.29) follows that:

Pt
z − − ,z −  , zt−  1

if

t  tz − ≈
|z − |

vz−u,0
 |z − |

u sin2 0
2

.
3.4.35



Remark 3.4.11.Note that from Remark 3.4.5 it follows that tz  ≈ tD and
therefore

from Eq.(3.4.33) and Eq.(3.4.35) one obtains

|z − |

u sin2 0
2

≈ D

v0 sin2
0
2


z −
u ≈ D

v0 3.4.36

as it should be, because the equality |z − |
u ≈ D

v0 is required by the condition of the

Stern-Gerlach experiment.

III.4.2.Schrödinger’s cat which measure
spin.Schrödinger’s cat paradox resolution.

Let us consider again the Schrödinger’s cat which measure spin by using the
Stern-Gerlach apparatus, see subsection 1.6, (Fig.1.6.2). When a measurement is
made, with the “up” outcome Schrödinger’s cat is dead. When a measurement is
made, with a “down” outcome Schrödinger’s cat is alive. It known many years that
conventional QM with canonical explanation of the Stern-Gerlach experiment
cannot give predicable and [27] As pointed out in subsection 1.6

Theorem 3.4.1. Any spinor

z,y, t, t ′

−z,y, t, t ′
3.4.37

given by Eq.(3.4.9.a)-Eq.(3.4.9.b) with 0 such that cos 0
2
≠ 0 always kills the

Schrödinger’s cat at instant t :

t ≈ D

v0 cos2
0
2

. 3.4.38

IV.EPR Paradox Resolution

IV.1.The relaxed locality principle.

The Special Theory of Relativity limits the speed at which any physical
influences and any

real information can travel to the speed of light, c.
The Einstein’s principle of locality (EPL): any effects do not propogate faster

than the
speed of light, i.e. speed of light is a limiting factor.
The principle of locality claimed that:



(i) Any physical event At1,r1 which has occured at point At1,r1 ∈ M4 (see
Definition

2.2.8) cannot cause (by physical interection) a physical event Bt2,r2 (result)
which has

occured at point Bt2,r2 ∈ M4 in a time less than T  D/c, where D, is the
distance

between the points.
(ii) An physical event At,r1 which has occured at point At,r1 ∈ M4 cannot

cause a
simultaneous physical event Bt,r2 (result) which has occured at another point
Bt,r2 ∈ M4.
(iii) Any real physical information about physical event At1,r1 at point At1,r1

cannot be
obtained by observer at point Bt2,r2 in a time less than T  D/c, where D, is

the distance
between the points.
Definition 4.1.1. Let ℱM4

# ,t1,r1, t2,r2t.l.s.
 be a set of the all timelike

separated
pairs of events At1,r1,Bt2,r2t.l.s. ∈ ℱM4

# ,t1,r1, t2,r2t.l.s., (see

Definition 2.2.10.a)
such that t2  t1 and AOct1,r1  BOct2,r2.
Note that ℱM4

# ,t1,r1, t2,r2t.l.s.
  ℱM4

# ,t1,r1, t2,r2t.l.s..

Remark 4.1.1.Note that the claim (i) obviously meant that

∀t1  t2∀At1,r1∀Bt2,r2 AOct1,r1  BOct2,r2 

At1,r1,Bt2,r2 ∈ ℱM4
# ,t1,r1, t2,r2t.l.s. .

4.1.1

Remark 4.1.2.In spacetime diagram, see FIG.4.1.1, the interval sAB
2 is "time-like"

i.e., there is a frame of reference in which events A and B occur at the same
location in space, separated only by occurring at different times. If A precedes B in
that frame, then A precedes B in all frames. It is hypothetically possible for matter
(or information) to travel from A to B, so there can be a causal relationship (with A
the cause and B the effect).



FIG.4.1.1.Spacetime diagram.

Remark 4.1.3. Note that:
(i) the interval sAC

2 in the diagram, see FIG.4.1.1, is "space-like"; i.e., there is a
frame ℱt of reference in which events At,r1 and Ct,r2 occur simultaneously at
instant t, separated only in space. There are also frames in which A precedes C
and frames in which C precedes A.

(ii) If it were possible for a cause-and-effect relationship to exist between events
A and C, then paradoxes of causality would result. For example, if A was the
cause, and C the effect, then there would be frames of reference in which the effect
preceded the cause. Although this in itself won’t give rise to a paradox, one can
show that faster than light signals can be sent back into one’s own past. A causal
paradox can then be constructed by sending the signal if and only if no signal was
received previously.

(iii) Obviously there exist space-like separated pairs of physical events
At,r1,Bt,r2s.l.s. such that the events At,r1 and Ct,r2 alwais occur only
simultaneously at any instant t i.e.,

AOct,r1  COct,r2. 4.1.2

Example 4.1.1. Let us consider two synchronized clock A and B which at rest
on given inertial frame ℱI.Assume that clock A at rest in point r1 and clock B at rest

in point r2 correspondingly.



FIG.4.1.2.Clock A and clock B which at rest on

given inertial frame ℱI.

Let At,r1 be event which consist that time on clock A is t at time t according to
clock A and let Bt,r1 be event which consist that time on clock B is t at time t
according to clock B.It is clear that AOct,r1  BOct,r2.

Definition 4.1.2. Let ℱM4
# ,t1,r1, t2,r2s.l.s.

 be a set of the all spacelike

separated
pairs of events At1,r1,Bt2,r2s.l.s. ∈ ℱM4

# ,t1,r1, t2,r2s.l.s., (see

Definition
2.2.10.b) such that

AOct1,r1  BOct2,r2. 4.1.3

Remark 4.1.3.Note that the conditions (4.1.3) does not violeted the Einstein’s
principle of locality and gives only an additional properties of the algebra ℱM4

# .
Remark 4.1.4. Note that from (4.1.3) folows that
ℱM4

# ,t1,r1, t2,r2s.l.s.
  ℱM4

# ,t1,r1, t2,r2s.l.s..

On the basis of this Gedankenexperiment, which is also realized by photons,
the EPR-paradox can be derived if the following two principles are taken as
postulates.

1. The principle of reality R :
If the value Ai of an observable A can be determined without altering the
quantum system S, then any property PAi which corresponds to this value of A

pertains
to the sustem S.
2. The principle of locality L :



2.1.If two quantum systems S1 and S2 cannot interact with each other, then a
measurement with respect to one system cannot alter the other system and

therefore we
can assume the existance of state vectors |S1  and |S2 .
2.2.Let x 1 and x 2 be two observables measured with respect to systems S1 and

S2
mentioned above. Then by result of measurement of the quantity x2  〈S2 |

x 2|S2 
at instant t, impossible to get any information on result of measurement of the

quantity
x1  〈S1 |

x 1|S1  at the same instant t.
We assume now the relaxed principle of locality. Intuitively this principle

says that for even spacelike separated entangled quantum systems S1 and S2 any
measurement at instant t with respect to system S1 alwais immediately alter the
other system S2 at the same instant t. But no additional information about the
system S1 can be found out upon measurement on the system S2 except the
canonical information which can be predicted by using correlation relations which
follows from concrete type of entanglement.

3. The relaxed principle of locality Lrel :
3.1. Any spacelike separated quantum systems S1 and S2 cannot interact with

each other
and therefore we can assume the existance of state vectors |S1  and |S2 

correspondingly.
3.2. Let S12t,r1 and S21t,r2 be two spacelike separated entangled

quantum systems
located in points t,r1 and t,r2 correspondingly.
(i) Assume that a state vector |S12t,r1 suddenly collapses at instant t to state

vector

S12
s-colt,r1 :

|S12t,r1
s-col lapse
 S12

s-colt,r1 , 4.1.4

then a state vector |S21t,r2 immediately collapses to state vector
S21
col t,r2 :

|S21t,r2
col lapse
 S21

col t,r2 4.1.5

(ii) Assume that a state vector |S12t,r1 after measurement immediately
collapses at

instant t to state vector S12
m-colt,r1 :

|S12t,r1
m-col lapse
 S12

m-colt,r1 , 4.1.6

then a state vector |S21t,r2 immediately collapses to state vector
S21
col t,r2 :

|S21t,r2
col lapse
 S21

col t,r2 4.1.7



(iii) Let S12
s-colt,r1 and S21

col t,r2 be a physical events defined by formulae

(4.1.4) and
(4.1.5) correspondingly, then

Occ S12
s-colt,r1  OccS21

col t,r2, 4.1.8

see Definition 2.2.8 (ii.9).

(iv) Let S12
m-colt,r1 and S21

col t,r2 be a physical events defined by formulae

(4.1.6) and
(4.1.7) correspondingly,then

Occ S12
m-colt,r1  OccS21

col t,r2, 4.1.9

3.3.No any additional information about the system S1 upon measurement at
instant t can

be found out upon measurement on the system S2 upon measurement at instant
t except

the canonical information which can be predicted by using correlation relations
which

follows from concrete type of entanglement.
Remark 4.1.5. Note that conditions (4.1.8)-(4.1.9) very similarly to the condition

(4.1.3)
and gives only an additional properties of the algebra ℱM4

# .
Remark 4.1.6. Note that from (4.1.8) follows that

S12
s-colt,r1,S21

col t,r2 ∈ ℱM4
# ,t1,r1, t2,r2s.l.s.

 4.1.10

from (4.1.9) follows that

S12
m-colt,r1,S21

col t,r2 ∈ ℱM4
# ,t1,r1, t2,r2s.l.s.

 4.1.11

Remark 4.1.7. Note that:
(i) collapse of a state vector |S21t,r2 given by (4.1.5) occurs without any

interaction
between quantum systems S12 and S21 but only by property given by formulae

(4.1.8);
(ii) collapse of a state vector |S21t,r2 given by (4.1.7) occurs without any

interaction
between quantum systems S12 and S21 but only by property given by formulae

(4.1.9);
Remark.4.1.8.We find that the EPR-paradox can be resolved by nonprincipal

and convenient relaxing of the Einstein’s locality principle . Hoever it follows also,
that the nonlocalities which are introduced above cannot be explained within the
conventional quantum theory.

IV.2.Generalized EPR argument and Postulate of
Nonlocality

Entanglement is one of the most interesting properties of quantum mechanics,



and is an important ingredient of quantum information protocols such as quantum
densecoding and quantum computation. In the Schrödinger picture, a necessary
and sufficient criterion for the emergence of entanglement is that the state
describing the entire system is inseparable, i.e. the wavefunction of the total
system cannot be factored into a product of separate contributions from each
sub-system. Using the Heisenberg approach, a sufficient criterion for the presence
of entanglement is that correlations between conjugate observables of two
subsystems allow the statistical inference of either observable in one sub-system,
upon a measurement in the other, to be smaller than the standard quantum limit,
i.e. the presence of non-classical correlations. The latter approach was originally
proposed in the paper of Einstein, Podolsky and Rosen [21]. These two different
pictures result in two distinct methods of characterizing entanglement. One is to
identify an observable signature of the mathematical criterion for wave-function
entanglement, i.e. inseparability of the state. The second looks directly for the
onset of non-classical correlations. For pure states these two approaches return
the same result suggesting consistency of the two methods. However, when
decoherence is present, causing the state to be mixed, difference scan occur.

IV.2.1.The EPR-Reid criterion
We remind now EPR-Reid criterion [22]. EPR originally argued as follows.

Consider two spatially separated subsystems at A and B. EPR considered two
observables x (the “position”) and p (“momentum”) for subsystem A, where x and p
do not commute, so that (C is nonzero)

x ,p  2C. 4.2.1

Suppose now that one may predict with certainty the result of measurement x,
based on the result of a measurement performed at B. Also, for a different choice
of measurement at B, suppose one may predict the result of measurement p at A.
Such correlated systems are predicted by quantum theory. Assuming “local
realism” EPR deduce the existence of an “element of reality”, x, for the physical
quantity x and also an element of reality, p, for p. Local realism implies the
existence of two hidden variables x and p that simultaneously predetermine, with
no uncertainty, the values for the result of an x or p measurement on subsystem A,
should it be performed. This hidden variable state for the subsystem A alone is not
describable within quantum mechanics, since simultaneous eigenstates of x and p
do not exist. Hence, EPR argued, if quantum mechanics is to be compatible with
local realism, we must regard quantum mechanics to be incomplete.

We remind that in original publication [21],Einstein, Podolsky and Rosen
describe two particles A and B with correlated position

xB  xA  x0 4.2.2

and anti-correlated momentum

pB  −pA, 4.2.3

(see Fig.4.2.1).



Fig.4.2.1.

In the idealized entangled state proposed by EPR,

|EPR  
−


|x,xdx  

−


|p,pdp

the positions and momenta of the two particles are perfectly correlated. Note that:
this state is non-normalizable and cannot be realized in the laboratory. When
coordinates xA and pA are measured in independent realizations of the same state,
the correlations allow for an exact prediction of xB and pB. EPR assumed that such
exact predictions necessitate an ”element of reality” which predetermines the
outcome of the measurement. Quantum mechanics however prohibits the exact
knowledge of two noncommuting variables like xB and pB, since their measurement
uncertainties are subject to the Heisenberg relation

∆xB∆pB ≥ /2. 4.2.4

Classsical notion of EPR correlations was generalized to a more realistic scenario,
yielding a Reid criterion [22] for the uncertainties ∆x infB and ∆pinfB of the inferred

predictions for xB and pB. The EPR criterion is met if these uncertainties violate the
Heisenberg inequality for the inferred uncertainties ∆x infB ∆pinfB ≥ /2.

Reid extended classical EPR argument to situations where the result of
measurement x at A cannot be predicted with absolute certainty [22]. The
assumption of local realism allows us to deduce the existence of an “element of
reality” of some type for x at A, since we can make a prediction of the result at A,
without disturbing the subsystem at A, under the locality assumption. Let
 x A,x B be a wave function of composite system A  B. Let xiB be the result of a

measurement, x B say, performed at B, where i is used to label the possible results,
discrete or otherwise, of the measurement x B. As a result of the measurement of
the coordinate, we have a new wave function of composite system A  B which is
given by Eq.(4.2.3) (see Remark.4.2.1)

xi
B x,x B  xi

B
x A,x B  Rx B − xiB

x A,x B  Rx B − xiB x,x B 4.2.5

and therefore adjoint probability density pxiB x,
x B  p x,x B xiB at instant at once

after measurement is given by

pxiB x,
x B  p x,x B xiB  Rx B − xiB x,x B

2
4.2.6



Then the conditional probability density pxiBx  px|xi
B conditional on a result xiB

for QM measurement at B is given by

pxiBx  px|xi
B  

−



pxiB x,
x B dx B  

−



dx B xi
B x,x B

2



−



dx B Rx B − xiB x,x B
2
.

4.2.7

The predicted results for the measurement at A, based on the measurement at B,
are however no longer a set of definite numbers with zero uncertainty, but become
fuzzy, being described by a set of distributions Px|xiB giving the probability of a
result for the measurement at A, conditional on a result xiB for measurement at B.
We define ∆i2x to be the variance of the conditional distribution Px|xiB. Similarly we
may infer the result of measurement p at A, based on a (different) measurement,
pB say, at B. Denoting the results of the measurement pB at B by pjB, we then
define the probability distribution, Pp|pjB which is the predicted result of the

measurement for p at A conditional on the result pjB for the measurement pB at B.
The variance of the conditional distribution Pp|pjB is denoted by ∆j2p.

Remark.4.2.1. We remind now that the QM-measurement is represented by the
canonical scheme [5]

|
a′
→ |a′   a′ |, da′a′

† a′  1,pa′  ‖a′ ‖
2  〈|a′

† a′ |, 4.2.8

where pa′ is a corresponding probability density. To obtain the probability that the
parameter a′ turns out to belong to the set Δ one has to integrate over this set:

Pa′ ∈ Δ  
Δ
da′pa′ . 4.2.9

If the state | is represented by the wave function a the operator a′

describing the measurement giving the result a′ will be taken in the following form

a′a  Ra − a′a, 4.2.10

where Ra is a function with a support concentrated in some vicinity of zero and
representing the ’fuzziness’ of the measurement. It is a characteristic function of
the measurement and may, for example, be (and typically is) a Gaussian function.
The width of this function corresponds to the resolution of the measurement.

Normalization  da′a′
† a′  1 of the operators a′ is provided by the corresponding

normalization of the function Ra as follows:

 da|R2a|  1. 4.2.11

If the measurement is described by the Gaussian function

Ra  exp −
a − a′2

4Δ2 4.2.12



it is a minimally disturbing measurement of the coordinate a′ with resolution Δ [5].
Remark.4.2.2. Consider the momentum representation p of the initial wave

function q

p  1
2
 dqqexp − i pq . 4.2.13

As a result of the measurement of the coordinate,

q′q  Rq − q′q  q′q, 4.2.14

we have a new wave function and its momentum representation has the form [5]

q′p   dp′Rq′p − p′p′, 4.2.15

where Rq′p is a momentum representation of the function Rq′q. Note that

Rq′p  Rpexp − i
pq′ ,

Rp  1
2  dqRqexp −

i

pq .

4.2.16

Remark.4.2.3. Consider now a coordinate measurement having a Gaussian
characteristic function of width of the order of Δ

Rq ≃ exp − q
2

4Δ2 . 4.2.17

Then the momentum representation of this function (characterizing the structure of
the momentum uncertainty /Δ acquired in the measurement) is also Gaussian with
width of the order of /Δ :

Rp ≃ exp −p2


Δ

2 . 4.2.18

For a given experiment one could in principle measure the individual variances Δi2x
of the conditional distributions Px|xiB (and also Δj2p for the Pp|pjB). Obviously if
each of the variances Δi2x and Δj2p satisfy Δi2x  0 and Δj2p  0 this would imply the
demonstration of the original EPR paradox. This situation however is not practical
for continuous variable measurements [5]. Instead of considering the problem of
simultaneous eigenstates as originally proposed by EPR, one can suggest an
different and experimentally realizable criterion based on the Heisenberg
Uncertainty Principle: Δx̂Δp̂ ≥ C. For the sake of notational convenience we now
consider in the remainder of this subsection that appropriate scaling enables x̂ and
p̂ to be dimensionless and C  1.

EPR correlations however would be demonstrated in a convincing manner if the
experimentalist could measure each of the conditional distributions Px|xiB and
establish that each of the distributions is very narrow, in fact constrained such that
[5]:



Px|xiB  0 iff |x − i| ,

Pp|pjB  0 iff |p − j| .
4.2.19

Here i is the mean value of the conditional distribution Px|xiB and j is the mean
value of the conditional distribution Pp|pjB. In this case the assumption of local
realism would imply, since the measurement x̂B at B will always imply the result of x̂
at A to be within the range i  x, that the result of the measurement at A is
predetermined to be within a bounded range of width 2. In a straightforward
extension of EPR’s argument, we replace the words “predict with certainty” with
“predict with certainty that the result is constrained to be within the range i  ”,
and then define an “element of reality” with this intrinsic bounded by fuzziness .
We now consider the situation where an experimenter has demonstrated that for
every outcome xiB (and pjB) for the measurement x̂B (and p̂B) performed at B, the
variance Δix (and Δjp) of the appropriate conditional distribution satisfies

Δix  1,Δjp  1 4.2.20

for any i, j ∈ ℕ. The measurement at B always allows an inference of the result at A
to a precision better than given by the uncertainty bound 1.

Remark.4.2.4. In this case we do not predict a result at A “with certainty”, as in
EPR’s

original paradox. The measurement x̂B at B however does predict by Eq.(4.2.3)
[or by

Eq.(4.2.9) in general case] with a certain probability constraints on the result for
x̂ at A.

Remark 4.2.5. Following the EPR argument, which assumes
no action-at-a-distance,

so that the measurement at B does not cause any instantaneous influence to
the system at
A, one can attribute a probabilistic predetermined “element of reality” to the

system at A.
Remark.4.2.6. There is a similar predicted result for the measurement p̂ at A

based on a
result of measurement at B, and a corresponding predetermined description

based again
on the

no-action-at-a-distance
assumption.
Remark.4.2.7. The important point in establishing the EPR paradox for this

more general
yet practical situation is that under the EPR premises the predetermined

statistics (or
generalised “elements of reality”) for the physical quantities



x̂ and p̂ are attributed simultaneously to the subsystem at A.
Assuming no action-at-a-distance, the choice of the experimenter (Bob) at B to

infer
information about either x̂ or p̂ cannot actually induce the result of the

measurement at A.
As there is no disturbance created by Bob’s measurement, the (appropriately

extended)
EPR definition of realism is that the prediction for x is something (a probabilistic

“element of
reality”) that can be attributed to the subsystem at A, whether or not Bob makes

his
measurement.
Remark 4.2.8. This is also true of the prediction for p̂, and therefore the two

“elements of
reality” representing the physical quantities x̂ and p̂ exist to describe the

predictions for x̂
and p̂ simultaneously.
The paradox can then be established by proving the impossibility of such a

simultaneous level of prediction for both x̂ and p̂ for any quantum description of the
subsystem A alone. By this we mean explicitly that there can be no procedure
allowed, within the predictions of quantum mechanics, to make simultaneous
inferences by measurements performed at B or any other location, of both the
result x̂ and p̂ at A, to the precision indicated by Δix  1, Δjp  1.

Remark 4.2.9. Recall that the inference of the result at A by measurement at B
is actually a measurement of x̂ performed with the accuracy determined by the Δix.
However simultaneous measurements of x̂ and p̂ to the accuracy (4.2.9) are not
possible (predicted by quantum mechanics). The reduced density matrix describing
the state at A after such measurements would violate the H.U.P.

A simpler quantitative, experimentally testable criterion for EPR was proposed
by Reid in 1989 see for example [22]. The 1989 inferred H.U.P. criterion is based
on the average variance of the conditional distributions for inferring the result of
measurement x̂ (and also for p̂). The EPR paradox is demonstrated when the
product of the average errors in the inferred results for x̂ and p̂ violate the
corresponding Heisenberg Uncertainty Principle. The spirit of the original EPR
paradox is present, in that one can perform a measurement on B to enable an
estimate of the result x at A (and similarly for p̂).

Abbreviation 4.2.1. For the sake of notational convenience we now abbreviate
in the remainder of the paper: Δloc.ix and Δloc.ip instead Δix and Δjp for the variance
Δix and Δjp which were calculated under assumption no action-at-a-distance, see
Remark 4.2.5-4.2.6.

We define now [22]:



∆loc.inf.2 x  ∑ i
PxiB∆loc.i2 x,

∆loc.inf.2 p  ∑ j
PpjB∆loc.j2 p.

4.2.21

Here Δloc.inf.
2 x̂ is the average variance for the prediction (inference) under

assumption no action-at-a-distance of the result x for x̂ at A, conditional on a
measurement x̂B at B. Here i ∈ ℕ labels all outcomes of the measurement x̂ at A,
and i and Δix are the mean and standard deviation, respectively, of the conditional
distribution Px|xiB, where xiB is the result of the measurement x̂B at B. We define a
Δloc.inf.
2 p̂ similarly to represent the weighted variance for the prediction (inference)

under assumption no action-at-a-distance of the result p̂ at A, based on the result of
the measurement at B. Here PxiB is the probability for a result xiB upon
measurement of x̂B, and Ppj is defined similarly.

The Reid’s criterion to demonstrate the EPR "paradox", the Reid’s local
signature of the EPR paradox, is

∆loc.inf.2 x ∆loc.inf.2 p  1. 4.2.22

This criterion is a clear criterion for the demonstration of the EPR "paradox", by
way of the argument presented above. Such a prediction (4.2.21) for x̂ and p̂ with
the average inference variances given, cannot be achieved by any quantum
description of the subsystem alone. This EPR criterion has been achieved
experimentally.

IV.2.2.The Postulate of Nonlocality and signature of
the EPR "paradox"

Remark.4.2.10. A most critical component of the EPR argument was the
principle of locality. Indeed, one may regard the EPR paradox as a statement of the
mutual incompatibility of locality, entanglement, and completeness. Experimental
tests of Bell’s inequalities have indicated that quantum mechanics is complete by
ruling out the possibility of hidden variables. Therefore it is generally agreed that
the assumption of locality is invalid for entangled states: measurement of either
particle of an entangled system projects both particles onto a state consistent with
the result of measurement, regardless of how far apart the particles are. In the
situation proposed by EPR, the position or momentum of the unmeasured particle
becomes a reality when, and only when, the corresponding quantity of the other
particle is measured.

Remark.4.2.11. The assumption of nonlocality allows us to deduce the
existence of an fuzzy “element of reality” of some type for x at A, since we can
make a prediction of the result at A, but with some disturbing of the subsystem at A,
under the measurement, x B say, performed at B. This prediction is subject to the
result xiB of a measurement, x B say, performed at B, where i is used to label the
possible results, discrete or otherwise, of the measurement x B.

We accept now the following postulate:
Postulate of Nonlocality



(i) Let A and B two entangled particles. Let  x A,x B be a wave function of

composite system A  B. Let xiB be the result of a measurement, x B say, performed
at B, where i is used to label the possible results, discrete or otherwise, of the
measurement x B. As a result of the measurement of the coordinate, we have a new
wave function of composite system A  B which [in contrast with Eq.(4.2.5)] is given
by

xi
B
x A,x B  R2

x A − xiAxiBR1
x B − xiB

x A,x B ,

xiAxiB  x0 ≃ xiB.
4.2.23

(ii) Let A and B two entangled particles. Let  pA,pB be a wave function of

composite system A  B.Let pjB be the result of a measurement, pB say, performed
at B, where j is used to label the possible results, discrete or otherwise, of the
measurement pB. As a result of the measurement of the coordinate, we have a new
wave function of composite system A  B which is given by

pj
B
pA,pB  R2

pA − pjApjBR1
pB − pjB

pA,pB ,

pjApjB ≃ −pjB.
4.2.24

Remark 4.2.12.The spirit of the original EPR paradox now is present, in that the
canonical EPR correlations (4.2.2) and (4.2.3) well preserved.

Remark 4.2.13.Note that EPR correlations xiAxiB  x0 ≃ xiB and pjApjB ≃ −pjB

however would be demonstrated in a convincing manner if the experimentalist
could measure each of the conditional distributions Px|xiB and establish that each
of the distributions is very narrow, in fact constrained so that [5]

px|xiB ≃ 0 iff |x − i| ,

pp|pjB ≃ 0 iff |p − j| ,

Px|xiB ≃ 0 iff |x − i| ,

Pp|pjB ≃ 0 iff |p − j| .

4.2.25

Here i is the mean of the conditional distribution Px|xiB and j is the mean of the
conditional distribution Pp|pjB.

Remark 4.2.14.We assume now that a coordinate and momentum
measurements have a Gaussian characteristic function of width of the order of 2

R1x  R2x  Rx ≃ exp − x
2

42

R1p  R2p  Rp ≃ exp −
p2

42

4.2.26

In this case the Postulate of Nonlocality would imply, since the measurement x̂B at
B will always imply the result of x̂ at A to be within the range i  x, that the result
of the measurement at A is predetermined to be within a bounded range of width
2. In a straightforward extension of EPR’s argument, we replace the words



“predict with certainty” with “predict with certainty that the result is constrained to be
within the range i  . We now consider the situation where an experimenter has
demonstrated that for every outcome xiB (and pjB) for the measurement x̂B (and p̂B)
performed at B, the variance Δix (and Δjp) of the appropriate conditional distribution
satisfies

∆ix  1,∆jp  1 4.2.27

for all i, j.The measurement at B always allows an inference of the result at A to a
precision better than given by the uncertainty bound 1.

In this case we do not predict a result at A “with certainty”, as in EPR’s original
paradox. The measurement x B at B however does predict with a certain probability
constraints on the result for x at A.

Remark 4.2.15.Note that adjoint probability density p x A,x B xiB at instant at

once after measurement [in contrast with Eq.(4.1.6)] is given by

p x A,x B xiB  xi
B
x A,x B

2


Rx A − xiAxiBR
x B − xiB

x A,x B
2
,

xiAxiB  x0 ≃ xB  i.

4.2.27

Then the conditional probability density pxiBx  px|xi
B conditional on a result xiB

for QM measurement at B is given by

pxiBx  px|xi
B  

−



pxiB x,
x B dx B  

−



dx B xi
B x,x B

2



−



dx B Rx A − xiAxiBR
x B − xiB x,x B

2
.

4.2.28

There is a similar predicted result for the measurement p at A based on a result of
measurement at B, and a corresponding predetermined description based on the
QM constraints

pj
B
pA,pB  RpA − pjApjBR

pB − pjB
pA,pB ,

pjApjB ≃ −pB.
4.2.29

The spirit of the original EPR "paradox" is present, in that one can perform a
measurement on B to enable an estimate of the result x at A (and similarly for p).

Abbreviation 4.2.2. For the sake of notational convenience we now abbreviate
in the remainder of the paper: Δnonloc.ix and Δnonloc.ip instead Δix and Δjp for the
variance Δix and Δjp which were calculated under nonlocality assumption
(postulate) by conditional probability density given by Eq.(4.1.28).

We define now



∆nonloc.inf.2 x  ∑ i
PxiB∆nonloc.i2 x,

∆nonloc.inf.2 p  ∑ j
PpjB∆nonloc.j2 p.

4.2.30

Here ∆nonloc.inf.2 x is the average variance for the prediction (inference) of the result x

for x at A, conditional on a measurement x B at B. Here i labels all outcomes of the
measurement x at A, and µ i and ∆ix are the mean and standard deviation,
respectively, of the conditional distribution Px|xiB, where xiB is the result of the
measurement x B at B. We define a ∆nonloc.inf.2 p similarly to represent the weighted

variance for the prediction (inference) of the result p at A, based on the result of the
measurement at B. Here PxiB is the probability for a result xiB upon measurement
of x B, and PpjB is defined similarly. The criterion to demonstrate the EPR paradox,
the signature of the EPR paradox, is The criterion to demonstrate the EPR
"paradox", the nonlocal signature of the EPR paradox, is given by

∆nonloc.inf. x ∆nonloc.inf. p  1. 4.2.31

This criterion is a clear criterion for the demonstration of the EPR "paradox", by
way of the argument presented above. Such a prediction for x̂ and p̂ with the
average inference variances given, cannot be achieved by any quantum
description of the subsystem alone.

IV.2.3.The EPR-nonlocality criteria
Remark 4.2.16.A critical component of the EPR argument was the principle of

locality. Indeed, one may regard the EPR paradox as a statement of the mutual
incompatibility of locality, entanglement, and completeness. Experimental tests of
Bell’s inequalities have indicated that quantum mechanics is complete by ruling out
the possibility of hidden variables. Therefore it is generally agreed that the
assumption of locality is invalid for entangled states: measurement of either particle
of an entangled system projects both particles onto a state consistent with the
result of measurement, regardless of how far apart the particles are. In the situation
proposed by EPR, the position or momentum of the unmeasured particle becomes
a reality when, and only when, the corresponding quantity of the other particle is
measured. Since only one quantity or the other is measured, the position and the
momentum of the unmeasured particle need not be simultaneous realities. In this
way the EPR "paradox" also is resolved. From Eq.(4.2.21) and Eq.(4.2.30) we
obtain the EPR-nonlocality criteria

∆loc.inf.2 x − ∆nonloc.inf.2 x  ∑ i
PxiB∆loc.i2 x − ∆nonloc.i2 x  0,

∆loc.inf.2 p − ∆nonloc.inf.2 p  ∑ j
PpjB ∆loc.j2 p − ∆nonloc.j2 p  0,

4.2.32

and

∆nonloc.inf. x ∆nonloc.inf. p − ∆loc.inf. x ∆loc.inf. p  0. 4.2.33

These EPR-nonlocality criteria has been achieved experimentally [66],[67], (see
subsection IV.5, Remark 4.5.3-Remark 4.5.4).



IV.3.Nonlocal Schrödinger equation implies the
Postulate of Nonlocality

In this subsection we obtain nonlocal Schrödinger equation (NSE) which
corresponding to position-momentum entangled pairs A and B (see Fig.4.2.1) with
well correlated position

〈xB  ≃ 〈xA   x0 4.3.1

and anti-correlated momentum

pB ≃ −〈pA . 4.3.2

Remark 4.3.1.As pointed out in subsection IV.2 it is generally agreed that the
assumption of locality is invalid for entangled states: measurement of either particle
of an entangled system projects both particles onto a state consistent with the
result of measurement, regardless of how far apart the particles are. It allow us to
use special nonlocal generalization of the canonical Schrödinger equation.

Remark 4.3.2. As pointed out in subsection II.2 from nonlocal Schrödinger
equation (2.1.17) one obtains collapsed wave function corresponding to GRW
collapse model.

It allow us to use similar nonlocal Schrödinger equation also for entangled
states.

Remark 4.3.3. The spirit of the original EPR paradox is present, in that the
canonical EPR correlations (4.3.1) and (4.3.2) gives an boundary conditions for the
solutions of the nonlocal Schrödinger equation.

Remark 4.3.4.In this subsection we denote (i) xA  x1,xB  x2, (ii) xA  x 1,
xB  x 2 

x 1  x0.
Definition 4.3.1.Let us consider the time-dependent canonical Schrödinger

equation

i
∂x1,x2, t

∂t
 Hx1,x2, t,

t ∈ 0,T, x1,x2 ∈2.

4.3.3

Let x1,x2, t be a classical solution of the time-dependent Schrödinger equation
(4.3.3). The time-dependent Schrödinger equation (4.3.3) is a weakly well
preserved (in sense of Colombeau generalized functions) by corresponding to
x1,x2, t collapsed Colombeau generalized wave function


#x1,x2, t, ∈ 0,1, where




#x1,x2, t  x1,x2, t;

x 1t,
x 2t 


1,2x1,

x 1t,x2,
x 2t;,x1,x2, t

‖1,2
x 1t,

x 2t;,x1,x2, t‖2 

,

1,2x1,
x 1,x2,

x 2;, 
i1

2

ixi,
x i;,,

ix,
x it;, 

2
−1/4 exp − xi −

x it2

22
iff ‖xi − x i‖ ≤ ,

0 iff ‖xi − x i‖  .

i  1,2.

4.3.4

in region Γ ⊆ 2 if there exist an solution x1,x2, t of Schrödinger equation (4.2.1)
such that the estimate


Γ

i ∂
#x1,x2, t
∂t

− H
#x1,x2, t dx1dx2



 O,

t ∈ 0,T,x1,x2∈Γ2,

4.3.5

with 1/2 ≤ , is satisfied.
Definition 4.3.2. Equation (4.3.5) with a following boundary conditions

xB
t ≃ 〈xAt   x0,

〈xAt    xA|
#xA,xB, t|

2dxAdxB

,

xB
t   xB|

#xA,xB, t|
2dxAdxB


,

4.3.6

that is time-dependent nonlocal Schrödinger equation corresponding to EPR
entangled state.

Definition 4.3.3.(i) The time-dependent integral equation (4.3.5) with a
boundary conditions (4.3.6) is colled the time-dependent nonlocal Schrödinger
equation of the order  corresponding to EPR entangled state.

(ii) Such collapsed wave function #x1,x2, t,  as mentioned in Definition 4.3.2 is
colled the

- solution of the nonlocal Schrödinger equation (4.3.5)-(4.3.6) of the order
.

Definition 4.3.4.Let us consider the time-independent canonical Schrödinger
equation

Hx1,x2  0, x1,x2 ∈2.
4.3.7



Let x1,x2 be a classical solution of the time-independent Schrödinger equation
(4.3.7).The time-independent Schrödinger equation (4.3.7) is a weakly well
preserved (in sense of Colombeau generalized functions) by corresponding to
x1,x2 Colombeau generalized collapsed wave function 

#x1,x2, ∈ 0,1,
where


#x1,x2,  x1,x2;

x 1,
x 2, 


1,2x1,

x 1,x2,
x 2;,x1,x2

‖1,2
x 1,

x 2;,x1,x2‖2 

,

1,2x1,
x 1,x2,

x 2;, 
i1

2

ixi,
x i;,,

ix,
x i;, 

2
−1/4 exp − xi −

x i2

22
iff ‖xi − x i‖ ≤ ,

0 iff ‖xi − x i‖  .

4.3.8

in region Γ ⊆ 2 if there exist an solution x1,x2 of Schrödinger equation (4.3.7)
such that the estimate


Γ

H
#x1,x2dx1dx2



 O,

x1,x2∈Γ2,

4.3.9

with 1/2 ≤ , is satisfied.
Definition 4.3.5. Equation (4.3.9) with a boundary conditions

xB ≃ 〈xA   x0,

〈xA    xA|
#xA,xB|

2dxAdxB

,

xB   xB|
#xA,xB|

2dxAdxB

,

4.3.10

that is time-independent nonlocal Schrödinger equation corresponding to EPR
entangled state.

Definition 4.3.6.(i) The time-independent integral equation (4.3.9) with a
boundary conditions (4.3.10) is colled the time-independent nonlocal Schrödinger
equation of the order  corresponding to EPR entangled state.

(ii) Such collapsed wave function #x1,x2 as mentioned in Definition 4.3.5 is
colled the

- solution of the nonlocal Schrödinger equation (4.3.9)-(4.3.10) of the order
.



Lemma 4.3.1.Let  be a function

  
0

a

x−1 exp−xfxdx, 4.3.11

where   1, 0  a  , 0  , 0  .Assume that fx is continuous on
0,a.Then

  −1Γ

 f0  o1−/ 4.3.12

Lemma 4.3.2.Let fx be a function such that f ∈ C2x  x0 and
f ∈ C2x  x0.Then

f ′x  f ′x
x≠x0

 fx0x − x0,

f ′′x  f ′′x
x≠x0

 f ′
x0
x − x0  fx0

′x − x0,

fx0  fx0  0 − fx0 − 0,

f ′
x0
 f ′x0  0 − f ′x0 − 0.

4.3.13

Theorem 4.3.1. Assume that there exist an classical solution x1,x2 of the
Schrödinger equation (4.3.7) such that

x1,x2 ∈Γ
sup |x1,x2|  O−1/2,

x1,x2 ∈Γ
sup |∂x1,x2/∂x1 |  O−3/2,

x1,x2 ∈Γ
sup |∂x1,x2/∂x2 |  O−3/2.

4.3.14

Then any collapsed wave function #x given by Eq.(4.3.8) with
/  , 1/4    1/2 that is -solution of the time-independent nonlocal

Schrödinger equation (4.3.9)-(4.3.10) of the order .
Proof. The Schrödinger equation (4.3.7) has the following form

Hx1,x2  2
∂2x1,x2
∂x12

 2
∂2x1,x2
∂x22

 Vx1,x2x1,x2  0. 4.3.15

Let 
#x1,x2 be a function


#x1,x2  Rx1,

x 1Rx2,
x 2x1,x2, 4.3.16

where

Rxi,
x i 

2
−1/4 exp − xi −

x i2

22
iff ‖xi − x i‖ ≤ ,

0 iff ‖xi − x i‖  .

4.3.17

From Eq.(4.3.17) by using Eq.(4.3.13) we obtain



∂Rx1,x 1
∂x1

 −−1/4−1x1 − x 1exp −
x1 − x 12

2


 Rx1,
x 1x 1− x1 − x 1    Rx1,x 1xx1 −

x 1 − ,

∂2Rx1,x 1
∂x12

 −−1/4−1 exp −
x1 − x 12

2


−1/4−2x1 − x 12 exp −
x1 − x 12

2


∂Rx1,x 1
∂x1 x−

x1 − x 1   
Rx1,

x 1
∂x1 x

x1 − x 1 −  

Rx1,
x 1 x−

′x1 − x 1    Rx1,x 1 x
′x1 − x 1 − 

4.3.18

and

∂Rx2,x 2
∂x2

 −−1/4−1x2 − x 2exp −
x2 − x 22

2


 Rx2,
x 2x 1− x2 − x 2    Rx2,x 2xx2 −

x 2 − ,

∂2Rx2,x 2
∂x22

 −−1/4−1 exp −
x2 − x 22

2


−1/4−2x2 − x 22 exp −
x2 − x 22

2


∂Rx2,x 2
∂x2 x−

x2 − x 2   
Rx2,

x 2
∂x2 x

x2 − x 2 −  

Rx2,
x 2x−

′x2 − x 2    Rx2,x 2x
′x2 − x 2 − .

4.3.19

From Eq.(4.3.16) by differentiation we obtain

∂2
#x1,x2
∂x12


∂2Rx1,x 1Rx2,x 2x1,x2

∂x12


∂
∂x1

x1,x2Rx2,
x 2
∂Rx1,x 1
∂x1

 Rx1,
x 1Rx2,

x 2
∂x1,x2
∂x1



2
∂x1,x2
∂x1

Rx2,
x 2
∂Rx1,x 1
∂x1



x1,x2Rx2,
x 2
∂2Rx1,x 1

∂x12
 Rx1,

x 1Rx2,
x 2
∂2x1,x2
∂x12

4.3.20

and



∂2
#x1,x2
∂x22


∂2Rx1Rx2,x 2x1,x2

∂x22


∂
∂x2

x1,x2Rx1,
x 1
∂Rx2,x 2
∂x2

 Rx1,
x 1Rx2,

x 2
∂x1,x2
∂x2



2
∂x1,x2
∂x2

Rx1,
x 1
∂Rx2,x 2
∂x2



x1,x2Rx1,
x 1
∂2Rx2,x 2

∂x22
 Rx1,

x 1Rx2,
x 2
∂2x1,x2
∂x22

.

4.3.21

By substitution Eq.(4.3.15) and Eq.(4.3.20)-Eq.(4.3.21) into LHS of the Eq.(4.3.9)
we obtain


Γ

H
#x1,x2dx1dx2 


Γ

dx1dx2Rx1,
x 1Rx2,

x 2 

2
∂2x1,x2
∂x12

 2
∂2x1,x2
∂x22

 Vx1,x2x1,x2 

 2 
Γ

dx1dx2 

2
∂x1,x2
∂x1

Rx2,
x 2
∂Rx1,x 1
∂x1

 x1,x2Rx2,
x 2
∂2Rx1,x 1

∂x12


 2 
Γ

dx1dx2 

2
∂x1,x2
∂x2

Rx1,
x 1
∂Rx2,x 2
∂x2

 x1,x2Rx1,
x 1
∂2Rx2,x 2

∂x22


 1,  2,.

4.3.22

Now we go to estimate the quantities

1,  2 
Γ

dx1dx2 

2
∂x1,x2
∂x1

Rx2,
x 2
∂Rx1,x 1
∂x1

 x1,x2Rx2,
x 2
∂2Rx1,x 1

∂x12

4.3.23

and



2,  2 
Γ

dx1dx2 

2
∂x1,x2
∂x2

Rx1,
x 1
∂Rx2,x 2
∂x2

 x1,x2Rx1,
x 1
∂2Rx2,x 2

∂x22

4.3.24

From Eq.(4.3.23) using Eq.(4.3.14) we obtain

|1,| ≤ 2 
Γ

dx1dx2 

2
∂x1,x2
∂x1

Rx1,
x 1

∂Rx2,x 2
∂x1

 |x1,x2|Rx1,
x 1

∂2Rx2,x 2
∂x12

≤ 2O1/2 
Γ

Rx2,
x 2

∂Rx1,x 1
∂x1

dx1dx2 

 O3/2 
Γ

Rx2,
x 2
∂2Rx1,x 1

∂x12
dx1dx2 

 2O1/2 


Rx2,
x 2dx2 



∂Rx1,x 1
∂x1

dx1 

O3/2 


Rx2,
x 2dx2 



∂2Rx1,x 1
∂x12

dx1 

 


Rx2,
x 2dx2 2O1/2 



∂Rx1,x 1
∂x1

dx1  O3/2 


∂2Rx1,x 1
∂x12

dx1 .

4.3.25

From Eq.(4.3.24) using Eq.(4.3.14) we obtain

|2,| ≤ 2 
Γ

dx1dx2 

2
∂x1,x2
∂x2

Rx1,
x 1

∂Rx2,x 2
∂x2

 |x1,x2|Rx1,
x 1

∂2Rx2,x 2
∂x22

≤

2O1/2 
Γ

Rx1,
x 1

∂Rx2,x 2
∂x2

dx1dx2 

O3/2 
Γ

Rx1,
x 1

∂2Rx2,x 2
∂x22

dx1dx2

2O1/2 


Rx1,
x 1dx1 



∂Rx2,x 2
∂x2

dx2 

O3/2 


Rx1,
x 1dx1 



∂2Rx2,x 2
∂x22

dx2 




Rx1,
x 1dx1 2O1/2 



∂Rx2,x 2
∂x2

dx2  O3/2 


∂2Rx2,x 2
∂x22

dx2 .

4.3.26



Having substituted Eq.(4.3.18) into Eq.(4.3.25) and Eq.(4.3.19) into Eq.(4.3.26) and
having applied Lemma 4.3.1 we have finalized the proof of the Eq.(4.3.9).

We assume now that

N 



R
2x1,

x 1R2x2,
x 2|x1,x2|2dx1dx2  1 4.3.27

From Eq.(4.3.27) and Eq.(4.3.17) by Lemma 4.3.1 we obtain

N 



R
2x1,

x 1R2x2,
x 2|x1,x2|2dx1dx2 

4.3.28

From Eq.(4.3.16)-Eq.(4.3.17) we obtain

〈xA     x1
#x1,x2dx1dx2    x1R2x1,x 1R2x2,x 2|x1,x2|2dx1dx2,

4.3.

IV.4.Position-momentum entangled photon pairs in
non-linear wave-guide

The physical system where we expect the entangled photon states to appear
include: (A) a Kerr-type nonlinear single-mode wave-guide characterized by strong
photon-photon coupling [56], [57], or (B) a chain of coupled non-linear resonators
[58–61]. For two photons with momenta k1  k0 − δkandk2  k0  δk and
dispersion

ωk0  δk ≈ ωk0  vδk  βδk2/2, 4.4.1

where v is the photon group velocity, the variation of the energy of a photon pair

∆2ω  ωk0 − δk  ωk0  δk − 2ωk0 ≈ βδk2. 4.4.2

As the photon-photon interaction conserves both energy and longitudinal
momentum, the two-photon states propagating along the non-linear transmission
line can be described by the Fock function

|ψ2k0  dk1dk2δk1  k2 − 2k0fk1 − k2|k1,k2  4.4.3



Fig. 4.4.1: Entangled two-photon

states in non-linear wave guides.

(a)Spectrum of a two-photon state, Ẽ  E − 2ωk0|β|/κ2, with total momentum
2k0 in awave-guide with quadratic dispersion (4.3.1) for β  0,κ  0 (left) and
β  0,κ  0 (right).Solid line corresponds to the continuous spectrum,while the
single eigenvalue corresponding to the entangled state is shown by dashed
line.(b)Wigner function of the two-photon entangled state. It takes negative
values,which is a hallmark of non-Gaussian entangled states.

(A) To demonstrate the principle of position-momentum entanglement of
photons in Kerr-nonlinear systems, we, first, consider the entangled photon pairs in
non-linear optical wave-guides. Classically, Kerr nonlinearity in an isotopic medium
manifests itself in the third-order polarisation
P3  3E−·EE  αE·EE−, where ”” and ”-” correspond to
positive and negative frequency parts, E is electric field, 3 is the susceptibility of
the medium 3 xyxy3 , α  xxyy3 /23. Quantizing electromagnetic field,
integrating over transverse degrees of freedom, and neglecting magneto-optical
effects (α  0) leading to entanglement over polarization degrees of freedom, one
obtains the following Hamiltonian (  c  1):

H  H0  Hint,H0  ∑k
kωkak

† ak,

Hint  k
L ∑k1,k2,k3,k4

δk1  k2,k3  k4ak4
† ak3

† ak1ak2 ,
4.4.4

where akak
†  is the annihilation (creation) operator of a photon with longitudinal

momentum k and energy ωk, L is the length of the system. The non-linear term Hint
in Eq. (4.3.4) describes photon-photon interaction with coupling κ  πω2χ3/2nr4A0,
where nr is refraction index, A is the area occupied by the wave-guide mode and
0 is the vacuum permittivity. Hamiltonian (4.3.4) can be diagonalized exactly in the
case of ∆2ω  δk2. We consider a sector of the Hilbert space,which consists of
allt he two-photon states with the total pair momentum 2k0 and assume the
effective mass approximation for th ewave-guide dispersion given by Eq. (4.3.1). In
the coordinate domain, ax  1/ L ∑k

ak expik − k0x, the Hamilton Eq. (4.3.4)

takes the form



H   dx ωk0ax
†ax − ivax†∂xax − 1

2
βax†∂2ax  1

2  dx1dx2ax1† ax2† Ux1 − x2ax1ax2 , 4.4.5

where Ux1 − x2  2κδx1 − x2. For a two-photon state, described by the
wave-function

ψ   dx1dx2fx1,x2ax1† ax2† |0,
one obtains the following Schrödinger equation:

2ωk0 − iv∂x1  ∂x2 − 1
2
β∂x12  ∂x22   2κδx1 − x2fx1,x2  Efx1,x2, 4.4.6

where E is the energy of a two-photon state. Equation (4.4.6) has scattering state
solutions, which correspond to the continuous spectrum of non-interacting photons
with energies given by Eq. (4.4.2) (See Fig.4.4.1(a)). When the curvature of the
wave-guide dispersion β and the photonphoton coupling constant κ are of opposite
signs, βκ  0, there exists a bound state solution with

fx1,x2 
ξ
2L
exp−|x1 − x2|ξ,ξ  |κ/β| 4.4.7

The energy of this state is split from the continuum of weakly correlated
scattering states, as we show in Fig. 4.4.1(a), and it is given by

Eb  2ωk0 − κ2/β, 4.4.8

as expected from binding of a one-dimensional massive particle to an attractive
δ-functional potential well [30]. In the momentum domain, the two-photon bound
state wave-function is given by Eq. (4.4.3) with

fk1 − k2 
8ξ3/2

2L k1 − k22  4ξ2
4.4.9

The state (4.4.9) can be characterised by the Wigner function defined as the
expectation value

Wx1,k1;x2,k2  π−2〈ψ|Πx1,k1 ⊗ Πx2,k2|ψ

of the parity operator

Πx,k  dζe−2ixζakζ† |0〈0|ak−ζ.

After straightforward calculations, one obtains

Wx1,k1;x2,k2 
ξ2e−2ξ|δx|

2π2δk2  ξ2
cos2δk|δx|  ξ

δk
sin2δk|δx|δk1  k2; 2k0, 4.4.10

where δx  x1 − x2. This function is negative for
cos2δk|δx|  ξ/δk sin2δk|δx|  0, as shown in Fig. 4.4.1(b), which implies that
the state (4.4.9) is entangled in position-momentum degrees of freedom. Moreover,
for ξ → , the two-photon wave-function approaches the ideal
Einstein-Podolsky-Rosen state in which position and momenta are perfectly (anti-)
correlated:

ψ   dδk|k0  δk,k0 − δk   dxe2ik0x|x,x.
Alternatively, to demonstrate that the state (4.4.9) is entangled in



position-momentum degrees of freedom, one can find the uncertainties ∆x1 − x2
and ∆k1  k2 calculated over the joint probability distributions Px1,x2 and
Pk1,k2 respectively, for which, the separability criterion:

∆x2 − x12∆k2  k2 ≥ 1, 4.4.11

can be applied. Although, the states for which the inequality (4.4.11) is violated are
inseparable, they do not necessarily lead to EPR paradox. In order for an EPR
"paradox" to arise, correlations must violate a more strict inequality []:

∆x2 − x12∆k2  k2 ≥ 1/4, 4.4.12

which can be accessible experimentally [].

IV.5.Position-momentum entangled photon pairs
and the experimental verification of the postulate of
nonlocality.

In paper [23] is reported on a demonstration of the EPR paradox using position-
and momentum-entangled photon pairs produced by spontaneous parametric down
conversion. Transverse correlations from parametric down conversion have been
studied both theoretically and experimentally. It was find experimentally that the
position and momentum correlations are strong enough to allow the position or
momentum of a photon to be inferred from that of its partner with a product of
variances ≤ 0.012, which violates the separability bound by 2 orders of magnitude.
In the idealized entangled state proposed by EPR, the positions and momenta of
the two particles are perfectly correlated.However such idealized entangled state is
non-normalizable and cannot be realized inthe laboratory. However,the state of the
light produced in parametric down conversion can be made to approximate the
EPR state under suitable conditions. In parametric down conversion, a pump
photon is absorbed by a nonlinear medium and reemitted as two photons
(conventionally called signal and idler photons), each with approximately half the
energy of the pump photon. Considering only the transverse components, the
momentum conservation of the down conversion process requires p1  p2  pp,
where 1,2, and p refer to the signal, idler, and pump photons, respectively.
Provided the uncertainty in the pump transverse momentum is small, the
transverse momenta of the signal and idler photons are highly anticorrelated. The
exact degree of correlation depends on the structure of the signal idler state. In the
regime of weak generation, this state has the form

|1,2  vac   dp1dp2Ap1,p2|p1,p2 , 4.5.1

where vac denotes the vacuum state and the two-photon amplitude Ap1,p2 is

Ap1,p2  Epp1,p2
expiΔkzL − 1

iΔkz
. 4.5.2

Here is the coefficient of the nonlinear interaction, Ep is the amplitude of the



plane-wave component of the pump with transverse momentum p1p2,L is the
length of the nonlinear medium, and Δkz  kp,z − k1,z − k2,z (where k  p/ ) is the
longitudinal wave vector mismatch,which generally increases with transverse
momentum and limits the angular spread of signal and idler photons. The vacuum
component of the state makes no contribution to photon counting measurements
and may be ignored. Also, there is no inherent difference between different
transverse components; so without loss of generality, we consider scalar position
and momentum. The narrower the angular spectrum of the pump field and the
wider the angular spectrum of the generated light, the more closely the integral

(4.4.1) approximates  dp1dp2p1  p2|p1,p2   |EPR and the stronger the

correlations in position and momentum become. The experimental setup used to
determine position and momentum correlations is portrayed in Fig. 4.5.1(a)-(b).The
idea is to measure the positions and momenta by measuring the down converted
photons in the near and far fields, respectively [34]. The source of entangled
photons is spontaneous parametric down conversion generated by pumping a 2
mm thick type-II -barium-borate (BBO) crystal with a 30 mW, cw, 390 nm laser
beam. A prism separates the pump light from the down converted light. The signal
and idler photons have orthogonal polarizations and are separated by a polarizing
beam splitter. In each arm, the light passes through a narrow 40 m vertical slit, a 10
nm spectral filter, and a microscope objective.The objective focuses the transmitted
light onto a multimode fiber which is coupled to an avalanche photodiode
single-photon counting module. The spectral filter ensures that only

Fig.4.4.1(a) [23]. Experimental setup for

measuring position photon correlations.

Position correlations are obtained by

imaging the birth place of each photon

of a pair onto a separate detector.

Fig.4.4.1(b) [23].Experimental setup for

measuring correlations in transverse

momentum.Correlations in transverse

momentum are obtained by imaging the

the propagation direction of each photon

of a pair onto a separate detector.

photons with nearlyequalenergies are detected. To measure correlations in the
positions of the photons, a lens of focal length 100 mm (placed prior to the beam
splitter) is used to image the exit face of the crystal onto the planes of the two slits
[Fig. 4.4.1(a)]. One slit is fixed at the location of peak signal intensity.The other slit



is mounted on a translation stage.The photon coincidence rate is then recorded as
a function of the displacement of the second slit. To measure correlations in the
transverse momenta of the photons, the imaging lens is replaced by two lenses of
focal length 100 mm, one in each arm, a distance f from the planes of the two slits
[Fig.4.5.1(b)].These lenses map transverse momenta to transverse positions, such
that a photon with transverse momentum k comes to a focus at the point x  fk/k
in the plane of the slit. Again, one slit is fixed at the location of the peak count rate
while the other is translated to obtain the coincidence distribution. By normalizing
the coincidence distributions, the conditional probability density functions px2|x1
and pp2|p1 was obtained (see Fig. 4.5.2-Fig. 4.5.3). These probability densities
are then used to calculate the uncertainty in the inferred position or momentum of
photon 2 given the position or momentum of photon 1:

Δx22x1   x22px2|x1dx2 −  x2px2|x1dx2
2
,

Δp22p1   p22pp2|p1dx2 −  p2pp2|p1dx2
2
.

4.5.3

Because of the finite width of the slits, the raw data in Fig. 4.5.2-Fig.4.5.3 describe
a slightly broader distribution than is associated with the down conversion process
itself. By adjusting the computed values of Δx2 and Δp2 to account for this
broadening (an adjustment smaller than 10%), we obtainthe correlation
uncertainties Δx2  0.027 mm and Δp2   3.7mm−1.

Fig.4.5.2.[23].The conditional probability

distribution of the relative birthplace

of the entangled photons.The solid

line are the theoretical prediction and

the dot are the experimental data.

Fig.4.5.3.[23].The conditional probability

distribution of the relative transverse

momentum of the entangled photons.

The solid line are the theoretical

prediction and the dot are the

experimental data.

The widths of the distributions determine the uncertainties in inferring the position
or the momentum of one photon from that of the other. The experimentally
measured variance product is then [23]



Δexpx2
2x1Δexpp2

2p1  0.012. 4.5.4

Also shown in Fig.4.5.2-Fig.4.5.3 are the predicted probability densities. These
curves contain no free parameters and are obtained directly from the two-photon
amplitude Ap1,p2 [23], which is determined by the optical properties of BBO and
the measured profile of the pump beam. Figure 4.5.2 indicates that the correlation
widths was obtained are intrinsic to the down conversion process and are limited
only by the degree to which it deviates from the idealized EPR state (4.5.1).The
value of Δp2  p1 is limited by the finite width of the pump beam. The pump
photons in a Gaussian beam of width w have an uncertainty /2w in transverse
momentum which, due to conservation of momentum, is imparted to the total
momentum p1  p2 of the signal and idler photons. The value of Δx2 − x1 is limited
by the range of angles over which the crystal generates signal and idler photons. If
the angular width of emission is Δ,then the principle of diffraction indicates that the
photons cannot have a smaller transverse dimension than ~ks,iΔ−1.Careful
analysis based on the angular distribution of emission yields
Δx2 − x1  1.88ks,iΔ−1 [23].With the measured beam width of w  0.17mm and
predicted angular width 0.012 rad, the theory predicts [23]:

Δthx2
2x1Δthp2

2p1  0.00362. 4.5.5

Remark 4.5.1.This is somewhat smaller than the experimentally calculated
value of 0.012,

even though the data appear to closely match the theoretical curves.

Δexpx2
2x1Δexpp2

2p1 − Δthx2
2x1Δthp2

2p1  0.012 − 0.00362  0.00642. 4.5.6

Remark 4.5.2.The reason for this discrepancy is that the experimental
distributions have

small (1% of the peak) but very broad wings.
Remark 4.5.3.The origin of this uncoincidence counts is unknown [23].
Remark 4.5.4.In paper [23] it was assumed that this counts are perhaps due to

scattering
from optical components. If these counts are treated as a noise background and
subtracted, the experimentally obtained uncertainties come into somewhat

better
agreement with the theoretically predicted values, yielding an uncertainty

product of
0.0042:

EPRnonloc.x2 − x1,p2  p1  Δexpx2
2x1Δexpp2

2p1 − Δthx2
2x1Δthp2

2p1  0.0062. 4.5.7

Thus final value of uncoincidence counts is

EPRnonloc.x2 − x1,p2  p1  0.0062. 4.5.8

Remark 4.5.5.Note that the separability criterion derived by Mancini et al. [35] is
more

useful here. We remind that it states that separable systems satisfy the joint
uncertainty product



Δx2 − x1Δp2  p1 ≥ 2, 4.5.9

where the uncertainties are calculated over the joint probability distributions
Px1,x2

and Pp1,p2, respectively.
In this experiments the widths of the conditional probability distributions P
Therefore our results constitute a 2-order-of-magnitude violation of Mancini’s

separability
criterion as well as a strong violation of EPR’s criterion.

IV.6.EPR-B experiment
The EPR-B, the spin version of the Einstein-Podolsky-Rosen experiment

proposed by Bohm, see [63],[64]
[64]:"We consider a molecule of total spin zero consisting of two atoms, each of

spin one-half. The wave function of the system is therefore

  1
2
1−2 − −12  

where 1 refers to the wave function of the atomic state in which one particle (A)
has spin /2, etc. The two atoms are then separated by a method that does not
influence the total spin. After they have separated enough so that they cease to
interact, any desired component of the spin of the first particle (A) is measured.
Then, because the total spin is still zero, it can immediately be concluded that the
same component of the spin of the other particle (B) is opposite to that of A.

If this were a classical system, there would be no difficulty in interpreting the
above results, because all components of the spin of each particle are well defined
at each instant of time. Thus, in the molecule, each component of the spin of
particle A has, from the very beginning, a value opposite to that of the same
component of B; and this relationship does not change when the atom
disintegrates. In other words, the two spin vectors are correlated. Hence, the
measurement of any component of the spin of A permits us to conclude also that
the same component of B is opposite in value. The possibility of obtaining
knowledge of the spin of particle B in this way evidently does not imply any
interaction of the apparatus with particle B or any interaction between A and
B.

In quantum theory, a difficulty arises, in the interpretation of the above
experiment, because only one component of the spin of each particle can have a
definite value at a given time. Thus, if the x component is definite, then the y and z
components are indeterminate and we may regard them more or less as in a kind
of random fluctuation.



In spite of the effective fluctuation described above, however, the quantum
theory still implies that no matter which component of the spin of A may be
measured the same component of the spin of B will have a definite and opposite
value when the measurement is over. Of course, the wave function then reduces to
1−2 or −12, in accordance with the result of the measurement.
Hence, there will then be no correlations between the remaining components of the
spins of the two atoms. Nevertheless, before the measurement has taken place
(even while the atoms are still in flight) we are free to choose any direction as the
one in which the spin of particle A (and therefore of particle B) will become definite.

In order to bring out the difficulty of interpreting the result, let us recall that
originally, the indeterminacy principle was regarded as representing the effects of
the disturbance of the observed system by the indivisible quanta connecting it with
the measuring apparatus. This interpretation leads to no serious difhculties for the
case of a single particle. For example, we could say that on measuring the z
component of the spin of particle A, we disturb the x and y components and make
them fluctuate. This point of view more generally implies that the definiteness of
any desired component of the spin is (along with the indefiniteness of the other two
components) a potentiality’ which can be realized with the aid of a suitably oriented
spinmeasuring apparatus.

In the case of complementary pairs of continuous variables, such as position
and momentum, one obtains from this point of view the well known wave-particle
duality. In other words, the electron, for example, has potentialities for mutually
incompatible wave-like and particle-like behavior, which are realized under suitable
external conditions. In the laboratory those conditions are generally determined by
the measuring apparatus although, more generally, they may be determined by any
arrangement of matter with which the electron interacts. But in any case, it is
essential that there must be an external interaction, which disturbs the observed
system in such a way as to bring about the realization of one of its various mutually
incompatible potentialities. As a result of this disturbance, when any one variable is
made definite, other (noncommuting) variables must necessarily become indefinite
and undergo fluctuation".

Evidently, the foregoing interpretation is not satisfactory when applied to the
experiment of ERP. It is of course acceptable for particle A alone (the particle
whose spin is measured directly). But it does not explain why particle B (which
does not interact with A or with the measuring apparatus) realizes its potentiality for
a definite spin in precisely the same direction as that of A. Moreover, it cannot
explain the fluctuations of the other two components of the spin of particle B as the
result of disturbances due to the measuring apparatus.

In this subsection we explain EPR-B experiment using reduction to an sort of
generic EPR correlations for two particles A and B with maximally correlated
position zA and zB.This explanation avoid the EPR-Bohm paradox.



Fig.4.5.1.Einstein-Podolsky-Rosen-Bohm experiment.

Figure 4.5.1 presents the Einstein-Podolsky-Rosen-Bohm experiment. A source
S created in O pairs of identical atoms A and B, but with opposite spins. The atoms
A and B split following the y-axis in opposite directions, and head towards two
identical Stern-Gerlach apparatus EA and EB. The electromagnet EA "measures"
the spin of A along the z-axis and the electromagnet EB "measures" the spin of B
along the z′-axis, which is obtained after a rotation of an angle  around the y-axis.

Remark 4.5.1.So far we have consistently made use of the idea that if we know
something definite about the state of a such physical system, say that we know the
z component of the spin of a spin half particle is Sz   1

2 , then we assign to the

system the state |Sz    1
2 , or, more simply, |.

Remark 4.5.2. We can also note that these two states | and |− are mutually
exclusive, i.e. if atom in the state |, then the result Sz  − 1

2  is never observed,

and furthermore, we note that the two states | and |− cover all possible values for
Sz.

Remark 4.5.3. When we say that we ‘know’ the value of some physical
observable of a quantum system, we are presumably implying that some kind of
measurement has been made that provided us with this knowledge. It is
furthermore assumed that in the process of acquiring this knowledge, the system,
after the measurement has been performed, survives the measurement, and
moreover if we were to immediately remeasure the same quantity, we would get
the same result. This is certainly the situation with the measurement of spin in a
Stern-Gerlach experiment. If an atom emerges from one such set of apparatus in a
beam that indicates that Sz  1

2  for that atom, and we were to pass the atom

through a second apparatus, also with its magnetic field oriented in the z direction,
we would find the atom emerging in the Sz  1

2  beam once again. Under such

circumstances, we would be justified in saying that the atom has been prepared in
the state Sz  1

2 ,etc.

Definition 4.5.1. Assume that atom A has been prepared in the state
Sz  1

2 ,
Sz  − 1

2 ,etc. Then we will say that these events Sz  1
2 , Sz  −

1
2 ,etc.

occurs. We will be denoted these events by symbols Sz  1
2 

A
, Sz  − 1

2 
A
,etc.,



or 1
2 

A
, − 1

2 
A
,etc.

Definition 4.5.2. Assume that we know exactly that atom A in the state
1
2 , −

1
2 ,etc.

Then we will say that these events 1
2 , −

1
2 ,etc. occurs and we will be

denoted these events again by symbols 1
2 

A
, − 1

2 
A
,etc.

Definition 4.5.3. Assume that these events 1
2 

A
, − 1

2 
A
,etc. occurs in point

x  t,x1,x2,x3  t,r ∈ M4 of Minkowski spacetime M4.Then we will be
denoted these

events by symbols 1
2 x

A
, − 1

2 x
A
,etc. or 1

2 tA,zA 
A

, − 1
2 tA,zA 

A
,etc.

Assumption 4.5.1. We claim for any x ∈ M4 that:
1
2 x

A ∈ ℱM4 , − 1
2 x

A ∈ ℱM4 ,etc. 4.5.1

Here ℱM4 is a measure algebra ℱM4  BM4 ,P with a probability measure P,
see

subsection II.2, Definition 2.2.2.
Remark 4.5.4. Note that for any x ∈ M4 and for any atom A these events

1
2 x

A
, − 1

2 x
A

are mutually exclusive, see Remark 4.5.2, and therefore for any x ∈ M4

P 1
2 x

A − 1
2 x

A  0. 4.5.2

Remark 4.5.5. We remind that if an atom is prepared in an arbitrary initial state
|S, then

the probability amplitude of finding it in some other state |S′  is given by

〈S′|S  〈S′|〈|S  〈S′|−〈−|S 4.5.3

which leads, by the cancellation trick to

|S  |〈|S  |−〈−|S 4.5.4

and therefore the states | form a complete set of orthonormal basis states for the
state space of the system.

Suppose we have an n-dimensional quantum system which contains only a
quantum observable with discrete values such as Sz, etc.

II.Then we claim the following:
Qd.I.1. Any given n-dimensional quantum system which contains only a

quantum observable with discrete values such that mentioned above is identified
by a set Qd:

Qd  〈Hd,ℑd,d,ℒ2,1
d ,Gd, |t  4.5.5

where:
(i) Hd that is some finite-dimensional complex Hilbert space,
(ii) ℑd  d,ℱd,Pd that is complete probability space,
(iii) d  n,d that is measurable space ,
(iv) ℒ2,1

d d that is complete space of discrete random variables Xd : d → n



such that


d

‖Xd‖dPd  , 
d

‖Xd‖2dPd   4.5.6

(v) Gd : Hd → ℒ2,1d that is one to one correspondence such that

〈|Qd|  
d

Gd Qd|  dPd  Ed
Gd Qd|  4.5.7

for any | ∈ Hd and for any Hermitian operator with discrete spectrum

Qd : Hd → Hd,
(vi) |t  is an continuous vector function |t  :  → Hd which represented the

evolution of the quantum system Qd.

Qd.I.2. For any |1 , |2  ∈ Hd and for any Hermitian operator Qd : Hd → Hd

such that

1 Qd 2  2 Qd 1  0 4.5.8

valid the equality

Gd Qd|1   |2    Gd Qd|1    Gd Qd|2  . 4.5.9

Remark 4.5.6. Let Sz and Sz− be discrete random variables

Sz
 : d → 1,−1,
Sz
− : d → −1,1 correspondingly such that:

(i) Sz  G|, (ii) PdΔ
1  1,where Δ

1  |Sz  1 ,

(iii) PdΔ
−1  0,where Δ

−1  |Sz  −1

and

(i) Sz−  G|−, (ii) PdΔ−−1  1,where Δ−−1  |Sz−  −1 ,

(iii) PdΔ−1  0,where Δ−1  |Sz−  1 .

4.5.10

Let Qc be any n-dimensional quantum system which contains only a quantum
observable with continuous values. We remind that such quantum system is
identified by a set Q

Q  〈H,ℑ,,ℒ2,1,G, |t , 4.5.11

see subsection I.7.1.
Definition 4.5.4. We define now a composite quantum system Qc,d which

contains both sort of quantum observables by a set Qc,d

Qc,d  Hc,d,ℑc,d,c,d,ℒ2,1
c,d,Gc,d, |t  4.5.12

where:
(i) Hc,d  Hc  Hd that is composite complex Hilbert space,
(ii) ℑc,d  c,d,ℱc,d,Pd that is complete probability space,



with
c,d  c  d,ℱc,d  ℱc ℱd,c,d  c  d,ℒ2,1

c,d  ℒ2,1
c  ℒ2,1

d ,Gc,d  Gc  Gd,
(iii) c,d  n,c,d that is measurable space with с,d  с  d,
(iv) ℒ2,1

c,dd that is complete space of random variables Xc,d : c,d → n such
that


c,d

‖Xc,d‖dPc dPd  , 
c,d

‖Xc,d‖2dPc dPd  , ∈ c,d 4.5.13

(v) Gc,d : Hc,d → ℒ2,1
c,dd that is one to one correspondence such that

〈|Qc,d|  
c,d

Gc,d Qc,d|  dPc dPd  Ec,d
Gc,d Qc,d|  4.5.14

IV.6.EPR-B paradox resolution
The usual conclusion of EPR-B experiment is to reject the non-local realism for

two reasons: the impossibility of decomposing a pair of entangled atoms into two
states, one for each atom, and the impossibility of interaction faster than the speed
of light.

Remark.4.6.1.We find that the EPRB-paradox can be resolved by nonprincipal
and convenient relaxing of the Einstein’s locality principle. That is the "relaxed
locality principle" introduced in subsection IV.1.

Remark 4.6.2.The solution to the entangled state is obtained by resolving the
Pauli

equation from an initial singlet wave function with a spatial extension as [55]:

0rA,rB  1
2
frAfrB|A  ⊗ |−B  − |−A  ⊗ |B , 4.6.1

Remark 4.6.2.The initial wave function of the entangled state is the singlet state
(4.6.1)

with

fr  20
2−

1
2 e
−
x2  y2  z2

40
2

iff ‖r‖ ≤ ,

0 iff ‖r‖  

r  x,y, z,0  1,  1

4.6.2

and where |A  and |B  are the eigenvectors of the operators zA and zB :

zA |A   |A ,zB |B   |B . 4.6.3

Remark 4.6.3.We treat the dependence with y strictly quasiclassically as in
subsection III.4,i.e. with speed −vyA v0,0A for A and vyB v0,0B for B such that



P y  vyA v0,0At ≤   1,

P y  vyA v0,0At    0,

P y − vyB v0,0Bt ≤   1,

P y − vyB v0,0Bt    0,

  1,

4.6.4

where

vyA v0,0A  0A
 v0,vyB v0,0B  0B

 v0,

0A
  cos2

0A

2
,0A
−  sin2

0A

2
,

0B
  cos2

0B

2
,0B
−  sin2

0B

2
.

4.6.5

The wave function rA,rB, t of the two identical particles A and B, electrically
neutral and with magnetic moments 0, subject to magnetic fields EA and EB,
admits on the basis of |A  and |B  four components a,brA,rB, t and satisfies the
two-body Pauli equation

i
∂a,bt
∂t

 − 
2

2m
ΔA − 2

2m
ΔB a,bt  Bj

EAjcac,bt  Bj
EBjdba,dt 4.6.6

with the initial conditions:

a,b0,rA,rB  0
a,brA,rB, 4.6.7

where 0
a,brA,rB corresponds to the singlet state (4.6.1).To obtain an explicit

solution of the EPR-B experiment, we take the numerical values of the
Stern-Gerlach experiment, see subsection III.4

Below we explain the EPR-B experiment by using nonlocal two-body Pauli
equation

 drAdrB  dt −i ∂
#a,bt, t ′,rA,rB

∂t
 − 

2

2m
ΔA − 2

2m
ΔB #a,bt, t ′,rA,rB

Bj
EAjca#c,bt, t ′,rA,rB  Bj

EBjdb#a,dt, t ′,rA,rB  O,

drA  dxAdyAzA,drB  dxBdyBzB

4.6.8

with a boundary condition

 drAdrBzAt1|#t1, t ′,rA,rB|
2  − drAdrBzBt2|#t2, t ′,rA,rB|

2. 4.6.9

One of the difficulties of the canonical interpretation of the EPR-B experiment is the
existence of two simultaneous measurements.By doing these measurements one
after the other, the interpretation of the experiment will be facilitated. That is the
purpose of the two-step version of the experiment EPR-B studied below.

A. First step EPR-B: Spin measurement of A
Consider that at time t0 the particle A arrives at the entrance of electromagnet

EA.



Remark 4.6.5. We assume that a particle A collapses in a magnetic field EA at
some instant t ′ into two particles A and A− ,i.e. the spinor z,y, t collapses in a

magnetic field EA at some instant t ′ into two spinors z,y, t, t ′, and −z,y, t, t ′,
given by Eq.(3.4.9.a)-Eq.(3.4.9.b), see Assumption 3.4.1.

Remark 4.6.6. The particles A and A− stays within the magnetic field for a

time Δt ′ ≤ Δt  Δl
v0 .

Thus after exit of the magnetic field EA, at time t1  t0  t  t, the wave
functions z,y, t0  Δt  t, and −z,y, t0  Δt  t, becomes

rA ,rB− , t0  t  t  frB−  f rA , t|A  ⊗ |−B  4.6.10.a

and

−rA− ,rB , t0  t  t  frB  f −rA− , t|−A  ⊗ |B  4.6.10.b

respectively, with

f r, t  cos 0
2
fx, z − z − utexp i muz


 t

f −r, t  sin 0
2
fx, z  z  utexp i − muz

 −t
4.6.11

where zΔ and u are given by

zΔ 
BB0

′ Δt2

2m
 10−5m, u 

BB0
′ Δt
m  1m/s. 4.6.12

Remark 4.6.7. We deduce that: the beam of particle A is divided into two
A and A− , and the beam of particle B is divided into two B and B− .

Remark 4.6.8. Our first conclusion is: the position of B and B− does not

depend on the spin measurement of A and A−, only the spins are involved. We
conclude from equation (4.6.10) that the spins of A and B− (A− and B )remain

opposite throughout the experiment. These are the two properties used in the
relaxed causal interpretation.

Remark 4.6.9. By "relaxed locality principle" and decoherence it follows that the
interection between A,A− B,and B− is absens, we assume the existance of wave
functions

0
ArA ,0

A ,0
A,0

A−rA ,0
A− ,0

A−,0
BrB,0

B ,0
B,0

B−rB,0
B− ,0

B−. 4.6.13

B. Second step EPR-B: Spin measurement of B
The second step is a continuation of the first and corresponds to the EPR-B

experiment broken down into two steps. On a pairs of particles A,B− and A− ,B

in a singlet state, first we made a Stern and Gerlach measurement on the Aand
A− atom at instant t1 between t0 and t0  t  tD :

t0  t1  t0  t  tD. 4.6.14

Secondly, we make a Stern and Gerlach measurement on the B and B− atom with



an electromagnet EB forming an angle  with EA at instant t2 between t0  t  tD
and t0  2t  tD :

t0  t  tD  t2 ≤ t0  2t  tD 4.6.15

At the exit of magnetic field EA, at time t0  t  tD, the pair of particles wave
functions is given by Eq.(4.6.10.a) and Eq.(4.6.10.b) respectively.Immediately after
the measurements of A and A−, still at time t0  t  tD, the wave functions of B

and B− depends on the measurements  of A respectively such that:

B−/ArB− , t0  t  t1  frB−|−B , 4.6.16.a

and

B/−ArB , t0  t  t1  frB|B . 4.6.16.b

Then, the measurement of B and B− at time t2  t0  2t  tD yields, in this
two-step version of the EPR-B experiment, the same results for spatial quantization
and correlations of spins as in the EPR-B experiment.

Resolution of the EPR-B experiment in de Broglie-Bohm
interpretation by the "relaxed locality principle"

We assume, at the creation of the two entangled particles A and B, that each of
the two particles A and B has an initial wave function with opposite spins:

0
ArA,0A,0

A  frA cos
0A

2
|A   sin

0A

2
ei0

A
|−A  4.6.17

and

0
BrB,0B,0

B  frB cos
0B

2
|B   sin

0B

2
ei0

B
|−B  

frB cos 
2
− 0A

2
|B   sin 

2
− 0A

2
ei0

A−|−B  

0
BrB,0B,0

B  frB sin
0A

2
|B   cos

0A

2
ei0

A
|−B 

4.6.18

with 0B   − 0A and 0
B  0

A − , see Remark 4.6.4. The two particles A and B are
statistically prepared as in the Stern and Gerlach experiment. Then the Pauli
principle tells us that the two-body wave function must be antisymmetric; after
calculation we find the same singlet state (4.6.1):

0rA,A,A,rB,B,B  −eiA frAfrB  |A  ⊗ |−B  − |−A  ⊗ |B . 4.6.19

Thus, we can consider that the singlet wave function is the wave function of a
family of two fermions A and B with opposite spins: the direction of initial spin A
and B exists, but is not known. It is a local hidden variable which is therefore
necessary to add in the initial conditions of the model.

Here, we assume that at the initial time we know the spin of each particle (given
by each initial wave function) and the initial position of each particle.

Step 1: spin measurement of A in de Broglie-Bohm interpretation
In the equation (4.6.19) particle A can be considered independent of B. We can

therefore give it the wave function



ArA, t0  t  t  cos
0A

2
f rA, t|A   sin

0A

2
ei0

A
f −rA, t|−A  4.6.20

which is the wave function of a free particle in a Stern Gerlach apparatus and
whose initial spin is given by 0A,0

A. For an initial polarization 0A,0
A and an

initial position z0
A, we obtain, in the de Broglie-Bohm interpretation [63] of the Stern

and Gerlach experiment, an evolution of the position zAt and of the spin
orientation of A,AzAt, t, see [65].

The case of particles B is different. B follows a rectilinear trajectories with
yBt  vyv0,0t, zBt  z0B and xBt  x0B. By contrast, the orientation of its

spin moves with the orientation of the spin of A:

B∓t   − AzAt, t 4.6.21

and

B∓t  AzAt, t − . 4.6.22

Remark 4.6.10. Let At,rAt,AzAt, t,AzAt, t denote events such
that: "at instant t particle A obtain the position coordinates
rAt  xAt,yAt, zAt and spin orientation At  AzAt, t and
At  AzAt, t. Let B∓t,rB∓t,B∓zB∓t, t denote events such that: "at
instant t particle B∓ obtain the position coordinates rB∓t  xB∓t,yB∓t, zB∓t
and spin orientation B∓  B∓zB∓t, t and B∓zB∓t, t.Then in accordance with
the relaxed principle of locality (see subsection IV.1) we assume that

At1,rAt,A ,At,B∓t,rB∓t,B∓t,B∓ts.l.s. ∈

∈ ℱM4
# ,t1,r1, t2,r2s.l.s.

 , 4.6.23

see subsection IV.1, Definition 4.1.2. We can then associate the wave functions:

BrB , t0  t  t  frBcos
Bt
2

|B  4.6.24

and

B−rB− , t0  t  t  frB− sin
B−t
2

ei
B−t|−B−  4.6.25

This wave functions is specific, because it depends upon initial conditions of A
(position and spin). The orientation of spin of the particles B is driven by the
particles A∓ respectively through the singlet wave functions.

Step 2: Spin measurement of B∓ in de Broglie-Bohm
interpretation
(I) The prediction of the result of the spin measurement of B∓

under assumption of canonical postulate of locality

At the time t0  Δt  tD, immediately after the measurement of A,



B∓t0  Δt  tD   or 0 in accordance with the value of AzAt, t and the wave
functions of B∓ is given by Eq.(4.6.16.a) and Eq.(4.6.16.b) respectively. The frame
Ox ′yz′ corresponds to the frame Oxyz after a rotation of an angle  around the
y-axis (see Fig.4.5.1). B corresponds to the B∓-spin angle with the z-axis, and  ′B

to the B-spin angle with the z′-axis, then  ′Bt0  Δt  tD     or . In this
second step, we are exactly in the case of a particle in a simple Stern and Gerlach
experiment (with magnet EB) with a specific initial polarization equal to    or 
and not random like in step 1. Then, the measurement of B, at time t0  2t  tD),
gives, in this interpretation of the two-step version of the EPR-B experiment, the
same results as in the EPR-B experiment above, III.4.1. Thus we obtain EPR-B
paradox again in de Broglie-Bohm interpretation.

Remark 4.6.11.Note that derivation EPR-B paradox in de Broglie-Bohm
interpretation completely based on canonical postulate of locality

Step 2: Spin measurement of B∓ in de Broglie-Bohm
interpretation
(II) The prediction of the result of the spin measurement of B∓

under assumption of postulate of nonlocality

We assume now a weak or strong postulate of nonlocality,see subsection I.9. At
the time t1  t0  Δt  tD, immediately after the spin measurement of A,
B∓t0  Δt  tD   or 0 in accordance with the value of AzAt, t and the wave
functions of B∓ is given by Eq.(4.6.16.a) and Eq.(4.6.16.b) respectively.

Remark 4.6.12.In accordance with postulate of nonlocality it follows:
(i) Whenever a measurement of the spin of a particle A is performed at instant

t1 and
particle A is found in the state |↑z, i.e., a state |t1 A

collapses at instant t1 to

the state
|↑z,A

with respect of the Heisenberg spin uncertainty relations (1.9.5), then a

state |t1 B−
immediately collapses at instant t1 to the state |↓z,B− with respect of the

Heisenberg spin
uncertainty relations (1.9.5), and this is true independent of the distance in

Minkovski
spacetime that separates the particles,e.g.,

|t1 A

col lapse
 |↑z,A

 |t1 B−
col lapse
 |↓z,B− 4.6.26

In accordance with Heisenberg spin uncertainty relations (1.9.5) spin of a
particle B− obtain

an uncertainty along direction Oz′ (see Fig.4.5.1) and therefore EPR-B paradox
disappears.

(ii) Whenever a measurement of the spin of a particle A is performed at instant



t1 and
particle A− is found in the state |↓z, i.e., a state |t1 A− collapses at instant t1 to

the state
|↓z,A− with respect of the Heisenberg spin uncertainty relations (1.9.5), then a

state |t1 B

immediately collapses at instant t1 to the state |↑z,B
with respect of the

Heisenberg
spin uncertainty relations (1.9.5), and this is true independent of the distance in

Minkovski
spacetime that separates the particles,e.g.,

|t1 A−
col lapse
 |↓z,A−  |t1 B

col lapse
 |↑z,B

. 4.6.27

In accordance with Heisenberg spin uncertainty relations (1.9.5) spin of a
particle B− obtain

an uncertainty along direction Oz′ (see Fig.4.5.1) and therefore EPR-B paradox
disappears.

Physical explanation of non-local influences using the relaxed
principle of locality

From the wave function of two entangled particles, we find spins, trajectories
and also a wave function for each of the two particles. In this interpretation, the
quantum particle has a local position like a classical particle, but it has also a
non-local behavior through the wave function. So, it is the wave function that
creates the non classical properties. We can keep a view of a local realist world for
the particle, but we should add a non-local vision through the wave function. As we
saw in step 1, the non-local influences in the EPR-B experiment only concern the
spin orientation, not the motion of the particles themselves. Indeed only spins are
entangled in the wave function but not positions and motions like in the initial EPR
experiment. This is a key point in the search for a physical explanation of non-local
influences.

The simplest explanation of this non-local influence given above by using the
relaxed principle of locality (see subsection IV.1)

Сonclusion: A new quantum mechanical formalism based on the probability
representation of quantum states is proposed. This paper in particular deals with
the special case of the measurement problem, known as Schrödinger’s cat
paradox. We pointed out that Schrödinger’s cat demands to reconcile Born’s rule.
Using new quantum mechanical formalism we find the collapsed state of the
Schrödinger’s cat always shows definite and predictable outcomes even if cat also
consists of a superposition

cat  c1 live cat  c2 death cat

|c1 |2  |c2 |2  1.



Using new quantum mechanical formalism the EPRB-paradox is considered
successfully. We find that the EPRB-paradox can be resolved by nonprincipal and
convenient relaxing of the Einstein’s locality principle.

Appendix. A.
The time-dependent Schrödinger equation governs the time evolution of a

quantum mechanical system is:

i
∂x, t
∂t

 Hx, t. A. 1

The average, or expectation, value 〈xi  of an observable xi corresponding to a
quantum mechanical operator x i is given by:

〈xi t,x0, t0; 


d

xi|x, t,x0, t0;|2ddx


d

|x, t,x0, t0;|2ddx
.

i  1, . . . ,d.

A. 2

Remark A.1. We assume now that: the solution x, t,x0, t0; of the
time-dependent Schrödinger equation (A.1) has a good approximation by a delta
function such that

|x, t,x0, t0;|2 ≃ 
i1

d

xi − xit,x0, t0,

xit,x0, t0  xi,0,

i  1, . . . ,d.

A. 3

Remark A.2. Note that under conditions given by Eq.(A.3) QM-system which
governed by Schrödinger equation Eq.(A.1) completely evolve quasiclassically i.e.
estimating the position xit,x0, t0;i1

d at each instant t with final error  gives
|〈xi t,x0, t0; − xit,x0, t0| ≤ , i  1, . . . ,d with a probability



P|〈xi t,x0, t0; − xit,x0, t0| ≤  ≃ 1.

Thus from Eq.(A.2) and Eq.(A.3) we obtain

〈xi t,x0, t0; ≃

≃


d

xi
i1

d1

xi − xit,x0, t0ddx


d


i1

d1

xi − xit,x0, t0ddx

 xit,x0, t0.

i  1, . . . ,d.

A. 4

Thus under condition given by Eq.(A.3) one obtain

〈xi,t t,x0, t0; ≃ xit,x0, t0,

i  1, . . . ,d.

A. 5

Remark A.3.Let ix, t,x0, t0, i  1,2 be the solutions of the time-dependent
Schrödinger equation (A.1). We assume now that x, t,x0,y0, t0 is a linear
superposition such that

x, t,x0,y0, t0  c11x, t,x0, t0  c22x, t,y0, t0.

|c1 |2  |c2 |2  1.

A. 6

Then we obtain

|x, t,x0,y0, t0|
2  x, t,x0,y0, t0∗x, t,x0,y0, t0 

 c11x, t,x0, t0  c22x, t,y0, t0 

c1∗1
∗x, t,x0, t0  c2∗2

∗x, t,x0,y0, t0 

 |c1 |2 |1x, t,x0, t0|2  c1∗c21
∗x, t,x02x, t,y0, t0 

|c2 |2 |2x, t,y0, t0|
2  c1c2∗1x, t,x02

∗x, t,y0, t0.

A. 7



Definition A.1. Let 〈xt,x0,y0, t0 be a vector-function

〈xt,x0,y0, t0 : 0,T  d  d  0,T → d

〈xt,x0,y0, t0  〈x1 t,x0,y0, t0, . . . , 〈xd t,x0,y0, t0, A. 8

where

〈xi t,x0,y0, t0  
d

xi|x, t,x0,y0, t0|
2ddx 

 |c1 |2 
d

xi|1x, t,x0, t0|2ddx 

|c2 |2 
d

xi|2x, t,y0, t0|
2ddx 

c1∗c2 
d

xi1
∗x, t,x0, t02x, t,y0, t0d

dx 

c1c2∗ 
d

xi1x, t,x0, t02
∗x, t,y0, t0d

dx.

A. 9

Definition A.2. Let Δt,x0,y0, t0 be a vector-function

Δt,x0,y0, t0 : 0,T  d  d → d

Δt,x0,y0, t0  1t,x0,y0, t0, . . . ,dt,x0,y0, t0, A. 10

where



 it,x0,y0, t0  xit,x0,y0, t0 

 c1∗c2 
d

xi1
∗x, t,x0, t02x, t,y0, t0d

dx 

c1c2∗ 
d

xi1x, t,x0, t02
∗x, t,y0, t0d

dx.

A. 11

Substituting Eqs.(A.11) into Eqs.(A.9) gives

〈xi t,x0,y0, t0  
d

xi|x, t,x0,y0, t0|
2ddx 

 |c1 |2 
d

xi|1x, t,x0, t0|2ddx 

|c2 |2 
d

xi|2x, t,y0, t0|
2ddx   it,x0,y0, t0 

 |c1 |2〈xi t,x0, t0  |c2 |2〈xi t,y0, t0   it,x0,y0, t0.

A. 12

Substitution equations (A.5) into equations (A.12) gives

〈xi t,x0,y0, t0  
d

xi|x, t,x0,y0, t0|
2ddx 

 |c1 |2〈xi t,x0, t0  |c2 |2〈xi t,y0, t0   it,x0,y0, t0

≃ |c1 |2xit,x0, t0  |c2 |2xit,y0, t0   it,x0,y0, t0.

A. 13



Appendix. B.
The Schrödinger equation (2.1) in region I  x|x  0 has the folloving form

2
∂2Ix
∂x2

 2mEIx  0. B. 1

From Schrödinger equation (B.1) follows

2 
−

0
∂2Ix
∂x2

dx  2mE 
−

0

Ixdx  0. B. 2

Let I
#x be a function

I
#x  xIx, B. 3

where

x  rc2
−1/4 exp − x

2

2rc2
B. 4

see Eq.(2.9). Note that

∂2xIx
∂x2

 ∂
∂x

Ix
∂x
∂x

 x
∂Ix
∂x



2
∂Ix
∂x

∂x
∂x

 Ix
∂2x
∂x2

 x
∂2Ix
∂x2

.

B. 5

Therefore substitution (B.2) into LHS of the Schrödinger equation (B.1) gives



2 
−

0
∂2I

#x
∂x2

dx  2mE 
−

0

I
#xdx 

2 
−

0
∂2xIx

∂x2
dx  2Em 

−

0

xIxdx 

22 
−

0
∂Ix
∂x

∂x
∂x

dx  2 
−

0

Ix
∂2x
∂x2

dx 

 
−

0

x 2
∂2Ix
∂x2

 2Em 
−

0

Ix dx.

B. 6

Note that


−

0

x 2
∂2Ix
∂x2

 2Em 
−

0

Ix dx  0. B. 7

Therefore from Eq.(B.6) and Eq.(2.3)-Eq.(2.4) one obtains

2 
−

0
∂2I

#x
∂x2

dx  2mE 
−

0

I
#xdx 

2 
−

0
∂2xIx

∂x2
dx  2Em 

−

0

xIxdx 

 22 
l


∂Ix
∂x

∂x
∂x

dx  2 
l



Ix
∂2x
∂x2

dx.

B. 8

From Eq.(B.6) one obtains



∂x
∂x

 rc2
−1/4 ∂
∂x

exp − x
2

2rc2
 −rc2

−1/4rc−2xexp − x
2

2rc2
,

∂2x
∂x2

 −rc2
−1/4rc−2 exp − x

2

2rc2


rc2
−1/4rc−4x2 exp − x

2

2rc2
.

B. 9

From Eq.(B.9) and Eq.(2.3)-Eq.(2.4) one obtains

2 
−

0
∂Ix
∂x

∂x
∂x

dx 

− 2

rc2
1/4rc2

−

0
∂expikx
∂x

xexp − x
2

2rc2
dx 

− 2 2mE 
rc2

1/4rc2

−

0

xexp i
2 2mE


x exp − x

2

2rc2
dx,

k  2


2mE .

B. 10

and

2 
−

0

Ix
∂2x
∂x2

dx  − 2

rc2
3/4rc2

−

0

expikxexp − x
2

2rc2
dx 

 2

rc2
1/4rc2

−

0

x2 expikxexp − x
2

2rc2
dx.

B. 11



Appendix E. Calculating the spinor evolution in the
Stern-Gerlach experiment

In the magnetic field B  Bx, 0,Bz, the Pauli equation gives coupled
Schrödinger equations for each spinor component

i
∂

∂t
x,y, z, t  − 

2

2m
∇2x,y, z, t  BB0 − B0

′ zx,y, z, t ∓ iBB0
′ x∓x,y, z, t. E. 1

Under transformation

x, z, t  exp 
iBB0t


x,y, z, t E. 2

equation (E.1) becomes

i
∂

∂t
x,y, z, t  − 

2

2m
∇2x,y, z, t ∓ BB0

′ zx,y, z, t

∓iBB0
′ x∓x,y, z, texp i

2BB0t


E. 3

The coupling term oscillates rapidly with the Larmor frequency
L 

2BB0
  1,4  1011s−1. Since |B0| |B0

′ z| and |B0| |B0
′ x|, the period of oscillation

is short compared to the motion of the wave function. Averaging over a period that
is long compared to the oscillation period, the coupling term vanishes, which entails

i
∂

∂t
x,y, z, t  − 

2

2m
∇2x,y, z, t ∓ BB0

′ zx,y, z, t. E. 4

The initial wave function 
0x,y, z  

0x,y, z  x0xy0y
0z with

x0x  20
2−

1
4 e
− x2

40
2 if |x| ≤ 

0 if |x|  

y0y  20
2−

1
4 e
− y2

40
2 if |x| ≤ 

0 if |x|  


0z  20

2−
1
4 e
− z2

40
2 cos 0

2 e
i
0
2 if |x| ≤ 

0 if |x|  

−0z 
20

2−
1
2 e
− z2

40
2 i sin 0

2 e
−i 0

2 if |x| ≤ 

0 if |x|  

E. 5

allows a separation of variables x,y and z. Then we can compute explicitly the
preceding equations for t ∈ 0,Δt.We obtain: x,y, z, t  xx, tyy, tz, t

with



xx, t  2t
2−

1
4 e
− x2

4t
2 exp i


− 
2
tan−1 t

2m0
2  x22t2

8m0
2t2

,

z, t  Kz, tcos 0
2 e

i
0
2 and K  −BB0

′ ,

−z, t  Kz, ti sin 0
2 e

−i 0
2 and K  BB0

′ ,

t2  0
2  t

2m0

2

E. 6

and
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