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In this study we want to propose a heuristic model to compute and to inténprdark
energy content of our universe. To this purpose we include the erassgy of the static
gravitational field and compute itsfect at very small distances. From its analysis, we
obtain for the smallest surface scale for the empty spage2hy/5c3. After that we
show, how this result can be used to compute a natural energf kufor all quantum
fields and study its utility in computing the dark energy density and its implications o
the content of fermionic and bosonic elementary fields. Indeed forattxgum equation
of statew = Pac/pvac WE Obtainw = —1287%/(15AN), whereAN = N; — N, represents the
difference between the number of species of fermions and bosons. Eoalparing
our result with the measured cosmological parameters, we discusafjeoestraints on
the field content beyond the Standard Model of the elementary particles.

1 Introduction a consistent way also in the phenomenological stress energy

A common aspect of many fiérent approaches to quanturﬁensorTﬂV of the Einstein field equations. A first important

gravity such as string theory (seey.[1]), causal sets [2, 3], consequence of this idea, which together with other conside

i . ; ) tions lead to an alternative approach to quantum graeity, i
spin foams [4], causal Qynamlca_l triangulation (CDT) [5, (g‘gainthe existence of a smallest scale. In [22—24] the sstall
and loop quantum gravity [7, 8] is the presence of a smal

est lenath scale. The experimental search of such a sg’a_ele surface is called “metron” and Heim has found for it the
g ) P ret%ultrH = 3hy/8c®. We want here to remind the reader, that

h ined in the last r lot of importan n ncr . ) LT . .
as gained € last years a lot of importance and conc %e Heim discretization is not intended to be a kind of “atom-

. . {
projects have already been started [9, 10]. A first phenomeno_,, of elementary space-time elements as it might seem to
be’ indeed the elementary surfachas to be intended as an

logical review of these approaches to quantum gravity can'Be
internal physical characteristic of extended “structlisasd

found for example in [11-14].

The presence of a smallest scale has usually the advaniage  + oo thought separated from the others. In this con-
to solve the problems associated with infinities, if onestri?ext it can be shown, that a particle can be viewed as a dy-
t_o quantize anon renorr_nahzable theory like g_rawty. In'paﬁamical structure of specific condensed states of “metrons”
ticular quartic divergencies emerge when one interprets d thich correspond to discretized eigenstates of the curwatu

sor. In this approach one can also try to compute patrticle

energy as being originated by quantum fluctuations and
is independent on the curvature. The problem is that, evel lf cces. For example for the mass of the lightest charged par-
e (which is interpreted as electron mamsg one finds the

the final result is finite, it turns out to be anyway many ordeﬁ%I
of magnitudes above the observed value [15]. following formula (see Eq.(32) of [22]):

Interesting new approaches have been developed in the
last years from the point of view of supersymmetry, the renor 32,9473
malization procedure [16,17], the renormalization groop/fl Me = 2 e (1)
[18], the holographic principle [19] and stability conside \ S VTntss
tions concerning the Minkowski space-time [20]. In all such
approaches the results are all improved and some of themwaiteren, = 1/+/1+ 4/7%, s9 = 1m is the unit lengthc is
also able to predict the dark energy with the correct ordertbt speed of light anél = h/2r with h the Planck constant.
magnitude, even if not yet precisely. The derivation of Eq.(1) is not the aim of this work and can
The purpose of our work is to introduce a new method bee found in [22, 23]. A detailed discussion and a possible
precisely predict the dark energy density and to elucidatepphenomenological interpretation of Eq.(1) will be present
nature. As we will show, our approach has implications algoa future work [25].
on the possible field content of dark matter, showing a strict In this work we want first of all to compute the smallest
connection between the two aspects. surface elementincluding only field massféects. To do this
An important point of our investigation is an idea introwe will first review the determination of the modification of
duced by Heim [21], which consists in considering also thlee Newton potential due to field masfeets at small dis-
effects of the field masg = E/c? associated to the energytances. Our result for the smallest surface seatan, after
contentE of the gravitational field generated by a central masiat, be applied to compute explicitely the high energy fiuto
sive body. Accordingly one should include its contribution k. of the quantum fluctuacions, which is generally expected
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to be of the order of the Planck energy. The precise deter-
mination of the cutff k. is what one needs, according to our

approach, for a deeper understanding of dark energy and dark . o
matter. where in the second line we have used the distributional re-

Indeed for the study of the current universe we expldftion V*(1/r) = —4xé with  the Dirac function and where
the usual Friedmann equations for a spacially flat univetdg have performed the change of variables 4/3xr*. Now
reported in Eqs(21) and, similarly as in [20], compute tHEseemsxea.sonable to normalize the co_ntrlbgtlon of thd fiel
dark energy contribution to the stress teriBgrentirely from mas;V ’ G_W'th th? factor 9+, 6 = 15. Atthis point we notice
guantum fluctuations on this curved background. This pomtat !fwe include in Eq.(2) field mas:ﬁfegts, then we can_put
will be explained in detail in Section 4 together with the AgN€ first term to zero because 0 every time thai(r) and its

pendix. To avoid the quartic divergence of the large fitg spacial derivative are flerent from zero. Inversely we have
we also assume, that the Minkowski space is statgejtis 1t if we could neglect the field mass € 0), then the case

imposed as a general principle to have a vanishing vaculim 0 becomes in a distributional sense possible and only the

energy, as it should be. This implies that the contributid¥St trm in Eq.(2) should be retained. The former case rep-

of the flat space-time has always to be subtracted from fﬁéents the situation we are interested in with the inctusfo

vacuum energy derived from the quantum fluctuations alsd il mass éewcts, while the last one is the usual Newtonian

a general curved space-time. We will show that accordih@'t' ) . . _ .

to our interpretation of the result, we can compute the dark N this way we arrive at a generalized field equation pro-

energy density in very good agreement with the actual m&esed for the gravitational field in a static system:

surements. In addition we will also obtain a prediction fo t

equation of state parameter of the dark enesgy p,ac/Ovac

from first principles using the computed cfftk.. The com-

parison with the current measuremens will show, that everWﬂth

it is not yet possible to discriminate between “quintess&nc 1 d2u(r)  _du(r)

(-1 < w < -1/3) and “phantom-energy’u( < —1) , it is o= 1—5(9V avz * W) 4)

still generally possible to constrain the field content,rfiki

the diference between the number of species of fermions and

Z?esrﬁgﬁa'\:y:p:rfﬂagg'w/zcﬁZL?r;?m;? the géagggrgeﬂggiu?f” the influence of the field mass is considered and with
M =

= —drym(r)s(r) +

(ov

VG =

QIS

: ®3)

a = (20",

result provides also a way to determine the minimal amount on = —Md(r);  an = (4my) 7, (5)
of additional degrees of freedom, which can contribute & th
dark matter. recovering the usual Poisson equation of the Newtonian case

The paper is organized as follows. In Section 2 we expldfru and its derivatives can be considered small enough to be
in detail the computation for the modified Newtonian poteneglected.
tial due to the inclusion of field massfects. The derivation ~ The presence of a gravitational figllassociated to cen-
of the smallest surface elementis then shown in Section 3.tral spherical source with radiug and massr is from our
The application of these results for the computation and ga6int of view not a possibility but a necessity and this sdoul
planation of the nature of the dark energy from vacuum fluge reflected in the fact that it is somehow produced by an
tuations and the possible influence of the result on the fié&hergetic conveniencei’e. a reduction of the system en-
content of dark matter beyond the Standard Model followsémngy. Hence we can write for the enerdy £ m(r)c?) of the
Section 4. Finally we write our conclusions in Section 5. mass-field system up to a radial coordinafeom the center:

. . . . . . r
2 The inclusion of the field mass in the static potential M) = myc - a f G2 dv ©)
In this section we want to include théects of the inclusion 2 Jr,

of the field mass on the Newtonian poten#ial= ym)/r 0f & e |ast term in this equation represents the field energy and

central massiyo), wherey is the usual gravitational constantys optained from Eqgs.(3,4) in complete analogy to the energy
we denot.e. thg field mass Wind. we then assume I P'O%t the static electrical field. Now remembering ti&t W:
duces a modification of the Newtonian poten#iglleading to Eq.(6) becomes

a function of the formp = ym(r)/r, wherem(r) = my) + u(r).

According to this definition we obtain for the Laplacian oper 2 , a (7 2V .
2 2 2 r = - = 8
atorv? = £ + £ 1 £ that me = me - 5 | () @)
2. 2 y d?u(r) Now performing the first derivative, taking into accountttha
Vig = ym(n)v (F) + T dr2 @) ¢ = ym(r)/r and that for a spherical symmetric function
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(V4)2 = (dg/dr)2, we obtain easily the following tfieren-
tial equation for the static potential

dp\? 2 do ~
(I’ a) + 27'[‘)/(} (I’ a) + ¢ =0. (8)
This nonlinear dierential equation can be easily solved view

ing it as a quadratic equation with respecrd®/dr, whose
solutions are:

3210"
28107
7

2410

2107

Heims (lower line) and
Newtons (upper line) potential

dg c? 8rya
ra__47rya[1i 1- 2 ¢]. 9)

With help of the following substitution,

B 8rGa

g=1+4/1 =

¢, (10)

one can straightforward rewrite Eq.(9) as:

(dRa-q?) _
dr

which according tax/x = dIn(x) can be simplified to

-20, (11)

din(rqe™) =0, (12)

or equivalently to
rqe 9 = A, (13)

where the integration constafthas been introduced.

16107
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Fig. 1: Comparison of the Newtons potentig (upper line) with the Heim
potentialy defined implicitly by Eq.(15) fomg) = 1kg including relativistic
and field massféects. The unit for the radial distancés 10-1°m,

This last result needs few words: First of all we notice that
very often for a macroscopic high density collapsing system
one can neglect the field mass such timit) ~ myg) and

@ = an = (4ny)L, according to Eq.(5). In this case we obtain
for the smallest radius of a relativistic collapsing systens
2ym)/c?, which is equal to the well known Schwarzschield
radius of the general relativity. Considering also field snas

We want now to fix the sign in Eq.(10) and the consta@ffects typical of high density microscopic systems like par-

Ain Eq.(13). Assuming that for — o, ¢ — 0, we ob-

ticles, we have for = r_ thatq = 1 and thatr = (20ry)%,

tain immediately that the negative sign in Eq.(10) is theyoriccording to Eq.(4). In this case we get from Egs.(13,14),
possibility. This follows from the fact that with this cheic thatr- = eA= edry’amyg)/c? = eymp)/5¢%, showing by
q — 0 whenr — o and only in this case remains our ascomparison with Eq.(16) also thair_) = emg)/2.

sumption consistent with the fact that in Eq.(18)s a nu-

In Figure 1 we compare for a masgy = 1kg the New-

merical constant. As far as the determination of the comsté@ns potential with the Heim potentiglincluding both rela-
Ais concerned, we can fix it requiring that the classical Newvistic and field massféects. We notice that significant de-

ton potentialg, = ym)/r will be reproduced ifp/c? < 1.
Accordingly expanding Eq.(13) to the first orderdpc?, we
obtain for the constari:

4ny’a
Cz

Arya

C2 ¢n=

A=rgef=r (14)

Mo)-

Summarizing, we obtain for the relativistic gravitatioatdtic
potentialy = ym(r)/r including field massféects the follow-
ing implicit equation:

ya 2
(1_ 1_8n)’a¢e/—8’c’—2¢—1:m_@. (15)

c? c?

From this last equation we can easily determine the smallest
Indeed this is:_;

allowedr-valuer_ from its reality condition.
fulfilled by Eq.(15), whenp < ¢?/(8rya), which means that

B 8ry2am(r_)

r=r 2

: (16)
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viation accrue down to distances around 4t well below
current experimental limits (seeg.[11, 26, 27] and refer-
ences therein).

3 The smallest surface scale

Following the same approach adopted in [22], we want now
to derive the smallest surface elemenEq.(16) fixes a lower
limit r_ for the radial coordinate due to relativistic and gravi-
tational field massféects and thus does not represent a small-
est length for the empty space-time, because it vanishés wit
the massn. However a microscopic mass system should also
be characterized by its quantum behavior, which becomes im-
ortant at the scale of the corresponding Compton waveiengt
= h/(m¢g). Conversely we have that in this case for a van-
ishing mass. diverges. Hence if we are looking for a good
definition of the smallest surfacefor the empty space with
a vanishing masm, we see that the productr turns out to
be well defined. In this way we arrive finally at the following



definition forr: remind the reader that according to the Friedmann equations
2hy  4n ,

— i .= gy _ ay? 8y
IR &) - 3¢

where we have used Eq.(16) and the second of Eq.(4) and (é)z P —@p 21)
wherelp = 4/fiy/c3 is the well known Planck length. Taking a a cz "
the measured values of the constaramdh into Eq.(17), we one can easily check that
find

7 ~ 6,56536- 107 "°n?, (18) . _3(§) Oonc+ D) 22)

Puac g Prac hac)s

Substituting this numerical value faiinto the Heim mass
formula Eq.(1), we findne = 0.5082MeV/c?, a result which This implies that puttingd.ac = wpuac With w = —1, for the
is 0,55% below the measured value. We notice here that Qdicuum energy equation of state one satisfies simultaneousl
result for the smallest surface scale of Eq.(1#jets by a the constraintg,sc = 0 and< T, >= —puacg,y and hence

factor 1615 from the one obtained by Heim in [22] as alaiso v+ < T,, >= 0 with V,, the usual covariant derivative.
ready mentioned in the Introduction. The correspondig prene result computed in [20] is:

diction for the electron mass would in this caserng =

0.5137IMeV/c?, which is this time 053% above the mea- gc ((a¥ _a
sured value. The origin of this fierence is due to additional Poac = 81y ((5) + 25) (23)
assumptions concerning possible speculative contribsitio
the rotor of the gravitational fiel@. with 3
In any case there is to our knowledge no better theoretical g= # ANK, (24)
7T

prediction of the electron mass from first principles tham th

one given in Eq.(1) and for this reason we assume reasond¥igreAN = N¢ — Ny is the diference between the number
of species of fermions and bosons drdis an UV-cutdf.

Imin = VT (19) The reader can find in the Appendix a detailed derivation of
Eq.(23). Now substituting,ac = wpuac With p,ac given by
to be also a good definition for the minimal length, for esti;q_(zg) into the second of Egs.(21), remembering that far no
mating the natural cutbfor the quantum fluctuations. Indeegeg|ativistic mattemm, = 0 and neglecting the relativistic radi-
to this purpose we propose to substitute in the usual uncgfon density, which is a factor 10-5 smaller than the total

tainty principleAx - Ap > 7/2 the position uncertainthx energy density, one can very easily check that
with lin of EQ.(19 )and the momentum uncertaimty with

the UV momentum cutd k./c. In this way and assuming 1

a minimal uncertaicy for the higher energy fluctuations, we v= g (25)
obtain He 5 Ep Cle:_;lrly this result i; c_onsistem with .the assu_mptions 612
ke = 2vi V=2 (20) outlined at the beginning of this section onlyif= 1.
In our study we relax the constraigt= 1 of [20] allow-
whereEp = +/7ic5/y is the Planck energy. ing more general and exotic possibilities, which deviatesf
the usual cosmological constant vacuum energy scenaitio wit
4 A possible description of the dark sector w = —1. Obviously, according to the actual experimental

In this Section we want to investigate the cosmological copbservations, a realistic description of the dark energy im
sequences of our result obtained in Eq.(20). A few years difses that the deviations gffrom the unity are expected to

a hew approach in Considering the Zero_point energy ﬂuchf. small. Indeed taklng recent fits from the observations of
ations of the quantum fields has been proposed in [20]. AlyPe la supernovae dynamics [28, 29] of the HZSN and the
cording to their method it was possible to obtain a conststéhe SCP collaborations we can estimate that

formula for the computation of the cosmological dark energy A )
density p,ac entirely from vacuum energy quantum fluctua- (5)t=t0 ~ 0.58Hg, (26)
tions. The basic additional principles of the authors in][20

are that the empty Minkowski space should be gravitationaheret, is the actual time anHly the actual Hubble constant.
stable p,ac = 0), that our universe is spatially flat and that th@ne can check this result for example computing the time
vacuum stress energy tensor should have the forf}, >= derivatives of the fitting function for the scale facit) in
—pvacguy With pac = 0. These are the usual properties a&q.(26.82a) in the book of Thomasiifer [30]. Although
sumed in the Standard Model of Cosmology, th€ DM- this is only a qualitative argument, because the specifexfitt
model, for the cosmological constant. Following [20], wiinction of [30] is model dependent, it provides anyway a
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plausible estimation of the correct value. Substitutinig thexp[ V1= QnoHo(t - to)]. For the case & ¢g < 1 we have
result in Eq.(23), and using the usual definition for theéeait that the scale factay(t) rapidly expands and diverges in the
densitypco = 3c?H3/(8ry), we obtain finite timet = 2g/[3(1 — g) V1 — QuoHo] + to, producing a
“Big Rip” as it is well known in the case that dark energy is
Quaco = Praco g- 1+2-058 ~g-07, 27) phantom energy [33]. o .
Pco 3 After that we come back to the physical interpretation of

which with g ~ 1 is in quite good agreement with recenllzrq'(24)' First of all we substitute the cpmputed resultfmﬂ
analysis from CMB measurements [31, 32], considering tf#éiﬂ ke of Bq.(20) into Eq.(24) and with Eq.(25) we obtain
experimental uncertainties in Eq.(26). 12872

We have already shown that Eq.(23) satisfies the second W= -7 (34)
of Egs.(21) with the identificatiop = —1/w. We want now _ . . . ' .
to discuss the solution of the first of Eqs.(21) for the scaT@'S IS the main resu!t of our paper. We can AN ”y'”g
parametea(t) in the more general cager 1. To this purpose to satls_fy the °_°”Stfa'“” - —1as accurgtely as possible.
we put the expression of the vacuum energy given in Eq.(£¥5¢0rding to this point of view, we would find that,
into the first of of Egs.(21) and thus we get the following

differential equation for the scale factt):

w=-10026 for AN =84, (35)

22 2.4 0 expecting for this case at least 24 additional fermionic de-
(1 - %) (—) - Eg_ = HS—'QO, (28) grees of freedom. In [20] the authors have shown that for the
a a a Standard Model of elementary particla®sy = 60. This

where as usualdmo = pPmo/pPco, Pm = pmo/a and where Possibility would suggest phantom energinterpretation of

Qrado has been again neglected. Performing now the charig@ dark energy and Eqgs.(22) would gjvg. > O.
of variables, Finally we notice, that both the result for the equation of

w(@) = ad’, (29) Statépac = wpiac predicted in Eq.(35) and the dark energy
, ) _ . density obtained by Eq.(27) are in agreement with the exper-
one has that Eq.(28) becomes a first order linefiledintial jental measurements. However with the actual uncertain-
equation inw, whose solution is given by ties it is not yet possible to discriminate all the possilai
aboveAN ~ 82 and belowAN ~ 92. Furthermore according
to the result found in [22] that we discussed below Eq.(17),
where the usual initial conditiors, = a(to) = 1 andw, = We would have the range betweal ~ 78 andAN ~ 86.

w(ag) = H2 have been imposed. According to this result argence, considering also this possibility, we expect attleas
treating Eq.(29) as a separable variablétedéntial equation, 18 fermionic degress of freedom beyond the Standard Model.

w(@) = QmoH3 + (1 - Qmo)a®/H?, (30)

we can rewrite and integrate it as follows: They include po_ssibly three right-handed neutrinps respon
ble for the neutrino masses and three spig-fiermion con-
a da tributing to the dark matter. For this last discussion weehav
=Ho(t-t0), (31) i i
0 Quoa ® + (1— Quo)a -39 compared with the central valueswfreported in chapter 27
of [35].

again with the initial conditiorag = a(tp) = 1. This integral

represents the general solution to the Friedmann equati&nsConclusions

with the presence of matter withy, = 0 and dark energy with symmaryizing, we have firstly reviewed the computation of
wp = —1/g as expected by consistency. To our knowledgge modified Newtonian potential coming from the inclusion
there is not a simple general analytic expression that soly¢ the so called field masdfects. This fullfills also a gap
the integral in Eq.(31) foy # 1. However a very simple jn the literature, because the original works were written i
solution can be obtained at early times <« a), when the German [22, 23] and we have also taken the opportunity to
universe was matter dominated, and at later tinaes-(a0), correct some typos present in the original version. With-
when the universe will be dark energy dominated: out any additional assumption and limiting ourselves to the
small distance féects, we could find for the smallest surface

2/3. )

() o . a<ag ] (32) elementr = 2hy/5¢ of the empty space-time. Imposing
3(g-1) Ey _ this result to the scale length of the quantum fluctuations we

ay(t) o (14 2 V1 = QuoHo(t - to) » (33) computed a natural UV-cutiok, for the modes of the zero

as ag. point energy findind. = Ep;/4V5/x, whereEp = /Ac®/y

is the Planck energy. Substituting this result into the for-

Consistently in the limity — 1 we obtain the later timesmula of Bernard and LeClair for the cosmological constant
behavior of theACDM model according to whicta(t) « given in [20], we obtained the result = —128/(157°AN)

P. Bolzoni. On the smallest Surface Scale and Dark Energy 5



for the dark energy equation of stapg,. = wp.ac, Where a time dependent function. Substituting the Fourier irgkgr
AN = N¢—N, is the diference between the number of speci@sto Eq.(40) one obtains far, the following equation:

of fermions and bosons. we found also that and— 1, 0026

with AN = 84. More generally comparing with the recent ex- (07 + wi ) ug(t) = 0. (43)
perimental determinations af [35], we found that the num-

ber of additional fields beyond the Standard Model shouhi the so called “adiabatic limit” one assumes that the time
at least include 18 fermionic degrees of freedom (implyiritgpendence abya can be neglected in our actual universe
AN = 78), just enough to have three massive neutrinos el one can easily find the solution to Eq.(43), which is
three additional A2-spin, explaining the dark matter. We ,

found also that\N, according to the actual experimental con- Up(t) = ug g lwat, (44)

straints, should be bounded from above by 92. . .
After that performing a Legendre transformation of the La-

Appendix grangian in the action foy Eq.(38) and substituting Eq.(41)

In this Appendix we compute the result for the vacuum ofpgether with Eq.(44) into it, one finds for the Hamiltonian

ergy from quantum fluctuations given in Eq.(23). We start
with the action of a single bosonic field on a curved back- HP®
ground:

[ ((atx)z v 2P+ (07 ﬂ))(z) (45)

1 f 3 i i

5 | Pkwya(@a, +aal). (46)

sh = fdtd3x \/—_g% (-0 9,0 - mP0%),  (36) 2 : K
Repeating a similar computation for a fermionic field one

whereg is the determinant of metrig,,. We take as back- gptains

groung the FLRW-metric in the case of a spacially flat uni-

1 U
verse H' = > f d*k wiga(bibg - bl—(»bg). (47)

_ _ A2 2 2
ds’ = —dt* + &(Y(dx + dy” + d2), (37) We introduce now the usual commutation (anticommuta-
thus implying that,, = diag(-1, &, a?,a2) and that thay = tion) relations for bosons (fermions):
-al. Before proceeding with the canonical quantization of ,
the field, we first perform the change of variaple- y/a%?, + _{ T}_ ° o _f X kwyx
in oder to remove the time dependence appearing in the meel—ak’ al?’] = B bk7 =3k —K) = (27r)3e| ’

sure of the integral action coming frogn Indeed in this way

one obtains after some algebra that the action in Eq.(36) ¥éere we have also added the integral representation of the
comes Dirac function. Remembering thagfvac >= blvac >= 0 for

the vacuum stateac > and using the relations in Eq.(48) one
1 15
8= [[atcg (02 - (TP - (P - ), () S

1 53(0
where pféi’o =3y < vadH™Pjpac >= i%o) fd?’kwk, (49)

Lo A
A= %((g) + 22) (39)
where the change of variablés— k/a has been performed
The Corresponding equation of motion for the fl@l& then and where+ has to be chosen for bosons anchas to be
chosen for fermions. According to the last equality in E§)(4

(48)

1
Oy - ;VZX + (m? — Ay = 0. (40) one has thats(0) = Vo/(2r)? and Eq.(49) becomes
i i er i : oy _ L
:Q//(iasiie(z:v;/rrll\';zr?a()nv;/ rtrtweeaZEIrt,: as a Fourier integral with a rela Pve(m)o - i f APk wi. (50)

3 d3k IR o (e R Now as mentioned in the Introduction, one has to subtract
X= (2n)32wi/a (a'?ulz(t) * al_(,uz(t)e ) (41) " from it the contribution from the flat space-timéi(= 0) and
the vacuum energy contributions to dark energy becomes:

2 1
wﬁ/a=§+mz—ﬂ, (42) pi’gi):i@f&k(«/kunﬁ—ﬂ— \/k2+mZ), (51)

whereal'z,aﬁ are the usual creation ang annihilation OPergiare Eq.(42) has been used. Finally rememberingffiat
tors of a particle state with momentuknand whereu;, is k?dksin(@)ddde, introducing the large cufbk. to regulate the

where

6 P. Bolzoni. On the smallest Surface Scale and Dark Energy



integral and consideriniy; fermionic andNy, bosonic fields, 21.

one obtains at the leading order

22.

ANKCA .

et (62

f
Pvac = Ntpyac + Nbpzk;)ac =

23.

whereAN = N¢ — N, and where the additional terms are all
suppresed by powers of . As a last step one can easily
check that Eq.(52) coincides with Eq.(23).
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