
 14 Dec 2016  

1 

 

Mendeleev-like Tables of Elementary Particles 
 

M. J. Germuska  

Retired, 47 Clifden Road, Worminghall, HP18 9JR, UK.  

mgermuska@aol.com, phone: +(44) 1844 339754 

 

Abstract 

The Vir Theory of Elementary Particles provides a formula for the relationship between mass and spin. Using this 

formula the masses of over 200 particles were calculated with such accuracy that the errors from the actual masses 

are entirely attributable to the mass measurement errors. The particles come from 16 families including the lightest 

family N and the heaviest family Y. For each family of particles considered there is one or more Mendeleev-like 

table where the columns have increasing spin and the rows increasing mass, in such a way that the diagonal cells 

have the same predicted mass. The empty cells should in future be filled by new particles.  
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1. Introduction 

 

As far as we know all matter is made up from three elementary particles: proton, neutron and electron. 

However there are over 200 other elementary particles found in the cosmic rays and collisions in particle 

accelerators that are too short-lived to be components of any chemical elements. They have very few 

fundamental properties, namely: mass, spin and electric charge. Since the discovery of these short-lived 

particles attempts have been made to find the relationship between mass and spin, for this would shed 

the light also on the nature of proton and neutron. However, all efforts thus far have failed.  

 

In the early 1960s three quarks u, d and s were postulated to be the components of elementary particles 

and were assigned masses in such a way that the masses of the known spin ½ particles p, , ,  agreed 

with the sum of their constituent quarks with the precision of 0.1% - 6% error. However, using the same 

quarks the masses of spin 1 particles K, , ,  disagreed by 20% - 60% error.  

 

Later a formula was found that provided the correction to the particle mass using the reciprocal quark 

masses which greatly improved the accuracy to about 1%. However, as more particles were discovered 

some of them had the same constituent quarks but different masses and thus the mass correction 

formulas became inadequate.  

 

To avoid this problem an assumption was made that quarks have not only electric charges but also 

similar charges with much stronger forces. Instead of + and – charge there were three varieties and they 

were usually referred to as red, green and blue. This area of research was named Quantum 

Chromodynamics (QCD) [1].  

 

With the discovery of more and more particles QCD also ran into problems. The current belief is that 

quarks have much smaller masses than originally thought and the masses of particles are mostly due to 

the kinetic energy of quarks orbiting inside particles. All that can be said about mass and spin is that in 

a given family of particles the mass of the lightest particle in each spin increases with the spin, due to 

the increasing orbital energy of quarks required for increasing particle spin.  

 

The Vir Theory of Elementary Particles [2] provides a formula for the relationship between mass and 

spin. Using this formula the masses of 209 particles were calculated with such accuracy that the errors 

from the actual masses are entirely attributable to the mass measurement errors. Since the formula does 

not yet include the effect of the electric charges on mass, as for example in proton/neutron or -/ 0/ +, 

we use on such occasions the average mass based on the extreme minimum and maximum mass limits.  
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The formula for the mass m provided by the Vir Theory of Elementary Particles is as follows   

 

      122  csbm                 (1.1) 

 

where s is the particle spin and c is the number of particle parts with spin ½ that rotate in the opposite 

direction to the particle spin, i.e. integers 0, 1, 2, 3, etc. The parameters b and  are obtained by a 

purpose-written computer programme so as to give the smallest possible sum of the squared errors.  

 

For each family of particles considered there is one or more Mendeleev-like table with different 

parameters b and . The columns have increasing s and the rows increasing c. The variables s and c 

describe the particle structure, in analogy to Mendeleev tables describing the atomic structure. The 

implication of this structure is that an empty table cell should in future be filled by a new particle. We 

see from the formula above that for the pairs (s, c) with the same sum s + c the mass is the same. Thus 

the cells arranged diagonally in the table have the same predicted mass.  

 

The following 16 particle families are included: N, , , , , a, f, K, c, c, c, D, Ds, X, , Y. 

They include the lightest family N and the heaviest family Y. Out of all particles involved that have 

more than one mass measurement with the latest measurement taken within the last 12 years only 12 

particles do not appear in the tables, possibly because they have originally been misplaced.  

 

Each table is determined by the constants b and  which may seem like a lot of “arbitrary” constants. 

However the constant b is the predicted mass of the lightest particle in the family with spin 1, hence 

there is nothing arbitrary about it. It turns out that the constants  are not arbitrary either because when 

we multiply b by  we get approximately the constant  ≈ 0.3868 GeV. This constant was determined 

by regression with the correlation factor R2 = 0.9995 and the probability that using the given data this 

may happen at random P = 10-55. Hence there is only one empirically derived constant, which may well 

reflect a deep property of the relativistic ether.  

 

From the mass formula we can easily obtain a formula for m1/. This is useful for plotting graphs because 

m1/ is linear in s for a given value of c. The slope is the same for all values of c so that a graph consists 

of parallel lines intersecting the spin axis at ½ and at one spin intervals extending into negative values. 

A horizontal line on such a graph intersects all sloping parallel lines, showing that particles of all spin 

may have the same mass. Similarly, a vertical line going through a point of positive spin s also intersects 

sloping parallel lines, showing that particles of a given spin may have several masses.  

 

Sufficient information to understand how formula (1.1) comes about is provided in the next section, 

here is just a very brief outline. Using the Euler equation for the motion of rotating bodies it is found 

that a symmetric solid of rotation which is not perfectly circular but slightly elliptical precesses in such 

a way that the axis of spin describes a circular but sinusoidal trajectory. After one rotation it returns to 

its initial state only if the ratio of its moments of inertia Ix/Iz is an integer or half integer.  

 

It has been proven mathematically using the Euler-Lagrange equations that the symmetric concave 

spinning top with the minimum moment of inertia has the shape of twin vortices with the common spin 

axis connected at the large ends. Vir theory assumes that hadrons are such vortices in relativistic ether. 

Such vortices self-destruct on completion of one revolution, unless the start and end of the circular wave 

are in phase. Thus only vortices for which Ix/Iz is an integer or half integer survive. The lowest possible 

ratio of Ix/Iz is for a planar disk with Ix/Iz = ½ and this leads to the spin of such vortices being quantised. 

Working out the integrals for the mass and the moments of inertia leads directly to formula (1.1).  

 

The fact that vortices give least resistance to spinning gives Vir theory the same solid mathematical 

foundation as have all theories founded on the principle of least effort, i.e. least action. These theories 

include Optics, Newtonian Mechanics, Special Relativity, General Relativity and Quantum Mechanics.  
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2. Theoretical background 

 

The Vir Theory of Elementary Particles is described in detail in paper [2]. Here we will outline only 

those features that are relevant to this paper. It has been proven mathematically using the Euler-

Lagrange equations that the symmetric concave spinning top with the minimum moment of inertia, i.e. 

with the least resistance to spinning, has the shape of a solid of rotation generated by the profile function 

r(z) called Vir [3].   
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The parameter a gives the size, if z = a then r = a and vice versa, while the parameter  gives the shape. 

It has also been shown experimentally [4] that water and air vortices have the Vir shape with observed 

values of  = [0.6, 2.5].  

 

Vir Theory of Elementary Particles assumes that particles are symmetric twin vortices in the relativistic 

ether, i.e. consisting of two vortices spinning about a common axis that are joined at the large ends. For 

the purpose of calculating the volume, mass and the moments of inertia we can treat a particle as a 

symmetric solid of revolution generated by the profile function r(z) in (2.1).  

 

Since for symmetric twin vortices r(z) = r(-z) it is sufficient to consider r(z) only on the interval [0, Z] 

where Z is the height of a vortex half. For a profile curve r(z) the expressions for mass m and the 

moments of inertia around axes z and x, i.e. Iz and Ix are 
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Since the shape of the vortices is the solid of rotation around axis z generated by the profile function 

r(z) the moment of inertia around axis y is the same as around axis x. For a Vir with an infinite radius 

r(z) at z = 0 the evaluation of the above integrals gives us  
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Using the formulas above we find the following formula for mass m  

 

      12  bm                       (2.8) 

 

where  is the particle spin in the units of h, i.e. an integer or half integer, 1/2, 1, 3/2, 2, 5/2, etc. 
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When we know the parameters b and  we can find the corresponding parameters a and   
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The relation (2.9) between Ix, Iz and  comes about by considering a particle as a spinning top and 

applying to it the Euler equations of motion for rotating bodies. A spinning top that is not perfectly 

circular but slightly elliptical, like hurricanes, precesses in such a way that the axis of spin describes a 

circular but sinusoidal trajectory. Such a spinning top in air or water generates a circular wave that on 

completion of one revolution is in phase only if  is an integer or half integer. Only under these 

conditions the wave does not destroy itself. Furthermore, the smallest possible value of  is ½ which 

corresponds to a planar disk, which we can roughly imagine as a paper disk spinning on a needle though 

its centre, or as the Saturn ring.  

 

For a solid spinning top with a known moment of inertia Iz and angular velocity  the angular 

momentum about axis z is simply Iz times . However, for a vortex there is no angular velocity, 

different parts of a vortex rotate at different angular velocity. Thus Vir theory postulates that the angular 

momentum of a particle, i.e. its spin, is  in (2.9) measured in the units of h.  

 

To complete the outline of the theory we will need one more formula, namely the dependence of the 

height (depth) Z on    
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Since  and  are dimensionless quantities we have the height in the units of the parameter a.  
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The mass formula (2.8) can be modified to take into account the structure of particles. Figures 1 and 2 

show the structure of a baryon and a meson, the baryon has  = 2.5 and the meson has  = 3. The 

parameter  is the spin of a particle when the entire particle rotates in the same direction. The horizontal 

lines in figure 1 show the heights for a baryon with  = 0.5, 1.5 and 2.5. The line through the centre is 

the baryon disk with spin 0.5 but (virtually) no mass, which on its own cannot constitute a hadron. The 

horizontal lines in figure 2 show the heights for a meson with  = 1, 2 and 3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     FIGURE 1. Baryon      FIGURE 2. Meson 

 

To obtain a baryon with spin 0.5 we assume that it has the shape, height and mass of  = 1.5, but the 

disk rotates in the opposite direction. This is because in the absence of the disk the spin would be 

reduced by 0.5 and with the disk rotating in the opposite direction the spin is reduced by another 0.5. 

We find a similar phenomenon in hurricanes where the visible part (warm air) rises up from the ground 

(or sea) rotating anticlockwise, but when it ascends above the hurricane it suddenly turns and rotates 

clockwise. We can extend this idea, by rotating not only the disk but the adjacent parts in the opposite 

direction to the end parts we can obtain baryons spin 0.5 with the mass corresponding to  = 2.5, 3.5, 

etc. This way for a given baryon   we can obtain also any half integer spin s smaller than .  

 

Similarly we can obtain a meson spin 0 starting with  = 2 and have the ends rotating in the opposite 

direction to the middle section. We can do this starting from any even . However, when  is odd then 

we can do it only if we are prepared to accept asymmetrical particles, where the top and bottom may 

have a different rotation pattern. For example the top rotating in the opposite direction to the bottom. 

More generally, if we wish to keep particles symmetrical we can obtain an even spin particle only from 

an even  and odd spin particles only from an odd .  

 

The horizontal lines in figures 1 and 2 separate the particles into notional “slices” with spin ½. The 

slices that rotate in the opposite direction to the particle with spin s are called “contras” and the number 

of contras is denoted by the variable c. The relationship between , s and c is as follows 

 

    cs        i.e.  cs              (2.15) 

 

Substituting this into the mass formula (2.8) we obtain 

 

      122  csbm                    (2.16) 

 

The formula above allows one family of particles to have particles with the same mass but different 

spin and vice-versa, for a given spin there may be particles with different masses.  
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3. Particles data and error processing 

 

Comprehensive data about elementary particles are kept by the international organisation “Particles 

Data Group” (PDG) on a website hosted by the University of California [5]. Each particle for which 

credible data have been published has its own section in the “Particle Listings”. Particles for which 

more accurate information has been compiled, usually including: “best mass estimate”, “minimum 

mass”, “maximum mass”, “spin” and “parity” appear also in the “Particles Summary”. The mass 

estimates are based on the published measurements that are included in the Particles Listings. The 

values of the best mass, min mass and max mass are not derived by purely statistical means, but also 

other considerations such as the overall consistency. For example, the values for  particles take into 

consideration the values of  particles that appear together in many reactions. The net result of such 

adjustments is that the best mass may not be the average of the min and max limits, hence the limits 

cannot be interpreted as the statistical standard deviation. In some extreme cases a mass limit coincides 

with the best mass, as for example in the case of (1830) where the best mass = max mass = 1830MeV.  

 

In this paper, when the predicted mass falls outside the PDG limits we wish to estimate the seriousness 

of this departure. To do so we define the “relative prediction error” (RPE) that is the ratio of two 

distances from the best mass, namely the distance of the predicted value divided by the distance of the 

minimum or the maximum mass, as appropriate. In the example given above this can lead to an infinite 

RPE. In cases where the mass limits are less skewed, RPE is finite but may be equally unacceptable. 

Therefore when the predicted mass is outside the PDG limits we compute the standard deviation using 

the measurements in the PDG Listings. The computation method [6] gives the standard deviation that 

is usually smaller because by convention the error limits are those of the standard error, which is smaller 

than the standard deviation by the factor 1/√N, where N is the number of measurements. We use the 

same method also for the particles for which there are no PDG limits, which applies to a vast majority 

of the particles not included in PDG Summary.  

 

The PDG website is thoroughly updated every even year and partially updated every odd year. Most of 

the changes are small enough not to make a significant difference to our results. However, occasionally 

there are some very significant changes. For example for (1405) the best mass was 1407.0 MeV in 

2004, 1406.0 in 2008, and 1405.1 in 2015, meanwhile the max mass decreased to 1406.4, which is 

smaller than the best mass in 2004! This paper uses the data updated in 2015, which being only a partial 

update may not always be most consistent. Therefore when we encounter RPE > 1 we first try the data 

from 2008 before resorting to computing the standard deviation.  

 

As a rule unflavoured and strange hadrons with the mass greater or close to 3000 MeV appear only in 

PDG Listings without any limits, spin, parity and our computation usually results in an extremely large 

standard deviation, giving RPE < 1 for an unacceptably large range of values. There are seven such 

particles which due to the lack of reliable data will be excluded from any further consideration.  

 

The theory on which the predicted mass is based does not yet consider the effect of the electric charge 

on the mass. Thus for particles that involve more than one charge versions we use the extreme min and 

max mass limits and take the average as the best mass estimate. Thus for example proton and neutron 

are combined into nucleon N{939} and into {1193}. This gives the relative min, max ±error 

0.069% for N and 0.343% for .  

 

The predicted masses for a PDG family of particles depends entirely on two parameters b and  in 

formula (2.14). We use a purpose written MATLAB programme to obtain these parameters. Essentially, 

the programme minimises the sum of the squared RPEs, i.e. it obtains the best fit to the actual values.   

 

  



 14 Dec 2016  

7 

 

 

4. Table of baryons N1 

 

On the graphs below the best PDG mass is marked by a blue circle for the positive parity and a red 

diamond for the negative parity. The min and max masses are marked by + signs. The headings give 

particle names and prediction errors, i.e. the ratios of the distances from the best mass to the prediction 

line and to the PDG minimum or maximum. The bottom prediction line with the intercept -0.5 

corresponds to the second row of the table. The higher lines correspond to the lower rows. Thus N(1650) 

with spin 0.5 on the top line has error +0.89, it is positive since the prediction line is above the particle.  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

         FIGURE 3. Positive parity N1    FIGURE 4. Negative parity N1 

 
Size Spin Shape 

b = 0.651 0.5  2.5  4.5 5.5 6.5 7.5  = 0.528 
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0 
zero  

 
+  

 

P 
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r 

i 

t 

y 

 

mass - 
 

1 
N{939}  N(1680) N(1990) N(2220)    + 

  N(1675)  N(2250)    - 
 

2 

 N(1720) N(2000)    N(2700)  + 

 N(1700)  N(2190)  N(2600)   - 
 

3 

        + 

N(1650)  N(2060)      - 
 

4 

        + 

       unlikely - 

 

TABLE 1. Mendeleev-like table of baryons N1 

 

Summary limits re-computed: N(1680), N(2220) 

Listings limits re-computed:  

Listings limits 1st-computed: N(1990), N(2060), N(2700) 
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5. Table of baryons N2 

 

Not all nucleon particles fit the predicted mass graph on the previous page. In fact almost an equal 

number fit the predicted mass on the graph below, with different b and . The heavy particles with high 

spin N(2700) and N(2600) have considerable measurement errors spanning two prediction lines, which 

may indicate that the measurements used by PDG may involve more than one particle.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        FIGURE 5. Positive parity N2              FIGURE 6. Negative parity N2 

 
Size Spin Shape 

b = 1.220 0.5  2.5  4.5 5.5 6.5 7.5  = 0.308 
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0 
zero  N(1860)      +  
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mass N(1520)  N(2190)     - 
 

1 
 N(1900)     N(2700)  + 

N(1535) N(1875)    N(2600)   - 
 

2 
N(1880)        + 

N(1895) N(2120)       - 
 

3 

N(2100) N(2300)       + 

        - 
 

4 

        + 

       unlikely - 

 

TABLE 2. Mendeleev-like table of baryons N2 

 

Summary limits re-computed: N(1535) 

Listings limits re-computed:  

Listings limits 1st-computed: N(1880), N(1895), N(2100), N(2120), N(2700) 

  

Summary particles missing: N(1440), N(1710) 

Listings particles missing: N(2040), N(2570) 
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6. Table of baryons 1  

 

The prediction lines correspond to the rows in the table. The diagonals in the table rising from left to 

right correspond to the notional horizontal lines in the diagrams. Each such line corresponds to a fixed 

mass value. For example, the diagonal cells containing particles  (1910), (1900), (1920), (1905), 

(1930), (1950) are all on one horizontal graph line that runs between their minima and maxima, 

except for (1905), that has RPE = +1.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

           FIGURE 7. Positive parity 1    FIGURE 8. Negative parity 1 

 
Size Spin Shape 

b = 0.933 0.5  2.5  4.5 5.5 6.5 7.5  = 0.401 
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0 
 Δ{1232}  Δ(1950)  Δ(2420)   +  

 

P 

a 
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y 

 

        - 

 

1 
 Δ(1600) Δ(1905)  Δ(2300)    + 

  (1930)  (2400)  (2750)  - 

 

2 
 Δ(1920)  Δ(2390)     + 

(1620)        - 

 

3 
Δ(1910)        + 

(1900)  (2350)      - 

 

4 
        + 

(2150)        - 

TABLE 3. Mendeleev-like table of baryons 1   

 

Summary limits re-computed: (1905), (1950) 

Listings limits re-computed:  

Listings limits 1st-computed: (2150), (2300), (2350), (2390), (2400), (2750) 

 
Summary particles missing: (1700) 

Listings particles missing: (1750), (1940), (2000), (2200) 
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7. Table of strange baryons 1  

 

Lambda particles have strangeness = -1, same as sigma particles. They differ mainly because spin 0.5 

{1116} is neutral, while spin 0.5 {1193} has three charge varieties. As a result the measurement 

errors for lambda are of the order of magnitude smaller. This is beyond the accuracy of our model, 

which at present ignores the effect of the charge on the mass. Therefore for {1116} we use the same 

relative measurement errors as for {1193}. In Vir theory only neutral particles have inherent parity 

(left or right handed) and both variety have the same mass. The table below has three such pairs 

highlighted in thicker border.  (2585) is shown in black because PDG has not assign it the parity.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       FIGURE 9. Positive parity 1    FIGURE 10. Negative parity 1 

 
Size Spin Shape 

b = 0.813 0.5  2.5  4.5 5.5 6.5 7.5  = 0.451 
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 - 

 

1 
{1116}  (1820) (2020) (2350)    + 

 (1520) (1830) (2100)  (2585)   - 

 

2 
(1600) (1890) (2110)      + 

        - 

 

3 
(1810)        + 

(1800) (2050)       - 

 

4 
        + 

 (2325)       - 

 

TABLE 4. Mendeleev-like table of strange baryons 1   

 

Summary limits re-computed: (1820), (2100), (2110), (2350);  

{1116} limits proportional to {1193}. 

Listings limits 1st-computed: (2020), (2325), (2585) 
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8. Table of strange baryons 2 

 

As in the case of nucleons not all lambda particles fit the predicted mass graph on the previous page. A 

much smaller number of particles fit the predicted mass on the graph below, with different b and . 

Particle (2000) is shown in black because PDG has not been able to assign it the parity.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

            FIGURE 11. Positive and negative parity 2 

 

 
Size Spin Shape 

b = 0.688 0.5  2.5  4.5 5.5 6.5 7.5  = 0.515 
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 - 
 

1 
   (2020)     + 

        - 
 

2 
        + 

(1405)  (2000)      - 
 

3 
(1710)        + 

        - 
 

4 
        + 

        - 

 

TABLE 5. Mendeleev-like table of strange baryons 2   

 

 

Summary limits re-computed: (1405) limits proportional to {1193}.  

Listings limits re-computed:  

Listings limits 1st-computed: (2000), (2020) 

 
Summary particles missing: (1670), (1690)  

Listings particles missing:  
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9. Table of strange baryons 1  

 

Sigma particles have strangeness = -1. This table contains spin 1.5 particle (1385) that played a pivotal 

role in uncovering the Decuplet pattern which in turn lead to the concept of the strange quark. It has 

very small measurements errors showing as a single line in figure 12. Particles (2250), (2455) and 

(2620) are shown in black because PDG has not been able to assign them the parity.  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        FIGURE 12. Positive parity 1    FIGURE 13. Negative parity 1 

 

 
Size Spin Shape 

b = 1.080 0.5  2.5  4.5 5.5 6.5 7.5  = 0.354 
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0 
 (1385)  (2030)  (2455)   +  
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t 

y 

 

  (1775) (2100) (2250)  (2620)  - 
 

1 
 (1770) (2070)      + 

        - 
 

2 
        + 

(1750)        - 
 

3 
(2000)        + 

        - 
 

4 
        + 

        - 

 

TABLE 6. Mendeleev-like table of strange baryons 1   

 

 

Summary limits re-computed: (2030) 

Listings limits re-computed:  

Listings limits 1st-computed: (1770), (2000),(2070), (2100), (2455), (2620) 
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10. Table of strange baryons 2 

 

Not all sigma particles fit the table on the previous page. In fact an equal number fit the predicted mass 

on the table below, with different b and . In Vir theory charged particles have no inherent handedness, 

instead in reactions adjust their spin orientation so as to preserve the total angular momentum. Thus 

measurement may produce different mass for plus and minus parity, as shown in the table for two such 

pairs highlighted by thicker borders.  

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      FIGURE 14. Positive parity 2             FIGURE 15. Negative parity 2 

 

 
Size Spin Shape 

b = 0.656 0.5  2.5  4.5 5.5 6.5 7.5  = 0.520 
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 - 
 

1 
    (2250)    + 

  (1690)    (2620)  - 

 

2 
 (1670) (1915)      + 

 (1670)       - 

 

3 
(1660) (1940)       + 

        - 

 

4 
(1880)        + 

(1900) (1940)       - 

 

TABLE 7. Mendeleev-like table of strange baryons 2   

 

Summary limits re-computed:  

Listings limits re-computed:  

Listings limits 1st-computed: (1670), (1690), (1880) 
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11. Table of strange baryons 3 

 

Neither of the two previous tables include spin 0.5 particle {1193} that played a pivotal role in 

uncovering the Eightfold Way which in turn lead to the concept of the strange quark. This third sigma 

table is less populated than the previous two, but it has seven particles that fit very well, especially 

considering the very small measurement errors of {1193} showing as a single line in figure 16. This 

is similar to (1385), another key particle concerning the strange quark in figure 12.   

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      FIGURE 16. Positive parity 3               FIGURE 17. Negative parity 3 

 
Size Spin Shape 

b = 0.906 0.5  2.5  4.5 5.5 6.5 7.5  = 0.398 
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 - 
 

1 
{1193} (1560)   (2250)  (2620)  + 

 (1580)       - 
 

2 
 (1840) (2080)      + 

        - 
 

3 
        + 

        - 
 

4 
        + 

        - 

 

TABLE 8. Mendeleev-like table of strange baryons 3   

 

Summary limits re-computed:  

Listings limits re-computed:  

Listings limits 1st-computed: (1560), (1580), (1840), (2080)  

 
Summary particles missing:  

Listings particles missing: (1620), (1730), (1480) 
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12. Table of strange baryons 1  

 

Xi particles have strangeness = -2. Particles  are much fewer than in the previous families, however 

they still have a reasonably good fit. The table contains spin 0.5 particle {1318} that together with 

{1193} played a pivotal role in uncovering the Eightfold Way which in turn lead to the concept of the 

strange quark. The measurement errors of {1318} are very small showing as a single line in figure 18.  

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 18. Positive and negative parity 1 

 

 
Size Spin Shape 

b = 1.000 0.5  2.5  4.5 5.5 6.5 7.5  = 0.391 
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 - 
 

1 
{1318}  (2030)  (2500)    + 

 (1690)  (2250)     - 
 

2 
        + 

        - 
 

3 
        + 

        - 
 

4 
        + 

        - 

 

TABLE 9. Mendeleev-like table of strange baryons 1   

 

Summary limits re-computed: (1690) 

Listings limits re-computed:  

Listings limits 1st-computed: (2250), (2500) 

 
Summary particles missing:  

Listings particles missing:  

 

  



 14 Dec 2016  

16 

 

 

13. Table of strange baryons 2 

 

The Xi table on the previous page does not contain spin 1.5 particle (1530) which is included here. 

This particle also played a pivotal role in uncovering the Decuplet pattern which in turn lead to the 

concept of the strange quark. This table has only one less particle than the previous and the graphs are 

very similar. As in the case of (1318) in figure 18  the measurement errors for (1530), are very small 

showing as a single line in figure 19.  

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 19. Positive and negative parity 2 

 

 
Size Spin Shape 

b = 1.080 0.5  2.5  4.5 5.5 6.5 7.5  = 0.354 
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0 
 (1530)  (2120)     +  
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  (1950)  (2370)    - 
 

1 
        + 

        - 
 

2 
        + 

        - 
 

3 
        + 

        - 
 

4 
        + 

        - 

 

TABLE 10. Mendeleev-like table of strange baryons 2   

 

Summary limits re-computed: (1950) 

Listings limits re-computed:  

Listings limits 1st-computed: (2120), (2370) 

 
Summary particles missing: (1820) 

Listings particles missing: (1620) 
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14. Table of  mesons a1 and 1  

 

Unflavoured mesons a and  belong to the same family and for historic reasons a have even spin while 

 have odd spin, although there may be one or two peculiar exceptions. Being unflavoured mesons, in 

our theory their top and bottom parts have the same structure. This means that for an odd  we can have 

only odd spins, while for an even  we can have only even spins. Thus 3(1690) and 1(1700) may have 

the same mass with different spin, since they both have odd spin. However, there cannot be a particle 

with the same mass and spin 2, as indicated in the table below in row two by grey shading.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

        FIGURE 20. Positive parity a1    FIGURE 21. Negative parity 1  

 

 
Size Spin Shape 

b = 0.775 0  2  4 5 6 7  = 0.483 
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0 
  a2(1320)  a4(2040)  a6(2450)  +  
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y 

 

 {775}  (1690)  (2350)   - 

 

1 
   

 
+ 

   - 

 

2 
        + 

 (1700)       - 

 

3 
 

 

+ 

 - 
 

4 
        + 

        - 

 

TABLE 11. Mendeleev-like table of mesons a1 and 1    

 

Summary limits re-computed:  

Listings limits re-computed:  

Listings limits 1st-computed: (2350) 
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15. Table of  mesons a2 and 2 

 

Not all a and  particles fit into the table on the previous page. Those few that don’t are shown in the 

graphs and in the table below. By the rules described on the previous page particle a0(1450) having an 

even spin should not be allowed because it has the same mass as 1(1450) with odd spin. However, a 

spin zero particle can always have the same mass as a particle with a higher spin, since it can be obtained 

by the top and the bottom rotating in the opposite way. This exception is indicated in the table below.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

FIGURE 22. Positive and negative parity a2 and 2 

 
Size Spin Shape 

b = 0.980 0  2  4 5 6 7  = 0.370 
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 - 

 

1 
a0(980)        + 

 (1450)       - 
 

2 
a0(1450) 

 
+ 

 - 
 

3 
        + 

        - 
 

4 
 

 
+ 

 - 

 

TABLE 12. Mendeleev-like table of mesons a2 and 2  

 

Summary limits re-computed:  

Listings limits re-computed:  

Listings limits 1st-computed:  

 
Summary particles missing:  

Listings particles missing:  

 

  Particle a1(1260) included in PDG Summary is ignored because normally a particles have even spin.  
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16. Table of  mesons f1 and 1  

 

Unflavoured mesons f and  belong to the same family and for historic reasons f have even spin while 

 have odd spin, although there may be one or two peculiar exceptions, as in the case of a and  family. 

Again, these particles can occupy only every other graph line and in consequence only every other row 

in the table. Spin zero particles are an exception to this rule, as demonstrated in this family by the 

presence of f0(500), and f0(1370).  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

        FIGURE 23. Positive parity f1    FIGURE 24. Negative parity 1  

 

 
Size Spin Shape 

b = 0.782 0  2  4 5 6 7  = 0.469 
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0 
  f2(1270)  f4(2050)  f6(2510)  +  
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y 

 

 (785)  (1670)  (2250)   - 
 

1 
f0(500) 

 
+ 

 - 
 

2 
f0(1370)  f2(1950)      + 

 (1650)       - 
 

3 
 

 

+ 

 - 
 

4 
        + 

        - 

 

TABLE 13. Mendeleev-like table of mesons f1 and 1    

 

 

Summary limits re-computed: 1(782), f2(1270), f4(2050), f6(2510) 

Listings limits re-computed:  

Listings limits 1st-computed:  
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17. Table of  mesons f2 and 2 

 

There are considerably more particles f than  and as a result in the table below we have the same 

number of f particles as in the table on the previous page but not a single  particle. This table confirms 

that with the exception of spin 0 particles the other particles can occupy only every other row.  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

FIGURE 25. Positive and negative parity f2 and 2 

 

 
Size Spin Shape 

b = 1.010 0  2  4 5 6 7  = 0.375 
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0 
  f’2(1525)      +  
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        - 
 

1 
f0(980) 

 
+ 

 - 
 

2 
f0(1500)  f2(2010)  f4(2300)    + 

        - 
 

3 
 

 

+ 

 - 
 

4 
  f2(2340)      + 

        - 

 

TABLE 14. Mendeleev-like table of mesons f2 and 2    

 

Summary limits re-computed: f0(1500), f2(2340) 

Listings limits re-computed:  

Listings limits 1st-computed:  

 
Summary particles missing: (1420), f0(1710), f2(2300) 

Listings particles missing: fJ(2220) (J stands for spin 2 or 4) 

 

  Particles f1(1285), f1(1420) in PDG Summary are ignored because normally f particles have even spin. 
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18. Table of strange mesons K1 

 

All K particles have strangeness = +1. This mesons displays a very different pattern to the unflavoured 

mesons, in as much that the particles may occupy every table row, as shown in table 15 below. A 

possible explanation is that they have symmetrical shape as other particles, but are asymmetric in such 

a way that the top part may have a different structure to the bottom part. Thus if we consider a particle 

where every part rotates the same way and then make the top part of the centre rotate in the opposite 

direction this would reduce the spin of the particle by 1 unit, but retain the same shape and mass.  

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    FIGURE 26. Positive parity K1     FIGURE 27. Negative parity K1 

 

 
Size Spin Shape 

b = 0.893 0  2  4 5 6 7  = 0.417 
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0 
  K*(1430)  K*(2045)    +  
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y 

 

 K*(892)  K*(1780)  K*(2380)   - 

 

1 
 K(1400)       + 

 K*(1410) K(1770)      - 

 

2 
K*(1430)  K*(1980) K(2320)     + 

K(1460)        - 

 

3 
        + 

  K(2250)      - 

 

4 
        + 

        - 

 

TABLE 15. Mendeleev-like table of strange mesons K1   

 

Summary limits re-computed: K1(1400), K2
*(1980), K2(2250) 

Listings limits re-computed: K3(2320), K0(1460) 

Listings limits 1st-computed:  
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19. Table of strange mesons K2 

 

As with most particle families already considered one table does not usually account for all the known 

particles belonging to a family. This second table of strange mesons confirms the pattern found in the 

table on the previous page, namely that the particles are not confined to every other table row, as can 

be seen on the table below.  

  

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

         FIGURE 28. Positive and negative parity K2 

 
Size Spin Shape 

b = 0.496 0  2  4 5 6 7  = 0.736 
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0 
        +  
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y 

 

        - 

 

1 
        + 

K{495}    K(2500)    - 

 

2 
 K(1650)       + 

 K*(1680)       - 

 

3 
        + 

        - 

 

4 
        + 

        - 

 

TABLE 16. Mendeleev-like table of strange mesons Kx   

 

Summary limits re-computed: K1
*(1680) 

Listings limits re-computed:  

Listings limits 1st-computed:  

 
Summary particles missing: K1(1270), K2(1820) 

Listings particles missing: K0
*(1950) 
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20. Table of charmed baryons c1 

 

The families of charmed particles, with one or two exceptions, are much smaller than the plain and the 

strange families. The family c consist of only six particles. As most families already shown, this one 

is also split into two tables, which consequently are very sparse.  

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        FIGURE 29. Positive and negative parity c1 

 

 
Size Spin Shape 

b = 2.01 0.5  2.5  4.5 5.5 6.5 7.5  = 0.183 
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        +  
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        - 
 

1 
c(2286)   c(2940)     + 

        - 
 

2 
        + 

c(2595)        - 
 

3 
        + 

        - 
 

4 
        + 

        - 

 

TABLE 17. Mendeleev-like table of charmed baryons c1   

 

 

Summary limits re-computed: c(2940)  

Listings limits re-computed:  

Listings limits 1st-computed:  
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21. Table of charmed baryons c2 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 30. Positive and negative parity c2 

 
Size Spin Shape 

b = 1.64 0.5  2.5  4.5 5.5 6.5 7.5  = 0.227 
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        - 
 

1 
        + 

        - 
 

2 
   c(2765)     + 

        - 
 

3 
        + 

 c(2625)       - 
 

4 
  c(2880)      + 

        - 

 

TABLE 18. Mendeleev-like table of charmed baryons c2   

 

Summary limits re-computed:  

Listings limits re-computed:  

Listings limits 1st-computed:  

 
Summary particles missing:  

Listings particles missing:  
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22. Table of charmed baryons c1 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 31. Positive and negative parity c1 

 

 
Size Spin Shape 

b = 2.17 0.5  2.5  4.5 5.5 6.5 7.5  = 0.180 
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        - 
 

1 
c(2455) c(2765)       + 

        - 
 

2 
        + 

c(2800)        - 
 

3 
        + 

        - 
 

4 
        + 

        - 

 

TABLE 19. Mendeleev-like table of charmed baryons c1   

 

 

Summary limits re-computed: limits for c(2455), c(2765) proportional to {1193}. 

Listings limits re-computed:  

Listings limits 1st-computed:  

 
Summary particles missing: c(2520)  

Listings particles missing:  
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23. Table of charmed baryons c1 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 32. Positive and negative parity c1 

 

 
Size Spin Shape 

b = 2.20 0.5  2.5  4.5 5.5 6.5 7.5  = 0.168 
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        - 
 

1 
c(2469)  c(2980) c(3123)     + 

        - 
 

2 
        + 

c(2790)        - 
 

3 
        + 

        - 
 

4 
        + 

        - 

 

TABLE 20. Mendeleev-like table of charmed baryons c1   

 

 

Summary limits re-computed: limits for all four particles proportional to {1193}. 

Listings limits re-computed:  

Listings limits 1st-computed:  
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24. Table of charmed baryons c2 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 33. Positive and negative parity c2 

 

 
Size Spin Shape 

b = 1.79 0.5  2.5  4.5 5.5 6.5 7.5  = 0.219 
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        - 
 

1 
        + 

        - 
 

2 
 c(2645)   c(3080)    + 

        - 
 

3 
        + 

 c(2815)       - 
 

4 

        + 

        - 

 

TABLE 21. Mendeleev-like table of charmed baryons c2   

 

 

Summary limits re-computed:  

Listings limits re-computed:  

Listings limits 1st-computed:  

 
Summary particles missing: ’c{2576}, c(3055) 

Listings particles missing: c(2930)  
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25. Table of charmed mesons D1 

 

 

 

 

 

 

  

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 34. Positive and negative parity D1 

 

 
Size Spin Shape 

b = 1.87 0  2  4 5 6 7  = 0.201 
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        - 

 

1 
   D(2750)     + 

D(1876)        - 

 

2 
D(2400)        + 

        - 

 

3 
        + 

        - 

 

4 
        + 

        - 

 

TABLE 22. Mendeleev-like table of charmed mesons D1   

 

 

Summary limits re-computed:  

Listings limits re-computed:  

Listings limits 1st-computed:  
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26. Table of charmed mesons D2 

 

 

 

 

  

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 35. Positive and negative parity D2 

 

 
Size Spin Shape 

b = 1.54 0  2  4 5 6 7  = 0.242 
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1 
    D(2600)    + 

 D(2007)       - 

 

2 
  D(2460)      + 

        - 

 

3 
        + 

        - 

 

4 
        + 

        - 

 

TABLE 23. Mendeleev-like table of charmed mesons D2   

 

 

Summary limits re-computed:  

Listings limits re-computed: D(2600) 

Listings limits 1st-computed:  

 
Summary particles missing: D1(2420)  

Listings particles missing: D(2550), D*(2640)  
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27. Table of charmed mesons Ds1 

 

 

 

 

 

  

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 36. Positive and negative parity Ds1 

 

 
Size Spin Shape 

b = 1.97 0  2  4 5 6 7  = 0.199 
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        - 

 

1 
 Ds(2460)       + 

Ds(1968)        - 
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        + 

 Ds(2700)       - 

 

3 
        + 
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TABLE 24. Mendeleev-like table of charmed mesons Ds1   

 

 

Summary limits re-computed: limits for all three particles proportional to {1193}. 

Listings limits re-computed:  

Listings limits 1st-computed:  
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28. Table of charmed mesons Ds2 

 

 

 

 

 

  

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 37. Positive and negative parity Ds2 
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TABLE 25. Mendeleev-like table of charmed mesons Ds2   

 

 

Summary limits re-computed:  

Listings limits re-computed:  

Listings limits 1st-computed:  
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29. Table of charmed mesons Ds3 

 

 

 

 

  

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 38. Positive and negative parity Ds3 
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TABLE 26. Mendeleev-like table of charmed mesons Ds3   

 

 

Summary limits re-computed:  

Listings limits re-computed:  

Listings limits 1st-computed:  

 
Summary particles missing: D*s(2112), Ds2(2573)  

Listings particles missing:  
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30. Table of charmonium mesons X1 

 

 

 

 

 

  

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 39. Positive and negative parity X1 
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TABLE 27. Mendeleev-like table of charmonium mesons X1   

 

 

Summary limits re-computed:  

Listings limits re-computed:  

Listings limits 1st-computed:  
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31. Table of charmonium mesons X2 

 

 

 

  

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 40. Positive and negative parity X2 
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TABLE 28. Mendeleev-like table of charmonium mesons X2   

 

Summary limits re-computed:  

Listings limits re-computed:  

Listings limits 1st-computed:  

 
Summary particles missing:  

Listings particles missing: X(3823), X(4020), X(4230)   

 

  



 14 Dec 2016  

35 

 

 

32. Table of charmomium mesons c1 and c1  

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 41. Positive and negative parity 1 and 1  
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TABLE 29. Mendeleev-like table of charmed mesons 1 and 1  

 

 

Summary limits re-computed: limits for all four particles proportional to {1193}. 

Listings limits re-computed:  

Listings limits 1st-computed:  
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33. Table of charmonium mesons c2 and c2  

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 42. Positive and negative parity 2 and 2  
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TABLE 30. Mendeleev-like table of charmed mesons 2 and 2  

 

 

Summary limits re-computed: limits for all particles except (4040) proportional to {1193}. 

Listings limits re-computed:  

Listings limits 1st-computed:  
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34. Table of charmonium mesons c3 and c3  

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 43. Positive and negative parity 3 and 3  
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TABLE 31. Mendeleev-like table of charmed mesons 3 and 3  

 

Summary limits re-computed: limits for all particles proportional to {1193}. 

Listings limits re-computed:  

Listings limits 1st-computed:  

 
Summary particles missing: c0(1P){3415}  

Listings particles missing:  
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35. Table of beuatonium mesons b1 and Y1  

 

 

 

  

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 44. Positive and negative parity b1 and Y1  
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TABLE 32. Mendeleev-like table of beautonium mesons b1 and Y1  

 

 

Summary limits re-computed: b0(1P)(9859), b1(1P)(9892) limits proportional to {1193}. 

Listings limits re-computed:  

Listings limits 1st-computed:  
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36. Table of beuatonium mesons b2 and Y2  

 

 

 

  

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 45. Positive and negative parity b2 and Y2  
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TABLE 33. Mendeleev-like table of beautonium mesons b2 and Y2  

 

 

Summary limits re-computed: b2(1P)(9912), b0(2P)(10232) limits proportional to {1193}. 

Listings limits re-computed:  

Listings limits 1st-computed:  
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37. Table of beuatonium mesons b3 and Y3  

 

The mass errors indicated by a pair of + signs are vastly magnified on the graph with the straight lines. 

The true errors are shown on the graph with the curved lines where the pairs of + merge into one + sign. 

This is more visible here than on other graphs because the mass exponent 1/ ≈ 26 which is very high.  

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   FIGURE 46. Straight lines b3 and Y3          FIGURE 47. Curved lines b3 and Y3 
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TABLE 34. Mendeleev-like table of beautonium mesons b3 and Y3  

 

Summary limits re-computed:  

Listings limits re-computed:  

Listings limits 1st-computed:  

 
Summary particles missing:  

Listings particles missing:  
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38. Analysis of the prediction errors 

 

In section 2 we considered the quality of PDG data and pointed out that the mass limits for a particle 

are not obtained purely by statistical means. Therefore in situations where RPE is outside the PDG 

limits (26 particles) or the limits are absent (31 particles) we compute the standard deviation using the 

experimental results given in PDG Listings. This seems to correct the most skewed PDG limits and 

judging by the table below on the whole the PDG limits may be considered as the standard deviations.  

 

Table 35 below shows the distribution of the absolute values of the Relative Prediction Errors for the 

plain and strange particles. The bottom line shows the percentages for the normal Gaussian random 

errors distribution. These percentages are very similar for the distribution of our relative prediction 

errors, hence these errors are almost entirely due to the random mass measurements errors.  

 

   

Table 

Name 

Number of 

Particles 

Absolute Values of RPE 

(0, 1] (1, 2] (2, ∞) 

     

       N1 14 14 0 0 

       N2 13 13 0 0 

1 16 15 1 0 

1 15 10 5 0 

2 4 2 2 0 

1 11 10 1 0 

2 11 9 2 0 

3 7 5 2 0 

1 5 4 1 0 

2 4 1 2 1 

     

a1 7 5 2 0 

a2 3 3 0 0 

f1 10 6 3 1 

f2 6 4 2 0 

K1 13 10 2 1 

K2 4 3 1 0 

     

All Particles 143 114 26 3 

Percentage 100% 79.7% 18.2% 2.1% 

Gauss  100% 84.1% 13.6% 2.3% 

 

TABLE 35. Relative Prediction Errors for plain and strange particles   

 

 

Table 36 on the next page shows the error distribution for the charmed and beauty particles. The 

percentages there are again very similar to the Gaussian distribution, hence all prediction errors are 

almost entirely due to the random mass measurements errors.  
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Table 

Name 

Number of 

Particles 

Absolute Values of RPE 

(0, 1] (1, 2] (2, ∞) 

     

C1 3 2 1 0 

C2 3 3 0 0 

C1 3 1 2 0 

C1 4 3 1 0 

C2 3 3 0 0 

     

       D1 3 3 0 0 

       D2 3 3 0 0 

DS1 3 3 0 0 

DS2 2 2 0 0 

DS2 2 2 0 0 

X1 7 5 1 1 

X2 4 4 0 0 

1 4 2 2 0 

2 4 3 1 0 

3 5 4 1 0 

     

Y1 7 6 1 0 

Y2 4 3 0 1 

Y3 2 2 0 0 

     

All Particles 66 54 10 2 

Percentage 100% 81.8% 15.2% 3.0% 

Gauss  100% 84.1% 13.6% 2.3% 

 

TABLE 36. Relative Prediction Errors for charmed and beauty particles   

 

 

It could be argued that the particles for which no place was found in the tables should be included in 

the last column.  There are 21 such particles not included in the PDG Summary. When we look at them 

in detail we find that many of them have only one measurement and of those that have more than one 

measurement only 4 have a measurement taken within the last 12 years. The data is too unreliable and 

we may consider these particles as outliers.  

 

There are also 18 particles in the PDG Summary that are missing from the tables of which 6 have only 

one measurement or the latest measurement is over 12 years old. Thus there are 12 particles that should 

have been included in the tables on the assumption that they have not been misplaced in the first place, 

an assumption that is not necessarily valid. Since there are 16 families of particles involved, that makes 

less than one particle per family unaccounted for.  

 

Considering that there are 209 particles in the tables the 12 unaccounted particles with the credible mass 

data amount to 5.3%.  
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39. Parameters b and   

 

There is a strong relationship between the parameters b and  in as much that their product b is very 

close to a constant  that appears to be a property of the relativistic ether.  

 

    b           where          0.3868 GeV           (39.1) 

 

This can be seen on the linear regression graph with the intercept forced to zero in figure 48 below, 

which has highly significant statistical parameters R2 = 0.9995 and P-value = 1.57E-55. The parameter 

R2 is the correlation coefficient that indicates the closeness of b values to the predicted /. The perfect 

value for R2 = 1, that can be achieved for any number of pairs involved greater than two, if they exactly 

fit the line. The P-value gives the probability that the given number of pairs selected at random may 

result in the obtained value of R2. Thus P-value = 0 can never be achieved and can only come close to 

it if a substantial number of the pairs are involved.  

 

In our case the P-value = 1.57E-55 tells us that such a good line fit as we have obtained is virtually 

impossible by chance without an underlying physical relationship between the parameters b and .  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 48. b as a function of 1/ 

 

 

On the graph each marker represents a table. These markers are clustered in four groups. The cluster 

with the smallest b values consist of the plain and strange particles. The next cluster consist of the 

charmed particles, but excludes the charmonium particles X and . The charmonium particles form 

the third cluster. The final fourth cluster consist of the heaviest particles, i.e. beautonium particles Y.  
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

40. Parameters a and   

 

Parameters a and  appear in the profile function r(z) of the vortex given by formula (2.1) where a 

determines the size and  the shape. Parameter  is related to  by a simple formula (2.10) that was 

introduced in order to make the mass formula (2.8) simpler. Their relationship is such that 

 

   for  > ½ we have   < 0 for  > ½ we have   < 0           (40.1) 

 

The mass formula (2.8) was derived on the assumption that the vortex has an infinite radius, which is 

clearly unrealistic as a particle cannot span the whole universe. Because particles have a finite radius 

our mass calculations compensate for the resulting deficit of the particles mass by obtaining a lower 

value of  which results is a sharper (slimmer) vortex profile. Thus particles with the actual  close to 

zero acquire negative  as can be seen on the left side of table 37.  

 

The formula for a (2.13) involves two parameters b and  and we use it to compute the values of a in 

the table below. This formula also assumes that particles have an infinite radius and further that their 

moment of inertia Iz is finite, which it is only if  < ¼. For  greater than that the formula produces a 

complex number, hence there are no values for a on the right side of the table.   

 

Table 

Name 

a   Table 

Name 

a 



 Table 

Name 

a 

           

K2 0.543 -0.136  a2 0.514 0.011  DS1  0.251 

N1 0.505 -0.018  f1 0.509 0.021  C1  0.268 

2 0.503 -0.013  1 0.507 0.034  C1  0.271 

2 0.509 -0.010  K1 0.505 0.059  DS2  0.283 

    1 0.504 0.071  C1  0.284 

    3 0.498 0.072  1  0.333 

    1 0.510 0.078  2  0.336 

    f2 0.502 0.091  3  0.337 

    a2 0.494 0.095  X2  0.345 

    1 0.501 0.108  X1  0.350 

    N2 0.490 0.147  Y2  0.440 

    2 0.490 0.150  Y1  0.441 

    D2 0.470 0.208  Y3  0.445 

    C2 0.460 0.222     

    C2 0.459 0.231     

    DS3 0.429 0.243     

    D1 0.379 0.249     

 

TABLE 37. Parameters a and  sorted in ascending order by    

 

Using the formulas which assume that particles have an infinite radius results in approximations, 

especially for  > ¼. Further, because b and the product b are always positive we can never obtain 

negative . We can obtain  as close to zero and hence b as large as we like, but we will always have  

< ½. This is significant because fluid mechanics tells us that vortices in ideal fluid should have  = ½ 

and experiments show that water and air vortices have  > ½ , starting from about 0.6. In order to find 

out how good is the approximation and if the conjecture that particles have  < ½, we will need to 

minimise the mass prediction errors not only by varying b and  but also the radius of the particles.  
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

41. Summary and conclusions 

 

Using the Vir formula for particle mass the masses of 209 particles were calculated with such accuracy 

that the errors from the actual masses are entirely attributable to the mass measurement errors.  

 

The formula does not yet include the effect of the electric charges on mass, as for example in 

proton/neutron or -/ 0/ +, therefore on such occasions the average mass is used.  

 

For each family of particles there is one or more Mendeleev-like table. The columns correspond to spin 

values s and the rows correspond to the number of particle parts c rotating against the spin. The variables 

s and c describe the particle structure, in analogy to Mendeleev tables describing the atomic structure. 

The implication of this structure is that an empty table cell should in future be filled by a new particle. 

 

The following 16 particle families are included: N, , , , , a, f, K, c, c, c, D, Ds, X, , Y. 

They include the lightest family N and the heaviest family Y. Out of all particles involved that have 

credible mass data only 12 particles are not in any table, that is 5% of 209 + 12.  

 

Each table is determined by two constants b and   that provide the best possible fit to the actual masses. 

The constant b is the predicted mass of the lightest particle spin 1 in the given family. The product b 

times   is approximately the constant  ≈ 0.3868 GeV.  

 

The constant   was determined by regression with the correlation factor R2 = 0.9995 and the probability 

that using the given amount of data this may happen at random P = 10-55. Hence there is only one 

empirically derived constant, which may well reflect a fundamental property of the relativistic ether.  

 

It has been proven mathematically elsewhere using the Euler-Lagrange equations that the symmetric 

concave spinning top with the minimum moment of inertia has the shape of twin vortices with the 

common spin axis connected at the large ends. Vir theory assumes that hadrons are such vortices in the 

relativistic ether.  

 

Using the Euler equation for the motion of rotating bodies it is found elsewhere that such a twin vortex  

self-destructs unless the ratio of its moments of inertia Ix/Iz is an integer or half integer. The lowest 

possible ratio of Ix/Iz is for a planar disk with Ix/Iz = ½. These facts lead to the quantisation of spin.  

 

The mass formula used assumes that particles have an infinite radius, hence the mass prediction is 

approximate. To find how good is the approximation and if the conjecture that particles have  < ½ one 

will need to minimise the mass prediction errors by varying the radius of particles in addition to b, .  

 

We find vortices on all scales of Newtonian Mechanics, from tiny eddies in water, dust devils, tornados 

and hurricanes that contain more energy than the original nuclear bombs. If particles are indeed vortices 

then it is possible that black holes are vortices too. After all, the only characteristics of black holes are 

mass, spin and electric charge, which are the main characteristics of particles.  

 

The fact that vortices give least resistance to spinning gives Vir theory the same solid mathematical 

foundation as have all theories founded on the principle of least effort, i.e. least action. These theories 

include Optics, Newtonian Mechanics, Special Relativity, General Relativity and Quantum Mechanics.  

 

The fact that the spin-mass formula satisfies the experimental data with the accuracy and on the scale  

shown in this paper means that the Vir Theory of Elementary Particles has the potential to answer other 

questions unanswered by the Standard Model.  
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