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The problem on the existence and smoothness of the Navier—Stokes equations is
solved.

1. Introduction

The Navier-Stokes equations are thought to govern the motion of a fluid in R?
where d € N, see [1,3]. Letu = u(x, ) € R? be the velocity and let p = p(x,t) € R
be the pressure, each dependent on position x € R? and time r > 0. We take
the externally applied force to be identically zero. The fluid is assumed to be
incompressible with constant viscosity v > 0 and to fill all of R?. The Navier—
Stokes equations can then be written as
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where uy = uy(x) € R?. In these equations
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is the Laplacian operator. When v = 0, equations (1), (2), (3) are called the Euler
equations. Solutions of (1), (2), (3) are to be found with

uy(X + ¢;) = up(x) (6)

for 1 < i < d where ¢ is the i unit vector in R?. The initial condition u, is a given
C* divergence-free vector field on R?. A solution of (1), (2), (3) is then accepted
to be physically reasonable [3] if

ux +e;, 1) =ux,1n, p(x+e;,t) = p(x,1) (7
on R? x [0, c0) for 1 <i < dand

u,p € C°(RY x [0, 0)). (8)
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2. Solution to the Navier—Stokes problem

I provide a proof of the following theorem [2,3,6].

Theorem. Let uy be any smooth, divergence-free vector field satisfying (6). Then
there exist smooth functions u, p on R x [0, c0) that satisfy (1), (2), (3), (7), (8).
Proof. It is sufficient to rule out the possibility that there is a smooth, divergence-
free uy for which (1), (2), (3) have a solution with a finite blowup time [3].

Let the exponential series of u, p be
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respectively. Here a;, = ap(t) € R?, by, = b(t) € R, k > 0 is a constant, and
o denotes the sum over all L € (NU {0)4. The exponential series is similar
to a Taylor series. It is equivalent to a Laplace transform of a sampled signal
with sampling period k. The initial condition u is a Fourier series [2] of which
is convergent for all x € R?. Since u, is a Fourier series this then implies that
u, at complex values of x is irrelevant and that u, can be taken to be smooth
for all x. The exponential series i|,— certainly converges for all x € RY when
0 < k < 1 as it then becomes a Taylor series of which would converge for all
x € RY, Substituting u = @, p = p into (1) gives
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Equating like powers of the exponentials in (11) yields
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on using the Cauchy product formula [4]
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Herein a;, = 0 if any component of L is negative. Substituting u = @ into (2) gives

- Z KL - age ™8> = 0. (14)
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Equating like powers of the exponentials in (14) yields
L-a, =0. (15)

Applying L- to (12) and noting (15) leads to

b == (aw-D)aw- L) (16)

M=0

where by is arbitrary and I. = L/|L| is the unit vector in the direction of L. Then
substituting (16) into (12) gives
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where ay = a9(0). The equations for ay, can then be solved for all L € (N U {0}).
Note that there is an invariance that applies to @|,-o due to (6). Also (16), (17) are
invariant if a;, — e%‘a; and by, — e“°by, where ¢ € R is a constant vector. The
problem is invariant if X — X + ¢. From (12) and in light of (15) it is possible to

write
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where 4, = ag,/|ay | is the unit vector in the direction of a;,. Then (18) implies
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From (19) it is possible to write
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on using the Cauchy—Schwarz inequality [5]
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It then follows from (20) that
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implying that
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in light of (13), which yields
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on using the triangle inequality [5]

|a + b| < |a| + |b|. (25)
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where X = |x| and note that
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Then (24) can be written as
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Here /|,—o converges for all X € R since ii|,—o converges for all x € R?. In light of
[8] it is found that (28) is globally regular for v > 0. Therefore blowup is ruled
out via Taylor’s theorem [7] for functions of several variables. O
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