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The problem on the existence and smoothness of the Navier–Stokes equations is
solved.

1. Introduction

The Navier–Stokes equations are thought to govern the motion of a fluid in Rd

where d ∈ N, see [1,3]. Let u = u(x, t) ∈ Rd be the velocity and let p = p(x, t) ∈ R
be the pressure, each dependent on position x ∈ Rd and time t > 0. We take
the externally applied force to be identically zero. The fluid is assumed to be
incompressible with constant viscosity ν > 0 and to fill all of Rd. The Navier–
Stokes equations can then be written as

∂u
∂t

+ (u · ∇)u = ν∇2u − ∇p, (1)

∇ · u = 0 (2)

with initial condition
u(x, 0) = u0 (3)

where u0 = u0(x) ∈ Rd. In these equations

∇ = (
∂

∂x1
,
∂

∂x2
, . . . ,

∂

∂xd
) (4)

is the gradient operator and

∇2 =

d∑
i=1

∂2

∂xi
2 (5)

is the Laplacian operator. When ν = 0, equations (1), (2), (3) are called the Euler
equations. Solutions of (1), (2), (3) are to be found with

u0(x + ei) = u0(x) (6)

for 1 6 i 6 d where ei is the ith unit vector in Rd. The initial condition u0 is a given
C∞ divergence-free vector field on Rd. A solution of (1), (2), (3) is then accepted
to be physically reasonable [3] if

u(x + ei, t) = u(x, t), p(x + ei, t) = p(x, t) (7)

on Rd × [0,∞) for 1 6 i 6 d and

u, p ∈ C∞(Rd × [0,∞)). (8)
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2. Solution to the Navier–Stokes problem

I provide a proof of the following theorem [2,3,6].
Theorem. Let u0 be any smooth, divergence-free vector field satisfying (6). Then
there exist smooth functions u, p on Rd × [0,∞) that satisfy (1), (2), (3), (7), (8).
Proof. It is sufficient to rule out the possibility that there is a smooth, divergence-
free u0 for which (1), (2), (3) have a solution with a finite blowup time [3].
Let the exponential series of u, p be

ũ =

∞∑
L=0

aLe−kL·x, (9)

p̃ =

∞∑
L=0

bLe−kL·x (10)

respectively. Here aL = aL(t) ∈ Rd, bL = bL(t) ∈ R, k > 0 is a constant, and∑∞
L=0 denotes the sum over all L ∈ (N ∪ {0})d. The exponential series is similar

to a Taylor series. It is equivalent to a Laplace transform of a sampled signal
with sampling period k. The initial condition u0 is a Fourier series [2] of which
is convergent for all x ∈ Rd. Since u0 is a Fourier series this then implies that
u0 at complex values of x is irrelevant and that u0 can be taken to be smooth
for all x. The exponential series ũ|t=0 certainly converges for all x ∈ Rd when
0 < k � 1 as it then becomes a Taylor series of which would converge for all
x ∈ Rd. Substituting u = ũ, p = p̃ into (1) gives

∞∑
L=0

∂aL

∂t
e−kL·x−

∞∑
L=0

∞∑
M=0

(aL ·kM)aMe−k(L+M)·x =

∞∑
L=0

νk2|L|2aLe−kL·x+

∞∑
L=0

kLbLe−kL·x.

(11)
Equating like powers of the exponentials in (11) yields

∂aL

∂t
−

∞∑
M=0

(aL−M · kM)aM = νk2|L|2aL + kLbL (12)

on using the Cauchy product formula [4]

∞∑
l=0

alxl
∞∑

m=0

bmxm =

∞∑
l=0

l∑
m=0

al−mbmxl. (13)

Herein aL = 0 if any component of L is negative. Substituting u = ũ into (2) gives

−

∞∑
L=0

kL · aLe−kL·x = 0. (14)
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Equating like powers of the exponentials in (14) yields

L · aL = 0. (15)

Applying L· to (12) and noting (15) leads to

bL = −

∞∑
M=0

(aL−M · L̂)(aM · L̂) (16)

where b0 is arbitrary and L̂ = L/|L| is the unit vector in the direction of L. Then
substituting (16) into (12) gives

∂aL

∂t
=

∞∑
M=0

(aL−M · kM)aM + νk2|L|2aL −

∞∑
M=0

kL(aL−M · L̂)(aM · L̂) (17)

where a0 = a0(0). The equations for aL can then be solved for all L ∈ (N ∪ {0})d.
Note that there is an invariance that applies to ũ|t=0 due to (6). Also (16), (17) are
invariant if aL → eL·caL and bL → eL·cbL where c ∈ Rd is a constant vector. The
problem is invariant if x → x + c. From (12) and in light of (15) it is possible to
write

∂aL

∂t
· âL =

∞∑
M=0

(aL−M · kM)aM · âL + νk2|L|2aL · âL (18)

where âL = aL/|aL| is the unit vector in the direction of aL. Then (18) implies

∂|aL|

∂t
=

∞∑
M=0

(aL−M · kM)aM · âL + νk2|L|2|aL|. (19)

From (19) it is possible to write

∂|aL|

∂t
6
∞∑

M=0

|aL−M|k|M||aM| + νk2|L|2|aL| (20)

on using the Cauchy–Schwarz inequality [5]

|a · b| 6 |a||b|. (21)

It then follows from (20) that

∞∑
L=0

∂|aL|

∂t
ek|L||x| 6

∞∑
L=0

∞∑
M=0

|aL−M|k|M||aM|ek|L||x| +

∞∑
L=0

νk2|L|2|aL|ek|L||x| (22)
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implying that
∞∑

L=0

∂|aL|

∂t
ek|L||x| 6

∞∑
L=0

∞∑
M=0

|aL|k|M||aM|ek|L+M||x| +

∞∑
L=0

νk2|L|2|aL|ek|L||x| (23)

in light of (13), which yields
∞∑

L=0

∂|aL|

∂t
ek|L||x| 6

∞∑
L=0

∞∑
M=0

|aL|k|M||aM|ek(|L|+|M|)|x| +

∞∑
L=0

νk2|L|2|aL|ek|L||x| (24)

on using the triangle inequality [5]

|a + b| 6 |a| + |b|. (25)

Let

ψ =

∞∑
L=0

|aL|ek|L|X (26)

where X = |x| and note that
|ũ| 6 ψ. (27)

Then (24) can be written as

∂ψ

∂t
6 ψ

∂ψ

∂X
+ ν

∂2ψ

∂X2 . (28)

Here ψ|t=0 converges for all X ∈ R since ũ|t=0 converges for all x ∈ Rd. In light of
[8] it is found that (28) is globally regular for ν > 0. Therefore blowup is ruled
out via Taylor’s theorem [7] for functions of several variables. �
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