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The millennium problem on the existence and smoothness of the Navier–Stokes equations
is considered.

1. Problem description

The Navier–Stokes equations are thought to govern the motion of a fluid in R3, see [1].
Let u = u(x, t) ∈ R3, p = p(x, t) ∈ R be the velocity and pressure, each dependent on
position x ∈ R3 and time t > 0. We take the externally applied force to be identically zero.
The fluid is assumed to be incompressible with constant viscosity ν > 0 and to fill all of
R3. The Navier–Stokes equations can then be written as

∂u
∂t

+ (u · ∇)u = ν∇2u − ∇p, (1)

∇ · u = 0 (2)

with initial condition
u(x, 0) = u0 (3)

where u0 = u0(x) ∈ R3. In these equations ∇ = ( ∂
∂x1
, ∂
∂x2
, ∂
∂x3

) is the gradient operator and

∇2 =
∑3

i=1
∂2

∂xi2
is the Laplacian operator. When ν = 0, equations (1), (2), (3) are called

the Euler equations. Solutions of (1), (2), (3) are to be found with

u0(x + e j) = u0(x) for 1 6 j 6 3 (4)

where e1 = i = (1, 0, 0), e2 = j = (0, 1, 0), e3 = k = (0, 0, 1). The initial condition u0 is
a given C∞ divergence-free vector field on R3. A solution of (1), (2), (3) would then be
accepted to be physically reasonable if

u(x + e j, t) = u(x, t), p(x + e j, t) = p(x, t) on R3 × [0,∞) for 1 6 j 6 3 (5)

and
u, p ∈ C∞(R3 × [0,∞)). (6)

I provide a proposed proof of the following statement (B), see [2].

(B) Existence and smoothness of Navier–Stokes solutions in R3/Z3.

Take ν > 0. Let u0 be any smooth, divergence-free vector field satisfying (4). Then there
exist smooth functions u, p on R3 × [0,∞) that satisfy (1), (2), (3), (5), (6).

To prove statement (B), it is sufficient to provide a proof that rules out the possibility that
there is a smooth, divergence-free u0 for which (1), (2), (3) have a solution with a finite
blowup time, see [2].
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2. Proof of statement (B)

Let the exponential series of u, p be

ũ =

∞∑
L=0

aLekL·x, (7)

p̃ =

∞∑
L=0

bLekL·x (8)

respectively. Here aL = aL(t), bL = bL(t), k is a constant, and
∑∞

L=0 denotes the sum
over all L ∈ N3. The exponential series is similar to a Taylor series. Theoretically the
exponential series can recover both Taylor series and Fourier series when they converge.
The initial condition is u0 = ũ|t=0 of which is convergent for all x ∈ R3. Substituting
u = ũ, p = p̃ into (1) gives

∞∑
L=0

∂aL

∂t
ekL·x +

∞∑
L=0

∞∑
M=0

(aL · kM)aMekL·xekM·x =

∞∑
L=0

νk2|L|2aLekL·x −

∞∑
L=0

kLbLekL·x. (9)

Equating like powers of the exponentials in (9) yields

∂aL

∂t
+

∞∑
M=0

(aL−M · kM)aM = νk2|L|2aL − kLbL. (10)

Substituting u = ũ into (2) gives

∞∑
L=0

kL · aLekL·x = 0. (11)

Equating like powers of the exponentials in (11) yields

L · aL = 0. (12)

Applying L × L× to (10) and noting the vector identity

a × (b × c) = (c · a)b − (b · a)c (13)

along with (12) leads to

|L|2
∂aL

∂t
=

∞∑
M=0

L × (L × (aL−M · kM)aM) + νk2|L|4aL (14)

which yields
∂aL

∂t
=

∞∑
M=0

L̂ × (L̂ × (aL−M · kM)aM) + νk2|L|2aL (15)
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where a0 = a0(0) and L̂ = L/|L| is the unit vector in the direction of L. Applying L· to
(10) and noting (12) leads to

|L|2bL = −

∞∑
M=0

(aL−M · L)(aM · L) (16)

which yields

bL = −

∞∑
M=0

(aL−M · L̂)(aM · L̂) (17)

where b0 is arbitrary. The equations for aL can then be solved for L = 0, i, j,k, . . . ,∞.
From (10) and in light of (12) it is possible to write

∂aL

∂t
· âL = −

∞∑
M=0

(aL−M · kM)aM · âL + νk2|L|2aL · âL (18)

where âL = aL/|aL| is the unit vector in the direction of aL. Equation (18) implies

∂|aL|

∂t
= −

∞∑
M=0

(aL−M · kM)aM · âL + νk2|L|2|aL|. (19)

From (19) it is possible to write

∂|aL|

∂t
6
∞∑

M=0
|aL−M|k|M||aM| + νk2|L|2|aL| (20)

on noting the vector identity
a · b = |a||b| cos(θ) (21)

where θ is the angle between a and b. It then follows from (20) that

∞∑
L=0

∂|aL|

∂t
ek|L||x| 6

∞∑
L=0

∞∑
M=0
|aL−M|k|M||aM|ek|L||x| +

∞∑
L=0

νk2|L|2|aL|ek|L||x| (22)

implying that

∞∑
L=0

∂|aL|

∂t
ek|L||x| 6

∞∑
L=0

∞∑
M=0
|aL|k|M||aM|ek|L+M||x| +

∞∑
L=0

νk2|L|2|aL|ek|L||x| (23)

which yields

∞∑
L=0

∂|aL|

∂t
ek|L||x| 6

∞∑
L=0

∞∑
M=0
|aL|k|M||aM|ek(|L|+|M|)|x| +

∞∑
L=0

νk2|L|2|aL|ek|L||x| (24)

on using the triangle inequality

|a + b| 6 |a| + |b|. (25)
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Let

ψ =

∞∑
L=0
|aL|ek|L|X (26)

where X = |x| and note that
|ũ| 6 ψ. (27)

Then (24) can be written as
∂ψ

∂t
6 ψ

∂ψ

∂X
+ ν

∂2ψ

∂X2 . (28)

Since ψ > 0, the worst case scenario is

∂ψ

∂t
= ψ

∂ψ

∂X
+ ν

∂2ψ

∂X2 . (29)

Let
ψ = c

∂φ

∂X
/φ (30)

where c is an arbitrary constant. Substituting (30) into (29) gives

c
∂

∂X
(
∂φ

∂t
/φ) = c2 1

2
∂

∂X
((
∂φ

∂X
/φ)2) + cν

∂

∂X
((
∂2φ

∂X2φ − (
∂φ

∂X
)2)/φ2). (31)

Then with c = 2ν, equation (31) gives

∂

∂X
(
∂φ

∂t
/φ) = ν

∂

∂X
(
∂2φ

∂X2 /φ) (32)

which leads to
∂φ

∂t
= ν

∂2φ

∂X2 + hφ (33)

where h = h(t) is arbitrary.
Let

φ =

∞∑
l=0

AleγlX (34)

where Al = Al(t) and γ is a constant. Substituting (34) into (33) gives

∞∑
l=0

∂Al

∂t
eγlX =

∞∑
l=0

νγ2l2AleγlX +

∞∑
l=0

AlheγlX . (35)

Equating like powers of the exponentials in (35) yields

∂Al

∂t
= νγ2l2Al + Alh. (36)

Equation (36) is easily solved to find

Al = cleνγ
2l2t+

∫
h dt (37)
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where cl are arbitrary constants. It then follows that

|ũ| 6
c
∑∞

l=0 cllγeνγ
2l2teγlX∑∞

l=0 cleνγ
2l2teγlX

. (38)

Consequently, ũ can only have a finite-time singularity if ũ has a singularity at t = 0.
Therefore blowup is ruled out via Taylor’s theorem and statement (B) is true. �
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