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The problem on the existence and smoothness of the Navier—Stokes equations is resolved.
1. Problem description

The Navier-Stokes equations are thought to govern the motion of a fluid in R?, see [1].
Letu = u(x,7) € R}, p = p(x,7) e R, and f = f(x,7) € R be the velocity, pressure, and
given externally applied force respectively, each dependent on position x € R? and time
t > 0. The fluid is here assumed to be incompressible with constant viscosity v > 0 and
to fill all of R3. The Navier—Stokes equations can then be written as

ou

E+(u-V)u=vV2u—Vp+f, (1)
V-u=0 (2)
with initial condition
u(x,0) = ug 3)
where ug = uy(x) € R3. In these equations V = (%, 8672, 6673) is the gradient operator and

V2 = Zg P is the Laplacian operator. When v = 0, equations (1), (2), (3) are called

;:1 8x,-2

the Euler equations. Solutions of (1), (2), (3) are to be found with
u(x +ej) =up(x), f(x+ej, 1) =1Ff(x,1) for 1 <j<3 4)

where e; = (1,0,0), ex = (0,1,0), e3 = (0,0, 1). The initial condition ug is a given C*
divergence-free vector field on R? and

|8g&ff| < Copy(1 +1t)7” on R3 x [0, 00) for any a,f,7y. (5)
A solution of (1), (2), (3) would then be accepted to be physically reasonable if
ux +ej;,0) =u(x, 1), p(x+ej,t)=pxt) on R*x[0,00) for I<j<3  (6)

and
u, p € C¥(R? x [0, 0)). (7)

I provide a proof of the following statement (D), see [2].
(D) Breakdown of Navier—Stokes Solutions on R3/Z3.

Take v > 0. Then there exist a smooth, divergence-free vector field uy on R? and a smooth
f on R? x [0, 00), satisfying (4), (5), for which there exist no solutions (u, p) of (1), (2),
(3), (6), (7) on R? X [0, c0).



2. Proof of statement (D)

Herein I take f = 0. I seek an approximation of the form

=3 Y oLt ®)

L=-1 /=0
y d'pL flka
p= Z“Z(; =07 ©)

to the solution of (1), (2), (3), (4), (5), (6) in light of Theorem 1 and Theorem 2 in the
Appendix. Here uy, = up,(¥), pL = pL(®), i = V=1, k = 2x, and Z{I:_H denotes the sum
over all L € Z3 with -H < L j < H. Herein the smooth! divergence-free initial condition
ug on R3 is chosen to be

u = Z L x (L x a)5y, yze™ (10)
L=-1

where 6; ; is the Kronecker delta defined by

L i=g
6,,1—{ o ie) (11)
and ay, are constant vectors that are chosen such that ug € R3.
Method 1
Let . 1
odu, t
= ooy (12)
=0
n—1
d i
= o (13)
= t !

Substituting (12), (13) into (1) and equating like powers of ¢ in accordance with Theorem
1 yields

a*'a 8" (1 ,0'u a'p
S Z(a,muo V)atmlz 0( )—vv S =V=llo  (4)

where (,fl) = m Substituting (12) into (2) and equating like powers of ¢ in accordance
with Theorem 1 yields
fia
& Wlt:o = 0. (15)

'In this paper, smooth functions and C* functions will both mean continuous functions whose
derivatives and integrals are all continuous.



Applying V X VX to (14) and using the identities

VXxVxa=V(V-a)- Va, (16)
VxVa=0 (17)
along with (15) gives
(’)l“ d"™u [ L0
amlzo—VXVXZ(alm =0 Vgorleo| | J+ VY =Tl (18)

Applying the inverse Laplacian V=2 to (18) gives

/

al+l 5 al my am / 6
o VXVXZ<azm 0 V)T 0( ) Wl + @ (19)

where ®; must satisfy the Laplace equation
Vi, = 0. (20)

The required solution to (20) is @; = 0 in light of (4), (6). Equation (19) is then solved
for & “|, owhere/=0,1,...,n— 1. Applying V- to (14) and noting (15) yields

orl+!1
26 p l al my oM !
Sl ==V Z(atl — =0 - V) e 0( ) @1
m=
Applying V=2 to (21) gives
al ~ al my am /
a_5|t20 =-v? Z(a, S li=0 - V) ——li= 0( )+¢z (22)
where
V2y, = 0. (23)
Arbitrary constant ¢; € R is the solution to (23) in light of (4), (6). Equation (22) is then
[
solved for aa—t’,’I,:o where [ = 0,1,...,n — 1. After truncating (12), (13) in their modes,
expressions for (8), (9) from Method 1 are then known in terms of given functions.
Note that for the Fourier series
g=) g™ (24)
L#0

where Yj .o denotes the sum over all L € Z* with L # 0, the V2 operator is defined

herein as
ikL-x

ikL-x gLe
V- Zg eMLx = Z ST (25)

L+#0



Method 2

Let ;
u= Z up X, (26)
L=-1
1
p= Y pLe* @7)
L=-1

Substituting (26), (27) into (1) and equating like powers of e in accordance with Theorem
2 yields
8llL

— 4 Z(uL_M - ikM)up = —vk*|L?uyg, — ikLpy.. (28)
ot T

Substituting (26) into (2) and equating like powers of e in accordance with Theorem 2
yields
L-ug =0. (29)

Applying L X Lx to (28) and noting the vector identity

ax(bxc)=(c-ab-(b-a) (30)
along with (29) yields
|L|2aaﬂ = Z L X (L X (ur,_m - ikM)uy) — vk* L uy,. (31)
d M
Equation (31) implies
u, _ Z L x (L X (ur_m - ikM)uy) — vik? Ly, (32)
ot T

where the right hand side of (32) is 0 when L = 0 and L= L/|L| is the unit vector in the
direction of L. Applying L- to (28) and noting (29) gives

KILPpL = = > (ur, v - kM) (uy - L) (33)
M
implying that
pL=- > (v L)uy L) (34)
M
where pg € R is an arbitrary function of 7. Let
n
aluL l‘l
uL = Z Wlt:oﬁ’ (35)
1=0
n—=1 4 I
0'pL t
= —0—. 36
PL IZ(; 57 li=07, (36)
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Substituting (35) into (32) and equating like powers of ¢ in accordance with Theorem 1
yields

d*la "y 0™ d'a
5t =0 ZZLx(Lx( a,ﬁ,Mho M) - 0)( ) VRILE = Flizo. (37)
m=0 M

Equation (37) is then solved for 2 a,ﬂ Ll;—o where I = 0,1,...,n—1and -1 < L; < 1.
Substituting (35), (36) into (34) and equating like powers of tin accordance with Theorem
1 yields

d dmu 0"Mu
o = ZZ( e ) DICe s R L)( ) (38)
m=0 M
Equation (38) is then solved for #ltzo where [ = 0,1,...,n—land -1 < L; < 1.

Expressions for (8), (9) from Method 2 are then known in terms of given functions.
At ! =01n (37) it is found that

(9UL

— =0 = Z L (£ X (ur-wili=o - ikM)umli=0) = VLI Pug |i=o. (39)
In (39) with 1 < |L?> < 3, umli—o = 0 unless [MJ?> = 3 and uy,_mli—o = 0 unless |L — M|2 =
3. With |[L|> = 3 and [M|> = 3 the equation [L — M|> = 3 then implies 2L - M = 3

which is not possible as an even number can not be equal to an odd number. Likewise,
with [L|? = 1 and [MJ? = 3 the equation |L — MJ? = 3 then implies 2L - M = 1 which
is not possible as an even number can not be equal to an odd number. With [L|> = 2 and
IM|> = 3 the equation [L — M|?> = 3 then implies L - M = 1 which is not possible as in this
instance |L - M| € {0,2} when -1 < L; < 1,-1 <M, < 1. Therefore

3llL

(9_" 0 = —3k*vur|;=o. (40)

At O(1), I find that Method 2 gives the same result for (8) as given by Method 1.
At =11in (37) it is found that
aZuL |
oz "=

PN ouy,— ou
D Lox (L (o - kM)l + (UL-ntlo - RM) = |-0)
M

ou
—vK*L L|t 0 (41)

By a similar argument as that applied to (39) it is found in Method 2 that

o*u Ju
5 =0 = =3y Eleo = 9K u o, (42)
In fact for [ > 0 it is found in Method 2 that
al+1ll
5t =0 = (36 o, (43)



With Method 1 for v = 0, I find that u,|,—9 # 0 when truncated onto the modes with
—1 < L; < 1. Therefore at O(#%), the approximation (8) found from Method 1 is different
to the approximation (8) found from Method 2. Because of this nonuniqueness at least
one of the assumptions used was invalid.

An exact solution
Herein I denote u = (&, v, w) and x = (x, y, 7). Let the initial condition be
ug = (cos(k(x +y — 2)),cos(k(x —y — z)),cos(k(x + y — z)) —cos(tk(x —y — 2)))  (44)

which is consistent with (10). I used Maple to find the Maclaurin series of the solution
(u, p) to (1), (2), (3), (4), (5), (6) using (44). The nonuniqueness of results found with
Method 1 and Method 2 does occur when using (44). It appeared from the Maclaurin
series of the solution (u, p) that

v = cos(k(x — y — 7)), (45)
w = u —cos(k(x — y — 2))e", (46)
p=0 (CY))

where A = —3k2. On substitution of (45), (46), (47) into (1), (2), (6), I found that u must

satisfy
ou

3 + (Z—Z - Z—Z)e”/” cos(k(x —y —2)) —vWu =0, (48)
ou Ou
ou  ou _ 4
ox 0z 0 “9)
u(x+ej,t) =u(x,t), for 1 <j<3. (50)

For v = 0, I used Maple to find that the exact general solution of (48) is

3 tcostk(x—y—-2)—y
u=F(x,y+z costk(xr—y = 2) ) (51)

where F is an arbitrary function. On matching (51) with (44) at t = 0, I then deduced that
u = cos(2tkcos(k(x —y — 2)) —k(x +y — 2)). (52)

The solution (52) also satisfies (49), (50). The resulting (u, p) was then verified to be an
exact solution to (1), (2), (3), (4), (5), (6) for v = 0. Integrating (52) with respect to ¢
yields

! : 2 _ _ _ _
f udi = sin2tkcos(k(x —y —2)) —k(x +y — 2)) (53)
2k cos(k(x —y —2))
which is undefined for some values of x € R? and 7 > 0.
For v > 0, it is found that for the small time O(¢) solution the equation (48) for u is
0 0 0
a—bt‘ + (8_Z - a—”Z’)eM’ cos(k(x — y — 2)) — vAu = 0. (54)



Equation (54) implies

0, _,u ,Ou Ou 3
(%(ue )+(8y az)cos(k(x y—12)=0.

Then a change of variables

7

ux,) = atx, )

yields
da Oa Oda
g + (G_y - a—z)cos(k(x -y-2)=0.
Equation (49) becomes
a_a + a_a =0
ox 0z

the initial condition (44) implies
a(x,0) = cos(k(x +y — 2)),
and the spatially periodic boundary conditions (50) imply

ax+ej,7)=a(x,7) for 1 <j<3.

(55)

(56)

(57)

(58)

(59)

(60)

(61)

Equations (58), (59), (60), (61) define an Euler problem. In light of this and (52), it is

then clear that

u=et cos(%(ev’” —Dcostk(x—y—2) —k(x+y—2))

is valid for small time when v > 0. Integrating (62) with respect to ¢ yields

e sin( (e" = 1) cos(k(x = y = 2)) — k(x +y = 2))
f wdt = 2k cos(k(x —y — 2))

which is undefined for some values of x € R? and 7 > 0.
Therefore statement (D) is true. O

Appendix
Theorem 1

Providing that the Maclaurin series

n ) ) n [ X I
o 0A ¢ 0A ¢t
A=) G0 = 2oy

(62)

(63)

(64)



of the exact general solution to a Q™ order partial differential equation

%A

Rl 6
ote (65)

exists, it will solve the coefficients of # for all [ = 0,1,...,n — Q in (65) with A = A
provided ¥|, _x is expandable in Maclaurin series as

Ok,
N (66)

where m > n. Here all of the partial derivatives of A with respect to ¢ are defined at r = 0.
Proof of Theorem 1

Since the Maclaurin series of A exists and all of the partial derivatives of A with respect to
t are defined at r = 0, one can integrate (65) Q times with respect to ¢ and then substitute
the result into (64) to find

Zaz oy tz ZfﬂfQ\PdﬂA:A p

tl 0 |t O 8[1 |t:01_! (67)

=0

where f ¥ dt denotes the Q™ integral of W with respect to z. Substituting A = A into the
residual r of (65) then gives

Y|, _ &) =0 W g
= § - § =Y 68
r= a2 =7 _ o) AT, |t—0” (68)

providing |, _x is expanded in Maclaurin series as in (66). Collecting like powers of ¢ in
(68) yields

which shows that Theorem 1 is true. O
Theorem 2
Providing that the Fourier series
N N
A= Z P(A, eFx)iklx Z P(A, o) ikLox (70)
L=-N L=-N

of the exact general solution to a Q" order partial differential equation

9%A

Sy 71
50 (71)

8



exists, it will solve the coefficients of e*I'X for all -N < L; < N in (71) with A = A
provided ¥|,_z is expandable in Fourier series as

M

\IllA:A - Z P(\I]|A:A’eikL-X)eikL-X (72)
L=-M

where M > N. Here A is spatially periodic and smooth for all x € R3, k > 0 is a constant,
and P(h, ¢*1'X) denotes the projection of h onto e/LX,

Proof of Theorem 2

Since the Fourier series of A exists where A is spatially periodic and smooth for all x € R?,
one can integrate (71) Q times with respect to ¢ and then substitute the result into (70) to
find

N N
A — Z P(f ‘I’dt, eikL'X)eikL~X — Z P(f ‘PdtlA:Aa eikL'X)eikL'X‘ (73)
L=—N V¢ L=—N V¢

Substituting A = A into the residual r of (71) then gives

N M

0° ikL-xy ,ikL-x ikL-xy ikL-x
r= P L_ZNP(fQ‘I’dtlA:A,e e - L_ZM P(Y|y_x, € e (74)

providing W|,_j is expanded in Fourier series as in (72). Equation (74) can be written as

N M

r = Z P(\PlA:A’eikL-X)eikL-X _ Z P(\Ile:A’eikL-X)eikL-X (75)
L=-N L=—M

which shows that Theorem 2 is true. O
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