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The problem on the existence and smoothness of the Navier—Stokes equations is considered.
1. Problem description

The Navier-Stokes equations are thought to govern the motion of a viscous incompressible fluid in R?, see
Batchelor 1967. Let u = u(x, t) € R?, p=pix,t)eR, and f = f(x,1) € R3 be the velocity, pressure, and
given externally applied force respectively, each dependent on position x € R* and time ¢ > 0. The fluid
is assumed to be incompressible with constant viscosity v > 0 and to fill all of R*. The Navier-Stokes

equations can then be written as
ou

E+(u-V)u:vV2u—Vp+f, (1
V-u=0 (2)

with initial condition
u(x,0) = u 3)

where uy = uy(x) € R*. In these equations V is the gradient operator and V? is the Laplacian operator.
When v = 0, equations (1), (2), (3) are called the Euler equations. Solutions of (1), (2), (3) are to be found
with

u(x + ;) = up(x), f(x+e;, 1) =f(x,7) for 1 <j<3 (4)

where e¢; = (1,0,0), e; = (0,1,0), e3 = (0,0, 1). The initial condition uy is a given C* divergence-free

vector field on R? and
02878] < Copy(1 + )™ on R x [0, 00) for any a,p,7. (5)
A solution of (1), (2), (3) would then be accepted to be physically reasonable if
u(x +ej,t) =ux, 1), p(x+ej;t) = p(x1) on R? x [0, c0) for 1< Jj<3 (6)

and

u, p € C2(R? x [0, 0)). (7)

I consider a proof of the following statement (D), see Fefferman 2000.



(D) Breakdown of Navier—Stokes Solutions on R*/Z>.

Take v > 0. Then there exist a smooth, divergence-free vector field uy on R3? and a smooth f on R? X [0, c0),

satisfying (4), (5), for which there exist no solutions (u, p) of (1), (2), (3), (6), (7) on R? x [0, c0).
2. Proof of statement (D)

Herein I take f = 0. I seek the approximation of the form

aluL lkL-x
u= zg: :E: 6tl h Ol' s (8)

L—1 =0
1 n (9lpL tl L
p= Z Z Wh:oael x )
L——11=0

to the solution of (1), (2), (3), (4), (5), (6) in light of Theorem 1 and Theorem 2 in the Appendix. Here
uy, = ur(?), pr. = pL(?), k = 2m, and ZE:_H denotes the sum over all L € Z? with —H < L;<H1<j<3.
Herein the smooth divergence-free initial condition uy on R? is chosen to be

1
w = Y Lx(LxDady, e (10)

L=-1

where 1 = (1,1, 1), 6; ; is the Kronecker delta defined by
0i,j = , (1)

and qy, are constants that are chosen such that u, € R>.
Method 1

Let
- 0’ tl

u=

(12)

Z o (13)

Substituting (12), (13) into (1) and equating like powers of ¢ in accordance with Theorem 1 yields

al+1 61 ma oM Ji 5 al al p
i Z( 0 m|:( )— YR~ VR (14)
Substituting (12) into (2) and equating like powers of ¢ in accordance with Theorem 1 yields

oa
V. gh:o = 0. (15)



Applying V X Vx to (14) and using the identities

VxVxa=V(V-a)-Va, (16)
VxVa=0 (17)
along with (15) gives
At 5 9™ o (1 L0
Vil = VX Vx mZZO<atl—_m|t:o V)| |+ vV Tl (18)

Applying the inverse Laplacian V=2 to (18) gives

" 'a > L 8™ (1 ,0'u
Wh:o = VIV X VX mZ:O(Wb:o . V)Wb:o(m) +vV tho + @, (19)
where ®@; must satisfy the Laplace equation
V@, = 0. (20)

The required solution to (20) is ®@; = 0 in light of (4), (6). Equation (19) is then solved for ?;:,%Itzo where

[=0,1,...,n—1. Applying V- to (14) and noting (15) yields

/

a'p 8- o (1
Vi oo=-V- ) (—|- — . 21
-0 mZ:O( ! )atm - o( ) 1)
Applying V=2 to (21) gives
al _2 al "u mu /
o 2l = -vv. Z( o =y o |z:o(m)+l//1 (22)
where
Vi, = 0. (23)

Arbitrary constant ¢; € R is the solution to (23) in light of (4), (6). Equation (22) is then solved for 22 a5 I, 0
where [ = 0, 1,...,n. After truncating (12), (13) in their modes, expressions for (8), (9) from Method 1 are
then known in terms of given functions. Note that for the Fourier series
g=) g (24)
L#0

where Y| ., denotes the sum over all L € Z* with L # 0, the V=2 operator is defined herein as

_ kL gLe
V-2 gLelka _ .
12T 2

;1 iz KL

ikL-x

(25)

In Method 1 the assumption of smoothness is only on u.



Method 2

Let

1
ikL-x
u= Z uge ,
L=-1
1
ikL-x
pP= Z pLe .
L=-1

Substituting (26), (27) into (1) and equating like powers of e in accordance with Theorem 2 yields

8“L Z(uL - ikMDuy = —vi2|LPuy, — ikLpy.
Substituting (26) into (2) and equating like powers of e in accordance with Theorem 2 yields
L-u, =0.
Applying L X L to (28) and noting the vector identity
ax(xc)=(c-a)b—-(b-a)c
along with (29) yields
(9uL

IL*— Z L x (L x (ug_yp - ikM)uyy) — vi*|L|*uag,

Equation (31) implies

0
“L Z L. x (£ X (g _y - ikMD)uy) — v L[ uy,

(26)

(27)

(28)

(29)

(30)

€19

(32)

where the right hand side of (32) is 0 when L. = 0 and I. = L/|L| is the unit vector in the direction of L.

Applying L- to (28) and noting (29) gives

KLPpr, = = ) (g v - ikM)(uy - L)
M

implying that
- > - Lyuy - )

M
where py € R is an arbitrary function of 7. Let

_ i alllL| f
VIR TIT

alpL ll

Substituting (35) into (32) and equating like powers of ¢ in accordance with Theorem 1 yields

o lu = " [ ,0u
| Z S Lo (Lo (CM k) M|t:o)(m) ~ VP 0.

ol li=0 = m
ot ey ot

(33)

(34)

(35)

(36)

(37)



Equation (37) is then solved for a;,%l,:o where [ =0,1,...,n—1and -1 <L; < 1,1 < j < 3. Substituting

(35), (36) into (34) and equating like powers of ¢ in accordance with Theorem 1 yields

8lpL 61 mllL M o" llM
—i - Z Z( e W Dl L) (38)
Equation (38) is then solved for %l,zo where [ = 0,1,...,nand -1 < L; < 1,1 < j < 3. Expressions for

(8), (9) from Method 2 are then known in terms of given functions.

With n = 2, I found that the approximation (8) found from Method 1 is different to the approximation (8)
found from Method 2. The difference occurs at O(#*). Because of this nonuniqueness at least one of the
assumptions used was invalid. The only assumptions used are those required for use of Theorem 1 and
Theorem 2. Therefore the only way statement (D) could not be true is if the smoothness of u can break
down at an x € R? where ¢ € C\{0} but with # # 0.

It is found that (u(x — Qt, 1) + Q, p(x — Qt, 1)) is a solution to (1), (2), (3), (4), (5), (6) if (u(x, 1), p(X, 1)) is
a solution to (1), (2), (3), (4), (5), (6) where € R? is a constant. If there exists an x = () € R? at which
the smoothness of u(x, r) breaks down where ¢ € C\{0} then the smoothness of u(x— ¢, t) + £ breaks down
atan x = O(¢) € R? with ¢ € C\{0}. It is possible to write @(f) — Qt = Z(¢) and therefore the smoothness of
u can then break down at an x € R where ¢ € R\{0}.

For v = 0, it is found that (Cu(x, £7), £?p(x, {t)) is a solution to (1), (2), (3), (4), (5), (6) if (u(x, 1), p(x, 1)) is
a solution to (1), (2), (3), (4), (5), (6) where £ € R is a constant, so if the smoothness of u breaks down at
t < 0 where uy = U € R? then the smoothness of u breaks down at ¢ > 0 where uy = —U, € R>. Therefore
statement (D) is true when v > 0 is replaced with v = 0.

For v > 0, when applying Method 1 for n = 2 and Method 2 for all n € N, it is found that the governing

equation for u is effectively

0
a—‘; = V2V x V x ((u- V)u) + vlu (39)
where A = —3k?. Equation (39) implies
ad —vAat -2 vt
a—t(ue )=V VXV x((ua:Viue . (40)
Then a change of variables
=" -1, 41)
u(x, ) = v(x, T)% (42)
yields
ov i
g:V VXV X({(v-V)V). (43)



Equation (2) becomes

V-v=0 44)
and the initial condition (3) becomes
V(x,0) = 2, (45)
vA

Equations (43), (44), (45) define an Euler problem. If the smoothness of v breaks down at an x € R® with
7 € R\{0}, then the smoothness of u can break down at an x € R? with ¢ > 0. Therefore statement (D) is

true. O
Appendix
Theorem 1

Providing that the Maclaurin series

85& [ 65& !
of the exact general solution to a Q™ order partial differential equation
%A
— = 47
50 (47)

exists, it will solve the coefficients of # forall [ = 0,1,...,n — Q in (47) with A = A provided ¥|,_z i

expandable in Maclaurin series as
m YA _ /
Y0,z = —6 ‘PlA:A z—Ot_
AT 4 e T

where m > n. Here all of the partial derivatives of A with respect to ¢ are defined at ¢ = 0.

(48)

Proof of Theorem 1

Since the Maclaurin series of A exists and all of the partial derivatives of A with respect to ¢ are defined at

t = 0, one can integrate (47) Q times and then substitute the result into (46) to find

IR L TN W 1IN "
ZatthOl‘—ZTh:Oﬁ ( )

=0

where fQ ¥ dt denotes the Q™ integral of W with respect to 7. Substituting A = A into the residual r of (47)

then gives
e b IS A tl_Q S al‘mA:X /!
- Z e ; oy (50)
providing |, _z is expanded in Maclaurin series as in (48). Collecting like powers of 7 in (50) yields
n=Q o ! m . al I
O\ x, t O\ x, t
r= ¥ ,Oﬁ—z ooy (51)

=0

which shows that Theorem 1 is true. O



Theorem 2

Providing that the Fourier series

N N
X — Z P(A, eikL.X)eikL-x — Z P(K, e,'kL.X)el-kL.x (52)

L-—N L-—N
of the exact general solution to a Q" order partial differential equation

0°A
T 53

o0rQ (53)

exists, it will solve the coefficients of ¢*I* for all -N < L i S N,1<j<3in(53) with A = A provided

¥|,_x is expandable in Fourier series as

M
‘PlA:K — Z P(\PlA:X’eikL-X)eikL-x (54)

L=—M
where M > N. Here A is spatially periodic and smooth for all x € R?, k > 0 is a constant, and P(h, LX)

denotes the projection of h onto X,

Proof of Theorem 2

Since the Fourier series of A exists where A is spatially periodic and smooth for all x € R?, one can

integrate (53) Q times and then substitute the result into (52) to find

N N
A= P f W dr, et = N p( f ¥ dily_z, &%), (55)
L=-N 0 L=-N )

Substituting A = A into the residual r of (53) then gives

92 M
= a? P(f ‘PdtlA:X’ elkL-X)elkL.x _ Z P(TlA:X, etkL-x)elkL.x (56)
L=-N Q

L=—M

r

providing ¥|,_z is expanded in Fourier series as in (54). Equation (56) can be written as

M

N
r= Z P(‘PlA:K7 eikL~X)eikL-X _ Z P(‘PlA:K7 eikL~X)eikL-X (57)
L=-N L=-M

which shows that Theorem 2 is true. O
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