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Abstract 

A new theory of elementary particles is presented based on solid mathematical foundations of Variational Calculus, 

Euler’s Equations of Motion and Special Relativity. The Vir Theory of Elementary Particles explains that a particle is 

a stationary circular wave created by the motion of twin vortices in the relativistic ether. Mathematical equations show 

that they must have integer or half-integer spin, explain why the electric charge must be plus, minus or zero, why 

neutral particles come in right-handed and left-handed pairs, why charge-parity-time (CPT) transformation are 

invariant and why there are anti-particles but no stable anti-matter. A simple formula for the relationship between 

particle spin and mass is also derived, that can be used to verify the theory using the existing PDG data.  
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1. Introduction 

 

All known matter has a hierarchical structure with smaller and smaller entities. The smaller entities orbit 

the centre of a larger entity, or each other. It is believed that in the centre of each galaxy is a black hole 

orbited by stars. Stars are orbited by planets. Planets are made of atoms that have a nucleus made of protons 

and neutrons, while the nucleus is orbited by electrons. It is also believed that protons, neutrons and other 

hadrons are made up of quarks that orbit inside them giving particles the spin and almost all of their mass.  

 

It is conceivable that this structure goes on for ever. However, this paper explores the possibility that the 

process is finite, ending with some fundamentally different ultimate entity that must be unique, with the 

least resistance to some kind of motion. The theory must have solid mathematical foundations based on the 

principle of least effort, i.e. least action [1], [2], which is shared by all successful theories including Optics 

[3], Newtonian Mechanics [4], Special Relativity [5], General Relativity [6] and Quantum Mechanics [7].  

 

For the ultimate entity to be fundamentally different it must have no orbiting parts, although it must have 

integer or half-integer spin like all elementary particles. Spinning motion is governed by Euler’s equations 

[8] which tell us that a spinning hole in relativistic ether [9] creates a circular wave. The wave destroys 

itself, unless it has integer or half-integer spin. Hence the ultimate entity should be a hole having the shape 

with the least resistance to spinning. This shape is a spheroid [10], a convex object with a circular footprint 

and elliptical profile. This may explain why stars, planets and moons are all spheroids.  

 

However, the integrals for mass and moments of inertia of spheroids do not lead to a formula connecting 

spin and mass, since there is no algebraic solution to polynomials with powers greater than three. On the 

other hand, if instead of convex shapes we consider concave we find that the shape with the minimum 

moment of inertia is that of a vortex [10] and we obtain an algebraic spin-mass formula that gives the mass 

for over 200 particles with the accuracy of the measurement errors, as will be shown in the next paper.    

 

A particle may be imagined as twin vortices with the common spin axis connected at the large ends, a shape 

called Vir [11]. The eye of a hurricane is miniscule in comparison to the area over which a hurricane affects 

the weather. This may well explain why particles have the dual nature, bullet-like and wave-like. Vir Theory 

explains mathematically why spin is quantised, why electric charge is positive, negative or neutral; why 

neutral particles come in right-handed and left-handed pairs; why particles are invariant under the charge-

parity-time (CPT) transformation; why there are anti-particles, but no stable anti-mass. Quarks are simply 

assigned spin and charge and even then do not provide an explanation for any of the above.  
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We will show by solving the Euler equations of motion for rotating bodies that a Vir with its spinning, 

precession and nutation can result in a circular wave, where the head chases its tail. Such a wave destroys 

itself after one precession if the head and tail are out of phase, but results in a stationary circular wave if 

they are in phase.  

 

If a spinning top has a perfectly circular footprint then its spin axis precesses in a perfect circle, with no 

nutation and the spinning does not create any waves if its environment is friction-less. If the top has an 

elliptical footprint then its spin axis follows a wavy circular motion, but this motion is such that the top 

never returns to its initial state and thus it cannot produce a stationary wave. However, if the top is only 

very slightly elliptical and its axis almost coincides with the total angular momentum vector then its motion 

can produce an almost standing wave, if some additional conditions are met.  

 

A spinning top that is symmetrical about axis z and about xy plane has three moments of inertia Ix, Iy and 

Iz, where Ix ≈ Iy if its footprint is almost circular. The additional conditions are that the ratio of its moments 

of inertia Ix/Iz is an integer or half-integer. If the ratio is an integer then the top (almost) returns to its initial 

state after one precession and if it is a half-integer then after two precessions. This restricts particles to the 

spin that we observe.  

 

Electro-magnetic fields for two inertial observers moving with relative velocity v are related by Lorentz 

transformations used in Special Relativity. If the relative velocity v between two observers is along their z 

axes then the z components of the electric and magnetic fields are the same for both observers, but the x 

and y components are different [12]. If in a “stationary frame” the electric field is absent then the “moving” 

frame acquires electric field with non-zero x and y components. In Vir theory this leads to the explanation 

why particles have electric charge.  

 

Lorentz transformations can be expressed by hyperbolic functions of a real argument that is zero for v = 0 

and infinity for v = c [13]. Alternatively we can use an imaginary argument with trigonometric functions. 

Thus we can consider these transformations as rotations by an imaginary angle in zt plane, where axis z is 

aligned with the velocity of the moving observer. If the rotation in zt plane is positive the ether flows out 

from the ends of the Vir and we have a positive particle. If the ether flows in through the ends of the Vir 

we have a negative particle. If it flows in from one end and out from the other we have a neutral particle.  

 

This completes the description of all possible Vir rotations in space-time. These rotations reveal the origin 

and nature of spin and electric charge in particles and lead to explanations of other particle properties.  

 

CPT is the most fundamental conservation law observed in particle physics, but there is no explanation for 

this in terms of quarks. The time transformation T reverses all motion and transforms a particle to an anti-

particle. Using this concept of anti-particles Vir Theory shows that CPT transformation must be invariant.  

 

Although there are anti-protons, anti-neutrons and anti-electrons (positrons) there are no stable anti-atoms, 

i.e. anti-matter. The conventional thinking is that this may be due to some asymmetry that occurred very 

soon after the big-bang. Vir Theory explains how this comes about without resorting to the big-bang.   

 

The integrals for the mass and the moments of inertia for the Vir can be evaluated algebraically and using 

these expressions one can obtain an algebraic formula for the relationship between the spin and mass of 

Vir. It is a formula that allows several masses for a given spin and vice-versa. This formula can be tested 

using the existing particle data and thus verify the correctness of Vir Theory.   
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2. Vir moments of inertia and mass 

 

It has been proven mathematically using the Euler-Lagrange equations that the symmetric concave spinning 

top with the minimum moment of inertia, i.e. with the least resistance to spinning, has the shape of a solid 

of rotation generated by the profile function r(z) called Vir [10].  
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The parameter a gives the size, if z = a then r = a and vice versa, while the parameter  gives the shape. It 

has also been shown experimentally [11] that water and air vortices have the Vir shape with  = [0.6, 2.5].  

 

Vir Theory of elementary particles assumes that particles are symmetric twin vortices in the relativistic 

ether, i.e. consisting of two vortices spinning about a common axis that are joined at the large ends. For the 

purpose of calculating the volume, mass and the moments of inertia we can treat a particle as a symmetric 

solid of revolution generated by the profile function r(z) in (2.1).  

 

Since for symmetric twin vortices r(z) = r(-z) it is sufficient to consider r(z) only on the interval [0, Z] where 

Z is half height of the Vir. For a profile curve r(z) the expressions for mass m and the moments of inertia 

around axes z and x, i.e. Iz and Ix are 
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Since the shape of the vortices is the solid of rotation around axis z generated by the profile function r(z) 

the moment of inertia around axis y is the same as around axis x. The evaluation of the above integrals gives 

the following formulas with finite values, provided the parameter  is restricted as shown below.  
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Using the formulas (2.5), (2.6) and (2.7) above we find the following formula for mass m  
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When we know the parameters b and  we can find the corresponding parameters a and   
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Using the formulas (2.6), (2.7) for Ix, Iz we can obtain the expression for   in (2.9) in terms of a,   and Z.  

Then using the formula (2.5) for mass m we obtain the formula for Z  
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Since  and  are dimensionless quantities we have the height Z in the units of the parameter a. The radius 

r in the formula (2.1) is also in units of a. In all the formulas shown in this section it is assumed that the 

radius r is infinite at z = 0. This is of course unrealistic, for a particle cannot span the whole of the universe. 

The infinite radius is assumed here because it leads to much simpler formulas and because it may give a 

sufficiently good approximation to our needs, but this will have to be found out experimentally.  
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3. Euler’s equations of motion 

 

To find the relationship between the moments of inertia and spin we start by investigating Euler’s equations 

of motion for a solid rotating body [8]. We consider an inertia frame XYZ and a spinning top with the 

angular momentum vector M. Since M is a constant of motion we can align axis Z with M. We also have a 

frame xyz with the origin at the centre of mass of the spinning top and axis z coincides with the spin axis.  

 

From the Euler’s equations of motion we find that a symmetrical spinning top, i.e. one with the moments 

of inertia Ix = Iy, rotates (spins) about its axis z with a constant angular velocity z. Spin vector s precesses 

at a constant angular velocity Pr and at a constant angle   relative to the total angular momentum M.  

 

The movement of axis z creates the surface of a cone and the end of the spin vector s describes a circle in a 

plane perpendicular to vector M. The assumptions (3.1) and the solution (3.2) are below [14]:  
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From (3.2) we find the following relationship between moments of inertia and angular velocities: 
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From the definition of the moments of inertia we have for any body the following inequality:  

 

     zyx III   equality for a planar body       (3.4) 

 

For a symmetrical top we have Ix = Iy and therefore from (3.4) we get the following restriction:   
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There is a bottom limit of ½ on the ratio Ix/Iz for a symmetrical top. The limit is reached only by an idealized 

planar body, for a true three dimensional body the ratio is always greater than ½. Now, from equation (3.3) 

we find that for very small angle  we have the following relationship:   
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Therefore, there is a bottom limit on the rotation velocity z relative to the precession velocity Pr of ½ as 

 tends to zero. There isn’t any body that can rotate slower relative to precession.  
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4. Return of the symmetric top to the initial state  

 

Euler’s equations give us also an expression for the angular velocity -  (note the minus sign) with which 

vector M orbits an observer that is attached to the rotating body [15].  

 

      cosPr z           (4.1) 

 

An observer attached to the top in such a way that in the initial state is facing vector M will face vector M 

again on completion of one precession if /Pr = n, where n is 0, 1, 2, 3, etc. The number n tells us how 

many times the observer will face vector M during one precession, including the final state, but excluding 

the initial state. When n = 0 then  = 0 and the observer is facing vector M all the time, never see any 

change. From (4.1) we get two equivalent return conditions:  
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From (3.3) and (4.2) we find another condition for the return to the initial state after one precession: 
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For very small precession angle  we get Ix/Iz = n +1 from (4.3), which means that the ratio Ix/Iz takes 

values of 1, 2, 3, 4 etc. Thus, when  is very small the top returns to its initial state on completion of one 

precession under the following conditions:  
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The conditions for returning to its initial state only on completion of the second precession are:  
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Number |2n-3| tells us how many times the observer will face vector M during the first two precessions, 

including the final state, but excluding the initial state. This time there is no solution for n = 0 since that 

would require negative Ix/Iz. For n = 1 we have /Pr = -1/2 which means that the observer orbits vector 

M in the opposite direction to all other values of n. Thus, when  is very small the top returns to its initial 

state only on completion of the second precession under the following conditions:  
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Figures 1 to 4 below show graphically the return to the initial state of the symmetric spinning top with a 

square footprint after one precession. The initial state is shown on the extreme right of each diagram.  The 

condition for this return to occur is that /Pr = n, where n is 0, 1, 2, 3, etc. For the angle  → 0 this is 

equivalent to the condition Ix/Iz = 1, 2, 3, 4, etc.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        Figure 1. /Pr = 0           Figure 2. /Pr = 1 

  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        Figure 3. /Pr = 2          Figure 4. /Pr = 3 

 

 

The diagrams show the movement of the spinning top in the XY plane of the inertial frame, where the axis 

Z is aligned with the angular momentum M. The top spins anticlockwise and the precession is in the same 

direction, as indicated by the double arrows. The arrows inside the squares show the orientation of the 

observer on the spinning top and the bold arrows show when the observer faces directly vector M.  
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The figures 5 to 8 below show graphically the return to the initial state of the symmetric spinning top with 

a square footprint after two precessions. The condition for this to occur is that 2/Pr = n, where n is -1, 

1, 3, 5, etc. For the angle  → 0 this is equivalent to the condition Ix/Iz = 1/2, 3/2, 5/2, 7/2, etc.  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      Figure 5. 2/Pr = -1         Figure 6. 2/Pr = 1 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       Figure 7. 2/Pr = 3          Figure 8. /Pr = 5 

 

 

The top spins anticlockwise, except for figure 5, and the precession is also anticlockwise as indicated by 

the double arrows. The diagrams show only the first precession, but we can visualise the second precession 

by turning the arrows in the boxes to face the opposite direction. The arrows in red show the state where 

the observer on the spinning top faces directly vector M on the second precession.  
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5. Slightly asymmetric almost vertical spinning top  

 

A spinning top is called asymmetrical when Ix not = Iy, it may for example have an elliptical footprint in 

the xy plane. It does not mean that there is asymmetry between the upper and lower halves. An asymmetrical 

spinning top never returns to its initial state [16]. The angle   and all angular velocities  vary periodically 

in time. As   increases, vectors  decrease and change not only their magnitudes but also their directions.  

 

The unit vector z that starts in the centre of the spinning top is align with the spin vector s and moves on 

the surface of a sphere between two concentric circles, lying in two parallel planes perpendicular to the 

vector M aligned with axis Z [17]. This wavy circular movement, known as nutation, is shown in figure 9.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. The trajectory of the spin vector s. 

 

Looking from above we see the trajectory of the end of the spin vector s as a periodic wave confined 

between two concentric circles. The trajectory touches the inner circle when  is at its minimum and the 

outer circle when  is at its maximum. The variation  = ½ (max min decreases with I = |Ix - Iy| 

and disappears when Ix = Iy.  

 

Formula (4.1) for  still holds at any instant of time, i.e. only for the instantaneous angular velocities. 

When the spinning top is almost vertical ( → 0) then the formula is almost linear and taking the average 

of the angular velocities over one precession we get  

 

 cosPr z           (5.1) 

The average  may be different for each precession, but only very slightly when Ix ≈ Iy. Thus the equations 

(4.2) to (4.7) for the return of symmetrical spinning tops to the initial state hold approximately also for 

slightly asymmetric and almost vertical spinning tops. For the return after one or two precession we have   
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Only ideal symmetric spinning tops (Ix = Iy) can return to their initial state. Real spinning tops, represented 

in figures 10 to 13 by a top with a rectangular footprint, never return to the initial state. The position of a 

top at 0, 360 degrees and multiples thereof (in polar coordinates) are different. This is indicated by a gap in 

the trajectory of the spin axis close to 360 degrees. However, such spinning tops can come close to the 

initial state if Ix ≈ Iy and  → 0. The condition for this to occur after one precession is Ix/Iz = 1, 2, 3,  etc.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      Figure 10. /Pr = 0         Figure 11. /Pr = 1 

  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      Figure 12. /Pr = 2        Figure 13. /Pr = 3 

 

 

As with the symmetrical spinning tops the arrows inside the rectangles show the orientation of the observer 

on the spinning top and the bold arrows show when the observer faces directly vector M.  
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Figures 14 to 17 show the trajectory of the end of the spin vector s and the movement of the spinning top. 

The condition for the top returning to the initial state only after two precessions is Ix/Iz = 1/2, 3/2, 5/2, etc. 

Again the gap in the trajectory of the spin vector close to 360 degrees indicates that this is only approximate.  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    Figure 14. 2/Pr = -1       Figure 15. 2/Pr = 1 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     Figure 16. 2/Pr = 3        Figure 17. /Pr = 5 

 

 

The top spins anticlockwise, except for figure 14, and the precession is also anticlockwise as indicated by 

the double arrows. The diagrams show only the first precession, but we can visualise the second precession 

by turning the arrows in the boxes to face the opposite direction. The arrows in red show the state where 

the observer on the spinning top faces directly vector M on the second precession.  
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6. Elementary particles as stationary circular waves 

 

Euler’s equations of motion do not require that the body must be rigid, i.e. that parts of the body remain in 

constant distance from each other, the conditions are much more relaxed. In the absence of external forces, 

any internal forces cancel out and the centre of mass of any body moves at a constant velocity. The angular 

momentum M also remains constant. The moments of inertia remain constant not only for rigid bodies, but 

for a varied length of time also for deformable bodies. Hurricanes retain their shape for days or at least 

hours, tornados for minutes and dust devils for tens of seconds. During this time Euler’s equations apply.   

 

From formulas (4.2) and (4.3) we know that a symmetrical top (Ix = Iy) returns to its initial state after one 

or two precessions if the following equivalent conditions are satisfied  
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However, for a perfect circular top the axis z follows a perfect circular cone and in the absence of friction 

its movement does not generate any waves in its environment. If such an absolutely perfect top exists in the 

relativistic ether then it cannot be detected as a wave and thus it is not a suitable model of an elementary 

particle. An alternative, and a more appropriate description of elementary particles, is provided by 

considering asymmetrical tops (Ix ≠ Iy). We shall assume that in nature there is always some asymmetry 

and consider particles as near symmetrical (Ix is close to Iy) and near vertical (is close to 0) spinning tops.  

 

For an asymmetrical top the axis z follows a periodic wavy trajectory so that the top generates circular 

waves in its environment. If the top is not rigid then the waves that it generates interfere with the top itself. 

The top effectively becomes a circular wave that is chasing its tail, as shown in figure 9. The head interferes 

with the tail in a positive or a negative way depending on the phase difference. If the head and tail are in 

opposite phases after one precession then the top destroys itself. If there were no phase difference at all we 

would get a stationary circular wave.  

 

Using formula (6.1) we find that a slightly asymmetric almost vertical spinning top almost returns to its 

initial state after one or two precessions if the following equivalent conditions are approximately satisfied    
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It may be tempting to think that if the ratio Ix/Iz were slightly greater, to compensate for cos() being less 

than one, then the formula above would result in /Pr becoming an integer or half-integer. This would 

mean that asymmetric spinning tops would return to their initial state, which we know to be impossible. 

However, an asymmetric top can almost return to its initial state and create an almost stationary wave. The 

closer it returns to the initial state the longer it will take for the top to destroy itself.  
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7. Spin of particles 

 

The spin of a particle Mz is the z component of the total angular momentum M for which we have  

 

      zzz IM            (7.1) 

 

where Iz is the moment of inertia about z axis and z the angular velocity about z axis. Since the angular 

velocity of precession Pr is never zero we can write the above formula as 
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In Quantum Mechanics for the spin of a particle we have the following formula involving the Heisenberg 

constant  

 

    zM    =  integer or half-integer       (7.3) 

 

where  is an integer or half-integer. Let us assume that the following relationship between Iz and z holds 

 

            Pr zI            (7.4) 

 

This simply says that a spinning top with a small resistance to spinning (small Iz) precesses faster than a 

spinning top with a high resistance to spinning (large Iz) and that this relationship is inversely proportional. 

On the assumption (7.4) the formula (7.2) for the spin of a particle becomes  
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Formula (6.2) for the possible values of the ratio z/Pr tells us  

 

         
Pr

 z        ...,3,
2

5
,2,

2

3
,1,

2

1
etc  for Ix   Iy and  0       (7.6) 

 

Thus we arrive at an explanation why the spin of elementary particles  is an integer or a half-integer. 

Particles are disturbances in the relativistic ether that last long enough for us to observe. For this they have 

to be almost stationary circular waves and hence have z/Pr that is equal to an integer or a half-integer, 

which according to (6.2) is equivalent to Ix/Iz being an integer or a half-integer.  
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8. Baryons, mesons and their mass 

 

The spin values Ix/Iz in (6.1) do not include 0 and for ½ we have a disc that has virtually no mass and hence 

cannot be a hadron. We address this below and in the process explain the structure of baryons and mesons. 

The mass formula (2.8) can be modified to take into account the structure of particles. Figures 18 and 19 

show a baryon with  = 2.5 and a meson with  = 3. The parameter  is the spin of a particle when the 

entire particle rotates in the same direction. The horizontal lines show the heights for baryons with  = 0.5, 

1.5,  2.5 and mesons with  = 1, 2 and 3. The line through the centre of the baryon is a disc with spin 0.5.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     Figure 18. Baryon      Figure 19. Meson 

 

To obtain a baryon with spin 0.5 we take the height and mass of  = 1.5, but with the disc rotating in the 

opposite direction. In the absence of the disc the spin would be reduced by 0.5 and with the disc rotating in 

the opposite direction the spin is reduced by another 0.5. We find a similar phenomenon to the baryon disc 

in hurricanes where the visible part (warm air) rises up from the ground (or sea) rotating anticlockwise, but 

when it ascends above the hurricane it suddenly turns and rotates clockwise. We can extend this idea, by 

rotating not only the disc, but also its adjacent parts in the direction opposite direction to the end parts. This 

way we can obtain any half integer spin s smaller than   with the mass of .  

 

We can do the same for mesons, although in the absence of the baryon disc we have to start with an even   

to obtain spin 0, if we want a symmetrical arrangement of the top and bottom. If we are prepared to accept 

asymmetrical particles, for example the top rotating in the opposite direction to the bottom, then we can 

start with any .  

 

The horizontal lines in figures 1 and 2 separate the particles into “slices”, each contributing with spin ½. 

The slices that rotate in the opposite direction to the particle with spin s are called “contras” and the number 

of contras is denoted by the variable c. Thus the relationship between the variables , s and c is as follows: 

s =   - c, i.e.   = s + c. Substituting this into the mass formula (2.8) we obtain  

 

        122  csbm                (8.1) 

 

The formula above allows one family of particles to have particles with the same mass but different spin 

and vice-versa, for a given spin there may be particles with different masses.  
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9. Electric charge of particles  

 

In Special Relativity the electro-magnetic field is transformed between two inertial observers using Lorentz 

transformations. If the relative velocity v between the observers is along their z axis then the electric field 

Ez and the magnetic field Hz are the same for both observers, but the x and y components are different [12].  
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The same formulas are for the magnetic field H, but the + and – signs in the nominator are swapped round. 

Let us assume that in a “stationary frame” the values of Ex’, Ey’ and Ez’ are zero. Then the frame moving 

in the direction of axis z acquires electric field that demonstrates itself in non-zero Ex and Ey.  

 

Lorentz transformations are also used for the space-time coordinates, with the following formulas [13]  
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These transformations can also be expressed using the hyperbolic functions sinh and cosh [13]  

 

 )sinh(')cosh('  ctzz    )cosh(')sinh('  ctzct          (9.3) 

 

The variable  is related to velocity v as shown below [13], [18] thus  = 0 for v = 0 and  = ∞ for v = c  
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If v is much smaller than c then we can expand the above formula for  in terms of v/c as follows  
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Yet another way to express the transformations is by geometric functions with imaginary argument iw [19]  

 

 )sin(')cos('  iictizz    )cos(')sin('  ictiizct             (9.6) 

 

In this form Lorentz transformations may be considered as rotations in xt plane. We have now explored all 

possible rotations in space time and we will show on the next page that they can provide an explanation not 

only for the spin of particles which was already explained, but also explain the electric charge.  
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Let us consider vortices and in particular the structure and the air flow of a hurricane. The hot air produced 

by the heat from land or sea rises up in a spiral twisting about the hurricane’s eye. The cold air found at 

high altitudes spirals just above the visible hurricane cloud in an almost flat invisible disc. When it reaches 

the hurricane’s eye it suddenly falls down at almost a constant stream to fill the void left by the hot air.  

 

Let us now consider particles. In Lorentz transformations the electric field can be created only if the  

magnetic field is already present. Thus, let us assume that in the case of particles the spiral flow of the 

relativistic ether in xy plane creates the magnetic field and then the linear constant flow of the ether along 

the spin axis z creates the electric charge. More accurately perhaps, the two distinctly different flows of 

ether together create the electro-magnetic field and the electric charge.  

 

Figures 20 and 21 show two man-made water vortices. One vortex is made by rotating a disc with a hole in 

its centre close to the bottom of a water container. The other vortex uses a couple of bottles firmly connected 

together at their necks. The bottles are half full with water and are given some angular momentum by a 

circular movement using hands. Then the coupled bottles are placed in a holder to keep them steady.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

             Figure 20. Air flows down the eye            Figure 21. Air flows up the eye 

 

The main difference between the two vortices is that in figure 20 the air comes down the vortex eye as in 

the case of a hurricane. This can be seen by the bubbles rising from the bottom of the container where the 

disc rotates. On the other hand in figure 21 the air comes up the vortex eye as the water is filling the bottom 

bottle and displaces the air within it. This is not what is observed on water vortices in nature, but the 

experiment shows that it is possible.  

 

Thus we assume that a particle with the ether coming out from the narrow ends has a positive electric charge 

of 1 unit, while a particle where the ether comes in through the narrow ends has a negative charge -1. If the 

ether comes in from one end and goes out from the other end then the particle has zero charge. In addition 

to the vertical flow of ether there is a spiral flow of ether where the twin vortices are joined at their wide 

ends. Thus the ether that comes in through the wide end goes out through the narrow end and vice-versa.  

 

This scheme satisfies the fundamental condition regarding anti-particles, namely that they can be described 

by the same equations as the particles, but with the reversed time axis. We can imagine this by filming the 

whole process and then playing the film backwards.  
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10. Hurricanes and Typhoons 

 

We will now take a detailed look at the basic building blocks of particles and represent them by hurricanes 

and typhoons. For simplicity consider that hurricanes are confined to the northern hemisphere and typhoons 

to the southern hemisphere, rotating the opposite way. A hurricane has an eye that opens up to a wide spiral, 

as shown in figure 23. This spiralling cloud is fed by the hot air rising up from the ground or the sea and  

twisting round the eye, as shown in figure 22. The whole visible cloud rotates anti-clock wise.   

 

In addition not seen on the photographs is the cold air falling down the eye. Also not seen on the 

photographs, there is a transparent accretion disc just above the clouds that brings the cold air to the edge 

of the eye. The disc rotates in the opposite direction to the cloud, i.e. clockwise, as shown in figure 23. 

Since the cold air is not visible its precise circulation is not known.  

 

 

 

 

 

 

 

 

 

 

 

 

 

   Figure 22. Hurricane top view            Figure 23. Hurricane side view  

 

Schematically we shall represent hurricanes and typhoons by drawings shown in figures 22 and 23.  

 

 

 

 

 

 

    

 

  Figure 24. Hurricane diagram.        Figure 25. Typhoon diagram. 

 

The wall of the hurricane eye may be thought of as a right-handed screw. If we hold the screw still pressing 

down on a piece of wood and rotate the wood, it will go up the screw. The hot air moves by a right hand 

rule, with the thumb up and fingers bent pointing anti-clockwise. Similarly, we can think of the typhoon 

wall as a left-handed screw (seldom used in practice). The hot air twists up the wall, but this time clockwise.  

 

Anti-hurricanes do not occur on Earth, but we can imagine them as a film of a hurricane played backwards 

in time. In an anti-hurricane the eye is still while the hot air twists clockwise and moves down. At the same 

time a column of cold air is rising up through the middle of the eye. Similar time reversal takes place in 

anti-typhoons. Anti-hurricane is not a typhoon and anti-typhoon is not a hurricane.   
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11. Diagrams of h and t vortices 

 

The schematic drawings of hurricanes and typhoons are shown in figures 26 to 33, where the subscripts “c” 

and “a” stand for clock-wise and anti-clock-wise. In reality the eye has more or less the same height as the 

width and flattens out much more suddenly, as given by formula (2.1). The vortices spinning anti-clockwise 

have the spin s of +½ and the those spinning clockwise have the spin of –½. The electric charge q is +½ if 

the stream through the eye exits via the narrow end, and –½ if it enters at the narrow end.  

 

 

 

 

 

 

 

 

         Figure 26. hc   s = -½ q = ½              Figure 27. ta   s = ½ q = ½  

 

 

 

 

 

 

 

 

         Figure 28. ha   s = ½ q = ½             Figure 29. tc   s = -½ q = ½ 

 

The vortices h, t (above) have the electric charge +½, while ant-h, anti-t (below) have the  charge -½.  

 

                     

 

 

 

 

 

 

      Figure 30. anti-ha   s = ½ q = -½         Figure 31. anti-tc   s = -½ q = -½  

 

  

 

 

 

 

 

 

     Figure 32. anti-hc   s = -½ q = -½         Figure 33. anti-ta   s = ½ q = -½  
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12. Diagrams of the baryon disc 

 

The images below are the invisible discs of hurricanes, typhoons and their imaginary anti-partners. For 

hurricanes and typhoons the discs spin in the opposite direction to the visible clouds of the hot air and bring 

the cold air to the vortex eye, where the air falls down. The baryon discs do not carry any electric charge. 

The discs are the spiral inlets of ether for the positive particles and the outlets for the negative particles. 

The discs ic and oa (i = inlet, o = outlet) are anti-vortices annihilating each other, as are oc and ia.  

 

 

 

 

 

 

 

 

 

                  Figure 34. Inlet ic  s = -½         Figure 35. Outlet oa  s = +½ 

 

 

 

 

 

 

 

 

 

                Figure 36. Outlet oc  s = -½           Figure 37. Inlet ia  s = +½  

 

For the neutral particles one side of the disc is an outlet of ether and the other side an inlet of ether. 

Both disc sides spin in the same direction as one unit with spin ±½, there is no net flow of ether.  

The discs ioa and oic (io = inlet-outlet) are anti-vortices annihilating each other, as are oia and ioc. 

 

 

 

 

 

 

 

 

 

     Figure 38. In-Outc and Out-Inc             Figure 39. In-Outa and Out-Ina  

 
This scheme satisfies the fundamental condition regarding anti-particles, namely that they can be described 

by the same equations as the particles, but with the reversed time axis. We can imagine this by filming the 

whole process and then playing the film backwards.  
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13. Diagrams of proton and neutron 

 

The notation for baryons is a column containing three entries, names of the vortices, as shown in (13.1). 

This reflects the structure of a proton and an anti-proton in figures 40 and 41. A proton spinning anti-

clockwise consist of vortex ha in the down entry, ta in the up entry and ic in the middle. The anti-proton is 

shown to spin the opposite way and consists of anti-hc down, anti-tc up and anti-ia in the middle, that may 

be also denoted as oa. Figures 44 and 43 show the structure of the discs from the bird’s eye view.  

 

 

 

               (13.1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        Figure 40. Proton     Figure 41. Anti-proton 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

         Figure 42. Proton inlet disc ic     Figure 43. Anti-proton outlet disc oa 

 

On the diagrams the spin of the proton is +½ and that of the anti-proton is -½. Turning them upside down 

each would spin in the opposite direction. In a collision of these two particles the magnetic field that they 

generate make them aligned in such a way that they spin in the opposite direction and annihilate each other.  
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There are two varieties of neutrons, one consisting of vortex h and anti-h, the other of vortex t and anti-t.  

The notation for the neutron shown in (13.2) is for the h variety. This reflects the structure of a neutron h 

and an anti-neutron h in figures 44 and 45. A neutron h spinning anti-clockwise consist of vortex ha in the 

down position, anti-ha in the up position and oic in the middle. The anti-neutron h is shown to spin the 

opposite way, i.e. clockwise and consists of vortex anti-hc down, hc up and ioa in the middle.  

 

 

 

               (13.2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     Figure 44. Neutron h               Figure 45. Anti-neutron h 

 

 

Figures 46 and 47 show the structure of the discs from the bird’s eye view. The baryon disc ioa is a part of 

a neutral particle and is equivalent to anti-oic.  

 

 

 

 

 

 

 

 

 

 

 

 

 

           Figure 46. Neutron h disc oic       Figure 47. Anti-neutron h disc ioa 

 

The spin of the neutron h is +½ and the spin of the anti-neutron h is -½. However, turning either of them 

upside down they would spin in the opposite direction. In a collision of these two particles they align in 

such a way that they spin in the opposite direction and annihilate each other.  
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The notation for the neutron shown in (13.3) is for the t variety. This reflects the structure of a neutron t 

and an anti-neutron t in figures 48 and 49. A neutron t spinning clockwise consist of vortex tc in the down 

position, anti-tc in the up position and oia in the middle. The anti-neutron t is shown to spin the opposite 

way, i.e. anti-clockwise and consists of vortex anti-ta down, ta up and ioc in the middle.  

 

 

 

               (13.3) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     Figure 48. Neutron t               Figure 49. Anti-neutron t 

 

Figures 50 and 51 show the structure of the discs from the bird’s eye view. The baryon disc ioc is a part of 

a neutral particle and is equivalent to anti-oia.  

 

 

 

 

 

 

 

 

 

 

 

 

 

          Figure 50. Neutron t disc oia         Figure 51. Anti-neutron t disc ioc 

 

The spin of the neutron t is -½ and the spin of the anti-neutron t is +½. This is opposite to the neutron h and 

anti-neutron h in figures 46 and 47. For both neutrons h and t the ether flow is down, hence they have 

different chirality, one is right handed and the other left handed.  

 

If we remove the baryon discs for all the drawings of protons and neutrons we obtain two mesons, one 

positive and one neutral, say + and 0. Thus there will be two versions of 0, right handed and left handed.  
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14. CPT invariance of Particles 

 

CPT stands for charge, parity and time transformation of particles. It always returns to the original particle. 

It is the most fundamental conservation law observed in particle physics, but there is no explanation for this 

in terms of quarks. We shall now use proton to demonstrate its invariance under CPT transformations.  

 

 

 

 

 

 

 

 

 

 

                Figure 52. Proton anti-clock-wise (pa)          Figure 53. Inlet disc clock-wise  

 

To apply C transformation we change the direction of the ether flow, keeping the directions of all rotations.  

 

 

 

 

 

  

 

 

 

 

         Figure 54. C(pa) = anti-proton anti-clock-wise       Figure 55. Outlet disc clock-wise 

 

To apply P transformation we change the handedness of particles, i.e. rotate them by 180 degrees about z 

axis and take the mirror image in yz plane. Rotation is not needed, since particles are symmetrical about z.  

 

 

 

 

 

 

 

 

 

 

             Figure 56. CP(pa) = anti-proton clock-wise   Figure 57. Outlet disc anti-clock-wise 

 

To apply T transformation we reverse the time, i.e. reverse all the arrows, leaving the rest untouched. This 

way the last images return back to the original proton images above, and therefore proton is CPT invariant.  
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Next we shall use neutron h to demonstrate its invariance under CPT transformations.  

 

 

 

 

 

 

 

 

 

 

 

           Figure 58. Neutron h anti-clock-wise (nha)       Figure 59. Neutron h disc out-in-c 

 

To apply C transformation we change the direction of the ether flow, keeping the directions of all rotations.  

 

  

 

 

 

 

 

 

 

 

 

     Figure 60. C(nha) = anti-neutron h anti-clock-wise      Figure 61. Neutron h disc in-out-c 

 

To apply P transformation we change the handedness of particles, i.e. rotate them by 180 degrees about z 

axis and take the mirror image in yz plane. Rotation is not needed, since particles are symmetrical about z.  

 

 

 

 

 

 

 

 

 

 

 

        Figure 62. CP(nha) = anti-neutron h clock-wise      Figure 63. Neutron h disc in-out-a 

 

To apply T transformation we reverse the time, i.e. reverse all the arrows, leaving the rest untouched. This 

way the last images return back to the original images above, and therefore neutron h is CPT invariant. For 

neutron t the figure headings above are identical, there is no need to demonstrate this separately. For the 

neutral mesons we simply remove the baryon disc, there is no need to demonstrate this graphically either.  
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15. Matter and anti-matter 

 

All stable matter known to us is made of atoms and they in turn consist of protons, neutrons and electrons. 

Although there are anti-protons, anti-neutrons and anti-electrons (positrons) there are no stable anti-atoms, 

i.e. anti-matter. The conventional thinking is that this is due to some asymmetry that occurred very soon 

after the big-bang. We will now propose an alternative using the diagrams in figure 64 and 65 below.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 64. Matter 

 

The protons above are in blue, the neutrons in black. The inner jets from the protons push the ether to the 

centre of the atom, while the neutrons suck it out. All outer jets face away from the centre, pushing all 

particles to the centre and keeping the atom together and stable.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 65. Anti-matter 

 

The anti-protons above are in red, the anti-neutrons in black. The inner jets from the anti-proton suck out 

the ether from the centre and the anti-neutron replenish it. All outer jets face towards the centre, pulling all 

particles away from the centre and the anti-atom does not stay together.  
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16. Summary and conclusions 

 

It has been shown by solving the Euler equations of motion for rotating bodies that the motion of a Vir can 

result in a circular wave, where the head chases its tail. Such a wave destroys itself after one precession if 

the head and tail are out of phase, but results in a stationary circular wave if they are in phase.  

 

If a spinning top has a perfectly circular footprint then its spin axis precesses in a perfect circle. If the top 

has an elliptical footprint then its spin axis follows a wavy circular motion that the top never returns to its 

initial state. However, if the top is only slightly elliptical and its axis almost coincides with the total angular 

momentum vector then its motion can produce an almost standing circular wave.  

 

The standing circular wave occurs if the ratio of the Vir moments of inertia Ix/Iz is an integer or half-integer. 

If the ratio is an integer then the top (almost) returns to its initial state after one precession and if it is a half-

integer then after two precessions. This restricts particles to the spin that we observe.  

 

Electric and magnetic fields for two inertial observers moving with relative velocity v are related by Lorentz 

transformations used in Special Relativity. These transformations can be expressed by hyperbolic functions 

of a real argument  or by an imaginary argument i with trigonometric functions. Thus the transformations 

can be considered as rotations in zt plane, where axis z is aligned with the velocity of the moving observer.  

Thus the space rotation of a hurricane about its spin axis is caused by a spiral movement of the air, the 

rotation in a space-time plane is caused by a linear movement of the relativistic ether along Vir spin axis.  

 

This completes the description of all Vir rotations in space and time and reveals the origin and nature of the 

electric charge in elementary particles. If the rotation in zt plane is positive the ether flows out from the 

ends of the Vir and we have a positive particle. If the ether flows in through the ends of the Vir we have a 

negative particle. If the ether flows in from one end and out from the other then we have a neutral particle.  

 

CPT is the most fundamental conservation law observed in particle physics, but there is no explanation for 

this in terms of quarks. The time transformation T reverses all motion and transforms a particle to an anti-

particle. Using this concept of anti-particles Vir Theory shows that CPT transformation must be invariant.  

 

Although there are anti-protons, anti-neutrons and anti-electrons (positrons) there are no stable anti-atoms, 

i.e. anti-matter. The conventional thinking is that this may be due to some asymmetry that occurred very 

soon after the big-bang. Vir Theory explains how this comes about without resorting to the big-bang.   

 

When considering black holes they are described by only three quantities: mass, spin and electric charge. 

These are the essential properties also for elementary particles. Like particles black holes have accretion 

disc and two opposite jets perpendicular to the disc. It appears that the smallest and the most massive objects 

known to us may have the same nature.  

 

The integrals for the mass and the moments of inertia for the Vir can be evaluated algebraically and using 

these expressions one can obtain a formula for the relationship between the spin and mass of Vir. It is a 

formula that allows several masses for a given spin and vice-versa. This formula has been tested very 

successfully using the existing particle data, as will be shown shortly in the paper entitled “Mendeleev-like 

Tables of Elementary Particles”.  

 

  



 13 Dec 2016  

27 

 

Acknowledgements 

 

I would like to thank my wife Jo for her loving care without which this work would not have been possible. 

I thank God for everything.  

 

Sources of Figures 

 

Figure 22. Image courtesy NASA 11 Sep 2003 Hurricane Isabel 

                http://www.hurricanetrackinfo.com/ 

 

Figure 23. Image courtesy NOAA/NASA 22 Aug 2005 Hurricane Anatomy 

                http://earthobservatory.nasa.gov/Library/Hurricanes/Images/hurricane_structure.jpg 
 

All other images are copyright of the author. All URLs given above were active in Nov 2007. 
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