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Abstract 

    Relativistics equations are derived using concepts of Newton, Lewis, Doppler and non-instantaneous 
forces. And the theory is in agreement with particle collision, mass variation, time dilation, transversal 
Doppler effect, kinetic energy, etc. 
  We propose a mass spectroscopy experiment to test the theory.  
   
  1. Introduction 
 
    In table 1 we have a comparative between the equations of  Newtonian-Lewis-Doppler theory (NLD) 
and special relativity (SR). 
  For 0V , equations of NLD and SR are the same. 
  Where V  is the velocity of the inertial frame 'S with respect to the preferred frame S  (CMB).  
  All equations for NLD are derived and explained in the next sections. Equations (1-4) were derived by 
Lewis (who received 35 nominations for the Nobel prize in chemistry) [1] using concepts of Newton 
and Maxwell.   
 
Equations Newt.-Lewis-Doppler Th. Special Relativity Equ. Sect. 
Mass variation 0mm   same        (1) 5   

Kinetic energy  12
0  cmk  same (2) 5   

Relation mass-energy 2
0cmE   same (3) 5   

Inertial force  
2

).(

cdt

d
m

vFvv
F   

same (4) 6   

Particle collisions 
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same (14) 8.2 

Time dilation 0tt   same (35)  13.1   

Transv. Doppler eff. /0ff   same (38)   13.2 

Longit. Doppler eff. 
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 same (49) 13.4 

Coulomb force  
3
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0 4 r

rqQ
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m x

o

x
x 

   
same (22) 10 

Force propagation non-instantaneous non-instantaneous xx 3, 9, 10   
Transformations:  
position, veloc., time 

Galilean Lorentz xx 3, 9    

 
Table 1 – Equations - Comparison between SR and NLD for frame S .  
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2. NLD experimental test 
 
  Experiments with very high acuracy are analyzed by NLD (see Table 2) and are in agreement.      
  Michelson-Morley experiment is an open question and needs more research as shown in Section 16.   
 

 
 
 
 
 
 
 
 
 

Table 2 – Experiments - Comparison between SR and NLD. 
 
  To test NLD we can make a mass spectrometer with electric and magnetic sector with a special 
geometry. From the movement of the earth we measure the mass variation of ppm10  and compare 
with theoretical NLD value and the position of the spectrometer with respect to the CMB, see Section 
12.     
 
3. Postulates and work assumptions 
 
a) The velocity of light is a constant c  with respect to the preferred frame, independent of the direction 
of propagation, and of the velocity of the emitter. 
b) An observer in motion with respect to the preferred frame  will measure a different velocity of light, 
according to Galilean velocity addition. 
c) The preferred frame is the cosmic microwave background (CMB). The velocity of the earth with 
respect to the CMB is approximately V=370km/s=0.00123c and the direction is approximately parallel 
to the earth’s orbital plane.  
d) According to Zeldovich, at every point in the Universe, there is an observer in relation to which 
microwave radiation appears to be isotropic. 
e) A Coulomb force, magnetic force and gravitational force are generated respectively by an electric, 
magnetic and gravitational wave. The electric, magnetic and gravitational waves have constant 
velocities c  with respect to the preferred frame, independent of the direction of propagation, and of the 
velocity of the emitter. 
 
4. Experimental speed of the light 
 
  For measurement of the speed of the light when is used the two way method, that is, the light goes, 
return and the medium velocity for NLD is constant and exactly     VcVcc  5.0 . 
  Experiments with resonators like microwave cavity has also the medium value constant c. 
  Experiments using optical instruments with lenses like telescope, for NLD needs a special study in 
reflection and refraction in glass with velocity V with respect to the CMB, as shown in section 16. 
 
 
 
 

Experiments Special Relativity Extend. Newton. Th. Sect. 
Particle collision s  same 8 

Mass spectrometer sectors Accuracy ppm1  same 12   

Mössbauer effect Accuracy 13101   same 14   
Ions as clock and lasers Accuracy 10102  same 15   
Light velocity c constant in all inertial frames with respect to the CMB 3, 4   
Michelson-Morley 0  open question 16   
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5. Mass variation, kinetic energy and mass-energy relation 
 
  Using concepts of  Newton and Maxwell, Lewis (who received 35 nominations for the Nobel prize in 
chemistry and coined the word ‘photon’) [1] derived the equations for mass variation, kinetic energy 
and mass-energy.  
  Equations (1), (2) and (3) are, respectively, equations  (15), (16) and (18) in [1].  
  The following is from [1]: “Recent publications of Einstein and Comstock on the relation of mass to 
energy has emboldened me to publish certain views which I have entertained on the subject and which 
a fews years ago appeared purely speculative, but which have been so far corroborated by recent 
advances in experimental and theoretical physics… In the following pages I shall attempt to show that 
we may construct a simples system of mechanics which is consistent with all known experimental 
facts, and which rests upon the assumption of the truth of the three great conservation laws, namely, the 
law of conservation of energy, the law of conservation of mass, and the law of conservation of 
momentum. To these we may add, the law of conservation of electricity”. 
 
6. Inertial force 
 
 For the preferred frame S and from equations (1), (2) and (3), we derive the equation of inertial force: 
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  Equations for y and z are similar with (5) and we substituted x for y or z  . 
  Substituting (1), we have: 
 

dt

dv
mF x

xox
2                                                                                   (6) 

   
  Equations for y and z are similar with (6) and we substituted x for y or z  .   
  Where m , v  are respectively the mass and velocity of the body (particle) with respect to the preferred 

frame ( S ), cv , 211   , 211 xx   , 211 yy   and 0m  is the mass of the 

body (particle) at rest in the preferred frame ( S ). 
 

7. Classical Doppler effect 
 
  For a source, the classical Doppler effect is: 
 

 sc

cf
f

vn 
 0                                                                                      (7) 

 
  Where 0f  is the frequency of the source at rest in S , f  is the frequency in frame S , n is the unitary 

vector normal to r , r  is the distance travelled by the light from source to absorber, sv  is the velocity of 
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the source with respect to S . The sign (+) is source moving away from S  and (-) is source moving 
towards S .  
For a absorber the classical Doppler effect is: 
 

 
c

cf
f

vn 
'                                                                                  (8) 

 
  Where 'f is the frequency received by the absorber, v  is the velocity of the absorber with respect to 
S. The sign (+) is absorber moving towards S  and (-) is absorber moving away from S . 
 
8. Particle collisions  
 
  This Section is an introduction to particle collision for NLD and the complete equations need to be 
developed. 
  For collisions with respect to the frame S (CMB) we have the total and the maximum transfer energy 
equations the same for NLD (Equ. 14) and SR (Appendix A, Equ. (A4)). SR explanation for particle 
collision, see Appendix A. 
  
8.1 Force in particle collision   
  
  In a collision, the distance between particles and/or subparticles is 0r  and by hypothesis the force 
has a factor due the Doppler effect. 
  Suppose two charged particles aq and bq  with velocity a and b  in opposite direction and collision 

head-on. We consider the frame S  between the particles and aq and bq are moving towards S . The 

Coulomb Doppler force is: 
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   The Doppler effect is: 
a) the source aq  emitts to S  frame (from (7), source moving towards S ),  aff  10 . The 

absorber bq  receive the frequency (from (8), absorber moving towards S ), 

     abb fff   111 0
' .  

b) the source bq  emitts to S  frame (from (7), source moving towards S ),  bff  10 . The 

absorber aq  receive the frequency (from (8), absorber moving towards S ), 

     baa fff   111 0
' .  

  Suppose a charged particle bq  at rest in S  and a incident charged particle aq  with velocity i .     

  The Coulomb Doppler force with respect to S , from (9) and for 0b  is 
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  Equaling (9) and (10) and isolating i we have 
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8.2 Energy in particle collision 
 
In the collision of a incident particle ( aq ) with velocity i  and a target (particle bq  at rest) the total 

incident energy is: 
 

2

2

1 i

a
i

cm
E


                                                                                    (12) 

   
  In the collision of two charged particles ( aq and bq ) with opposite momenta we have the total energy  
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  Where am and  bm  are the rest mass of the charged particles. 

  Substituting (11) in (12) we have: 
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  This is the same equation than the used in SR (Appendix A, Equ. (A4)). So, the total and the 
maximum transfer  energy calculated for SR and NLD in collisions are the same. 
  This conclusion is for the frame S (for example, the linear accelerator is at rest in CMB (frame S )). 
For the frame 'S (for example the linear accelerator at rest in earth), needs to be developed.  
 
8.3 Particle collision example 
 

   Particle collision can be illustrated by the example of the creation of Z bosons in electron positron 
annihilations. In an ee  collider we need two opposite beams of half the Z boson mass, i.e., of 
approximately 45.5 GeV each. For two beams with electron rest mass 51.0am MeV, 

5.451 22  aaba cmEE   GeV and we have ba   . From (14) we have 6103.8 iE  GeV, 

where  6103.8   GeV is the energy necessary for the incident particle in a fixed target to produce  Z 
bosons. 
 
 9. Electric field of a point charge. 
 
  Let us suppose two inertial frames S  and 'S  with parallel axis and 'S  with constant velocity V  with 
respect to S . Charge Q  is at rest in the coordinates center of frame 'S . The electric field at point 

'P  ''' ,, zyx  at rest in 'S  (see Fig. 1) is: 
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Fig. 1 – Inertial frames S  and 'S  with parallel axis and 'S  with constant velocity V  with respect to 
S .                                                             
 
  The velocity of the electric field with respect to S  is c , ctr  , tVrr  ' , cBV  , substituting we 
have 
 

kjikjiBrr rBrBrBzyxr zyx  ''''                                            (16) 

 

     2'2'2'2222 rBzrByrBxrrrr zyxzyx                                (17)   
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    For 0V  we have  'rr   and 0EE  .                                                             

 
10. Electric force with one particle at rest 
 
 Suppose a charge Q  (mass M ) at rest in in the center of coordinates of  'S  ( mM  ) and 'S  with 
constant velocity V  with respect to S . At point P’ we have a charge q  (mass  m ) with velocity 

'v with respect to 'S .  From (19) we have the electric force. 
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Equating (6) and (20) yields the following differential equations: 
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  Equations for y and z are similar with (21) and we substituted x for y or z.  
  Multiplying and dividing the first term of (21) for 'dx we have: 
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  Where '
xx dvdv  (inertial frames), cv , cVB  , cv ''  , Vvv  ' , 211   ,  

211 xx    and 0m  is the mass of the particle q  at rest in the preferred frame ( S ). 

 
10.1 Gravitation 
 
Suppose a particle (body) with masss M = constant at rest in the center of coordinates of 'S and 'S  
with constant velocity V  with respect to S . At point P’ we have a particle of mass m ( mM  ) with 
velocity 'v with respect to 'S . The gravitational force in m is 3rrGmMF xx  (equations  for y and z 

are similar and we substituted x for y or z) where  0mm  , 2
0 1 BMM   and G  is the 

gravitational constant. Equaling the gravitational and inertial forces we have the acceleration of the 
mass m  with respect to S and 'S ( '

xx dvdv   for inertial frames):  
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11. Mass 
 
 11.1 Sun mass 
 
 The velocity of the sun with respect to CMB (S frame) is aproximately 370sunV  km/s  towards the 

constellation Leo. 
  The mass of the sun with respect to the CMB (S frame) is  
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1 cV

M
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sun


                                                                                                     (23) 

 

where sunM 0  is the mass of the sun at rest in CMB. 
 

 11.2 Earth mass 
 
 The velocity of the earth (frame S’) with respect to CMB is 30370 earthV  km/s  aproximately 

parallell to the earth’s orbital plane (see [2], Fig. 3.2). 
 The mass of the earth with respect to the CMB is 
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where earthM 0  is the mass of the earth at rest in CMB. 

 
 11.3 Particle mass 
 
  The velocity of a particle at rest in the surface of the earth with respect to CMB depends of the 
location, for example, in equator is 5.030370 V  km/s and in the poles is 30370 V  km/s. 
  The mass of a particle at rest in the surface of the earth with respect to CMB is 
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where 0m  is the mass of the particle at rest in CMB. 

  As an example for a specific place and day, from [3] the components of the terrestrial motion with 
respect to CMB in Cleveland (Ohio) on 8 July 1887, the first day of the Michelson-Morley experiment 
(see Fig. 2) is 
 
  zenithnortheast VVVV                                                                             (26) 

 
  We consider the terrestrial coordinates eastx  , northy   and zenithz  . The modulus is 
 

222222
zyxzenithnortheast VVVVVVV                                                   (27) 
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Fig. 2 -  Components of the terrestrial motion with respect to CMB in Cleveland (Ohio) on 8 July 1887, 
the first day of the Michelson-Morley experiment (from [3], Fig. 3) 
 
  For a particle with velocity 'v  with  respect to the surface of the earth we have Vvv  ' , where v  is 
the velocity of the particle with respect to CMB. 
  The mass of the particle with respect to CMB is 
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Where 0m is the mass of the particle at rest in CMB. 

   
 11.4 Experimental mass 
 
  The most basic mass experiment is the particle deflections with electric and magnetic fields. 
  The complete equations of  electric ( E ) and magnetic ( H ) fields are in Appendix B and C. 
  Let us suppose a condenser of parallel plates with area '' ll   ( 'l very large)  at rest in the surface of 
the earth (S’) and the plates are parallel to plane 'x , 'y  (east, north). 

  For 390 xVV  km/s (10hs, see Fig 2), from (B10) we have  0EE constant  where 0E  is the 

electric field between the plates of the condenser and condenser at rest in CMB. 
  The particle has initial velocity ''

yvv   with respect to the earth, '
yv is constant and '

zv  varies from 

zero to '
zv , see Fig. 3.  
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zv’

v’y

V=Vx

0E

y, y’

z, z’

q
 

 
  Fig. 3 – Condenser plates at rest in the surface of the earth. The place where is located the condenser, 
at time 10hs has velocity  390 xVV  km/s with respect to the CMB (see Fig. 2) 

 
  The instantaneous mass of the particle with respect to S is 










 




2

22'2'

0

1
c

Vvv

m
m

zy

                                                                         (29) 

 
  Where  '

yv constant, V constant  (in the time interval t of the experiment we have 0V for t  

with few seconds or miliseconds, see Fig. 2) and '
zv  is not constant. For 0' zv  and  390' zv km/s  

we have  
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where constm constant (in the interval t ). The force is 
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where 0E constant and  '

zz aa  constant (S’ is a inertial frame because in the t of the experiment 

we have 0V ). 
  The equations of the movement are tvly y ''' , 2'' 5.0 taz z , substituting we have 
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  From initial conditions we have  ''

0 ,,,, lVvEq y  and measuring 'z , from (32) we have 0m . 

  Therefore, in this experiment we measure 0m  the mass of the particle at rest in CMB.  

 
11.5 Experimental mass with numeric calculation 
 
  If '

zv  is not small and it cannot be despised we have  
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where '

zv  and za  are variables. Therefore it is necessary to use numeric calculation with small t  

considering in this time interval za  constant ( '
zz aa  , because 'S is a inertial frame). 

  And we make the sequence of calculations: give a value for 0m ,   222'
1

2'
01 1 cVvvmm zy  , 

101 mqEaz  , 2
1

'
1

'
1

'
2 5.0 tatvzz zz  , tavv zzz  1

'
1

'
2 , tvyy y ''

1
'
2 , 

  222'
2

2'
02 1 cVvvmm zy   and we repeat the equations until '' ly  . Compare 'z of numeric 

calculation with 'z  experimental, if different we give new value for 0m  and repeat the numeric 

calculation until 'z (experimental) = 'z (numeric calculation). 
 
11.6 Experimental mass with E variable 
 
  In the Fig. 3, if  we rotate the condenser of 90 degrees (condenser plate parallel to '' , zy  plane) the 
electric field E  between the plates of the condenser is variable. Therefore we use equation (B10) from 
Appendix B2 to calculate E and numeric calculations similar as the section 11.5. 
 
12. Experimental test for NLD theory 
 
 Mass spectroscopy experiments can prove  (or to disapprove) NLD theory. This subject is described 
below.  
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12.1 Mass spectroscopy description 
 
Mass spectroscopy [4-6] is the most basic mass experiment. It uses an electric field deflection 
(electrostatic analyser) and later a magnetic field deflection (magnetic analyser). The receiver sensor 
can be a photographic plate (spectrograph) or an electron multiplier (spectrometer).    
 
12.1 Nier-Johnson spectrometer 
 
  Nier-Johnson spectrometer [6-9]  uses an accelerator, a 90 degree electrostatic analyser and a 60 
degree magnetic analyser. 
 
 

V=Vx
acceler.

90°

er

mr

60°

loeloe

lie

lom

l im

x, x’

y, y’

 
 
Fig4 – Nier-Johnson geometry in ‘C’ configuration, from [9], Fig. 5. 
 
  The mass accuracy of the Nier-Johnson spectrometer is aproximately 1 ppm in a typical doublet 

1
4

1216 HCO   experiment. 
  From NLD equations (B10), (B14) and (C8) respectively for the accelerator, electrostatic analyser, 
magnetic analyser and using numeric calculation with the software Maxima Algebra System, for two 
different times, for example 10hs and  22 hs (see Fig. 2) we have a mass difference of aproximately 2 
ppm. But this difference can be confused with the systematic error. 
 
12.2 Systematic error 
 
  From [6]: “The history of doublet determinations is studded with instances which values for a given 
mass difference, obtained in different laboratories, were incompatible... Such a systematic effect has 
been reported for instruments at the Argonne National Laboratory (40 ppm), Harvard University (20 
ppm), Osaka University (36 ppm), University of Minnesota (20 ppm)...”.      
  For the result of 2 ppm, we make the calculation for  Cleveland (Ohio) on 8 July 1887, the first day of 
the Michelson-Morley experiment, see Fig. 2. The velocity of the spectrometer with respect to the 
CMB  at  10hs is: 0013.0/390000  cBB eastx , 0 northy BB , 0 zenithz BB  and for 22hs is: 

0013.0 eastx BB , 0 northy BB , 0 zenithz BB . 
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12.3  Test for NLD theory 
 
a)  The Nier-Johnson spectrometer (Fig. 4) has in cm er 50.31, mr 40.64,  ieoe ll 17.6, oml 92.72   

and iml 55.28. If we modify iml 5cm, for 10hs and 22hs we have the mass diference of 10 ppm. 

Therefore, with a Nier-Johnson spectrometer with a different geometry we can make experiments to 
prove (or to disapprove) NLD theory. Below we have Table 3 for ‘S’ and ‘C’ spectrometer 
configurations. For Table 3 we used equations (B10), (B14), (C8) and the software Maxima Algebra 
System to calculate the integral   and to do the numeric calculation as in the Section 11.5 . The 
original Nier-Jonhson experiment is with ‘C’ configuration and iml 55 cm (bold in Table 3). 

 
 Geometry 

Configuration 
       ‘C’ 

Geometry 
Configuration 
        ‘S’ 

 iml  

(cm) 

Mass diffe-
rence (ppm) 

Mass diffe-
rence (ppm) 

5 7 10 
55 0.05 2 

100 1.5 1 
 
Table 3 – Nier-Johnson spectrometer with ‘S’ and ‘C’ configurations. Original experiment 
configuration in bold. 
  
b)  Another problem in the experiments is the line shift in time: ”in the case of asymmetric lines, to an 
aparent shift in the line position with the increasing exposure...” [6] and ”However, the lines are 
frequently asymmetrical, in which case, as a line approaches saturation density, its centre of gravity 
shifts, ...”[5]. We can measure this shift on the time and to compare to the NLD forecast. 
c) For a correct stabilization of the electric and magnetic fields, see Appendix D. 
 
13. Time dilation and transverse Doppler effect 
 
  We make a initial study about time dilation and transverse Doppler effect. This subject needs more 
research for complete explanation.  
 
13.1 Time dilation 
 
 Let us suppose two equal particles (same mass m and same charge q  with repulsive forces. The 
particles have velocity v equal in modulus but with inverse y  directions, see Fig. 5. 
 

 q

tO

 r

t1

 q

 
 
 Figure 5 – Trajectories of  the two particles q . In the time interval time ot  to 1t , the trajectories are  

approximately parallel. 
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  For the time interval time ot  to 1t , the trajectories are  approximately parallel and we have vtx   and                   

constantry  0 . From Fig. 5, 22
yx rrtcr  where ottt  1  is the time interval in  

which the wave force travels the distance r . tvrx   and 0ryry  , substituting we have  

 

2

0

1 


r
r                                                                                                       (34)  

 

dividing both terms by c , we have  2
0 1  crcr  and                                                                                         

 

2

0

1 




t
t

c

r
.                                                                                            (35)     

 
  Equation (35) expresses time dilation, where crt 00   (for 0v ).  

  Thus, time dilation in NLD theory is due to the variation of forces (inside the atom) with respect to the 
velocity of the atom.  
 
13.2 Transverse Doppler effect 
 
  From section 13.1 we have: “ time dilation in NLD theory is due the variation of forces (inside the 
atom) with respect to the velocity of the atom”. 
  If the atom (source) and observer are at rest in frame S (CMB), the internal Coulomb potential energy 
is: 
 

oo
o r

qQ
U

1

4
                                                                                                    (36)    

 
where or  is the distance between the nucleus and the electron (for example the hydrogen) and the 

emitted frequency is of . 

  If the atom (source) is with velocity v  with respect to S from (34) and (36) we have:   
 

21
1

4



 o

o

U
r

qQ
U                                                                                 (37)    

 
And we have the frequency proportional to the Coulomb potential energy. Substituting U  by f  in (37) 
we have: 
 

21  off                                                                                              (38)      
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where f is the transverse Doppler effect measured by the observer at rest in S and perpendicular to 

the atom velocity and of is the observed frequency with the atom and observer at rest in S . The 

longitudinal Doppler effect in S is: 
 




 





 

1

1

1

2
off

f                                                                                   (39) 

 
  The sign is positive (negative) when the source is moving away from (towards) S . 
 
13.3  Frequency measured with source and observer at rest in earth  
 
  With the atom (source) and observer at rest in earth ( 'S ) we measure always the following frequency: 
 

2
0

'
0 1 Bff                                                                                                (40) 

 
  Where '

0f  is the frequency measured with atom (source) and observer at rest in 'S  (earth), 0f  is the 

frequency measured with atom and observer at rest in S (CMB) and BcV  is the velocity of 'S (earth) 
with respect to S  (CMB). The frequency '

0f  is constant for any position of the experimental  

equipment in 'S  (earth), for example, for longitudinal position of the measurer (observer) we have the 

same relation 2
0

'
0 1 Bff  , see below. 

 
sourceS (CMB)

V

observer

VS’ (earth) S’ (earth)
fo’ (atom at

        rest)f
f’ (frequency

  measured)  
 
Fig. 6 – Atom (source) and measurer (observer) at rest in earth ( 'S ). 
 
  From Fig. 6 and (38) we have: 
 

 
2

.. 1 Bff oATOM                                                                                        (41)  

 
  The longitudinal atom frequency at CMB (from (7)(+)) is:  
   

 

B

f
f ATOM


 

1
..

                                                                                                   (42) 

 
  The longitudinal atom frequency measured in earth (from(8)(+)) is: 
 

 Bff  1'


                                                                                                 (43) 

 
  Substituting we have: 
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2'

)(
' 1 Bffff ooATOM                                                                             (44)  

 
13.4 Longitudinal Doppler effect in earth 
 
  Let us suppose a distant star source ( ''S ) with velocity v  with respect to the CMB ( S ) and emitts 
from hydrogen atom (source). The observer is at rest in earth ( 'S ), 'S is with velocity V  with respect to 
S  in direction of the star and V is parallel to v , see Fig. 7. 
 

S’ (earth)

f (star
  measured)

fo’ (hydrogen
     at rest)

S” (star)

f’ (star
  measured)

fo” (hydrogen
     at rest)

S (CMB)

(hydrogen
     at rest)

fo

V v

 
 
Fig. 7 –  Longitudinal Doppler effect in earth. Star frequency measured by an observer at rest in earth.  
 
   From (44) we have: 
 

2' 1 Bff oo                                                                                                 (45)       

 
  From (38) we have:  
 

 
2''

.. 1  ooSTAR fff                                                                                (46)      

 
   Where of , '

of and ''
of  are the hydrogen frequency measured with the atom and observer at rest 

respectively in S (CMB), 'S  (earth) and ''S  (star).  
  The longitudinal star frequency at CMB (from (7)(+)) is:    
 




1

''
off


                                                                                                      (47)     

 
  The longitudinal star frequency measured in earth (from (8)(+)) is: 
 

 Bff  1'


                                                                                               (48)       

 
  Substituting (45), (46) and (47) in (48) we have: 

B

B
ff o









1

1

1

1''




                                                                                  (49)      
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  Where '


f  is the longitudinal star frequency measured with observer at rest in earth. 

  For 0B  we have the same equation of SR longitudinal Doppler effect.  

  For B  we have ''
off  . Therefore, the frequency measured in earth is '

0f constant independent of 

the position of the emitter and observer with respect to the velocity V. 
 
14. Mössbauer effect 
 
   From [11]: “A possible experimental arrangement, consists of an 57Fe absorber, an 57Fe source which 
can be moved at a constant velocity, and a detector for the 14.4-KeV gamma rays; we measure the rate 
of transmitted gamma rays. At zero velocity the transmission is low because of resonant absorption; as 
the velocity of the source is increased, however, the resonance is destroyed and the transmission 
increases.......In this way we “trace out” the natural line width for this nuclear gamma ray, and measure 
energy deviations is of 1 part in 1310  ( sec/06.0 mmv  ).” 
 
14.1 SR explanation   
 

fa
’c

source absorber

fa
’c

source absorber

 
 
Fig. 9 – Mössbauer effect – SR explanation. Source with velocity c'  with respect to the laboratory 
frame and absorber at rest. 
   
The frequency in the absorber ( af ) at rest in laboratory frame is  

 

'

2'

0 1

1







 ff a                                                                                                    (50) 

 
  Where c'  and 0f  are respectively the velocity of the source with respect to the laboratory frame and 

the frequency of the source at rest in laboratory frame. 
   
14.2 NLD explanation   
 

f

S 

fa’

V
S’ 

VS’ 

’c

source absorber

’c

source

 
 
Fig.10 – Mössbauer effect – NLD explanation. Source with velocity c'  with respect to the laboratory 
frame and absorber at rest. 
 
  The absorber is at rest in 'S (earth) and  the velocity of 'S  with respect to S  (CMB) is BcV  .  
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  The velocity of the source with respect to 'S is c' . 

  The source and absorber at rest in S  has a transition with a frequency of . 

  The source and absorber at rest in 'S  has a transition with a frequency from (44) 2
0

'
0 1 Bff  . 

  The transverse Doppler effect measured by the observer at rest in S and perpendicular to the source  

velocity from (38) is    2'
0

2
0 11 Bfff SOURCE   . The longitudinal frequency  with 

respect to S  from (7) is     Bff SOURCEl  
'1   and the frequency in the absorber with respect to 

'S from (8) is )1(' Bff la  . Substituting we have: 

 

 
2'

2'
'

0
'

1

1

)(1

1

B

B

B

B
ffa











                                                                             (51)      

  For 0B  we have the same equation of SR Mossbäuer effect.  
 
14.3  Example - Mossbäuer effect 
 
  For 00123.0 cVB  and   13' 102/06.0  csmm  from (50) and (51) we have for SR and 
NLD: 
 

  002000000000000.10  fSRfa  

 
002000000000000.1)( '

0
'  fNLDfa  

 
  And the results are the same for SR and NLD with respect to the earth. 
 
15. Test of time dilation using stored ions as clocks with accuracy 10102  . 
 
15.1 SR explanation   
 
From [10]: ” We have performed experiments of the Ives-Stiwell (IS) type that test time dilation of 
Special Relativity via the relativistic Doppler shift. A beam of ions, which exhibit an optical transition 
with a frequency 0f  in their rest frame, is stored at velocity cv  in a storage ring. The resonantly 

excite these ions by a laser at rest in the laboratory frame, the frequency f of the laser needs to be 

Doppler shifted according to   cos1 off , where  is the angle between the laser and the ion 

beam, measured in laboratory frame, and   governs time dilation. For a parallel  0p  or na 

antiparallel   a  laser beam the frequencies required are   1, oap ff   respectively. 

Multiplying these two frequencies and using   2121


  as predicted by SR results in 
  

,1
2


o

ap

f

ff
                                                                                                         (52) 
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i.e. the geometric mean of the Doppler shifted frequencies equals the rest frame frequency for all 
velocities  . 
 

ion

PMT

(1+)0ffa= /fp= 0f / (1-)

 
 
Fig. 11 – SR explanation – Beam ion with velocity cv  and two laser beam parallel ( pf ) and 

antiparallel ( af  ). 

 
  In one of our implementations of the IS experiment saturation spectroscopy is used by overlapping 
simultaneously a parallel and antiparallel laser beam with the ion beam to select a narrow velocity class 
  within the ions’ velocity distribution. The parallel laser is held fixed at the laser frequency 

   1ff p  and is resonant with ions at  , while the other laser is scanned over velocity 

distribution. The fluorescence yield, measured with a photomultiplier (PMT) located around 90 degree 
with respect to the ion beam, will exhibit a minimum (a Lamb dip) when the antiparallel laser talks to 
the same velocity class   , i. e. when the frequency is at    10ff a . SR thus predicts the Lamb 

dip to occur when  Eq. (52) is fulfilled, which is shown to be confirmed by our experiments to an 
accuracy of 10102  on Li ions at 03.0  and 06.0 .....Neither do we measure the frequency 
of the emitted light nor do we intend to observe at exactly right angle. We only record the number of 
re-emitted photons as a function of the scanning laser frequency to monitor the Lamb dip caused by 
simultaneous resonance of both lasers with the same ions.........The frequency 0f  occuring in Eq. (52) 

has nothing to do with the frequency of the emitted light in our experiment, but is the rest frame 
frequency 0f  deducted from experiments at smaller ion velocities.” 

 
15.2 NLD explanation 
 

S (CMB)

PMT

fp

S’ 

fo’ p

V
S’ 

V

S (CMB)

fa
S’ 

V

V

ion
S’ 
’c

fo’ a

 
 
Fig. 12 - NLD explanation – Beam ion with velocity c'  and two laser beam parallel ( '

0 pf ) and 

antiparallel ( '
0af  ). 

   
  The lasers and PMT are at rest in 'S (earth) and BcV   is the velocity of  'S  with respect to S  
(CMB).  
  The velocity of the ion with respect to 'S is ' . 



 19

  The ion at rest in S  has a optical transition with a frequency of . 

  The ion at rest in 'S  has a optical transition with a frequency from (44) 2
0

' 1 Bffo   with respect 

to 'S .  

  The frequency of the laser at rest in 'S  are adjusted for  '2''
0

' 11   ff op  and 

 '2''
0

' 11   ff oa  with respect to 'S  and parallel and antiparallel respectively. 

 

1
2'

0

''




f

ff oaop                                                                                                           (51) 

 
i.e. the geometric mean of the Doppler shifted frequencies equals the rest frame ( 'S ) of the lasers 
frequency for all velocities '  and too for any position of the experimental equipment with respect to 
the CMB or more precisely with respect to the velocity V . The accuracy of the experiment is the same 
than SR: 10102  on Li ions at 03.0'   and 06.0'  .  
 
16. Michelson-Morley experiment and NLD theory. 
 
  The Michelson Morley experiment [12] is an open question for NLD. 
  For complete calculations of the trajectory and displacement of the interference fringes, we must 
study and to develop the equations of refraction and reflection in vacuum and in glass with velocity 
V with respect to the CMB, which are used in: a) in the lenses of the telescope and b) in one semi-
transparent mirror (half-silvered) in which the incident ray ar is refracted, reflected and divided into 

two rays ( br and dr ), as shown in Fig. 13.   

   

ar
br

dr

glass

M

v


 
 
Figure 13 - Semitransparent mirror M with velocity V  with respect to CMB (S), incident ray ( ar ), the 

refracted-reflected-refracted ray ( dr ) and refracted-refracted ray ( br ). 

 
  The Michelson-Morley experiment requires one semi-transparent mirror, 16 mirrors, a lens and a 
telescope.  
 
16.1 Reflection in vacuum 
 
 In the Supplement of the MM paper [12], the equations of ray reflections in a moving mirror are shown 
with respect to the preferred frame. Let us suppose a mirror at rest in 'S and with velocity V  with respect 
to S  (CMB). The equations with respect to S are the same of MM paper. 
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  From [12]: “Let ab  (Fig. 14) be a plane wave falling on the mirror m at an incidence of 45 . If the 
mirror is at rest, the wave front after reflection will be ae . Now suppose the mirror to move in a direction 
which makes an angle   with its normal, with velocity V . Let c  be the velocity of light in the ether 

supposed stationary, and let ed  be the increase in the distance the light has to travel to reach d .” 
 



a

b

de

m

vacuum

V

i



 
 
Fig. 14 – Reflection in vacuum. Incident and reflection plane waves 
 
  Michelson and Morley also demonstrated the following equation: 
 

c

V

ad

ae  cos2
1

2
45tan 






   .                                                    (54) 

 
  Below, we have an equivalent and more general equation for any angle of incident rays. From Equations 
(5) and (6) in the work of Kohl [13], we have: 
 

i
iBB

B
tan

seccos2cos1

cos1
tan

22

22







 ,                                                (55)  

 
where i and  are respectively, the angles of incidence and reflection with respect to the normal of the 
mirror, cVB /  and   is the angle of V with respect to the normal of the mirror. 
    The sign is negative (positive) when the mirror is moving away from (towards) the incident ray. 

     
16.2 Reflection in glass 
 
  Let us suppose a glass at rest in S . The velocity of light inside the glass is 
 

n

c
u 0                                                                                                    (56)    

 
  For the glass with velocity V to respect to S  we have 
 











2

2
0

0 1
c

u
Vuu                                                                                 (57)   
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where u  is the velocity of light inside the glass with respect to S  and  22
01 cuV   is the Fresnel drag.  

  The equations of reflection (similar at (55)) in glass must be further developed. 
 
16.3  Refraction in vacuum-glass 
 
   From Snell’s law of refraction we have: 
 

sinsin
u

c
i                                                                                              (58)   

 
    Where i and   are the angles, respectively, of incidence and refraction. The angles are with respect 
to the normal of the glass (Fig. 13). 
 
16.4  The Michelson-Morley experiment 
 
  The Michelson-Morley experiment requires one semi-transparent mirror, 16 mirrors, a lens and a 
telescope. In Fig. 15, we substitute 16 mirrors for 2 mirrors. 
 

M

M1

M2

S

l

T

 
 
Figure 15 – Michelson-Morley experiment with one semi-transparent mirror, 2 mirrors, a lens and a 
telescope. 
 
  In Fig. 15, S, l, M, M1, M2 and T are respectively, the light source, lens, semi-transparent mirror, 
mirror 1, mirror 2 and telescope. 
  For calculus simplification, we substitute for lens l the sun or star light, which has wave front that is 
practically planare when reaching the earth. The interchange between sun or star lights and laboratory 
sources in no way alters the results [14-16]. 
  For the telescope, we substitute screen B, as shown in Fig. 16. 
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Figure 16 – Michelson-Morley experiment with sun light and secreen B. Panel (a) shows the x-z plane, 
while (b) shows the x-y plane. 
 
   M3 is a mirror to capture sun or star light. 
   The displacement of interference fringes must be calculated using the equations above and further  
development of the complete equations is needed. At the end of the calculations we need calculate for 
the telescope and use equations for lens which need to be developed.  
   Therefore, MM experiment is an open question for NLD. 
 
Conclusion 
 
  NLD and SR has the same basic equations for 0V  and the difference between the theories is for 

0V . 
  SR use in the calculations the relative velocity between two bodies. In NLD uses a intermediate frame 
(the preferred frame, in prattice the CMB) where the calculations are in relation to the preferred frame 
and the results are transformed for the two bodies.    
  And NLD is in agreement with experiments with high accuracy, like: mass spectrometer using 
magnetic and electric sector  (Niels-Jonhson, Matsuda, etc) with accuracy ppm1 , Mössbauer effect 

with energy deviations with accuracy 1310  and time dilation using stored ions as clocks with accuracy 
10102   . We propose a test for NLD  using a mass spectrometer with a special geometry.  

 
Appendix  
 
Appendix A. Particle collisions – SR explanation 
   

  For SR, the equation for the collision of two particles (with rest mass am and bm ) with opposite 

momenta is: 
 

   24222 2 cppEEcmmE bababa                                                   (A1) 

 
 where E  is the total energy and aE and bE , respectively is is the total energy of particles am and bm . 
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 For two particles with equal and opposite momenta ( 0 ba pp ,i.e., the total momentum vanishes in 

the center of mass frame) we have the maximum transfer of energy for production of others particles or 
photons.  
  For a incident particle ( am ) and a fixed target ( bm ) we have: 

 
  24222 2 cmEcmmsE biba                                                               (A2) 

 
  Where iE is the total energy of the incident particle. 

  Equaling (A1) and (A2) we have: 
 

22 cppEEcmE bababi                                                                        (A3) 

 

  Substituting 22 1 aaa cmE  , 22 1 bbb cmE  , 21 aaaa vmp  and 

21 bbbb vmp  in (A3) we have: 

 

 
2222

242
2

1

1

baba

baa
i

cm
E






                                                                              (A4) 

 

Equation (A4) is the same derived for NLD, see Sect. 8.2, Equ. (14). Therefore, the total and the 
maximum energy transfer calculated for SR and NLD in collisions are the same.  
 
Appendix B – Electric field 
 
Appendix B1. Electric field of a charged ring 
 
  Let us suppose a charged ring of radius 'R  parallel to plane '' , yx  and at rest in 'S .  

'S  is with constant velocity V  with respect to S . Fom fig. Fig B1 we have '''  dRdsdq   and the 

electric field at point 'P  ''' ,, zyx  at rest in 'S  is  
 

'

0

'

3
0 44






d

r

R

r

dq
d

3

rr
E                                                                                         (B1) 

 
     jikjikjiuBur z

'''''''' sincos   RBBBrzyxr yxP              (B2) 
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z’

y’

rr’

u’’

P’

R’

ds’
 

 
Fig. B1 – Charged ring at rest in frame 'S . 
 
For the ring we have '2 Rq  , substituting and integrating 
 

     











2

0

'
3

'''''''

0
2

sincos

8
d

r

rBzRrByRrBxq zyx kji
E                 (B3) 

 


0

28 
q

E                                                                                                                    (B4) 

 

     2'2'''2'''2 sincos zyx rBzRrByRrBxr                                          (B5) 

 

       ...cossincos ''''''''''   RxBBzRyBRxBr xzyx                 

 

          1sincos1sin... 22'2'''2'''22'''' 


 BzRyRxBBzRyB zy   

                                                                                                                                       (B6)     
Appendix B2. Electric field of a charged disk 
 
  Let us suppose a disk at rest in 'S  and parallel to plane '' , yx  and we have 

''2 dwwdAdq   where ''2 dww  is the area of a ring of radius 'w  and thickness 'dw , from (B4) 

we differentiated and  in expressions of   and r  we substituted 'R  by 'w . 
 

 
                                                                                         (B7) 
 

    
     








2

0

'
3

''''''' sincos
d

r

rBzwrBywrBx zyx
w

kji
                           (B8) 

 

     2'2'''2'''2 sincos zyx rBzwrBywrBxr                                             (B9) 

 
 By numeric calculation we gives 'w  until '' lw   where 'l is the maximum outer radius of the disk. 
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  Where ''' 5.0 wnww   and n 0, 1, 2,... until   1''  wln .  

  For a condenser with two parallel plane plates and distance 'd  between the plates we added the 
electric field 1E  in the point 'P of the positive plate with 2E  of the negative plate. 
 
Appendix B3. Electric field of a condenser with circular 90° plate 
 
  Let us suppose a circular 90° plate perpendicular to plane '' , yx  and at rest in 'S , see Fig. B2. 'S  is 
with constant velocity V  with respect to S . 
 We make a mathematical artifice substituting 'z by '

fz  in equations (B3) and (B5).  
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x’

z’

y’’ R’
z’ l’/2

l’/2

 
 
Fig. B2 – Circular 90 degree condenser plate at rest in  'S . 
 
  For ''2 dzRdAdq    where ''2 dzR  is the area of a ring of radius 'R  and thickness 'dz , 
substituing in (B11) we have 
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Where 'R constant, '
''

''

22
zn

zl
zz f 


 and n 0, 1, 2,... until   1''  zln . 

  Therefore we used the mathematical artifice where '
fz is floating and the charged ring with thickness 

'z  is fixed in the plane '' , yx . The point  '''' , ff zyxP  is floating and the electric field E  is the same of 

 '''' ,, zyxP . 

  For a condenser of parallel circular plates we added the electric field in  '''' ,, zyxP  of the positive 

plate (radius '
1R ) with the negative plate (radius '

2R ). 
 
Appendix C. Magnetic field  
 
Appendix C1. Magnetic field of a spire 
 
  Let us suppose a  spire of radius 'R  carrying electric current I . The spire is  parallel to plane '' , yx ,  

and at rest in 'S , see Fig. B1. 'S  is with constant velocity V  with respect to S . The magnetic field at 
point 'P  ''' ,, zyx  at rest in 'S  is  
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  Where r  is the same that (B6) of the electric ring. 
  
Appendix C2. Solenoid 
 
  Let us suppose a  solenoid of radius 'R  carrying electric current I . The circular plane of the solenoid 
is  parallel to plane '' , yx  and at rest in 'S , the lenght 'l  is in the negative axis of 'z  from zero to 'z . 

The magnetic field of the solenoid at point 'P at rest in 'S  from (C4) is 
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where N  is the number of spires. 
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where '''' 5.0 znzzzm   and n 0, 1, 2,... until   1''  zln . 

 
 We used the mathematical artifice where '

mz is floating and the solenoid with thickness 'z  is fixed in 

the plane '' , yx . The point  '''' , mm zyxP  is floating and the magnetic  field mH  is the same of 

 '''' ,, zyxP . 
 For a magnetic analyzer we calculate the magnetic field for two solenoids with a gap between them. 
The moving particle has the path in this gap.   
 
Appendix D – Stabilization of electric and magnetic fields  for NLD 
 
  For spectrometers and spectrographs, the difference in mass measured at two different times (see Sect. 
12.1) is due the variation of the electric field betwwen the plates of the condenser (due the CMB 
velocity)  and the variation of the magnetic field between the solenoids. 
  For NLD the spectrometer stability needs: a) magnetic field: to maintain constant the current of the 
solenoid and not to maintain the magnetic field constant. b) electric field: to maintain constant the 
charges in the condenser plates and not to maintain the electric field constant. See below.  
  a) From [4]: ¨As before, the poles-piece of the magnet were sickle-shaped, and a further refinement 
was the application of a very delicate fluxmeter control capable of detecting changes of the order of 

510  in the magnetic field. This field was stabilized by a spiral mercury resistance controlled by hand 
during the exposure.” 
  For NLD the best is to control the constant current in the solenoid and not the magnetic field.  b)  
Electric and magnetic fields variations are automatically adjusted to restore the ion trajectories to their 
original state, from [8]: “In the initial instrument described here, a different approach to stability was 
employed. An auxiliary small single-focusing mass spectrometer was mounted so that it would 
experience the same magnetic field as the larger double-focusing instrument. It derived its ion-
accelerating potential from the same power supply as the double-focusing instrument and had a split 
ion collector with a differential amplifier for detecting its ion beam. A variation in either the magnetic 
field or the power supply providing the ion accelerating and deflection fields for the two instruments 
would cause an imbalance of the current at the collectors of the single-focusing instrument. The 
imbalance sent a signal to the power supply providing the ion accelerating and deflection fields, which 
in turn restored the ion trajectories to their original state... It, with improvements, was employed for a 
number of years until improved ‘peak-matching’ methods of measurement were adopted.” 
c)  From [17]: “The second order focusing characteristics have been improved by the use of ‘Balestrini 
shims’...”. 
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