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	ABSTRACT	
 
A new algebra is analyzed that is found to be suitable for representing asynchronous action-at-a-distance.  
This “Natural Vector” representation is based on Hamilton’s quaternions with the four bases constructed 
from real (4x4) matrices with the scalar component explicitly including the standard square root of minus 
one, so that natural vectors operate like a simple non-commuting, complex algebra. This algebra directly 
relates the Wave equation, the Continuity equation and the Flow equation together, which are at the center 
of mathematical physics.  This new representation forms the mathematical foundation for a new research 
programme that challenges several of the basic assumptions of modern physics that are directly related to 
the metaphysical “Continuum Hypothesis”.   This new form of quaternion algebra described here is found 
to be mathematically simpler than the similar bi-quaternions and appears to be the natural algebraic form 
for describing ‘relativistic’ interactions that implicitly incorporate the asynchronous delays occurring in 
the electromagnetic interaction.  These complex four-component vectors are inherently simpler than other 
alternatives, such as Clifford algebra or Minkowski 4-vectors – they are more physically transparent than 
tensor calculus.  Natural vectors are always anti-symmetric for two point-particles, so they form a natural 
fermionic representation even for ‘classical’ electrons; their anti-commutative properties lead naturally 
into a suitable representation for quantum mechanics.  The new focus is on the interaction between two 
electrons at two different times, rather than other standard theories centered on a single particle or field-
point in empty space, at one single time.  Asynchronous inter-particle interactions, like those found in 
electromagnetism, are here represented by natural vectors that are both separable and temporally 
invariant.  This is the first paper in a new research programme investigating the foundations of physics. 
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1.			INTRODUCTION	&	OVERVIEW	

1.1	INTRODUCTION	
This paper is the first in an extended series that will report on a new independent research programme into the 
foundations of physics.  The focus of this investigation has been the basic nature of the electromagnetic interaction. 

1.1.1	RESEARCH	PROGRAMME:	OVERVIEW	
This research programme has several objectives, that can be grouped into three areas:  a) methodological  
b) mathematical  c) physical.  Methodologically, this programme wishes to re-establish an approach to conducting 
theoretical physics that formed the successful foundation for physics since Newton but has fallen out of fashion in 
the 20th century.  This older approach emphasized the philosophical investigation of nature and, like all scholarly 
pursuits during this period, was grounded in a thorough knowledge of the historical developments of the subject, not 
just the most recent, “modern” viewpoint.  As Confucius said, “study the past if you want to define the future”.  The 
benefits of this historical perspective were that the many contributions of earlier researchers were reviewed, re-
analyzed in terms of their assumptions and the results given their due significance in the overall development of the 
science. Challenging the assumptions of modern physics has been a critical part of the present programme. Another 
reason for this approach is that the history of physics demonstrates that whenever philosophical concepts have 
preceded mathematics then stronger theories have resulted.  Modern physics shows the profound problems that arise 
when mathematical innovation precedes conceptual innovation – scientists are left with equations that cannot be 
interpreted coherently and theoretical progress stalls for lack of intuitive and especially visualizable inspiration.    
 
Mathematically, but again related to the historical perspective, this programme will focus on the almost forgotten 
area of discrete mathematics, as this is believed to better reflect the real nature of the world.  In contrast, for over 
300 years physics has thoroughly explored the consequences of the “Continuum Hypothesis” – the metaphysical 
position that reality is best described in terms of the “plenum” (the continuous inter-connectedness of the world).  
This has been reflected in both the extensive use of the infinitesimal calculus and continuous group theory.  The 
present work extends the almost forgotten work of Sir William Rowan Hamilton, namely, real quaternions into a 
specialized form that is referred to here as “Natural Vectors”.  So, one of the principal objectives is to demonstrate 
that this new form of discrete mathematics is ideally suited to the study of the fundamental interactions between the 
basic entities that together constitute the nature of the world.  Since this representation is a linear algebra it should 
prove easier to apply than the problematic areas of mathematics grounded in continuous change that can readily 
throw up unwanted infinities.  As will be shown later, Hamilton’s original form of quaternions, involving only real 
parameters, although suited for geometry, does not reflect nature, whereas Natural Vectors (which are the imaginary 
scalar version of Hamilton’s quaternions) do correspond closely to reality; this is why Maxwell could not make 
Hamilton’s real quaternions fit his theory of electromagnetism.  Natural Vectors apply to all systems where the 
interaction occurs asynchronously between pairs of point-like objects – a revised Newtonian particle-based model. 
It might prove helpful to clarify the thrust of this research programme by revising an explanation used by Einstein to 
explain the origins of the theory of special relativity that has been quoted by Holton [1]: “the investigation into the 
phenomenon of electromagnetic induction has forced the abandonment of relativity.”  Indeed, this new programme 
reinterprets Minkowski’s famous quotation [2]: “Henceforth, space by itself, and time by itself, are doomed to fade away 
into mere shadows, and only a kind of union of the two will preserve an independent reality.”   In contrast, following Newton, 
reality is here viewed as always consisting separately of both space and time, with time itself inexorably evolving at 
a constant rate everywhere while spatial separations also remain invariant to all frames of reference, no matter what 
type of motion they undergo relative to one another.  Since these two concepts are here taken to be distinct, invariant 
and passive, they are viewed, like Kant, as the foundational framework of reality.  This invariance and 
distinctiveness of the spatial location at any time, for every electron, is mapped here by the fundamental location 
natural vector, X; and especially, the two-point separation:  S  ≡ X1 – X2 . 
 
In this programme, there is no fundamental difference assumed between the nature of the macro world of human 
experience and the micro world of atoms and electrons, except for differences in the numbers of objects involved 
and the time-scales of the relative phenomena – the macro world just aggregates and time-averages the details.   



   UET1 

 3 

So, for example, human beings consist of the same material “stuff” as the micro world, namely electrons, just a lot 
more of them – there is no defined ‘boundary’ where the real material of the macro world transforms into the 
mysterious ‘wavicles’ of the quantum world. Ultimately, this programme will demonstrate that matter is 
synonymous with electrons – no more, no less.  However, in contrast to Newton’s circular definition of mass as the 
quantity of matter, this programme views mass as Newton used the concept, namely as a dynamical measure of a 
body’s motion: the ratio of its long-term average change in momentum relative to the change in the standard body’s 
momentum in response to a unit of interaction; in this case, a single electron’s response to one single interaction 
with a second electron.  Finally, this programme does not place energy on a pedestal, as it does not view this key 
concept as reflecting any fundamental entity in reality.  As the great Oliver Heaviside wrote [3] in 1881 (sharply 
contradicting his overly enthusiastic fellow-Maxwellian, Oliver Lodge):  “We need not go so far as to assume the 
objectivity of energy, which seems to be inadmissible by the mere fact of the relativity of motion, on which the kinetic energy idea 
depends.  We cannot, therefore, definitely individualize energy in the same way as is done with matter.”  Only an identifiable 
‘parcel’ of energy could be said to move through space but light (or a photon) has no identity.  Recently [4], Marc 
Lange, a philosopher of physics, has done an excellent job of destroying the simplistic interpretations of the famous 
equation E = mc2 where mass and energy are viewed as the same “thing” (like materially, steam and water are the 
same thing) by focusing on the Lorentz invariance of ‘rest’ mass and noting that energy is only one of the 
components of the energy-momentum 4-vector, which by itself is not invariant.   Lange does not even allow 
Feynman (who disliked philosophy) to get away with phrases such as “associated with” in explanations like: “the 
energy associated with the existence of the rest mass of a particle” (p. 229), describing such terms as “weasel words” that 
are too vague to be worthy of philosophical, especially ontological, consideration.  The precedence here for 
philosophy is based on the observation that natural languages are the richest, most extensive and powerful medium 
of communication between humans while all mathematics is deductive and narrowly focused; its symbols and 
significance must always be discussed in a natural language.  The analysis of meaning and concepts are at the heart 
of philosophy and have been central to the thinking of Western Civilization since the very earliest attempts at 
producing a natural understanding of the world.  Moreover, the philosophical subject of ontology (or the study of 
existents) has always been at the very foundation of physics.  Metaphysical propositions of what are the fundamental 
objects that constitute the world and how they might behave must be made explicit, in the style of Newton in his 
Principia, rather than the implicit approach that is hidden when “positivistic” physics is formally pursued or when 
the ‘Pythagorean’ programme is silently being promoted by academics of a mathematical orientation.  
 
The following table contrasts the view of key concepts in this research programme with those found today in the 
mainstream of physics (“Standard Physics”); the critical ‘continuum versus discrete’ is marked by an asterisk (*). 
 

CONCEPT STANDARD PHYSICS * RESEARCH PROGRAMME 
World View Positivistic  Realist 
Space Active (plenum)  Inert 
Time Continuous * Discrete 
Temporal Focus Single Time * Two-Time 
Interaction Range Spatio-temporal Locality * Action-at-a-Distance 
Metaphysics Pythagorean (math) * Newtonian 
Core Entity Field * Particle 
Cause Force * Impulse  
Focus Space-Time Point * Pair-wise Interaction 
Energy Model Photon (entity) * Kinetic (quality) 
Mass Variable (Planck) * Fixed (Newton) 
Dynamics Hamiltonian * Newton’s Impulse Law (II) 
Mathematics of Change Differential Equations * Difference Equations 
Algebra Vectors  Natural Vectors (quaternions) 
N-Body Interactions Vector Summation  Pair-wise (saturated) 
Velocity Invariance Lorentz (relativity)  Galilean (Newtonian) 
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In summary, where physics has obsessed on continuous “forces” on a single particle, this programme focuses on the 
discrete interaction between two electrons.  The research programme’s objectives can therefore be summarized as: 
 

1.  Restore the roles of metaphysics and visualization to the evolution of the foundations of physics. 
2.  Emphasize the value of the history of physics, as a source of understanding and new ideas. 
3.  Revive the reputation of many physicists, whose historical contributions have been overlooked. 
4.  Demonstrate the value of returning to Newton’s metaphysical and mathematical approach to 

theoretical physics: emphasizing the discrete nature of the world. 
5.  Demonstrate that Natural Vectors should be one of the most powerful mathematical techniques in 

the ‘tool-bag’ of physicists. 
6.  Remove the mysteries and paradoxes of 20th century physics, especially those arising directly from 

the present theories of relativity and quantum mechanics. 
7.  Solve the dynamics of systems involving a small number (less than 10) of electrons, across a 

whole range of relative velocities. 

1.1.2 MOTIVATION 
Dirac has stated in lectures he gave in Australia in 1975, describing the origins of the modern quantum theory [5]: 
“In any physical theory one usually knows just what one’s equations mean before one sets them up.  But (in 1926) we had the 
equations before we knew how to apply them.”   He ended his lecture with his often-repeated complaint about the current 
state of quantum mechanics and especially quantum electrodynamics (which he invented):  “I just cannot accept that 
the present foundations are correct.  People are, I believe, too complacent in accepting a theory, which contains basic 
imperfections and a true advance will be made only when some fundamental alteration is made.  … I must say I am very 
dissatisfied with this situation because this theory involves neglecting infinities which appear in its equations – this is just not 
sensible mathematics.” 
 
Classical electromagnetism is still being used to justify all subsequent field theories although it fails to reflect the 
discrete nature of electrical charge and cannot even be used to solve the exact dynamics of just two charges.   It was 
also the justification for Einstein’s special theory of relativity, which has imposed constraints such as Lorentz 
invariance on all areas of theoretical physics.  Subsequent papers will show that Einstein’s theory is a misreading of 
the fundamental electron interaction.  Additionally, it will be shown that the Coulomb force is not a fundamental 
view of nature but is itself a macro, time-averaged approximation that should not be extrapolated to the microcosm. 
 
A physical theory always reflects some world-view that almost always has a basis in metaphysics.  When a theory 
makes its metaphysical assumptions clear, as Newton did, it allows others to judge whether these assumptions are 
reasonable or not.  This explicit, but out-of-fashion, approach will be followed throughout this research programme. 

1.1.3	OBJECTIVES	OF	THIS	PAPER	
The present objectives of this first paper can be summarized as: 
 

A   Re-awaken interest in Hamilton’s greatest mathematical innovation - quaternions. 
B   Introduce the concept of natural vectors and emphasize the significance of Voigt vectors. 
C   Demonstrate the role and value of natural vectors in theoretical physics. 
D   Re-direct attention from the single object focus in physics to the two-particle interaction. 
E   Demonstrate that natural vectors are an excellent representation of two-particle interactions. 
F   Announce a new research programme using natural vectors to investigate the foundations of 

physics. 
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1.2 OVERVIEW 
In this overview, the contents of the paper will be summarized to include a brief description of each section and the 
major reasons the material has been included. 

1.2.1	QUATERNIONS		
The next section begins with a brief review of Sir William Hamilton, the creator of quaternions that form the central 
focus of the mathematics described herein; it is included to give the reader a sense of one of the intellectual giants of 
the 19th Century.  This is followed by a quick summary of Hamilton’s mathematical contributions, particularly as 
they have impacted theoretical physics and especially quantum mechanics.  Hamilton’s 1843 breakthrough in the 
evolution of algebra is described next, emphasizing the metaphysical viewpoint that enabled him to dispense with 
the commutative law of multiplication that moved algebra beyond the rules of arithmetic.  The main mathematical 
features of quaternions are revealed through a brief review of Hamilton’s quaternion publications.  These papers 
illustrate his highly original and creative imagination, as well as his immense mathematical productivity. The papers 
selected describe how Hamilton introduced several major foundations of modern theoretical physics such as the 
concepts of scalars and vectors and, especially, the vector partial derivative, ∇.  Quaternions are then situated from 
the perspective of modern algebra with an emphasis on the (2x2) and (4x4) matrix representations that are the main 
foundation for the remainder of the paper.  Such matrices were used by Pauli (spin) and Dirac (relativistic electrons). 
 
Section three describes the use of quaternions in physics over the last 150 years, beginning with the contributions of 
two of Hamilton’s greatest admirers, P. G. Tait and J. C. Maxwell, both leading natural philosophers of the 19th 
Century; they were each convinced that this new algebraic breakthrough would clarify both mechanics and the study 
of electricity and magnetism.  The remainder of this section discusses the fact that it was the ‘complexified’ form of 
Hamilton’s quaternions that have proven most useful in electromagnetism and in the areas of modern physics such 
as relativity, quantum mechanics and Dirac’s theory of the electron; which is surprising, as all of these areas were 
completely unknown in Hamilton’s time.   Although this section reveals that quaternions have been mainly ignored 
in the development of physics, their occasional use (in the form of bi-quaternions) illustrates the astonishing power 
of this representation in the area of physics associated with the modern view of the electron – a foreshadowing of the 
results, which will be presented later in this series, in terms of their logical successor: ‘Natural Vectors’ (NVs).   

1.2.2	NATURAL	VECTORS	
Section four begins with a brief discussion of how Maxwell might have failed to summarize all his electromagnetic 
equations when he tried to use Hamilton’s quaternions.  This leads into the discussion of how Hamilton’s intuition 
about space and time applied to the four generalized quaternion bases Iµ suggests the idea of a new group, referred 
to here as the ‘Interaction Group’.  A formal sub-set of Hamilton’s bi-quaternions is selected to form mathematical 
objects called ‘Natural Vectors’ – these may be viewed simply as imaginary, scalar quaternions.  By requiring that 
the 3D part of natural vectors remain real under time reversal, represented by standard complex conjugation, then 
only a real (4x4) matrix representation can be used for the four bases. Therefore only complex conjugation is needed 
here, as with complex numbers – a much greater simplification than is usually used with bi-quaternions.  A set of 
“mapping-rules” is introduced to set up a one-to-one correspondence between a Newtonian-like ‘reality’ and natural 
vectors; these include the explicit introduction of a universal space-time constant ratio (c) for homogenizing all 
natural vectors.  This will be shown to be the constant ‘speed’ of interactions between particles. 
 
This paper focuses on the “Continuum Hypothesis” so that in section five the sub-set referred to as Continuous 
Natural Vectors (CNVs) is developed; a later paper will introduce discrete versions that will subsequently play a 
central role in this programme.  In order to investigate Classical Electro-Magnetism it is necessary to emphasize 
total-time differentials – these are used extensively in the next paper investigating a Natural Vector Model of EM.  
Here we first define the concept of ‘Flow Vectors’ in terms of a set of ‘Zero Conditions’ that must apply to CNVs. 
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1.2.3	VOIGT	VECTORS		
In section six, a specific functional form of CNVs is defined, called Voigt Vectors, in honor of one of the pioneers 
of wave equations and their invariant transforms.  These mathematical objects will later figure prominently in The 
CNV Theory of Electromagnetism [6]; their components always satisfy a velocity condition, called here the Lorenz 
Equation, as it re-appears in classical electromagnetism as the Lorenz gauge condition for the electromagnetic 
potentials.  Harmonic Voigt vectors exhibit interesting characteristics, including ray-like, retarded and advanced, 
propagating solutions.  The CNV gradients of Voigt vectors and scalars also exhibit features that will prove directly 
relevant to classical electromagnetism, including force ‘field’ intensities and gauge transforms.  It is also proved 
here that there are no Voigt vectors that are functions only of a single object’s local velocity.  

1.2.4	NATURAL	VECTORS	IN	PHYSICS	
Section seven applies some of these general formulations of natural vectors to several well-known situations in 
physics, beginning with a kinematic analysis of the motion of a particle represented by a Spatial Displacement CNV. 
The famous Wave Equation, that has been at the heart of mathematical physics for over 150 years now, is an 
immediate consequence of proposing that the (CNV) Gradient of any other CNV is zero.  The Continuity Equation, 
arising in the study of moving continuous media, is shown to be a direct consequence of the Voigt Lorenz Equation; 
these three equations are shown to be intimately inter-related.  A major sub-section (7.4) is devoted to natural vector 
invariants distinguishing scalar and vector forms as these play a central role in modern physics. Here the 
Separation CNV is shown to be the central concept in the physics of two-particle interactions, leading to the 
invariant space-time interval of special relativity.  Natural vectors that are both separable and form temporal 
invariants lead to the idea of conserved physical quantities or the interaction between two remote particles across 
space and time – in other words, asynchronous action-at-a-distance.  Natural vectors immediately generate several 
invariants in a system of two interacting particles.  A comparison is made between the fully functional CNVs and 
Minkowski 4-vectors, since it might be readily misunderstood that these two concepts are synonymous; in fact, one 
might think of natural vectors as “covariant Minkowski quaternions”. 
 
Several examples of fundamental physical quantities in classical physics are identified with Voigt vectors by 
choosing simple forms for the Voigt functional parameter; these are further classified into three sub-groups, whose 
properties are briefly examined.  One class of these Voigt-type vectors maps directly to Planck’s 1907 proposed 
form for a particle’s relativistic momentum; this immediately results in all the well-known formulae of relativistic 
mechanics. 

1.2.5	ASYNCHRONOUS	INTERACTIONS		
Section 8 discusses the concept of asynchronous interactions between two particles at two different times, as this 
idea is at the very heart of this research programme.  Momentum exchange between the particles is shown to be 
central to this analysis, suggesting that the two-particle Natural Vector (NV) representation can be viewed as the 
‘momentum exchange’ group.  The concept of asynchronous conservation is introduced and this challenges the 
nearly universal assumption of continuous conservation at all times that is one of the major justifications for the use 
of field theories in modern physics.  The traditional Euler-Lagrangian (continuum) re-formulation of Newtonian 
mechanics centered on the concept of time-independent spatially sensitive potentials has also been by-passed in 
this programme.  Such potentials are a direct consequence of assuming instantaneous transfer of finite momentum 
from one particle to another remote particle: the foundation of the Galileo/Newton dynamical theory of physics.  In 
fact, the present representation may be viewed as the generalization of the instantaneous Galilean group to one more 
closely representing the reality of asynchronous interactions.  Schematic diagrams are also presented here to assist 
with a visual understanding the 4D nature of NVs.  This section concludes with a discussion of various ‘re-labeling’ 
operations on two-particle NVs – this will be used later to establish important symmetry constraints on the resulting 
particle dynamics.  
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2.			HAMILTON’S	QUATERNIONS	

2.1	W.R.	HAMILTON	
William Rowan Hamilton was born in Dublin, Ireland in 1805.  He was a child prodigy who could read English by 
three, Hebrew, Latin & Greek by the age of five and most of the major European languages plus Arabic, Persian, 
Sanskrit, Malay & Bengali by ten.  His arithmetic skills did not begin until he was six but he had mastered algebra 
by thirteen.  He graduated from Ireland’s leading university (Trinity College, Dublin) with the highest honors (two 
gold medals) in science and classics – an achievement previously unheard of.  At age 22 before he had even finished 
his degree, he was appointed Professor of Astronomy at Trinity with the title of Astronomer Royal of Ireland, a 
position he held for the rest of his life.  He was knighted in 1835 for his scientific achievements and remained active 
intellectually until the very end of his life in 1865.  Hamilton’s life and scientific work have been well described in 
the comprehensive biography [7] by Thomas Hankins, one of the leading, modern historians of science. 
 
Hamilton submitted his first paper (“On Caustics”) when he was 19 based on an idea he developed two years earlier. 
This paper was so advanced that it confounded even his referees; he revised it and resubmitted it to the Irish Royal 
Academy two years later as “Theory of Rays”: a work, which made his reputation and set his research course for the 
next eight years.  His “characteristic” function summarized the paths of light through any optical system based on 
Fermat’s Principle of Least Time, whether light itself was viewed as waves or particles.   In 1834, he announced the 
extension of his characteristic function from geometric optics to particle mechanics in his two most famous papers 
entitled “General Method in Dynamics” [8] invoking Maupertuis’s Principle of Least Action.  Although Hertz later 
remarked this was still only a mathematical theory, soon after, in 1916 Sommerfeld clearly saw its value in the 
development of the “old” quantum mechanics.  Indeed, Schrödinger later wrote that in 1926 he was directly inspired 
by this technique when he took it over directly into “wave” mechanics. 
 
Hamilton, like Lagrange, had indeed found another way to write down Newton’s Equations of motion for a system 
involving instantaneous forces or for conservative systems using spatially sensitive potentials. In particular, for any 
dynamical variable ‘q’ in a system characterized by a Hamiltonian function, ‘H’ the central dynamical equation now 
became:  dq/dt = {q, H} where {a, b} is the classical Poisson bracket.  This was a technique re-introduced by Dirac 
in 1926 and led directly to the modern formulation of quantum mechanics; the only one based on classical 
mechanics. 
 
In 1832, Hamilton used his theory to predict conical refraction in biaxial crystals and this was soon confirmed 
experimentally – this confirmation “electrified the scientific community” [7, p.95] and won him the Royal Society’s 
Royal Medal in 1855 (Faraday was the other winner that year). This achievement was the justification for his early 
knighthood by the Lord Lieutenant of Ireland, as interest in optics was at the centre of British physics at this time.  
Like most 19th Century supporters of the wave theory of light, Hamilton believed in the reality of the aether, but for 
metaphysical reasons he believed it to consist of myriads of microscopic attracting and repelling points.  He failed to 
develop an aetherial model of light but in 1839 he was the first to distinguish between the phase and group velocities 
of traveling waves – a discovery that history later, and erroneously, credited to Lord Rayleigh in 1877. 

2.2	QUATERNIONS	
Although negative and imaginary numbers had been admitted into algebra since the 17th Century (so that every 
polynomial equation could be proven to have at least one root), it was still a challenge to mathematicians in the early 
1800s to understand what these “impossible” quantities represented – this led into an extensive investigation into the 
foundations of algebra.  Hamilton was very active in this area and was inspired by studying Kant to view algebra as 
“the science of time”, complementing geometry as the science of space.  It is usually a surprise to modern readers to 
realize that Hamilton’s metaphysics was more productive for his mathematical research than for his researches in 
physics.   
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Accordingly, Hamilton invented a non-arithmetic form of complex numbers that he called “number couples”, 
effectively: z = x + i y ≡ (x;y).  This resulted in Hamilton’s first major work on algebra (“Theory of Conjugate 
Functions or Algebraic Couples, with an essay on Algebra as the science of Pure Time”) that was published in 1835.  
This was a major step away from the universal idea (at that time) that algebra is always related to the operations of 
arithmetic.   A theory of “triplets” was the obvious extension of the theory of “couples”, partly because three was the 
next number and partly because complex numbers had recently been mapped into 2D space (Argand diagrams).  
 
For over 13 years, Hamilton tried to generalize his ordered couples to similar triplets until finally on October 16, 
1843 while walking by the canal in Dublin near the Brougham Bridge did he suddenly realize that only an ordered 
quartet of real numbers could form a suitable algebra.  This led to his major mathematical innovation: quaternions.  
It was then that he realized that needed two extra imaginaries to form his new triplet of unit imaginaries {i, j, k}.  
The biggest surprise was to discover that these imaginaries did not obey the commutative law of multiplication, so 
that, unlike the normal algebra of real numbers where x y = y x, for quaternions it was found that i j = – j i.  
 
Hankins describes at the end of his chapter on The Creation of Quaternions how on the same day that Hamilton 
discovered quaternions he tried to find a geometrical interpretation for them. He decided that the quaternion’s triplet 
set {i, j, k} represented the three dimensions of space while the real term represented time.  He found immediately 
what we now call the scalar and vector products of two directed lines in space.  He was immediately convinced that 
these insights had great significance for the future of mathematics and physics. As Hankins writes [7]: “The actual 
path that he followed was algebraic, yet his metaphysical speculations had given him insights that were not so obvious to his 
rivals.  It was algebra as ‘the science of pure time’ that allowed him to dispense with the commutative law.”  His rivals in the 
search to extend complex numbers (Augustus De Morgan and John Graves) were shocked to see how Hamilton had 
simply “imagined new imaginaries” – the road was blasted open to a wide variety of algebras that did not follow the 
rules of ordinary arithmetic.  As author John Darbyshire quotes [9] in his recent best selling history of algebra – this 
is now viewed as “one of the most important revelations in the history of mathematics”.  

2.2.1	HAMILTON’S	QUATERNION	PUBLICATIONS	
All references here refer to actual publication dates, although Hamilton usually had presented his papers to The Irish 
Royal Academy several months, if not years earlier.  All of the following papers can be obtained through the website 
established by Professor D. R. Wilkins, Trinity College, Dublin (Hamilton’s Research on Quaternions) [10].  

2.2.1.1	On	a	New	Species	of	Imaginary	Quantities		
Hamilton first announced his invention of quaternions to the Irish Academy on November 13, 1843, this speech was 
subsequently printed as a short paper in the following year. In this first quaternion paper, Hamilton introduces his 
new extensions of the single square root of negative one as three linearly independent imaginary quantities {i, j, k} 
[11] by his famous definitions: 
    i2  =  j2  =  k2  =  i j k  = –1 
 
He uses these to define a real quaternion, Q with real coefficients (w, x, y, z) that satisfies the rules of arithmetic 
(add, subtract, multiply & divide): 
    Q  ≡  w  +  i x  + j y  +  k z  
 
He defines a positive, real number M, the modulus of Q as : M2  ≡  w2  +  x2  +  y2  +  z2  ≥  0  
 
So every quaternion, Q has an inverse Q–1, thus supporting division, defined as: Q-1  ≡  ( w –  i x  – j y  –  k z ) / M2 
 
Hamilton also notes that Q is a solution of the real quadratic equation: Q2  – 2 w Q + M2  =  0 
 
He defines an angle θ as the amplitude of any quaternion, Q by: 
 
  Q  ≡  M ( cos θ  +  In sin θ )   where In is any one of unit square roots of minus one { i, j, k }. 
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Hamilton explores the relationship between rotations in spherical trigonometry by defining points (x, y, z) on the 
unit sphere centered on the origin with polar co-ordinates φ , ψ  : 
 
 w =  M cos θ  ,   x  =  M sin θ cos φ    ,   y  =  M sin θ  sin φ  cos ψ   ,    z  =  M sin θ  sin φ  sin ψ   
 
The imaginary units, I form an infinite family of points on this unit sphere when M = 1 and w = 0.   Quaternions can 
be used to define polynomials, exponentials and logarithmic functions based on the identity: 
 
 QK  =   MK { cos K(θ +  2 π m)   +  In sin K(θ +  2 π m) }  where K is real and m is an integer. 
 
Most importantly for the subsequent developments of modern algebra, Hamilton now explicitly points out for this 
new triple of imaginary quantities (i, j, k) that “the commutative character is lost”, e.g.  i  j   ≠  j  i  . 

2.2.1.2	On	Quaternions	
A year later, Hamilton presented his second paper [12] to the Irish Academy where he introduced the concepts of 
scalars and vectors as the separable parts of every real quaternion, Q :  
 
   Q  =  a  +   α        where   α   =   i x  + j y  +  k z   and  a, x, y, z are all real. 
 
After identifying the imaginary part (‘α’) with a straight line in space (the ‘vector’) he rhetorically asks about the 
real part ‘a’ (the ‘scalar’): “in this case, what does the scalar correspond to in geometry?”  This question will be answered 
later in this paper when the concept of a ‘Natural Vector’ is introduced.  These ideas lead directly to the important 
mathematical concepts of scalar and vector products arising from multiplying two vectors together in forming his 
‘Quaternion Calculus’ in terms of a vector β1 parallel to any vector α  and β2 normal to the vector α : 
 
  α  β   =  α  ( β1  +  β2 )   ≅    α  • β1   +    α   ∧  β2    (modern notation)  
 
Letting A and B define the lengths of the lines α  and β  and (A, B) representing the angle between these lines with 
the symbol γ  representing a unit vector perpendicular to both: 
 
 α  β  + α  β   =  2  α  β1  =   2 A B cos (A, B)        α  β  – α  β   =  2  α  β2  =   2 A B sin (A, B) γ  
 
This new approach allows Hamilton to easily derive several 3D geometrical relationships that are now trivial with 
vector algebra but are quite cumbersome with traditional trigonometry, such as calculating the resultant of several 
rectilinear displacements or summing several static forces acting at a single point.  He also shows the power of his 
new ‘calculus’ by analyzing several successive rotations to a rigid body in 3D space, deriving the surprising ‘half-
angles’ that always result [13] from any analysis of finite 3D rotations in classical mechanics.   

2.2.1.3	Researches	respecting	Quaternions	
Hamilton’s first full account (requiring almost 100 pages) of the results of his first few years of research [14] on his 
quaternions is found in this paper.  He now discusses the algebraic foundations of quaternions as a particular 
instance of ordered n-tuples (n = 4) as an extension of regular imaginary numbers as ordered couples (n = 2).  Since 
Hamilton viewed algebra as “The Science of Time”, he viewed sets of ordered numbers as examples of sequences of 
“moments of time” which were to be treated as a single unitary object, subject to four “Moment operators”, Mj : 
 
  Q   ≡  (A0, A1, A2, A3)  &  Mj Q  ≡  Aj  so  Q  =  ( M0Q, M1Q, M2Q, M3Q ) 
 
Hamilton examines permutations of these four basic components. He anticipates the extension to eight components  
‘biquaternions’, when each one of the factors is a complex number (not to be confused with Graves’s octonians).   
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2.2.1.4	On	a	New	System	of	Imaginaries	in	Algebra	
Hamilton subsequently published many papers developing the theory of quaternions including a 90 page paper [15] 
published in 18 installments in what was later known as The Philosophical Magazine.  He repeats his discussion on 
spherical trigonometry and his decomposition of quaternions into scalar and vector parts to prove several theorems 
in 3D geometry, especially involving ellipsoids.  Most importantly, he introduces his 3D ‘nabla’ operator (the vector 
quaternion version of the 3D gradient operator, ∇) and identifies the square of this with the Laplacian operator, ∇2.  

2.2.1.5	On	Symbolical	Geometry	
Hamilton also published another large (72 page) paper in 10 installments [16]. In this series, he develops the concept 
of vectors in 3D space as an algebra of directed lines, avoiding completely the use of Cartesian coordinates or any 
trigonometry.  He maps points in 3D space to single letters (e.g. A), while directed lines are represented by ordered 
pairs of letters, like AB to represent the line from point A to point B.  Hamilton is interested in directed lengths, like 
Grassmann, rather than point-to-point specific lines (i.e. independent of any coordinate origin); we can now 
recognize that here, he was introducing the modern concept of 3D vectors. 

2.2.1.6 Books	
Hamilton published one major book Lectures on Quaternions consisting of over 700 pages of detailed mathematics 
describing over ten years [17] of research on quaternions in 1853.  Only a few copies were sold.  Hamilton’s second 
book Elements of Quaternions at over 800 pages was almost complete at the time of his death and was published 
posthumously [18] in 1866 – this too, was not a bestseller. 

2.2.2	MODERN	VIEWPOINT	

2.2.2.1 Quaternions	
Today, quaternions are viewed mathematically [19] from several, complementary viewpoints.  Following Hamilton, 
who treated a complex number as an ordered pair of real numbers, quaternions are now seen as a non-commutative 
extension of complex numbers.  The Cayley-Dickson construction generates a real quaternion from an ordered pair 
of complex numbers, each using a different root (i & j) of minus one, with the non-commutative rule that i j = – ji.  
Algebraically, quaternions are viewed as forming a 4-dimensional normed-division algebra over the real numbers.  
According to the Frobenius theorem, quaternions were proven to be one of the only three finite-dimensional division 
rings involving the real numbers as a sub-ring, where a ring is an algebraic structure, like a field, with operations of 
addition and multiplication, except for the commutativity of multiplication.  The quaternions, along with real and 
complex numbers, are the only associative division algebra over the field of real numbers.  John Graves had found 
that octonions were not associative under multiplication.   The set of all quaternions can also be viewed as forming a 
4-dimensional vector space over the real numbers.  Under multiplication the four unit quaternion bases {1, i, j, k} 
along with their negatives, form the quaternion group of order 8, usually denoted Q8.  
 
Quaternions are subject to addition and negation (and thus subtraction) with a spatial inverse (or ‘conjugate’), which 
is defined as negation (and indicated by an asterisk) only on the imaginary or vector components: 
 
   Q  =  q0  +  i q1  +  j q2  +  k q3  =  q0  +  q   so that  Q*  ≡  q0  –  q 
  
There are several possible binary products that can be defined between two quaternions, A and B : 
 
 1. Grassmann Product:  A B    ≡  ( A0 B0 – A•B ) + (A0B + B0A)  +  (A ∧  B) 
    2. Inner Product:   A•B   ≡   (A0 B0 + A•B ) =  ½ (A*B + B* A) 
 3. Outer Product:   A⊗B  ≡   (A0  B  – B0  A)  –  (A ∧  B)  =  ½ (A*B – B* A) 
 4. Grassmann Outer Product: A∧B  ≡   ( A ∧  B ) 
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There are at least two ways of representing quaternions as matrices, in such a manner that quaternion addition and 
multiplication correspond with matrix addition and multiplication.  The first uses (2x2) complex matrices: 
    Q  ≅   |   q0 + iq1   q2 + iq3 |  
                 | –q2 + iq3   q0 – iq1 |   
 
When q2 and q3 are zero the quaternion is reduced to a complex number, which corresponds to a diagonal matrix. 
 
The second matrix representation uses (4x4) real matrices: 
 
     |  q0  –q1 –q2  –q3 | 
    Q   ≅       |  q1   q0 –q3    q2 |   
                    |  q2   q3   q0  –q1 |  
                   |  q3 –q2   q1    q0 | 
   
In this representation, the conjugate of a quaternion corresponds to the transpose of the matrix. 

2.2.2.2 Related Approaches	
In 1878, William Kingdon Clifford used Hermann Grassmann’s ideas to generalize Hamilton’s quaternions into a 
whole family of n-dimensional algebras; these became the direct ancestors of modern spinors, which are ordered 
pairs of complex numbers.  In the early 1880s, both Josiah Willard Gibbs and Oliver Heaviside independently 
separated Hamilton’s vectors from his quaternions and treated these as independent mathematical objects, founding 
modern vector analysis, which has completely over-shadowed the quaternions from which they were derived. 
  
The Clifford / Geometric Algebra of Hestenes [20] augments the familiar vector space with a structure that permits 
processing geometric objects that are more complex than points or line-segments.  Hestenes’ space-time algebra [21] 
is defined in terms [22] of the four Clifford algebra C(1,3) generated by the four vectors γµ which are isomorphic to 
the Dirac algebra or the Clifford algebra C(4,0) generated by the four basis vectors eµ satisfying:  ei ej + ej ei = δij . 
These are equivalent to the mappings:   γ0  =  e0   , γj  =  ej e0   so   e   ≅   σ . 
 
The fundamental objects of Clifford algebra are vectors, corresponding to physical 3D displacements.  This research 
programme believes that this older approach is more suitable to the time-less, scale-less subject of geometry, 
whereas the world studied by physics is dynamical (time-based), where special points in space (i.e. point particles) 
moving through time form a simpler conceptual basis.  These special points are not the universal points of space 
itself (i.e. a 3D manifold) but the finite number of points that correspond to the actual location of real particles at any 
time. 
 
Although Hamilton dedicated the last 22 years of his life researching quaternions, they have never been viewed by 
modern mathematicians as more than a backwater, taught to math undergraduates only as brief diversion to a course 
on group theory or linear algebra.  Hamilton soon generalized his real quaternions in 1844 to bi-quaternions, where 
each co-efficient was a complex number:  these are sometimes referred to as ‘complexified quaternions’ needing 
eight real numbers.  We shall see in the next section, how this ‘after-thought’ has proved useful in mathematical 
physics and leads directly to Natural Vectors, the subject of this paper. 
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3.			QUATERNIONS	IN	PHYSICS	
The impact, that Hamilton’s quaternions have had in physics, has been very well described in the invitation paper 
The Physical Heritage of Sir W. R. Hamilton [23] contributed by Gsponer and Hurni to mark the 150th anniversary 
celebrations of the invention of quaternions held in 1993 at Hamilton’s alma mater, Trinity College, Dublin.  As the 
authors write in their introduction “contrary to what is often said, Hamilton was right to have spent the last 22 years of his 
life studying all possible aspects of quaternions” – an opinion shared by this research programme.  As these two authors 
correctly point out, it has not been the real quaternions but those explicitly involving complex numbers (bi-
quaternions) that have made significant contributions to classical electromagnetism, quantum mechanics and “spin”.  
They also mention that quaternion algebra yields more efficient processing algorithms than matrix algebra for 
applications in 3 and 4 dimensions; the use of quaternions in computer simulations & graphics, numerical and 
symbolic calculations, robotics, navigation etc has become much more frequent in the last few decades.  These two 
authors have also published an enormous online bibliography of over 1200 publications using (bi-)quaternions in 
mathematical physics, including a further 50 references to octonions [24] in physics. 

3.1	HAMILTON’S	FOLLOWERS	

3.1.1	P.G.	TAIT	
Peter Guthrie Tait (1831-1901) was a rival and life-long friend of Maxwell, both attending the same high-school 
(Edinburgh Academy) and universities (Edinburgh and Cambridge): both were brilliant students.  At 20, Tait 
achieved the top results in the annual undergraduate mathematical examinations in Cambridge (“Senior Wrangler”).  
In competition with Maxwell, Tait was awarded the professorship in Natural Philosophy at Edinburgh in 1858, a 
year after Tait started corresponding with Hamilton on quaternions.  Tait published Quaternion Investigations 
connected with Electrodynamics in 1860 when he used quaternions to simplify Helmholtz’s fluid analogy with 
electrodynamics.  Tait continued the “quaternion-crusade” after Hamilton’s death in 1865, including writing two 
important mathematical texts Elementary Treatise on Quaternions (1867) and Introduction to Quaternions (1873).  
The failure of Tait to convince William Thomson (later Lord Kelvin), his co-author of the book Treatise on Natural 
Philosophy (1867) meant that quaternions failed to get the wide attention that this very influential text generated.  
Tait continued to strongly support the superiority of quaternions for the rest of his life but lost out in the court of 
intellectual fashion to the simplified, vector ideas of Heaviside and Gibbs, introduced in 1881 and 1882.  

3.1.2	MAXWELL	
Maxwell was also very impressed with the power of this new algebra and calculus that were being promoted by both 
Hamilton and Tait.  This is illustrated in a letter to Thomson in 1871 “The volume-, surface- and line-integrals of vectors 
and quaternions, as being worked out by Tait, is worth all that is going on in other seats of learning.”  Maxwell, who never 
communicated directly with Hamilton (but encouraged strongly by Tait) presented the final version of his 
electromagnetic equations in his Treatise (§618) in the form of partial quaternion equations by using a single letter 
prefix (S or V) to indicate whether he was referring to the scalar or vector part of the quaternion; so for example, 
two of his equations were rewritten as: B = V.∇A and ρ = S.∇D.  It is not surprising that Heaviside would 
eventually rewrite these equations as simple vector equations, into the form they are known today. 

3.2	ELECTROMAGNETISM	&	RELATIVITY	
It was Hamilton’s insight that the scalar part of the basic point-location quaternion corresponded to the time 
dimension that inspired post-1905 authors to use quaternions for re-writing the results of special relativity.  Conway 
in 1911 [25] and (independently) Silberstein in 1912 [26] rewrote Maxwell’s Equations using bi-quaternions.  They 
deliberately introduced 4-gradient forms that acted on the 4-potential (both with a judicious use of the imaginary 
factor (i) to produce the electric and magnetic vector fields, whose 4-gradient then related them to the 4-current. 
Rastall has written a comprehensive review article [27] describing the history of using quaternions in relativity. 
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3.3	DIRAC’S	RELATIVISTIC	EQUATION	
In 1929, just one year after Dirac established his relativistic equation for the electron, Lanczos published three 
articles [28] where he generated this famous equation from a pair of coupled bi-quaternion fields, an approach that 
made the spin explicit.  He then continued this innovative approach for many years thereafter using bi-quaternions.  
The 1937 paper by Conway [29] proposed a completely quaternion form of this equation.  This same approach has 
been recently [30] been revisited by Davies.   

3.4	QUANTUM	MECHANICS	
In 1936 Birkhoff and von Neumann [31] presented a propositional basis for quantum mechanics, which indicated 
that a QM system may be represented as a vector space over the real, complex and quaternionic fields: the quantum 
superposition principle for probability amplitudes (wave functions) need only obey a division algebra. The use of a 
quaternion wave function Ψ  = ψ0 + ψ, results in a doubling of the components from four (Dirac) to eight.  Adler has 
used this surprising feature to develop [32] a new form of quantum electrodynamics that eliminates Dirac’s ‘sea’ of 
negative energy electrons by combining both particle and anti-particle states into a combined, single fermionic state.   
In the 1960s, Finkelstein et al wrote a series of papers [33] exploring the foundations and implications of quaternion 
quantum mechanics.   
 
This brief summary reveals that quaternions have been mainly ignored in the development of physics.  However, 
although modern physics has made a major commitment to Hamilton’s Principal Function (Hamiltonian Mechanics) 
while almost completely ignoring his quaternions, this researcher believes that a scientist of Hamilton’s rare genius 
would not have invested so much of his life on such a mistaken endeavor.  Accordingly, this programme will ignore 
Hamiltonian mechanics as unsuitable for asynchronous interactions since this was designed for single-time physics, 
but we will show in this paper that a simple, evolutionary development, now referred to here as ‘Natural Vectors’, 
promises to fulfill the great expectations in physics that Hamilton had hoped for his quaternions. 
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4.			NATURAL	VECTORS	

4.1	MAXWELL’S	FAILURE	
Although Maxwell was impressed with this new algebra, his final attempt to use Hamilton’s quaternions simply 
used the vector-style representation to condense three similar equations expressed in Cartesian coordinates into a 
single 3D vector-like equation.  As a result, Maxwell was able to reduce his 20 equations summarizing his theory of 
electromagnetism down to eight: six in vector form plus two in scalar form. (Although, universally known today as 
Maxwell’s Equations; their vector form is due to Heaviside.)  It is quite likely that Maxwell knew that Hamilton’s 
quaternions in their original form could not be used to generate these equations, as will now be demonstrated. 
 
The following vector-quaternion notation will be used here based on Hamilton’s basic quaternions (see 2.2.2). 
 
  Vector:   A  ≡  i A1  + j A2  +  k A3  Quaternion:   A  ≡  A0  + A  
 
  ∇  ≡  i ∂1  + j ∂2  +  k ∂3      ∇   ≡  ∂0  + ∇        ∂0  ≡  ∂/ c ∂t       ∂1 ≡  ∂/ ∂x1 etc 
 
Standard multiplication of two quaternions gives:  A B = (A0 B0 – A • B) + (A B0 – A0 B) + A ∧  B 
 
Defining two electromagnetic field quaternions:    E  ≡  4 π ρ  +  E     and    B ≡  B  then: 
 
 ∇  ( E + i B )  =  (4 π ∂0 ρ – ∇ • E – i ∇ • B)  + ∂0 (E + i B) + 4 π ∇ρ  +  ∇ ∧  (E + i B) 
 
The Maxwell field hypothesis would then be equivalent to setting this equation always to zero.  So equating the real 
and imaginary parts of the scalar and vector components generates four separate equations: 
 1)   ∇ • E  =  4 π ∂0 ρ    2)   ∇ • B  =  0    3)  ∇ ∧  E  =  ∂0 E  –  4 π ∇ρ    4)   ∇ ∧  B =  ∂0 B    
 
If this is compared with the Maxwell-Heaviside field equations: 
 a)   ∇ • E  =  4 π ρ        b)   ∇ • B  =  0    c)  ∇ ∧  E  =  – ∂0 B        d)   ∇ ∧  B =  ∂0 E  + 4 π J / c 
 
It can be seen that only the magnetic divergence equation is recovered, not a very promising match. 

4.2	THE	INTERACTION	GROUP	
The motion of two particles is determined by linear combinations of the 8 basic physical operators: 
 
   { t,  x,  y,  z,  ∂/∂t,  ∂/ ∂x,  ∂/∂y,  ∂/∂z }    
 
The generalized quaternion bases {I0, I1, I2, I3} form the generators of the quaternion group under multiplication, 
based on the identity element I0; in other words, they satisfy the quaternion group defining multiplications:  
 
  I0 I0  = + I0         I0 Ij  =  Ij         Ij Ij   =  – I0       I1 I2  =  I3    (cyclic;   j =  1, 2, 3) 
 
Previously, most other attempts to use quaternions in physics (see 3.3 & 3.4) have used “complexified” quaternions.  
These authors used the four “complex bases” {I 0, I 1, I 2, I 3} where I0 = I0  & I j =  i Ij explicitly introducing the 
standard complex number (i) into the bases themselves.  These four bases map to the double complex unitary group: 
    (Iµ )  ≅  (SU2)  ⊗  (SU2) 
 
As a result, these bases were defined in terms of Pauli (2x2) “spin” matrices, σj.  The complexified quaternion group 
needs 16 elements to complete the group:   {I0, {I}, i I0, i{I}, – I0, –{I}, – i I0, – i{I}}, where{I} represents the sub-
group {I1, I2, I3}.  This results in a double mapping between the eight physical operators and this complex 
quaternion group.   
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In attempting to construct a representation of a two-particle interaction, it has proved useful to adopt a more physical 
view than the purely algebraic one adopted by Hamilton and his more mathematical followers.  It is obvious that the 
characteristics of time itself, (namely linearity, sequencing and universality) are very different from the intuitive 
characteristics of space (3 independent directions, rotations, distinctions established by the location of particles, etc).  
Indeed, Hamilton was acutely aware of these differences, as demonstrated by the following quotation [34]: 
 
 “The quaternion may be said to be ‘time plus space’ and in this sense involves a reference to four dimensions.” 
 
Mathematically, 3D vectors can represent real displacements of any magnitude, so this suggests mapping the spatial 
locations of particles to the real, vector part of a quaternion.  In order to emphasize the very different nature of time 
the purely imaginary number (the square root of minus one, symbolically represented in physics by ‘i’) will be used 
in the scalar part of quaternions to represent physical quantities that can exist in time.  Its only properties that will be 
used here are its definition and that of complex conjugation, denoted here by an asterisk superscript: 
    i  =   √ (– 1)    or   i2  =   – 1  and   i*  =   – i 
The new representation developed here, which will be referred to as the Natural Vector representation, is a blend of 
these two well-known representations; the set of four bases are chosen to be:{i I0, I1, I2, I3}.       
In this new group it takes either 4 or 6 operations to generate a return to any initial state, say |S> itself represented 
by a (4x1) column matrix; in other words: 
     ( ( i I0 ) ( I3 ) ( i I0 ) ( I3 ) ) |S>   =  ( I0 ) |S>  =  |S>       and    
 
  ( ( i I0 ) ( I1 ) ( I2) ( i I0 ) ( I1 ) ( I2 ) ) |S>   =  ( I0 ) |S>  =  |S> 
  
In other words there exists a 12 element subgroup  ( W ) within the Natural Vector group (the choice I3 is arbitrary), 
involving the parity group ( C2 ) and the cyclic group ( C4 ); this is the Weyl group:  ( W )   ≅  ( C2 )  ⊗  ( C4 ).  
The ( C4 ) group corresponds to the 4 roots of +1 based on the generator, i ; in other words:  {1, i, i2 = – 1, i3, = – i}.  

4.3	EXPONENTIALS	
Quaternions can be used to define exponential functions based on Euler’s (infinite) series definition of the basic 
exponential function: 
   exp(x)  =  ∑ xn / n!   with   0! = 1 
Substituting a pure imaginary number for the real parameter (x = i θ) generates Euler’s famous formula: 
   exp(i θ)  =  cos θ  + i sin θ 
Similarly, using any one of the vector (non-zero) quaternion bases (Ij) generates a comparable result: 
   exp( Ij θ )   =   I0 cos θ  + Ij sin θ 
If we introduce the ‘positional convention’ (since these bases are non-commuting variables): 
   exp( I1 θ ) exp( I2 θ ) exp( I3 θ )  = exp((I1 + I2 + I3) θ) 
 
Then:   exp((I1 + I2 + I3) θ)  = I0 (cos3 θ – sin3 θ)  +  ((I1 + I3 ) (cos θ + sin θ) + I2 (cos θ – sin θ)) cos θ sin θ 
 
So,  1)   exp(– (I1 + I2 + I3) π /2)  = I0         2)   exp((I1 + I2 + I3) π /4)  =  (I1 + I3 ) / √ 2 
 
Since, for any quaternion,  Q  =  I0 Q0 + I1 Q1 + I2 Q2 + I3Q3   =  R exp((I1 + I2 + I3) θ) 
 
So,    Q0 =  R (cos3 θ – sin3 θ)     Q2 =  R (cos θ – sin θ) cos θ sin θ     Q1 =  Q3   =  R (cos θ + sin θ) cos θ sin θ 
   
Thus, Q1/Q2   =  (cos θ + sin θ) / (cos θ  – sin θ)  or  tan θ  =  (Q1 – Q2) / (Q1 + Q2) 
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4.4	MATRIX	REPRESENTATION	
The new representation developed here, henceforth referred to as the Natural Vector representation, uses the set of 
four bases (see section 4.2): {i I0, I1, I2, I3}, where I0 is isomorphic with the unit number while {I1, I2, I3} are 
isomorphic with Hamilton’s three linearly independent imaginary quantities {i, j, k}.  So these bases satisfy the 
group multiplication rules, where j, k, l = 1, 2, 3 and µ = 0, j : 
 
    I0 Iµ  =  Iµ I0  =  Iµ           Ij Ik  =  – δij I0  + εjkl Il  
 
Here, δij is the Kronecker delta symbol with value +1 when both indices are equal or zero otherwise and εjkl is the 
cyclic permutation tensor whose value is zero unless all three indices are different when its value is +1 if the indices 
are cyclic (even permutation of 1,2,3) or –1 if anti-cyclic (odd permutation).  This views the definition of a natural 
vector as an imaginary, scalar quaternion, symbolized by Q so as to distinguish it from a Hamilton quaternion Q. 
 
 Definitions:       Q  ≡  i I0 q0 + I1 q1 + I2 q2 + I3q3   ≡  Q0 + ∑jQj ≡ {i q0  ;  q} =  i q0 I0 + ∑j qj Ij 
 
In this definition, the imaginary scalar component of Q is (Q0 = i q0) while the vector component is (Q). 
In terms of Grassmann’s unit vectors eµ ,  
     Q =  ∑µ qµ eµ     thus    e0  ≅   i I0    ej  ≅   Ij  
We require that ALL of the vector representation of a Natural Vector remains real AND unchanged under time 
reversal.  This means that we cannot use the Pauli (2x2) or bi-quaternion representations of the three vector bases, Ij 
as we wish to represent time reversal (later) by complex conjugation, where this is satisfied by the scalar part of a 
natural vector.   So we need a (4x4) matrix representation of each of these bases based on the 4 real one dimensional 
unit column matrices,  | µ>, defined (as row matrices < µ | ): 
  < µ |  =  { < 0 |, < 1 |, < 2 |,  < 3 | }  =  { [1 0 0 0],  [0 1 0 0],  [0 0 1 0],  [0 0 0 1] } 
The representation chosen here, where the z-axis will be the ‘spin-axis’, is: 
 
           | 1  0  0  0 |             |   0  1  0  0 |               | 0  0  0 –1 |              | 0   0 –1  0 |  
 I0  =   | 0  1  0  0 |   I1  =   | –1  0  0  0 |     I2  =   | 0  0 –1  0 |    I3  =   | 0   0   0  1 |   
           | 0  0  1  0 |             |   0  0  0  1 |               | 0  1   0  0 |              | 1   0   0  0 | 
           | 0  0  0  1 |             |   0  0 –1 0 |               | 1  0   0  0 |              | 0 –1   0  0 |  
  
So, any natural vector has a (4x4) representation: 
       |  iq0   q1 –q3 –q2 | 
        Q  =     | –q1 iq0 –q2   q3 |   
        |   q3   q2 iq0   q1 |  
       |   q2 –q3 –q1 iq0 | 
   
We can see that each quaternion basis Iµ is represented by a real (4x4) matrix involving only the three foundational 
integers {+1, 0, –1}.  In this new representation, any ordered set of 4 real parameters  {q0, q1, q2, q3} which are 
associated with two interacting particles can be mapped into a unique, imaginary-scalar quaternion, denoted by Q.  
We can relate these (4x4) bases to the (2x2) Pauli spin matrices σj by introducing the anti-symmetric:  Ij  = I+

j – I-
j.   

The (2x2) representation uses the unit matrix 1, the zero matrix 0 and the ‘number’ matrices η+ and η- defined as: 
 
 1  =  | 1  0 |  =  1 ✝       η+  =  | 1  0 |  =  (η+)✝      η-  =  | 0 0 |  =  (η-)✝        σ3  =  | 1  0 |  =  σ3

✝  =  η+ –  η- 
         | 0  1 |                            | 0  0 |                           | 0 1 |                            | 0 –1|  
 
       0  =  | 0 0  | σ+  =  | 0 1 |  =  σ-

✝      (σ+  + σ-)  =  | 0  1 |  =  (σ+  + σ-)✝      (σ+ – σ-)  =  | 0  1 |  =  – (σ+  – σ-)✝         
          | 0 0  |           | 0 0 |                                     | 1  0 |                                        | –1 0 |    
 
Using the full representation:  Q  = iq0  | 1 0 |  +   q1 | (σ+ – σ-)   0      |  + q2 | (σ+  + σ-)   0     | + q3 | 0  σ3 |  
           | 0 1 |           |      0   (σ+ – σ-) |          |      0  (σ+  + σ-) |        | σ3  0  |  
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So,         I0   =   | 1  0 |    ,   I1

λ
   =  | σλ  0 |    ,   I2

λ
   =  | 0   -λ σλ |    ,   I3

λ
   =  | 0  -ηλ |     with λ = + or –  

             | 0 1  |                   |  0  σλ|                   | λσλ   0    |                   | ηλ  0  |  
 
The isomorphisms are:   I0   ≅   1  ,  Ij  ≅   –i σj  giving : Q  ≅   i 1 q0 –  q . σ   (called the spinor isomorphism).   
 
The double-spinor representation is:   Q  ≅   | ψ –ϕ* |  where  ψ  =  q0  –  i q3 and  ϕ  = q2  –  i q1   
     | ϕ   ψ* |   

4.5	NATURAL	VECTOR	ALGEBRA		
It is very important to note that in this representation of a Natural Vector only the explicit ‘i’ is imaginary, so in 
terms of complex conjugation (denoted by a *): 
 
  Q0* = – Q0 while Qj* = Qj       but for (matrix) transposition: Q0

T = Q0 and Qj
 T = –Qj  

 
So, for the Hermitian conjugate (transposed conjugation) of a real Natural Vector: Q† = – Q   
 
Thus, the Hermitian conjugate of a real Natural Vector Q is not independent of Q but its conjugate is; so, unlike 
quantum mechanics, the calculus of Natural Vectors will use just standard complex conjugation, not Hermitian 
conjugation.  
 
In all quaternion calculus, addition is standard and associative:      A + B = B + A 
 
But multiplication is non-commutative, in particular:   (a • I)  (b • I)  =  – (a • b) I0 +  (a  ∧  b) • I 
 
So, the square of a Natural Vector is:      A2 ≡  AA =  – (a0

2 + a1
2  + a2

2 + a3
2) I0 + 2 i a0 (a  • I ) 

  
This shows that simple (direct) multiplication of Natural Vectors mixes the imaginary scalar factors into the vector 
components but we require the imaginary scalar components to remain distinct when it comes to mapping physical 
quantities.  Furthermore, we also require a positive, real “norm” for all Natural Vectors so we will restrict pair-wise 
multiplication to conjugate multiplication as in simple complex numbers ( z = x + i y  ;  z* z  =  x2 + y2 ).  These 
restrictions allow an inverse (and division) to be defined uniquely making Natural Vectors a mathematical group.   
 
So the rules for addition and multiplication of two Natural Vectors A* and B become: 
 
   Addition:   A* + B  =  – i I0 (a0 – b0)  +  (a + b) • I    
 
 Multiplication:   A*B  =  I0 (a0 b0  – a • b)  +  i I • (b0 a  – a0 b)  +  (a  ∧  b) • I 
 
For single vectors (B = A):  A* + A  =  2 a • I      A* – A  =  – i 2 a0 I0      A*A  =  I0 (a0 a0  – a • a)  
 
This gives the “Grassmann” form of Natural Vectors:   S.A = 1/2 (A – A*)   V.A =  1/2  (A + A*) 
 
This illustrates the feature that the vector part of a NV is symmetric, while the scalar part is anti-symmetric.  It also 
should be pointed out that x* corresponds to the standard “right-hand” reference-frame, while x corresponds to a 
“left-hand” reference-frame.  Note, also, that the standard rule for operators applies to NVs, operands always stand 
to the right of operators, unlike matrices or bi-quaternions, so there is no ambiguity. 
 
It is strongly recommended that the explicit form of NVs be used (e.g.  Q = iq0I0 + I • q), not any of the implicit 
forms, like {i q0 ; q}; these implicit forms (or worse, the conjugate product form) have been used too extensively in 
the history of quaternions and have hidden the algebra that is as simple as the algebra of complex numbers. 
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 4.6	MAPPING	REALITY	
The form of the “norm”  (that is to say the “square”,) of a Natural Vector, A*A resembles the form of the space-time 
interval in Maxwell’s electromagnetic theory, when a0 = c t and a =  x.  This suggests the following “mapping” rules 
between representations of reality and Natural Vectors. 
 

1.  Time will be mapped to a one dimensional real variable ‘t’ with an arbitrary origin,  t0  = 0 , allowing 
both positive and negative times relative to t0. 

2.  Space will be mapped to three independent, one dimensional variables ‘xj’ (j = 1, 2, 3) with a common 
origin  xj0 = 0.  In order to preserve their independence these real variables will be assigned to the three 
orthogonal (right-handed) unit vectors in space, {ê1, ê2 , ê3}. 

3.  In order to work with Natural Vectors that are always physically homogenous (i.e. each component has 
the same physical dimensions) we will introduce the universal space-to-time constant ratio ‘c’, that has 
the dimensions of speed; this will later be identified with the “speed of light” in vacuo.  Thus the 
product ‘c t’ has the same physical dimensions as each of the spatial variables ‘xj’, namely length [L]. 

4.  Since time is a scalar and ontologically separate and different from space then time will be mapped to 
the imaginary scalar variable with the spatial variables mapped to the vector components. 

5.  The metaphysics of all theories based on Natural Vectors is Newtonian.  Here, the world is considered 
to consist of a very large but finite number of point-particles that are identified with those elementary 
particles known as “electrons”.  Since they are point-like they are each considered to have zero extent in 
space throughout all time.  They are each considered both unique and eternal, so they can be ‘labelled’ 
by a unique integer identifier ‘α’.   Each electron will have a unique position in space (x) at time, t.  It is 
the fundamental hypothesis of this research programme that these two parameters of every electron can 
be mapped into their own Natural Vector, x(α). 

 
   Hypothesis:   { xj(α , tα) }   ≅  x(α)  ≡  i c tα I0  +  x(α) • I 
 
The square (or ‘norm’) of this ‘positional’ NV is:   x(t)* X(t)   =   (c2 t2 – x2) I0 

4.7	VELOCITY	&	GRADIENT	
Since the electron is considered in this programme as eternal then when it is moving it always has a nearby location 
in space no matter how small (but finite) the difference in time (δt) between the two locations.  This requirement 
defines the instantaneous velocity of the electron, v at all times: 
 
   Definition:  Velocity,  v(t)  ≡  Limit { ( x(t + δt) – x(t) ) / δt } 
              δt → 0 
In all physics since Newton onwards, the assumption has been made that velocity is a continuous variable; this 
“Continuity Hypothesis” will be adopted here until explicitly challenged, later.  This is usually written in terms of 
Newton’s total time derivative in the calculus he invented for analyzing motion (but using Leibniz’s notation): 
 
     v(t)  =  dx(t) / dt  =  d/dt { x(t) } 
 
The same limiting definition may be applied to an electron’s own Natural Vector to define its NV velocity (see 5.3): 
  
  Definition:  V(t)  ≡  Limit { (x(t + δt) – x(t) ) / δt } =  dx(t) /dt  =  i c I0  +  v •  I 
          δt → 0 
The “square” of this velocity NV is:    V(t)* V(t)   =   (c2 – v2) I0 
 
We can follow Hamilton and extend his ‘nabla’ (or ‘gradient’) 3D space operator (∇ section 4.1) to the Natural 
Vector Gradient applied to any scalar function ψ that is continuous in the four space-time variables {t ; x}: 
 
 Defn:   ∇ψ(t ; x)  ≡   i I0  ∂0ψ(t ; x)  +  I • ∇ψ(t ; x)   &  ∇  ≡  ê1∂1 + ê2 ∂2 + ê3∂3     ∂0  ≡  ∂/ c ∂t    ∂1 ≡  ∂/ ∂x1 etc 
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The conjugate of the NV gradient operator can be applied to any NV continuous function, Q(t ; x): 
 
    ∇*Q(t ; x)  =  I0 (∂0q0  – ∇ • q)  +  i I • (∇q0  –  ∂0q)  +  I •  (∇ ∧  q)  
 
When the gradient of a CNV is zero, this is equivalent to three separate equations (real & imaginary parts of Iµ): 
 
 If   ∇*Q  =  0  then:    1)    ∇ • q  =  ∂0q0   2)  ∇q0  =  ∂0q    3)    ∇ ∧  q = 0  

4.8	NATURAL	VECTOR	PRODUCTS	
The Natural Vector gradient operator (∇) is itself a linear operator as it is constructed from the basic linear operators 
∂0  and  ∂k.  We can use all the results of differential calculus and vector algebra to develop a set of NV identities 
that will be used throughout the remainder of this research programme.  In particular, the derivatives of x and v have 
certain characteristics (see below) that make their use in their NV versions (x ,V) very powerful. 
 
Most importantly:   a)  ∂xj / ∂xk  =   δjk   b)  ∂0xj  =  0 c)  ∂f(t) / ∂xk =  0   d)  ∂0f(x)  =  0        
 
So, e)  ∇ • x  =  3     f)   ∇ ∧  x = 0    g)   (v • ∇) x  =  v    h)   ∇ vj  =  0   i)   ∇ • v  =  0    j)  ∇ ∧  v = 0 
 
These basic identities are used to generate more-complicated identities with scalar functions like α(x), thus:  
                             
 1.   ∇ (α vj )  =  vj ∇α        2.   ∇ • (α v ) =  v • ∇α        3.   ∇ ∧  (α v ) =  – v  ∧  ∇α 
 
A more comprehensive set of useful 3D vector identities is provided in Appendix 10.1.  A similar set of identities 
can be readily developed for the corresponding Natural Vectors.  These all use the basic conjugate multiplication 
form introduced in section 4.4 and 4.6; again, when α is any scalar function of {t & x}. 
 
 1.   ∇*X  =  – 2 I0      2.   ∇*V  =  – i I •  ∂0v      3.   ∇*α  =  – i I0 ∂0α  +  I • ∇α 
  

 4.   ∇*(α Q)  =  α (∇*Q) + (∇*α)Q 5.   ∇* ∇α  =  ∇  ∇* α  =  I0 (∂0
2 –  ∇2 ) α  ≡  – I0 !α  

 
 6.    V*∇*(α)  =  – I0 (c ∂0 + v • ∇)α – i I •  (c ∇ + v ∂0 ) α  +  I • (v ∧  ∇α) 
 
A more comprehensive set of useful Natural Vector identities is also provided in Appendix 10.2. 
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5.			CONTINUOUS	NATURAL	VECTORS	

5.1	DEFINITION	
When any of the parameters (qµ) of a Natural Vector Q is a function of a continuous variable ξ, such that for any 
small change δξ in this variable, the following two conditions hold, then Q(ξ) will be referred to as a Continuous 
Natural Vector (CNV).  
 
 qµ(ξ + δξ)  =  qµ(ξ)  +  δqµ(ξ)  when δqµ(ξ) ≠  0  &  δξ  ≠  0   and   qµ(ξ) = Limit { qµ(ξ + δξ) } 
               δξ→0 

5.2	TOTAL	DIFFERENTIALS	
Any particle at any time (t) is defined to occupy only one position in 3D space, denoted by the ordered triple of real 
numbers {x1, x2, x3} relative to a given reference frame.  This is equivalent to the definition of a location vector q 
defined relative to the origin of the reference frame.  Note that although the value of q varies over time, the symbol 
‘t’ is a monotonic scalar that acts as an identity tag for the value at any particular time.  The notation q(t) does not 
mean that the particle’s spatial location is an explicit function of time, rather it is reflects the implicit relationship: 
    q(t)  =  x1ê1 + x2ê2 + x3ê3   ≡   x(t) 
For infinitesimal changes in time (δt) this particle is assumed to move smoothly to a nearby point x(t + δt); in other 
words, the particle is assumed to have a well-defined, instantaneous velocity v(t) at all times, t and a continuous 
change in velocity or acceleration a(t).  For each spatial direction (êj) these are defined by the limit conditions: 
 
    Defs:   vj(t)  ≡  Limit {(xj (t + δt) – xj (t))/ δt} ≡  dxj (t) / dt  ;   aj (t) ≡  Limit {(vj (t + δt) – vj (t))/ δt }  ≡  dvj (t) / dt  
   δt → 0                     δt → 0 
When a function ψ is always associated with every example of one type of particle then it is considered a universal 
property of this type of particle.  Indeed, the totality of all of these types of properties (ψk) can be considered as the 
definition of this class of point objects.  In other words, every member of a class of particles will have a set of these 
similar “quality” functions; these properties are intrinsic to their “owning” objects and have no separate ontological 
significance.  The identity of all such objects in a given class is not significant with respect to the values of these 
functions otherwise “significant” particles would be distinguishable and, ipso facto, they would not be members of 
this class.  Thus, the value of any such intrinsic “property” function must depend only on the location of its “parent” 
particle in space (x) at any given time t, i.e. ψ(t ; x) or ψ(xµ).  There may well be characteristics that only manifest 
themselves when objects are interacting between themselves: these would be pair-wise properties of the objects. 
 
Any physical theory that assumes that these property functions (ψ) are continuous over all space and time is an 
example of a “continuum” theory – an assumption made for almost all mathematical theories of physics since 
Newton invented the differential calculus.  When these types of theories separate a property from any particle and 
simply assign continuous functions to “space” itself, then such theories are building on the mathematics of “fields”, 
manifolds of real numbers (ℜ), used to map the co-ordinates of time and space to arbitrary scales.  But when the 
physical objects of interest are assumed to be localized at ONE point in space for each and every point in time, then 
the theory is classified as a particle theory: for example, Newton’s dynamics with instantaneous forces.  When a 
theory proposes a physical medium covering a region of space continuously then the focus of interest becomes any 
infinitesimally small spatial volume of this medium centered on every spatial point; such theories are known as 
classical “medium” theories, as exemplified by Maxwell’s theory of the electromagnetic aether or Helmholtz’s 
hydrodynamic model of electrodynamics.  It is logically consistent to define a velocity property for either a particle 
or medium theory as one can readily imagine the focus of interest moving relative to the background spatial frame; it 
is not obvious that such concepts are legitimate for pure “field” theories, where space itself is the focus of interest.  
Mixed theories occur whenever a medium is proposed that interacts with distinct particles (this is equivalent to 
interactions occurring between particles that are “carried” by the intervening medium).  Such mixed, particle-
medium theories are best exemplified by H. A. Lorentz’s Theory of the Electron.   
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Contemporary theories in physics use the mathematics and vocabulary of particles and medium theories but propose 
no physical medium, so that the key field functions become properties of space itself – the ‘plenum’ view 
championed by Newton’s nemesis, René DesCartes.  When interactions are limited to the products of different fields 
acting at the same point in space and time then we have an example of a “local field” theory – this has been the 
centre of research in theoretical physics now for over 75 years.  This is not the area of interest of the present research 
programme.  There are thousands of physics papers already devoted to local field theories; it is time for a change. 
 
All continuum theories assume that every property (ψ) has non-zero limits of the first (and usually second) partial 
derivatives with respect to all four space-time variables, xµ. 
 
  Definition:    ∂ψ(t ; x) / ∂xµ  ≡  Limit { (ψ(…, xµ + δxµ, …) – ψ (…, xµ, …) ) / δxµ } 
           δxµ → ±0 
The total-differential change in value of a point-object’s property ψ is defined as the sum of all its possible 
differential variations in the 3 spatial directions (ej ) plus the differential change due to its explicit change in time.  
 
  Definition:   dψ   ≡  ∑µ dxµ ∂ψ/∂xµ    where  x0 = t  so  dx0 / dt = 1  &  dxj / dt = vj    
 
Thus, for the total-time derivative (also see Goldstein [35]):   dψ/dt  =  ∂ψ/∂t  +  v • ∇ψ    
This illustrates that the total-change in a point-object’s property ψ is due to an explicit variation, at the same 
location, due to changes induced by time itself plus the sum of the variations due to the object moving through space 
(at velocity, v) to an infinitesimally nearby location in space (at the same time).  This confirms the previous claim 
that there is no explicit time dependence of the object’s location by choosing the object’s location x as ψ itself: 
  vj = dxj / dt =  ∂xj /∂t  +  v • ∇xj  =  ∂xj /∂t  +  v • ej  =  ∂xj /∂t  +  vj     ∴  ∂xj /∂t  =  0 
 
  If we substitute the particle’s velocity v for ψ we see that its acceleration, a(t) has an interesting feature: 
 
  aj = dvj / dt =  ∂vj /∂t  +  v • ∇vj  =  ∂vj /∂t        ∴  a(t)  = dv / dt  =  ∂v /∂t  =  d2x / dt2 

5.3	FLOW	VECTORS	
The 3D position in space of a point-object at time t is denoted by x(t); it is the fundamental hypothesis of this 
research programme (section 4.5) that this is isomorphic with the vector part of its corresponding Natural Vector x. 
 
  x(t)  =  i c t I0  +  x(t) • I    &   x(t + δt)  =  i c (t + δt ) I0  +  x(t + δt) • I   =  i c (t + δt ) I0  + ( x(t) + δx(t)) • I 
 
  ∴ δx(t)  ≡  x(t + δt) – x(t)   =  i c δt I0  +  δx(t) • I    ∴  δx(t) / δt  =  i c I0  +   I • δx(t) / δt 
 
So, in the infinitesimal limit, the CNV Velocity is defined as: V(t)  ≡  Limit { δx(t) / δt }  =   i c I0  +  v(t) • I  
                    δt → 0 
This is the result that we used earlier (section 4.6) to develop a set of identities involving the CNV Velocity.  If we 
now use equation 6 of section 4.7 while substituting for the total-time differential, then: 
 
       V*∇*ψ  =  – I0  dψ/dt  – i I •  (c ∇ + v ∂0 )ψ  +  I • (v ∧  ∇ψ) 
 
We shall define the “Zero Condition” CNV, Z as:     Zψ ≡  i I •  (c ∇ + v ∂0 )ψ  –  I • (v ∧  ∇ψ) 
  
So, we have the CNV equivalent of the total-time differential:    I0 dψ/dt  =  –V*∇*ψ    if   Zψ  =  0 
 
If this result is applied to each continuous component of a CNV Q then we derive the conditional “Flow” equation: 
 
    dQ/dt  + V*∇*Q  =  0         if   ZQ  =  0 
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5.4	ZERO	CONDITIONS	
The “Zero” condition for any CNV Q that satisfies the “flow” equation (section 5.3) is equivalent to two scalar and 
two vector (i.e. 8 Cartesian coordinate) equations by setting the real and imaginary parts of the scalar and vector 
parts of this CNV equation individually to zero, while using the vector identity:    A ∧  B • C  =  A • B ∧  C 
 
 1)    v ∧  ∇ • q  =  0      or      v • (∇ ∧  q)  =  0  2)     c ∇ • q  +  v • ∂0q  =  0 
 
 3)    I • (c ∇ + v ∂0 )q0 – (v ∧  ∇) • (q ∧  I )  =  0   4)    (c ∇ + v ∂0 ) • (q ∧  I ) – I • v ∧  ∇q0  =  0 
 
Since condition (4) can be re-organized into a form of (∇ ∧  q) in terms of v then condition (1) is always satisfied; 
conditions (3) and (4) can be rewritten in the following forms: 
 
  3)   v2 (∂0q0 + ∇ • q) + v • ∇(c q0 – v • q)   =  0    4)    c ∇ ∧  q  =  v  ∧   ( ∇q0 – ∂0 q )     
     
We can left-multiply the Flow Equation (section 5.3) by V to derive an alternative form of this important equation: 
 
    V dQ/dt  + (c2 – v2) ∇*Q  =  0         if      VZQ  =  0 
 
This has two solutions; either: A)    v ≠ c which has interesting properties  and  B)    dQ/dt  =  0  when v = c. 
 
   (c2 – v2) (I0 (∂0q0 – ∇ • q) + i I • (∇q0  – ∂0q) + I •  (∇ ∧  q))  =  (I0 (c dq0/dt + v • dq/dt) – i I • (c dq/dt + v dq0/dt)  
            – I • v ∧  dq/dt ) 
         
       A)  1)    c dq0/dt + v • dq/dt  =  (c2 – v2) (∂0q0 – ∇ •• q)   2)      c dq/dt + v dq0/dt  =  (c2 – v2) (∂0q  – ∇q0)  
   
     3) v ∧  dq/dt = –  (c2 – v2) (∇ ∧  q)   
 or 
       B)  1)    c dq0/dt + v • dq/dt  =  0  2)      c dq/dt + v dq0/dt  =  0    3)     v ∧  dq/dt  =  0  
 
Alternatively, if   v ≠ c while VZQ  =  0  and  dQ/dt  =  0 then: ∇*Q = 0 giving the Zero-Gradient Conditions: 
 
      ZG:  1)    ∂0q0 – ∇ • q =  0     2)    ∂0q  – ∇q0  =  0     3)     ∇ ∧  q  =  0  
 
If: VZ ψ  =  0  then  (c ∇  + v ∂0)ψ = 0  choosing ψ = αvj we get the two Zero-Velocity Conditions, VZQ  =  0 
 
      ZV:   1)    (c ∇  + v ∂0) ∧  q =  0    2)   v • (c∇  + v∂0)q0 + c (c∇  + v∂0) • q  =  0     

5.5	VELOCITY	VECTORS	
We can define a major sub-class of CNVs as Velocity-Class Natural Vectors if they have the general structure: 
 
   Definition:     Qv  ≡  i q0 I0  +  α(t; x) v(t) • I  
 
This produces a general “Equation of Motion” for such CNVs:      α v • a  =  – (c2 v • ∇α + v2 c ∂0α) 
 
So, the acceleration (a) is orthogonal to the velocity (v) for a Velocity Vector when:   c2 v • ∇α  =  – v2 c ∂0α 
 
These have the harmonic solutions: α(t;x)  =  α0 exp( i (K • x – Ω t) )   where:   K • v  =  Ω v2 / c2 
 
If it is assumed that: K = β v  then:  β =  Ω / c2    or  v  =  c  resulting in:   c2 v • ∇q0  =  – v2 c ∂0 q0  
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This has its own similar harmonic solution, so that a Velocity Vector has the general solution: 
 
   Qv(t; x)  =  ( i β0 I0  +  α0 v(t) • I ) exp( i (K • x – Ω t) ) 
  
Thus a CNV Velocity Vector with the following space-time periodic structure satisfies all 4 “Zero” conditions in 
section  (5.4): 
 
  Qv(t; x)  = α0 exp( i (K • x – Ω t) ) (– i c I0  +  v(t) • I )  ≡  αH(t; x) V* 
 

So, the “harmonic” functional parameter, αH(t; x)  satisfies the Wave Equation:   !αH ≡  (∇2 –  ∂0
2 )αH =  0 

 
The “wave” parameters must then satisfy:     Ω  =  v • K =  + c K  or  – c K    so   v  =  + c  or  – c   
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6.			VOIGT	VECTORS	

6.1	DEFINITION	
The discussion of the CNV Velocity Vector in section 5.5 above suggests the generalization of the functional 
parameter αH(t; x) to any function of the particle’s space and time co-ordinates as a scalar functional multiplier of 
the Velocity CNV .  In honor of the 19th Century German scientist that first studied the invariance of the wave 
equation, namely Woldemar Voigt (1850-1919), who pioneered the study of coordinate transforms [36], we have 
named such CNVs, Voigt Vectors; they will prove central to much that follows in this programme. 
 
   Definition:     V   ≡  – i c α(t; x) I0  +  α(t; x) v(t) • I  =  α(t; x) V* =  { i V0; V } 
 
Obviously, the scalar and vector components of a Voigt Vector satisfy the following equation, named in honor [37] 
of Ludvig V. Lorenz (1829-1891); this equation will also re-appear in many forms throughout this programme. 
 
    The Lorenz Equation:     c  V +  v V0  =  0 

6.2	VOIGT	ZERO	CONDITIONS	
Since every Voigt Vector is a type of Velocity Vector then it will satisfy the Flow Equation if it satisfies the Zero 
Conditions (see section 5.4), so substituting  α v for V and – cα for V0 into conditions 2) or 3). 
  
Then, V = α(t; x) V* is a Flow Vector if: 2)   v • (c ∇α + v ∂α/∂t )  =  0   or   3)    dα/dt  =  (1 – v2/c2 ) ∂α/∂t    

6.3	HARMONIC	VOIGT	VECTORS	
We will define a Harmonic Voigt Vector when the Voigt parameter α(t; x) has a separable time-dependence that is 
sinusoidal. 
  Definition:    Harmonic Voigt Vector    Vh  ≡  exp(iωt) α(x) V*  
 
When the Harmonic Voigt parameter α(t; x) satisfies the Wave Equation, then the first and second partial time 
derivatives of the particle’s velocity must be zero: 

  So, if:   !α(t; x)  =  0   then   ∂v/∂t = 0  and  ∂2v/∂t2 = 0   therefore   v(t; x)  =  v0 

Furthermore, since:  !v = 0 then if  !α = 0  then !V =  0   therefore  !V  = 0 
 
These results can be generalized beyond the “harmonic” solutions to any function ϕ(t; x) that satisfies the 
homogenous Wave Equation: 

   !ϕ(t; x)  =  0   ∴  ∇2ϕ  =  ∂0
2ϕ      ∴  ∇ • (∇ϕ)  =  ∂0(∂0ϕ) 

 
Since ∂0ϕ is a scalar and ∇ϕ is a vector we can identify these as the two components of a Voigt vector. 
 
    V =  i I0 ∂0ϕ  + I • ∇ϕ  =  ∇ϕ  =  i V0 I0  +  I • V  =  – i c α I0  +  α v(t) • I   
 
     ∴ V0 =  ∂0ϕ  = – c α     ;     V  =  ∇ϕ  =  α v 
 
This implies:  dα / dt = 0  or  ∂0 (dϕ / dt)  =  0  ∴  ∂0ϕ  = – c α0   This suggests a generic solution: ϕ(t; x)  =  ϕ (ξ)  
where:  ξ =  z – z0 ± c t  .  This need not be a sine wave but any function, including a pulse, that propagates along 
the z axis, in either z-direction at speed c from the location z0 at time zero.  
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6.5	VOIGT	VECTOR	DERIVATIVES	
The most important CNV associated with a continuous Voigt Vector (V) is its local gradient, ∇*V  ; the gradients 
play the role of forces in the corresponding electromagnetic theory (see Conclusion).  This has the explicit form: 
 
   ∇*V  =  – I0  dα/dt  – i I •  (c ∇α + ∂0V)  +  I • ∇ ∧  V 
This has three elements, so the vector component of the CNV Gradient G  will have both real and imaginary parts. 
 
  Definition:    ∇*V  ≡  i G   = i (i G0 I0 + I •  (GR – i GI))  =  – G0 I0 + i I • GR + I • GI  
 
Comparing coefficients gives:  G0  =  dα/dt    ;   GR =  – (c ∇α + ∂0V)    ;    GI  =  ∇ ∧  V 
 
Now   V*∇*V  = I0 (i c G0 – i v • GR – v • GI) + I •  (c GR + v ∧  GI) – i I • (c GI – v ∧  GR) 
 
But if V  is a Flow Vector then:  d/dt (V)  =  – V*∇*V  = d/dt [–i c α I0 + I •  V]  =  – I0 i c dα/dt  + I •  d/dt(V) 
 
This gives the Gradient Equations: 1)   v • GR =  0     2)   v • GI  =  0  
     3)   c GR + v ∧  GI) = – d/dt(V)    4)   c GI – v ∧  GR  =  0 
 
Finally, in differential terms:     – i V* G  =  – V*∇*V  =  d/dt (V)  = – i (d/dt X*) G   ∴  i dV  =  dX*  G  

6.6	GAUGE	VECTORS	
There are a class of “harmonic” functions ψ(t; x) that always satisfy the Wave Equation :    !ψ(t; x) = 0 
Each such function has its own corresponding Associate CNV, defined as (note, not conjugate):   A   ≡  ∇ψ(t; x) 
The addition of any Associate Vector to a Voigt Vector, V  defines its corresponding Gauge Vector, V ′ . 
 

   Definition: Gauge Transform      V ′  ≡  V  + ∇ψ    where   !ψ  =  0  
 
Since    ∇ψ  =  i I0  ∂0ψ  +  I • ∇ψ    then   V ′  =  V  + ∇ψ   ;   V0′   =  V0 + ∂0ψ     ∴ c α ′   =  c α  – ∂0ψ 
 

The conjugate gradient of this Associate CNV is zero, since:  ∇*∇ψ  =  – I0 !ψ  =  0   ∴ ∇*V ′  = ∇*V or  G ′  = G   
This harmonic property of the Associate CNV ensures that the Gradient of any Voigt Vector (G) remains invariant 
under a Gauge Transform.  We will also investigate the hypothesis that the Gauge transform preserves the object’s 
local velocity (v), then:  
 
    V ′   =  α v′   =  V  + ∇ψ = α v + ∇ψ  ∴  c ∇ψ  =  – v ∂0ψ  ∴ ∇ψ = – ∂0ψ /c (–i c I0  +  I • v) 
 
So, an Associate CNV is itself a Voigt Vector with the form:  A  =  ∇ψ  =  β V*  where  β  =  – ∂0ψ /c .  Thus, the 
addition of a Gauge Vector is just adding the function β (t; x) to the original Voigt parameter α(t; x), thus preserving 
the Gauge transformed Lorenz Equation that characterizes all Voigt Vectors.  Furthermore, under these assumptions, 
it can be shown that the Gauge transform is only consistent if, and only if, the particle’s acceleration is zero.  
Additionally, if the time-dependence of the Associate CNV’s functional parameter β (t; x) is sinusoidal then the 
interaction’s solution only propagates at “light-speed”.   In the long wavelength limit or static limit, this functional 
parameter reduces to just a constant, β0.  Similarly, it can be shown that rather than assuming the Gauge transform 
preserves the object’s velocity, we assume that it has its own arbitrary velocity, ‘w’ then it can also be demonstrated 
that this velocity is also a positive or negative “ray” characterized also by its “light-speed”, in other words, w = ±c. 
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6.7	EULERIAN	VECTORS	
In this final section examining the general characteristics of Voigt Vectors, we will investigate the possibility that 
the Voigt parameter α(t; x) can be a function only the object’s local velocity, in other words αE(v) .  We shall define 
such a Voigt Vector as an Eulerian Vector if it is also incrementally transformable by a Gauge Vector. 
 
 Definition:   Eulerian Vector      E   ≡  αE(v) V*    and    ΔE   =  ΔA    where   A   =  ∇ψ(t; x)  
 
By design, ΔA  is a ‘small’ Gauge Vector in comparison with E , such that: ΔA  << E   and  v′  =  v + Δv  
 
 ΔA  = Δ ( β (–i c I0  +  I • v) ) =  – i c I0 Δβ  +  I • (β Δv + v Δβ) = Δβ (–i c I0  +  I • v′)  = Δβ (–i c I0  +  I • (v + Δv)) 
 
This demonstrates that:   Δβ  =  β  so that:   ΔA  =  Δβ (V′)*  leading to the conclusion that:   αE >> Δβ . 
 
Writing:  αE(v′)  =  αE′   ≡  αE(v) + ΔαE  while  E ′  = E  + ΔE  = E  + ΔA   ∴  αE′(V′)*  =  αEV*  + Δβ (V′)* 
 
Expanding:   αE′  = αE + Δβ   ∴  ΔαE =  αE′– αE = Δβ (constant)  ∴ ΔA   =  Δα (V′)*  ∴  αE v = αE v′   ∴ Δv = 0  
 
Therefore, there are NO Eulerian Vectors.  
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7.			NATURAL	VECTORS	IN	PHYSICS	

7.1	KINEMATICS	
A CNV Q has a “Flow” differential equivalent form of its total-time derivative dQ/dt if it satisfies the Zero 
Conditions (see sections 5.3 & 5.4).  If we use the Spatial Displacement Vector, X for Q then we find: 
          Q = X = {i c t ;  x}  ∴ q0  =  ct  &  q  =  x 
 
 1)    v • (∇ ∧  x)  =  0     as  ∇ ∧  x  =  0  
 2)    c ∇ • x  +  v • ∂0x  =  3  ≠  0    as  ∇ •  x  =  3  &  ∂0x  =  0 
   3)    v2 (∂0ct + ∇ • x) + v • ∇(c2t – v • x)  =  3 v2  ≠  0    as  ∇ •  x  =  3  &  ∇(v • x)  =  v 
 4)    v ∧  ( ∇ct – ∂0 x ) – c ∇ ∧  x  =  0    as  ∇ ∧  x  =  0 
 
So, the Spatial Displacement Vector, X is not a Flow Vector as it fails to meet conditions (2) and (3); this result is 
not surprising as:   ∇*X  =  – 2 I0      ∴  – V*∇*X  = 2V* ≠ V = dX/dt 
However, if we use the Velocity Vector, V for Q then we find: 
   Q = V = {i c  ;  v}  ∴ q0  =  c   &  q  =  v   with   a  =  dv/dt  =  ∂v/∂t  =  c ∂0v 
 
 1)    v • (∇ ∧  v)  =  0     as  ∇ ∧  v  =  0  
 2)    c ∇ • v  +  v • ∂0v  =  v • a      as  ∇ •  v  =  0   
   3)    v2 (∂0c + ∇ • v) + v • ∇(c2 – v • v)  =  0     as  ∇ •  v  =  0  &  ∇(v • v)  =  0 
 4)    v ∧  ( ∇c – ∂0 v ) – c ∇ ∧  v  =  v ∧  a      as  ∇ ∧  v  =  0 
 
We can see that the Velocity Vector, V is a Flow Vector only if the orthogonal component of the acceleration 
relative to the velocity and the parallel component of the acceleration relative to the velocity are both zero.  This 
usually means that the acceleration is always zero or, at least, statistically zero.  Therefore the Acceleration CNV, a 
is only consistently defined under these two “zero” conditions: 
 
 Definition:   a  ≡  dv/dt  =  I • a  =  { 0 ; a } =  – V*∇*v    IFF:   v • a = 0  &  v ∧  a = 0 
   
We can re-derive this surprising result directly by noting that ∇vj = 0  and  c ∇*v =  – i c I • ∂0v  =  – i I • a : 
 
  a  ≡  dv/dt  = (∂/∂t  + v • ∇) [i c I0 + I • v]  =  (∂/∂t  + v • ∇) (I • v)  = I • a  = { 0 ; a } 
 
  – c V*∇*v  =  V*( i I • a )   =  c I • a  – i (v • a) I0  +  I • (v ∧  a) 

7.2	THE	WAVE	EQUATION	
In section 4.6 it was shown that if     ∇*Q  =  0   then:   1)    ∇ • q  =  ∂0q0    2)  ∇q0  =  ∂0q    3)    ∇ ∧  q = 0  
 
If the divergence is taken of the second equation, then: 

 ∇ • (∇q0  –  ∂0q) =  ∇ • ∇q0  – ∂0 ∇ • q  =  ∇2q0 –  ∂0∂0q0 = ( ∇2 – 1/c2 ∂2/∂t2 )q0  = 0   ∴  !q0  =  0  
If the gradient is taken of the first equation, then: 

  ∇(∇ • q – ∂0q0) = ∇( ∇ • q) – ∂0(∇q0)  =  (∇2q  – ∇ ∧  (∇ ∧  q)) – ∂0∂0q = (∇2 – 1/c2 ∂2/∂t2 )q  = 0   ∴  !q  =  0    
 

So, if    ∇*Q  =  0   then   !Q =  0.   In other words, a Zero Gradient CNV always satisfies the Wave Equation. 

Further, if Q is a Flow Vector then  d/dt Q =  – V*∇*q ; so if  !Q =  0  then  d/dt Q =  0 

Finally, if the Voigt CNV V  is a Flow Vector and if   !
 
V  =  0  then  dα/dt  =  0     so α is constant over time. 
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7.3	THE	CONTINUITY	EQUATION	
The two components of all Voigt CNVs V  satisfy their own Lorenz Equation:  c V + v V0  =  0 
If the divergence is taken of this equation, then: 
 
 ∇ • (c V + v V0) =  c ∇ • V + v • ∇ V0  = c ∇ • V + (d/dt  –  ∂/∂t) V0  =  0   ∴  ∇ • V + ∂α/∂t  =  dα/dt  
    

Any Voigt CNV V  where  dα/dt  = 0  or   !
 
V  =  0   satisfies its own Continuity Equation: ∇ • V + ∂α/∂t  =  0 

 
In a particle theory, we might assume that each particle has a characteristic property α0, if this scalar multiplies the 
particle’s velocity v then we can investigate the hypothesis that this “scaled” vector J = α0 v is the vector component 
of a Voigt Vector, J .  In which case, its Lorenz Equation would define its scalar component, J0 = – c α0.  If this key 
parameter is not an explicit function of time, then this characteristic value becomes a conserved property, such as the 
particle’s inertial mass, m or electric charge e; where the corresponding 3D vectors would be particle momentum or 
electron current.   In a classical “medium” theory the characteristic property α0, would have to be associated with an 
infinitesimal volume element of the medium that has a local velocity, such a characteristic property would then be 
an invariant density, ρ while the corresponding vector would be a density-current, ρ v.  We will further develop 
these ideas in section 7.6 and in subsequent papers in this series.  

7.4	MINKOWSKI	4-VECTORS	
Lorentz covariant 4-vectors (“Minkowski Vectors”) have some superficial resemblances to Natural Vectors. Usually 
written as an ordered, four component list, Aµ they may be viewed as a 4D extension to standard 3D vectors Aj by 
the addition of an extra component based on a new unit vector, ê0 ; namely:  
          A  ≡  A0 ê0  +  A  = ∑µ Aµ 
 
The set of four unit vectors {êµ} have an ortho-normal scalar product across all 4 indices, µ and ν :  
           êµ • êν = δµν 
 
This is the only form of multiplication used with Minkowski vectors, so that:  
        A • B ≡  ∑µ AµBµ 
 
The basic Minkowski vector X represents any point in space x at an instant of time t: 
     X  ≡  i c t ê0  +  x1 ê1  + x2 ê2 + x3 ê3       i.e.  x  =  ∑j xj êj   (space)  &  x0  =  i c t  (imaginary time) 
 
Since this Minkowski vector-space is defined as a continuous, Euclidean manifold across each component xµ, then 
each dimension has a separate differential  dxµ ; where dxj (space) & dx0 = i c dt  (imaginary time). 
 dX  =  ∑µ dxµ ê µ      ∴    dX • dX =   dx • dx – c2 dt2  =  (v2  –  c2) dt2  
 
A vector multiplication product could be defined for Minkowski vectors, by analogy with 3D vectors: 
  êµ ∧  êν   ≡   ∑λ εµνλ  êλ          where  εµνλ is the cyclic 4D permutation tensor.    
 
In contrast, the algebra of Natural Vectors has only ONE type of universal multiplication, combining both scalar and 
vector multiplication together into one single operation, based on Hamilton’s original quaternion rules:   
   
  I0 Iµ  =  Iµ I0  =  Iµ   ;  Ij Ik   =   – δij I0  +  ∑l εjkl Il   ;  Iµ* =  Iµ  with  x =  i x0I0  + ∑j xj Ij     {j = 1,2,3 ; µ = 0, j} 
 
So, Natural Vectors may be viewed as “covariant Minkowski quaternions”; as such, they eliminate the need for 
abstract tensor analysis and form a more natural extension from timeless (or instantaneous) 3D physics to the real 
world of space and time with interactions propagating at constant “light” speed, c. 
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7.5	PHYSICAL	VOIGT	VECTORS	
As the first paper in this series, a great deal of time has been expended in establishing the new mathematics.  This is 
viewed as important as this will prove to be the only representational theory used in what follows: so its foundations 
must be sound.  Now is the time to show that this new mathematics is a suitable replacement for the simpler algebra 
that has served physics well for over 300 years.  The non-commutative nature of Natural Vectors will prove central 
to the resolution of problems in 20th century physics that were introduced by the discovery of the universal electron. 
 
Selecting different functional forms for the Voigt parameter (α) generates three distinct sub-classes of physical 
theory (each with its own unique equation of motion):   1) Newtonian 2) Conservative 3) Maxwellian. 
This illustrates the centrality of the canonical Velocity Vector, V*. 

7.5.1	NEWTONIAN	VECTORS	
Newtonian Vectors (VN) are Voigt vectors where the Voigt parameter is simply a scalar constant: α = α0  ; these are 
not only the simplest Voigt vectors but play the central roles in the subsequent theory. 
 
  Definition:    Newtonian Vector    VN  ≡  α0 V* =  α0{– i c ;  v } 
 
The point-particle model of the electron (with inertial mass, m and electric charge, e) is reflected in the electron 
Momentum CNV Pe and the electron Current CNV Je where:  
           Pe ≡  m V*  and    Je ≡  e V* 
 
Obviously, in this model:   Je = (e/m) Pe   so that (e/m) becomes a universal constant characterizing the electron-
electron interaction.   This universal ratio will become central to the new theory of electromagnetic interactions. 
 
Newtonian physics was centered on the concept of a solid object that could be represented by its center-of-mass that 
moved continuously under the instantaneous influence of other remote distinct objects, whose influence was always 
aggregated into a continuous force.  The present theory can recover this older kinematics by introducing a single 
CNV, called here the Activity Natural Vector (that is not actually a Voigt Vector, as its multiplier is not a scalar).  
 
  Definition:    Activity Natural Vector    R  ≡  i X P  =  i mXV* =  i R0 I0 + I • R 
 
         Where:  R0  =  m ( c2 t  – x • v )   &   R  =  RR  + i RI   with   RR = m c (x – v t)   &  RI = m (x ∧  v)   
 
The condition:  d R(t) / dt  =  0  implies that:    i)   c2 – v2  =   x • a     ii)   c t a  =  0    iii)   m (x ∧  a)  =  0 
 
These equations have the solutions:   a(t)  =  0   so that   v(t)  = v0   and   v0  =  c  (i.e. freely moving at ‘light-speed’).   
 
Here a(t) is the acceleration of the body induced by the external force F according to Newton’s Second Law F = m a, 
so that the temporal invariance of the Activity NV is equivalent to the body being ‘force-free’ or a ‘free-particle’.  
The 3D spatial location solution is:  x(t)  = x0 + v0 t  where x0 is the location of the particle at t = 0 and c is its speed. 
 
The other (force-free) 3D invariants are x • R and v • R ,  since : 
 
     d (x • R) / dt  =  m c x0 • v0  =  v • R  =  constant (zero, if  x0 = 0).   
 
The explicit NV form of the Activity vector is:   R(t)  =  i I0 ( mc2 t  – x • p ) I0 + I • c(m x – p t )  + i I • (x ∧  p) 
 
In the present electron theory there are no free-floating ‘forces’ – all changes in motion are due to the interactions 
with other electrons, so that the one-electron situation is always ‘force-free’, when R is invariant, i.e.  R(t) = R(0).  
Later papers will return to this concept where it will re-appear as one of the key ideas in this new theory. 
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7.5.2	CONSERVATIVE	VECTORS	
Conservative Vectors (VC) are Voigt Vectors where the Voigt parameter is a function only of spatial location and 
independent of time, that is: α  =  α(x). 
  Definition:    Conservative Vector    VC  ≡  α(x) V* = α(x){– i c ;  v } 
 
Conservative Vectors are useful for analyzing situations that only vary slowly over time (quasi-static), where the 
approximation of introducing (pseudo) static potentials is “good enough”, such as electrostatics φ(x) and magneto-
statics or constant electric currents: A(x).   Surprisingly, this was the mistaken choice made by Maxwell when he 
incorrectly imposed the so-called “Coulomb gauge”  ∇ • A =  0 which is equivalent to infinitely fast propagation of 
electromagnetic effects instead of with the finite “light-speed”, that results from the correct “Lorenz gauge”. 

7.5.3	MAXWELLIAN	VECTORS	
Maxwellian Vectors (VM) are Voigt Vectors where the Voigt parameter is a function only of the particle’s local 
speed (v) or more often the square of its velocity, that is: α  =  α(v2). 
  Definition:    Maxwellian Vector    VM  ≡  α(v2) V* = α(v2){ – i c ;  v } 
 
It is useful to define two “scaling” factors that can “normalize” Maxwellian Vectors: 
  Definition:    Voigt Factor V  ≡  √(1 –  v2 / c2)  and  Lorentz Factor L ≡  1 / V 
 
The two sub-classes of Maxwellian Vectors are Heaviside Vectors and Lorenz Vectors, defined simply by: 
 Definition:    Heaviside Vector    VH  ≡  α0 V V*  and  Lorenz Vector    VL  ≡  α0 L V* 

7.6	RELATIVISTIC	MECHANICS	
Since, for all Voigt Vectors their “norm” is:    V* V   =  c2 V 2 α(t; x) 2 I0    then    VL* VL  =  c2 α0

2  I0  
So, all Lorenz Vectors have an invariant (constant) “norm”.  The most famous Lorenz Vector corresponds to 
Planck’s relativistic momentum for point-particles, where α0  = m: 
 
    PL  ≡ M(v) V*  =  m L V* = ( – i c I0  + v(t) • I ) M  =  – i P0 I0  + P • I   ∴  P0  =  M c ;  P  =  M v  
 
In his 1907 paper, Planck introduced [39] a fictional, mechanical force F0, which was always parallel to the 
particle’s velocity and constant across space and time, that transferred an energy E from the source of this force to 
accelerate the particle continuously from rest to velocity v that was constant in direction, i.e. words, v(t) = v(t) ê1. 
Planck identified this energy with the kinetic energy of his relativistic particle through the classical kinetic energy 
equation:   
    dE  =  (v • F0) dt.   In terms of Voigt Vectors this gives: 
 
    d/dt (PL* PL)  =  d/dt((P0 P0  – P • P) I0) =  2(P0 dP0/dt – P • dP/dt) I0  =  0   ∴ c P0 dP0  =  c P • dP  = P0 v • dP 
 
 ∴  c dP0  =  v • dP  = v • (F0 dt)  =  (v • F0) dt  =  dE    ∴ c P0  =  E  =  M c2  (the Einstein Equation). 
 
Where we used the Lorenz Equation:  c P  =  v P0  since the Planck relativistic momentum is also a Voigt Vector.  
This gives the covariant form of the particle’s Relativistic Momentum CNV:    PL  =  – i I0 E/c + P • I 
 
 ∴  PL* PL = (P0 P0  – P • P) I0 =  (M2 c2 – M2 v2) I0  =  m2 c2 I0   ∴   M2 c4  =  m2 c4 +  P2 c2  =  E2   
 
All spatial distances are measured relative to the source of this fictional force (and action & reaction are ignored) 
and this “force” propagates instantaneously (as Maxwell erroneously assumed when he used the Coulomb gauge).  
It is obvious that this situation implicitly contradicts major assumptions of Einstein’s special relativity (no 
acceleration in inertial reference frames and no transfers of energy at speeds exceeding “light-speed”). 
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	7.7	NATURAL	VECTOR	INVARIANTS	

7.7.1	SCALAR	INVARIANTS	
It is sometimes possible to define two kinds of Natural Vectors that have ‘constant’ properties (i.e. invariants), 
which reflect basic physical properties of the system and preservation of the “form” of the associated equations 
(covariance).  The simplest forms have no spatial component – these are referred to as “scalar invariants” NVs. 
 
    Definition:   A0 is a Scalar Invariant if:   A0  ≡  A0 I0    
 
The mathematical significance of scalar invariants is that they are equation-position insensitive (commutative) when 
contributing to products of NVs.  In other words, if the NVs do not involve operators such as ∂xµ then scalar 
invariant NVs commute with the other NVs; thus:   A0 B = B A0 = A0 B 
 
Obviously, the “norm” (or self-product) of every NV is a scalar invariant: Q*Q  = QQ* =  (q0

2 – q • q) I0       
This is universally recognized for the separation vector:    S(t)  =  X*X =  (c2 t2 – x • x) I0  =  S0 I0 

7.7.2	TEMPORAL	INVARIANTS	
A Natural Vector is a “temporal invariant” if it remains unchanged throughout time. 
 
    Definition:   A is a Temporal Invariant if:    d/dt A(t)  ≡  0 
 
The Velocity Natural Vector V is a Flow Vector when it satisfies the Zero Conditions (see section 5.3 & 5.4); these 
results imply that the acceleration a is zero or equivalently that the Acceleration Natural Vector a is zero (see 7.1).  
In this case, the velocity is a constant V0 so that the Velocity Natural Vector for a single (‘free’) particle is invariant.   
 
   ∴    d/dt V(t)  =  0 or V(t)  =  i c I0  +  I • V0 
 
The products x*V and V*x evaluate to: 
 
    x*V = (c2 t – v • x) I0 + i c I • (x – v t) + I • (x ∧v)    V*x = (c2 t – v • x) I0 – i c I • (x – v t) – I • (x ∧v) 
 
So,  d/dt (x*V + V*x) = 2 d/dt (c2 t – v • x) I0  =  2(c2 – v • v) I0  =  2(c2 – V0

2) I0      ∴ v • x  =  V0 • (X0 + V0 t)  
 
For a ‘free’ particle, mass:    m:     x = X0 + v t    then    (x – v t)  =  X0 (constant)     ∴  (x ∧v) = X0 ∧  V0  (constant) 
 
    ∴  m(x*V – V*x)  =  2 I • L0  where   L0  =  i mc X0 + mX0 ∧  V0  (another constant)  & V – V* = 2 i c I0 
 
If the particle has an intrinsic, invariant inertial mass m then the following are dynamical constants of the ‘free’ 
particle, especially when choosing the origin so that:    X0  =   0    ∴ L0  =  0   
 
 1.  NV Momentum P   ≡    m V*                     = – i m c I0  +  I • m V0  
 2.  Linear Momentum P   ≡  ½ (P* + P)                      =   m V0 • I  
 3.  Particle Energy   E    ≡  ¼ (V* – V) (P* – P)     =   m c2 I0    
 4.  Kinetic Energy   K   ≡  ¼ (P V + V P)         =  ½ m (c2 – V0

2) I0  
 5.  Particle Action A   ≡  ½ (x*P* + P X)       =   2 t K I0   
 6.  Angular Momentum M ≡  ½ (x*P* – P x)      =   L0 • I  
 7.  Galilean Momentum  G   ≡  m x – P* t  =  m (x – v t) • I    =   m X0 • I 
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7.8	TWO	PARTICLE	NATURAL	VECTORS	
The analysis so far has focused on representing a single point-particle by a single-time Natural Vector.  These can be 
combined together to represent the joint (or relative) positions of two such particles. If the locations of the two point 
particles (which are labeled here as #1 and #2) at times t1 and t2) are x1 and x2 then they may each be represented by 
their own Natural Vector Xα, where α = 1 or 2; each particle has its own velocity NV Vα .   
 
     Definition:   Location Vector Xα  ≡  i c tα I0  +  I • xα  =  { i c tα ; xα } and Vα  ≡  d/dtαXα  =  i c I0  +  I • vα 

7.8.1	SEPARABLE	VECTORS	
Since Natural Vectors are used to represent interactions between pairs of point particles across space and time, the 
most useful NVs are anti-symmetric and separable across the co-ordinates and properties of the two particles. 
 
   Definition:   Separable Vector   S(t)  ≡  S(t1 – t2)  ≡  S1(t1) – S2(t2)   
 
The canonical example of a separable CNV is the Separation Vector X between two particles that interact when 
they are located in space at x1 and x2 at the respective interaction times t1 and t2:  X12(t1 – t2)  ≡  X1(t1) – X2(t2)   

7.8.2	CONSERVED	QUANTITIES	
If a Natural Vector S is both separable and a “temporal invariant” then S represents a conserved physical quantity 
that remains unchanged throughout time. 
 
   d/dt S(t) = d/dt S(t1 – t2) = d/dt1S1(t1) + d/dt2S2(t2) = 0  (as t = t1 – t2)   ∴ d/dt1S1(t1)  =  – d/dt2 S2(t2)  =  dS0 
 
This represents the “transfer” across space of a property ‘S’ from particle #2 that at time t2 “loses” an amount dS0, 
such that particle #1 at time t1 “increases” its amount of ‘S’ by the same amount per unit of time.  This transfer 
between the two particles is just the asynchronous action-at-a-distance (AAAD) generated by their mutual 
interaction and does NOT imply the physical existence of any intermediate carrier of the particle property ‘S’.  
These co-ordinates of the two particles are defined in some arbitrary 3D Euclidean frame-of-reference with the same 
common origin of universal relative time.  Each particle is located at position Xα when the ‘master-clock’ is zeroed 
and, at this time (from t = 0 until t = τ – δt), each particle has a velocity of Vα.  If neither particle has interacted with 
any other until their latest time t1 (assuming t1 > t2) they both move like ‘free’ particles and retain their initial 
velocities, so that: vα(tα)  =  Vα; this implies that their locations at t are given by:   xα(tα)  =  Xα + Vα tα  . 
Thus, for two ‘free’ particles:    xα – vα tα  =  Xα  (constant)    and     xα ∧ vα =  Xα ∧ Vα  (constant) . 
 
Now     xα*Vα = (c2 tα – vα • xα) I0 + i c I • (xα – vα tα) + I • (xα ∧vα)  =  (c2 tα – vα • xα) I0 + I • Lα  
 
 And      Vα*xα = (c2 tα – vα • xα) I0 – I • L α    where    L α =  i c Xα + Xα ∧ Vα  (complex vector constants). 
 
         ∴   xα*Vα – Vα*xα  =  2 I • Lα    ∴ d/dtα (xα*Vα – Vα*xα)  =  0   and     Vα – Vα*  =  2 i c I0 
 
 ∴ d/dtα(xα*Vα + Vα*xα)  =  2 d/dtα (c2 tα – vα • xα) I0  =  2 (c2 – vα • vα) I0  =  2 (c2 – Vα

2) I0 
 
The average velocity of the two particles is defined as V  ≡  ½ (v1 + v2)  and  V ≡  ½ (V1+V2) =  i c I0 + I • V    
 
Once again, it is possible to define two global constants:    X0 = X1 – X2  and  L0 =  i c X0 + X0 ∧  V0  
 
Writing:   T  =  t1 – t2  and  X  =  x1 – x2    then:   X  =  X12(T)  =  X1(t1) – X2(t2)  = i c T I0  +  X • I 
 
If each of the pair of particles has the same intrinsic, invariant inertial mass m then the total momentum at the two 
times t1 and t2 is proportional to their average velocity at these two times; so that:  V = V12(t1,t2) ≡ ½ {v1(t1) + v2(t2)}. 
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 Definition: Total Momentum  P(t1,t2)  ≡  P1(t1) + P2(t2) = m (V1+V2)*  = 2 mV*(t1,t2) = –i 2 m c I0  + 2 m V • I  
 
Now     P X   = 2m(c2 T – V • X) I0 – i 2mc I • (X – V T) – 2m(X ∧V) • I   =  2m(c2 T – V • X) I0 – 2m L •  I 
 
and       X*P* = 2m(c2 T – V • X) I0 + 2 L •  I     where    L  =  i mc (X – V T) + m X ∧  V  
 
It will be shown in a subsequent paper that when the two particles interact only “on their mutual light-cone” that 
their combined velocity: v1(t1) + v2(t2)  =  c (the ‘speed of light’ defined between their interacting spatial positions).  
Thus, when the two similar particles are interacting “on their (mutual) light-cones”    X = c T   and  V  =  ½ c 
 
      ∴ V • X  =  ½ c2 T   ∴  (c2 T – V • X)  =  ½ c2 T  &  (X – V T)  =  ½ c T   &   X ∧  V  =  0   ∴ L =  ½ i c2 T ê12 
 
 ∴  PX = m c T (c I0 – i I • c)  = – i m c T C    &    X*P* =  m c T (c I0 + i I • c)  =  i m c T C*  
 
    where:   C  ≡   i c I0  +  I • c  =  {i c ; c}  is  the ‘Natural Light Vector’- the ultimate Voigt vector. 
 
In this situation, both V and V are constants of the motion (dynamical constants); the other two-particle constants:  
 
 1.  Joint NV Momentum  P   ≡  2 m V*                        =  i P0 I0 + P • I  = – i 2 m c I0  + m c • I 
 2.  Linear Momentum PT   ≡  ½ (P* + P)                 =                 P • I   =                        m c • I  
 3.  Total Energy    ET    ≡  ¼ (V* – V) (P* – P) =  –c P0 I0     =  2m c2 I0   
 4.  Kinetic Energy   KT   ≡  ¼ (PV +  VP)           =    m (c2 – V2) I0  
 5.  Joint Action  AT   ≡  ½ (x*P* + PX)       = 2 m(c2T – V•X) I0   =    m X c I0  
 6.  Angular Momentum MT ≡  ½ (x*P* – Px)       =               2 L • I    =  i m X c • I  
 7.  Galilean Momentum  GT   ≡        m x – P*T         =   m(x – V T)    =    m X • I 
 
This suggests a two-particle Voigt vector, the InterActivity Natural Vector R combining both action and angular 
momentum, that remains unchanged as the interaction continues between the two particles, as tα′ =  tα+Δ and T′ = T. 
 
Def’n:  InterActivity R12*(T) ≡ –i (AT(T) + MT(T)) = –i X*P* = –i m X*V = m c T C* = mc2T(–i I0  + I • ê12) 

7.8.3	NATURAL	LIMITS	
The conjugate self-product of the Separation Vector X (defined in section 7.4.1) is a scalar invariant S(t) that 
characterizes the interaction between two particles that interact when they are located in space at x1 and x2 at the 
respective interaction times t1 and t2, with  T  =  (t1 – t2) : 
 
  S(T)  ≡ X*(T) X(T)  =  ( X1(t1) – X2(t2) )* ( X1(t1) – X2(t2) )  = S0 I0   ∴ S0(T) = c2 (t1 – t2) 2 – (x1 – x2) 2 = c4 
 
The requirement that interactions only occur when S0(T) = c4 is referred to as the Light-Cone condition.  
 
We will assume that the “final” interaction between the two particles occurs when ever t1 =  t1′  and t2 =  t2′  and  
 x1 = x1′  and x2 = x2′ ; we can define these maximal separations to be:  T =  t1′– t2′  and  D = |x1′– x2′| so, D = ± c T. 
 
   d/dt S0(t)  =   d/dt (c2 t 2 – x2)  =  2 (c2 t  – x • v ) ∴  d/dt S0(T)  =  2 (c2 T  –  D • v′)  =  0  when  v′ = c. 
 
So, at  (T; D)  d/dt S(t) = 0 from this point onwards there will be no further interaction, so c is the maximum speed.   
 
     d2/dt2 S0(t)  =  d/dt (d/dt S0(t))  =  2 d/dt (c2 t  – x • v ) = 2 (c2 – v2 – x • a ) ∴  d2/dt2S(t)  =  2(c2 – V0

2) I0  =>  0 
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8.			ASYNCHRONOUS	INTERACTIONS	

8.1	TWO-PARTICLE	INTERACTIONS	
It is central to this research programme to show that the mathematics of natural vectors (NVs) is an appropriate 
representation of the interaction between two real particles, such as electrons.  In particular, this representation 
exposes the subtle kinematics needed to represent the asynchronous exchange of momentum.  Historically, almost 
all earlier studies of mechanics have focused on the action of a single particle at a single point in space at only one 
instant of time – represented by the normal algebraic real variables x and t.  Newton first represented the particle’s 
momentum by DesCartes’ new symbolic algebra using the product of an invariant property of the particle (Newton’s 
greatest conceptual innovation) inertial mass, m and its (directional or vector, instantaneous) velocity, v which he 
defined as the total, rate of change of its absolute location, x; in other words, Newton invented the extremely 
mathematically powerful and conceptually rich, definition of particle momentum:   p(t; x)  ≡  m d/dt x(t).  
 
As a direct consequence of Einstein’s analysis of Lorentz’s model of the electron [38] interacting with Maxwell’s 
electromagnetic fields, Planck proposed [39] that the response of a particle to a fixed, collinear, mechanical local 
force could be described by altering Newton’s definition of momentum to include a variable scalar mass, M whose 
value varied with speed; i.e. M(v) = L(v) m , where L(v) is the “Lorentz” factor defined in section 7.6.3.  This 
change and the substitution of “local-time” for speed-invariant universal time, assumed by Newton, was forced on 
physics to accommodate the invariance of the electromagnetic equations of motion involving electric and magnetic 
fields using the Lorentz force law on charged particles with respect to observers moving in different inertial 
reference frames.  In contrast, the NV representation is intrinsically relational – it only depends on the differences 
of the space and time parameters characterizing the two interacting particles: it is independent of all third-party 
“observers” who are not participating in the interaction.  We shall show later that there is an alternative viewpoint to 
relativity theory when the electron/electron interaction is analyzed asynchronously. 

8.2	ASYNCHRONOUS	CONSERVATION	
The NV representation maps the interaction of two electrons as the asynchronous exchange of linear and angular 
momentum plus the resulting energy exchange (temporal “momentum”) between the two particles by assigning an 
invariant mass, m to every electron.   The Galilean (or kinetic) momentum, G or m(x – v t) may be defined, as this is 
also globally conserved across the complete interaction.  It is this mapping which suggests that that another name for 
the two-particle NV representation might well be the “momentum exchange” (or MX) group.  This approach does 
not view the traditional location-dependent potential as a useful concept, where the potential energy of a single 
particle varies only with local changes in spatial location – a technique introduced by Lagrange.  This new, dynamic 
approach is also not one that can be redefined as an equivalent single particle conservative potential theory, where 
no net work is done in moving the particle around a closed path in 3D space.  Since each electron is not infinitely 
massive, all interactions change the spatial location of each particle, so that even if one particle could return to its 
initial spatial location the other one would not, as reaction effects have moved the other electron. The NV interaction 
viewpoint is adopted where the potential energy is a system property (i.e. involving both of the two particles) that is 
a function only of the time-difference between the two interacting electrons, i.e. it is represented by another Natural 
Vector, the Potential NV, U(t).  Physics has almost always investigated conservative systems.  This has resulted in 
major simplifications in the mathematics by preserving the total energy E at all times, i.e. E (t) = E 0 or d/dt E (t) = 0; 
it was this prejudice that prevented Maxwell supporting Lorenz’s view of retarded interactions.  Equally, modern 
quantum electrodynamics introduces virtual particles at each interaction ‘node’ to maintain total momentum at all 
times.  An asynchronous conservative system only preserves the total energy and momentum across the duration of 
each interaction.  Thus, if particle #2 interacts at time t2 with particle #1 at a later time t1 then an asynchronous 
interaction implies that E (t < t2) = E (t > t1) = E 0 but this is not preserved during the finite time of the total 
interaction so that E (t2 <  t  < t1) ≠ E 0.  In this interaction view, no intermediate carriers (i.e. ‘virtual particles’) of 
energy or momentum are required.  Third-party observers (i.e. measurements) cannot directly distinguish these two 
alternative views of the conservation of energy; only differential predictions based on these two sets of assumptions 
can determine empirically which hypothesis best describes the interaction of electrons: a goal of this research. 
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8.3	INTERACTION	SPACE	
Mathematically, it is very useful to define the “Interaction Space”, I   for describing the interaction between two 
electrons.  This is a mapping from a sub-set of the linear representation of electron motion through physical space 
over time (both viewed, like Newton, as inert) and referred to here as “Reality”, R.  Although R is used to represent 
the trajectories of each electron through 3D space, the mathematical ‘space’ I   only consists of those mathematical 
points (in a 3D Euclidean ‘space’) when the two electrons actually interact with each other, without the intervention 
of any other electron; these points may not (and we will subsequently show, do not) form a dense set or manifold.  
The mapping is defined in terms of the two relative variables:  
  1)   T  ≡   ta – tb    2)   X  ≡  x1(ta) – x2(tb)      so:    I (T; X)  ≅  R (ta , tb ; x1, x2) 
 
Here, we assume that all interactions are like the electromagnetic interaction, so that they only occur between two 
electrons when they are on each other’s “light-cone” (although this is a necessary condition it is not a sufficient 
condition, additional constraints will be added later); mathematically this corresponds to the following condition for 
the nth consecutive interaction between the two electrons: 
 
   Definition:  Light-Cone Condition,    X(Tn) • X(Tn)  =  c2 Tn

2 
 
The dynamics of the uninterrupted set of interactions (i.e. no third-party interventions) between two electrons is to 
determine the extent of the interactions (from an initial time difference, T = t0 until a final time difference, T = T0), 
with corresponding spatial separations of d0 and D0.  Traditional physics has assumed that X(T) is continuous across 
this extent; this research will show that there are only a finite number of consecutive interactions possible between 
any two electrons, i.e. the interaction index ‘n’ is finite. 
 
These two ‘spaces’ may be visualized diagrammatically. 
 
               t 
 
 
       ta  x2[ta] 
 
      x1[ta] 
 
 
         X[T] 
               X[T] 
          D0 
 
         #1        #2 
           Xn        X[Tn] 
 
 
          d0 
         v2[tb] 
       tb  
         x2[tb]          t0   Tn T0 T 
     v1[tb]  x1[tb] 
 
 
  Fig. 1   Reality  R             Fig. 2  Interaction Space  I 
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8.4	SPACE-TIME	DIAGRAMS	
Natural Vectors (NVs) may be visualized in a 4D “space-time” diagram viewed isometrically by suppressing one of 
the three space dimensions (say, z) or as planar diagram by suppressing two of the space dimensions (say, x and y). 
 
  y 
               P 
 
       ξ 
      x                 r 
 
 
      T2   T    T1   ict 
 
 
 
    T2 plane     T1 plane 
 
     Fig.3  Space(2)-Time Diagram 
 
In these diagrams, the temporal axis is always imaginary (and scaled by c) to indicate the ontological difference 
between one-dimensional time and the three orthogonal dimensions of space.  The 4D point, P at time T1 is located 
at the spatial point r relative to the origin at O (or location x2 and time t2).  Relative to O the point P is located via a 
(Minkowski) 4-vector ξ.  Since ξ is time-like, it is characterized by a real parameter, ζ where ξ = iζ. Thus ξ satisfies: 
 
 ξ2  =  r2 + T2   where  T = i c (T1 – T2)  =  i c t    ∴   – ζ2  =  r2 – c2 t2  or  ζ2  =  c2 t2  – x • x   ≅   X* X 
 
 In terms of 4D vectors:    ξ  =  T + r        or       i ζ  =  i c t ê0  +  x ê   ≅   X 
 
      ∴  X  =  i c t I0 + x • I  ≅   i c t ê0 + x1ê1 + x2ê2 + x3ê3   ∴  I0  ≅   ê0 , Ij  ≅  êj      ∴   Bases ≅  Space & Time axes. 
 
If the continuous interaction of two electrons is mapped across one spatial dimension (say, z) then: 
 
            Z      z1[t2]      z1[t1] 
 
 
         z2[t1] 
       z2[t2] 
 
     t2     t1    ict 
    Fig. 4  Space (1) – Time Diagram 
 
Following Newton, the electrons move inertially, outside the interaction time zone, i.e. ( t < t2 &  t > t1), in constant 
(straight-line) motion but piecewise linearly within  (t2 > t > t1).  Since electrons are here viewed as real particles, 
they always exist, so they have continuous trajectories across space over time.  Defining t = t1 – t2 and the spatial 
separation between them as z(t), then (by inspection):     z(t) ≡ z1(t1) – z2(t2)  =  c t    &   z(–t)  =  z1(t2) – z2(t1)  =  c t  
 
Defining the individual & joint NVs:        X(t ; x)  ≡  i c t I0  +  I • x    &   Xn(tn ; xn)  ≡  i c tn I0  +  I • xn(tn) 
 
     ∴  X(t ; x)  =  X(t1 – t2 ; x1 – x2)  =  X1(t1) – X2(t2)  =  – (– X1(t1) + X2(t2) )      ∴  X(–t ; –x)  =  – X(t ; x)  
 
Thus, two-electron Relative-Location Natural Vectors are anti-symmetric in their space and time arguments. 
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8.5	NATURAL	VECTOR	RELABELLING	
Since natural vectors (NVs) are used to describe the interaction of pairs of electrons (say, #1 & #2) at two different 
locations (x1 & x2) at two different times (t1 & t2) subject to the Light-Cone condition (section 8.3), it is always 
possible to re-label these components.  Unfortunately, simply exchanging the “gross” labels “1 & 2” disguises 
several important sub-exchanges of the labels.  This can be made much clearer by labeling the times (ta & tb) since 
these are just any two times over which the interaction occurs and this labeling is independent of the particle 
labeling (i.e.  “1 & 2”).  Similarly, the points in space where the interaction takes place can be relabeled (xA & xB); 
finally, the maximum clarity can be achieved by labeling even the electrons themselves (α & β).  So, for the 
Relative-Location CNV, using these labeling conventions: 
 
        Xαβ(t ; x)  =  Xαβ(ta – tb ; xA – xB)  =  i c (ta  - tb) I0  +  I • (xA – xB)   
 
     ∴   Xαβ(ta – tb ; xA – xB)  =  Xα(ta; xA) – Xβ(tb; xB) 
 
Also, for the conjugates:       X*αβ(ta – tb ; xA – xB)  =  X*α(ta; xA) – X*β(tb; xB) 

8.5.1	TEMPORAL	EXCHANGE	
The Temporal Exchange operator, Tx only re-labels the times at which the interaction occurs.  So, if the earlier time 
was originally labeled ‘tb’ and the later time ‘ta’ then the Tx  operator (sometimes referred to as “time-reversal”) will 
re-label the earlier time ‘ta’ and the later one as ‘tb’ for any function ψ of these two time arguments: 
 
   Definition  Temporal Exchange:   Tx ψ(ta , tb)  ≡  ψ(tb , ta)  
 
Applying this temporal exchange operator to the Relative-Location NV: 
 
  Tx  Xαβ(ta – tb ; xA(ta) – xB(tb))  =  Xαβ(tb – ta ; xA(tb) – xB(ta))    and    Tx  Tx   = I0  (i.e. unitary.) 
 

8.5.2	PARITY	EXCHANGE	
A coordinate system can be converted from a right-handed reference frame (ê3 =  ê1 ∧  ê2) to a left-handed reference 
frame (ê’3 = – ê’1 ∧  ê’2)  by reflecting each spatial vector (êj) in the origin; this operation defines the Parity 
Exchange operator, Px  for any electron, labeled ‘α’ at any time ‘t’ , operating on its jth spatial coordinate (j = 1,2,3):  
 
   Definition  Parity Exchange:   Px xj(α : t)  ≡ – xj(α : t)    
So, 
  Px  Xαβ(ta – tb ; xA – xB)  =  Xαβ(ta – tb ; – (xA – xB))  = – X*αβ(ta – tb ; xA – xB) 
 
Sometimes, parity exchange is referred to as “space-reversal”; this is also a unitary operator:      Px  Px  = I0  

8.5.3	IDENTITY	EXCHANGE	
The interaction between two electrons must appear unchanged if the electrons are simply relabeled (β,α) instead of 
(α,β); the Identity Exchange operator, Ix is introduced for this purpose: 
 
   Definition  Identity Exchange:   Ix ψ(α,β)  ≡  ψ(β,α)   
 
    ∴   Ix  Xαβ(t ; x)  =  Xβα(t ; x)      and  Ix  Ix  = I0 
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9.			SUMMARY	&	CONCLUSIONS	
In this final section, the results and conclusions of the main body of the paper will be briefly summarized so that the 
appropriate implications may be drawn.  The paper concludes with summaries of future papers in this programme. 

9.1	OBJECTIVES	
It is hoped that the objectives of this paper introduced in section 1.1.3 have been met.  The deliberate inclusion of 
the brief biography of Hamilton was designed to remind the modern physicist, who has rarely been exposed to the 
history of his subject, that physics was created by a handful of intellectual giants, many of them practicing in the 19th 
Century and William Rowan Hamilton was in the first rank of these titans.  A man of his obvious genius, who had 
devoted the major part of his life to the investigation of one of the major innovations in mathematics, has earned the 
respect of history.  When such an individual believes so strongly that one innovative area of algebra – quaternions – 
is destined to play a major role in the future development of physics then others need pay attention; many of those 
who have later applied quaternions to physics have come to share this opinion.  In this paper, the concept of ‘Natural 
Vectors’ (NVs) has been introduced by imposing a set of logical conditions on Hamilton’s bi-quaternions, combined 
with the need to map ‘reality’ to a simple, algebraic form.  The subsequent research has resulted in the realization 
that certain generic, algebraic structures, referred to here as ‘Voigt Vectors’, have direct relevance to several major 
foundational areas of theoretical physics.  
 
A major objective of this paper was to introduce the research programme that is the framework for all of the papers 
in this series.  The most radical parts of this approach are the rejection both of the ‘continuum view’ and the 
historical focus on the dynamics of single objects (particles or fields) moving under the influence of potentials 
evaluated always at a single point in time.  This programme focuses on the interaction between the fundamental 
particles of physics at two different times; namely, asynchronous interactions.  The establishment of natural vectors 
for representing these types of interactions is the mathematical foundation for this research.  A complementary 
philosophical position will be developed that provides the ontological basis for the ideas needed for this programme.  

9.2	HAMILTON	&	QUATERNIONS	
Hamilton’s introduction of quaternions, as reviewed in section two, was one of the major innovations in the history 
of mathematics.  It directly led to the scalar / vector distinction and the vector gradient operator (∇) while being the 
inspiration for all of vector analysis.  It was also the direct progenitor of hyper-complex numbers and the explosion 
of modern algebras; it can also be viewed as a critical step in the development of the idea of linear vector spaces. 
 
Hamilton was a firm believer in the power of the imagination, which when united with the intellect, generated the 
creative results of poetry, mathematics, physics, etc.  Hamilton’s mathematical style was always to abstracting and 
generalizing.  Until 1834, inspired by loyalty and patriotism, most of Hamilton’s publications appeared only in the 
Transactions of the Royal Irish Academy that, unfortunately, were almost unread outside of Ireland; this resulted in 
an unwarranted obscurity that lasted until about 1900.  The brief summary of Hamilton’s quaternion papers is a 
small attempt [10] to redress this huge oversight; the Internet now provides universal access to all of his work. 

9.3	QUATERNIONS	IN	MODERN	PHYSICS	
Section III described the use of quaternions in physics over the last 150 years, especially in the 20th Century when 
relativity and quantum mechanics ‘overthrew’ so-called classical physics.  One of the objectives of this research 
programme is to demonstrate that the evolution of Newtonian ideas provides a firmer foundation for the future of 
physics than the conceptual developments that have been grounded in the application of fields to physics.  The 
fruitful uses of bi-quaternions (the ‘complexified’ form of Hamilton’s quaternions) in these ‘field’ theories 
demonstrated that this powerful representation was not excluded from describing these phenomena appropriately. 
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9.4	NATURAL	VECTORS	
In contrast to all but the bi-quaternion representation, Natural Vectors (NVs), introduced in section IV, explicitly 
introduced the time dimension as a full and equal partner to the spatial dimensions.  However, in order to distinguish 
the metaphysical difference between space and time, NVs emphasize this distinction by explicitly introducing the 
standard symbol for the square root of minus one (‘i’).  The use of (4x4) real representations for the four quaternion 
bases Iµ means that the single NV symbol Xα can represent the location of any one electron (labeled α) throughout 
any spatial location x at time t (in a given inertial frame), while a symbol Xαβ can similarly represent the difference 
between any pair of interacting electrons at two different times. 
 
 Xα(t ; x)  =  i c t I0  +  I • x   Xαβ(t ; x)  =  Xαβ(ta – tb ; xA – xB)  =  i c (ta  - tb)I0  +  I • (xA – xB)   
 
The present interpretation of the invariance of the speed of light in all reference frames (or the universal appearance 
of the same constant, c in all Voigt vectors) is that the time difference between two electromagnetic events is only a 
function of the spatial separation between the events and both of these are invariant with respect to all third-party 
motion.  For example, it is predicted that Einstein’s “double-lightning” strikes will, in reality, be seen equally when 
the passenger on the ‘Einstein Express’ passes the stationary observer in between the ‘strikes’.  In the present model, 
as in all action-at-a-distance theories, like the Lorenz theory of electric induction, there is no ‘invisible’ medium and 
no movement of an invisible entity (like a photon) “carrying the light”.  The classical electromagnetism theory of 
special relativity is a consequence of the metaphysical assumption that light is an entity that moves mysteriously 
through space at a constant speed in all reference frames.  However, in this programme all Galilean foundational 
concepts, such as space and time differences, are unchanged with respect to any frame motion, including any form 
of accelerations.  These ideas will be elaborated in a later paper. 
 
Standard 3D vectors are timeless, scaleless representations of unchanging spatial relationships; when they are used 
as a representation of the interactions of particles it is necessary to imply time when they are interpreted as 
movement directed from one end of the vector to the other.  Thus, when the mathematical vector equation v1 = v2 is 
interpreted physically for the velocities of two particles (1 & 2) then we must explicitly add the times to this 
equation, so that it reads v1(t1) = v2(t2).  Even here, all anyone can say is that the particles are moving parallel at the 
same speed, but one cannot infer that they are covering the same trajectory across space (A = B), which they may or 
may not have done.   Indeed, physics has usually taken a single time (t1 = t2) approach, where these velocities are 
instantaneous and in fact the time parameter shrinks to insignificance, as it can be any time: the symbolic and 
disposable ‘t’. In other words, contra Descartes: geometry is not identical with physics. The explicit introduction of 
the standard imaginary (i) in natural vectors results in their norms always being positive or zero for real physical 
phenomena, overcoming an objection that goes all the way back to Heaviside in the criticism of quaternions with 
respect to vectors. 
 
In contrast to bi-quaternions (BQs), where each of the four components is a complex number, natural vectors (NVs), 
where only the time component is a complex number, offer several benefits.  Firstly, and most importantly, there is 
only one product rule and one conjugation rule with NVs compared with the four conjugation types used with BQs, 
which further confound their usage by reversing the order of the products.  Since NVs always carry their real bases 
explicitly with them there is never any need to separate out the scalar or vector parts as is done with BQs, which 
continues the approach and notation originally introduced by Hamilton; namely S[A B]  =  A • B & V[A B] = A ∧B.  
Further, BQs allow left and right multiplication whereas NVs always follow the standard convention of implying 
that the operand remains only to the right of the operator.  This ambiguous usage for BQ operators results in quite 
unattractive symbology so, for example, the Conway-Silberstein BQ expressions for Maxwell’s Equations appear: 
 
   ∇+ ∧   A =  F  ;     ½ ( ∇  F  +  F~ ∇  )  =  – 4 π J 
 
This can be contrasted with the simpler algebraic appearance of the NV equivalent formulation [6]: 
 
   ∇*A  =  i F   ;     i ∇  F  =  4 π J 



   UET1 

 40 

 
Finally, the explicit appearance of the standard algebraic symbol ‘i’ for the square root of minus one always appears 
in the same (first) position in NVs in contrast to BQs where its appearance reflects “informed” judgment, as in the 
respective formulations of classical electromagnetism, for the location X and potential A quaternion forms: 
 
  NV:  X  =  {i c t ; x}  A  =  {– i φ ; A} BQ:   X  =  (i c t ; x)  A  =  (φ ; – i A) 
 
Most authors that have used quaternions successfully in physics, especially in relativity and classical EM, have used 
a more limited form of bi-quaternions by choosing the vector part to be imaginary so that the complex conjugate 
equals Hamilton’s original “reverse vector” form of conjugation.  Natural vectors have not adopted this convention 
as its resulting Voigt vectors (section 6) form a more natural representation of the interaction between two particles. 
 
In summary, the use of bi-quaternions emphasizes the need for the use of explicit complex numbers in quaternions 
when representing physical quantities but this representation goes too far in assuming they are needed for all four 
components; they thus destroy the major benefit of simplicity of form found when using quaternions in physics. 
 
The benefits of using Natural Vectors (NVs) in mathematical physics can be summarized under four categories. 
 

1)  NVs are single symbols consisting of one to eight real numbers representing a single physical 
concept that represents and unifies the spatial and temporal aspects of the natural world. 

 2)  NV equations are very compact and can correspond to up to eight separate but related 
Cartesian equations; they are simpler and more transparent than similar formulas written in 
standard matrix, vector, tensor, bi-quaternion or higher rank Clifford number notation. 

3)  NVs provide a unifying formalism for the mathematics of classical, relativistic and quantum 
physics; they are ideal for describing the asynchronous interactions between two particles. 

4) NVs form a simple algebra that is almost as familiar as that used for complex numbers; they 
can be manipulated using standard, complex number algebra (except for commutivity). 

9.5	NATURAL	VECTORS	IN	PHYSICS	
Section 7 applied some of these general formulations of natural vectors to several well-known situations in physics, 
beginning with a kinematic analysis of the motion of a particle represented by a Spatial Displacement CNV.  The 
important result was found that the total time derivative of this Spatial Displacement CNV does not comply with the 
simple ‘Flow’ form that applies to all Voigt vectors indicating that it does not play a fundamental role in the physics 
of interactions.  However, the Velocity CNV (as the prototypical Voigt vector) does satisfy this condition whenever 
its acceleration is zero.  Obviously, this is incorrect for a single particle but introduces intriguing possibilities for the 
‘joint’ velocity of a pair of interacting, remote objects.  This is explored further in the next paper in this series that 
uses this NV algebra in the description of classical electromagnetism [6] generating a fully relational mechanics. 
 
In section 7.2, it was directly proved that any continuous natural vector (CNV) Q with a zero NV Gradient (∇*Q) 
always satisfies the homogenous Wave Equation.   Conversely, when Q is a Flow Vector then it not only satisfies 
the Wave Equation but its total time derivative is always zero, so that its scalar and vector components are always 
conserved over time – a key feature in asynchronous interactions.  This intriguing result is enhanced when it is 
realized that when a Voigt CNV is a Flow Vector and it satisfies the Wave Equation then its Voigt parameter must 
be conserved.  In this situation, the defining Lorenz Equation for this Voigt vector then implies that its scalar and 
vector components satisfy their own Continuity Equation.  These considerations demonstrate that scalar properties 
of the individual electron, such as its inertial mass, m and its unit electric charge, e are conserved universally over 
time and become the defining characteristics of this fundamental particle.  In a continuous “medium” theory, like 
classical electromagnetism, the need to preserve such a characteristic property (associated with an infinitesimal 
volume element of the medium that has a local velocity) and assign it an invariant value leads directly to the Lorentz 
transformations and the special theory of relativity.  These ideas will be developed [6] in a subsequent paper. 
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Section 7.4 deliberately focused on Minkowski 4-vectors in order to emphasize that Natural Vectors are inherently 
more powerful than these older but simpler non-algebraic forms; however, it did show that NVs could be viewed as 
“covariant Minkowski quaternions”.  
 
Various special forms of the generic Voigt vectors were defined in section 7.5 to relate to earlier, mathematical 
objects that have been introduced to represent important physical quantities.  A sub-class was defined that closely 
resembled Planck’s suggested form for the 3D relativistic momentum (section 7.6); this immediately resulted in all 
of the usual equations for relativistic mechanics, including E = Mc2.  An analysis of the special conditions that 
Planck needed to assign to the ‘mechanical’ forces that would accelerate these particles to very high speeds showed 
that there are no such forces in Maxwell’s theory of electromagnetism, so Planck’s particles cannot be electrons or 
any other type of electrically charged particle.  However, it was Kaufmann’s experiments in 1901 and 1902 [40] on 
high-speed electrons moving under the influence of crossed electric and magnetic fields that first indicated that there 
was an increase in inertial resistance (which has always been interpreted ever since as an increase in mass). This was 
the first empirical evidence for the validity of relativistic mechanics and therefore for the theory of special relativity. 
 
Section 7.7 introduced several concepts associated with the invariance properties of natural vectors.  The critical 
idea of separability across space and time, especially involving the Separation NV between two particles, was 
defined to simplify the study of asynchronous interactions.   Invariants were investigated that preserved the ‘form’ 
of NV equations (covariance) or were unchanged across time (temporal invariance).  Here it was demonstrated that 
asynchronous action-at-a-distance (AAAD) could be represented by NVs that are both separable and temporally 
invariant.  It was also shown that when both particles have the same inertial mass then seven mechanical NVs 
become dynamical constants of any asynchronous interaction that is separable.  The well-known “Light-Cone” 
condition arising in classical electromagnetism corresponds here to the requirement that interactions only occur 
when the invariant ‘norm’ of the two-particle Separation CNV is constant. This directly leads to the idea that there 
are “natural limits” to any interaction corresponding to the minimum and maximum separations of two interacting 
particles associated with relative velocities of zero and “light-speed”: these extrema neither occur at zero or infinite 
spatial or temporal separation, as is usually assumed. 

9.6	ASYNCHRONOUS	INTERACTIONS	
Section 8 was devoted to a discussion of the concept of asynchronous interactions between two particles at two 
different times - the central idea at the very heart of this research programme.  All earlier studies of mechanics have 
focused on the action of a single particle at a single point in space at only one instant of time: represented by the 
normal algebraic real variables x and t.  This programme recognizes that these two aspects of reality are both equally 
important and must, in the case of particle mechanics, always be treated together equally – justifying the appellation 
“natural vector” for the representation of a particle’s unique existence in space and time.  A later paper on discrete 
electron dynamics will demonstrate that the peculiar “twisting” feature of quaternions maps the actual trajectories of 
electrons; this intrinsic motion of electrons has only been hinted at previously, when the motion of charged particles 
was investigated as they ‘reacted to electromagnetic fields’.  In this model it will be seen as the direct consequence 
of the asynchronous exchange of both linear and angular momentum, indicating why the two-particle natural vector 
(NV) representation should be viewed as nature’s fundamental ‘momentum exchange’ group. 
 
Lagrange diverted attention away from Newton’s original dynamical concept of discrete impulse as the cause of the 
change in any particle’s straight-line inertial motion.   A careful reading of Newton’s Principia [41] indicates that 
the concept of ‘force’ was introduced by Newton only as a calculational technique to sum many small, successive 
impulses together.  Mathematicians seized on this powerful technique and reified it into an independent existent: 
Newton recognized that this was not the case by explicitly adding his Third Law of action equaling reaction.  This 
‘Law’ is further elaborated upon here as a primary characteristic of asynchronous interactions between electrons.  
Therefore, the traditional Lagrangian (continuum) reformulation of Newtonian mechanics has been by-passed in this 
programme by concentrating on changes (later extended to discrete) in the two-particle relative variables.  Further, 
the Lagrangian concept of a temporally invariant, potential energy function that depends only on position is rejected 
here; instead, this older concept is now replaced by the system-wide concept of “interaction energy”, represented by 
the Potential NV, U(t) which will be introduced later.  This will lead to the concept of asynchronous conservation of 
energy and not the universal conservation at all times that has characterized physical models to date. 
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The idea of “interaction space” was introduced in section 8.3; this is an abstract mapping used for describing the 
interaction between the two particles that is represented algebraically by natural vectors.   In contrast to continuum 
theories, with real manifolds, this viewpoint emphasizes only those discrete points where interactions actually occur.  
A later paper [6] will demonstrate that the Light-Cone condition excludes the possibility of continuous interactions 
between point particles with inertial mass.  The evolution of experimental physics has repeatedly shown that the 
micro-world is intrinsically discontinuous (to the chagrin of the Platonic mathematicians): therefore, the symbolic 
representations used to map this discrete nature should be reflected in the associated discrete mathematics.  Later 
papers will extend continuous natural vectors to discrete natural vectors, with differential operators being replaced 
by a new set of difference operators. A similar light-cone model will replicate the Wave-Mechanical results for the 
hydrogen atom: the best analytical result yet achieved with calculus-based quantum mechanics. 
 
Various diagrammatic techniques for understanding the 4D nature of asynchronous interactions and natural vectors 
were described in section 8.4.  This capability is considered very important as the power of our visual imagination 
vastly exceeds the linear thinking characterized by mathematical, deductive thought.  Innovation is encouraged 
when suitable imagery can be invoked to assist our thinking about the world.  These types of ‘mental models’ were 
used extensively in physics prior to the 20th Century and also account for the usefulness of geometrical thinking; the 
dramatic impact of this style of thinking on both innovation in art and science has been very well documented by 
various authors, such as Arthur I. Miller [42], in his Insights of Genius.  The final sub-section (8.5) briefly covered 
the subject of ‘labeling’ the variables used to map the interaction between two particles.  This is an important area 
that will allow new constraints to be introduced as the research programme progresses. 

9.7	CONCLUDING	REMARKS	
Just as quaternions have better algebraic properties than vectors, so do natural vectors.  Therefore, natural vectors 
are proposed as a very powerful representation for physics while vectors and geometric algebra are more suitable for 
geometry.  Pythagoreans (like Galileo) will always prefer the timeless vision of geometry and its representations but 
Newtonians should favor the dynamical use of natural vectors.  Maxwell himself was convinced that quaternions 
express the physics of electricity and magnetism much more directly than is possible with coordinates (i.e. vectors), 
revealing more clearly the nature of the phenomena.  For over 100 years now, physics has been using vectors, which 
as Heaviside wrote: “are the quaternions of the practical man”; perhaps the time has come to return ‘upstream’ to their 
source, in the form of natural vectors, to investigate the heart of physics – asynchronous interactions.  This new 
research programme hopes to show that Sir William Hamilton’s strong intuition for the significance of quaternions 
in physics in 1843 and the efforts to refocus the attention of physicists on quaternions by Sir Edward Whittaker in 
1940 will now be met [43] with natural vectors as the “most natural expression of the new physics”.   
 
The next three papers in this series will use natural vectors to investigate classical electromagnetism (CEM): the 
prototypical model for all subsequent ‘field’ theories.  The first paper will rapidly recover all of Maxwell’s famous 
results based on the popular ‘fluid’ model of continuous electricity in motion but from a charge / potential rather 
than a continuous field perspective.  The second paper will focus on just the continuous interaction between only 
two point charges going beyond the simplistic Coulomb approximation.  This will also show how certain implicit 
assumptions in earlier theories led to the dynamical results found in the special theory of relativity.  The third paper 
in this CEM series will combine Gauss’s original vision of asynchronous electromagnetic interaction with that of 
Newton’s particle mechanics to produce a unified classical theory of matter.  A later series will explore the dramatic 
consequences of quantizing the interaction between the electrons at three different scales of separation: nuclear, 
atomic and cosmic – unifying the four fundamental ‘forces’ of nature.  
 
It is now a popular opinion among theoretical physicists that their role is to create mathematical models of reality.  
This programme views that goal as too limiting – the objective should be to create broader symbolic models. We 
must recognize that mathematics is just one of our intellectual tools, all of which are embedded within the most 
powerful tool of all human beings – our natural languages: hence this programme’s emphasis on philosophy, so 
that the results of the progress in physics can be communicated to everyone.  This programme also returns to the 
creation of models of nature that can be visualized – both explicitly and in our imaginations.  The acceptance of this 
radical, new programme will not be easy, as new directions are not simple or obvious when a mind must make a 
radical break with accepted modes of explanation, in which it has heavily invested. 
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10.	APPENDICES	

10.1			3D	VECTOR	IDENTITIES	
Let x be a location in 3D space (relative to a fixed origin) with components xj (with j  = 1, 2, 3) so that its complete 
time derivative is its 3D velocity v defined as:   vj  =  dxj / dt  while ∇ is the vector gradient operator. 
 
The basic partial derivative results are:   a)  ∂xj / ∂xk  =   δjk   b)  ∂0xj  =  0   c)  ∂f(t) / ∂xk =  0   d)  ∂0f(x)  =  0        
 
So, e)   ∇ x  =  x / x    f)   ∇ • x  =  3      g)   ∇ ∧  x = 0     h)   (v • ∇) x  =  v     
 
 i)   ∇ vj  =  0      j)   ∇ • v  =  0       k)   ∇ ∧  v = 0    l)   ∇ (v2) = 0 
 
 m)   ∇ (1/x)  =  (–1/ x3) x     n)   ∇ (x2)  =  2 x   o)   ∇ • (x/ x3)  =  –∇2(1/x)  =  0  {if x ≠ 0} 
 
These identities are used for more complicated identities with scalar functions like α(x) and vector functions Q(x):  
 
  1.   ∇ (α vj )  =  vj ∇α            2.   ∇ • (α v ) =  v • ∇α     3.  ∇ ∧  (α v)  =  – v  ∧  ∇α 
 
  4.   ∇ (α / x) = (1/ x) ∇α – (α/ x3) x  5.  ∇(vj / x) = (–vj / x3 ) x   6.  ∇ • (α Q)  =  Q • ∇α + α ∇ • Q  
 
  7.   ∇ • (α x )  = 3α + x • ∇α       8.    ∇ (v • Q)  =  v • ∇Q      9.  ∇(v • α Q) = Q (v • ∇α) + α(v • ∇)Q 
 
 10.  ∇ ∧  (αx )  =  – x ∧  ∇α 11.   ∇ ∧  (f(v2) v)  =  0   12.  ∇ ∧  (α Q)  = – Q ∧∇α + α ∇ ∧  Q 
 
 13.  ∇ • (v ∧  Q ) = – v • (∇ ∧  Q )  14.   ∇ • ∇α  =  ∇2α   15.  ∇ ∧  (v /x )  =  (1/ x3 ) v ∧  x 
 
 16.  ∇ ∧  (Q / x) = (1/ x3) Q ∧  x + (1/x)∇ ∧  Q     17.  ∇ ∧  (∇ ∧  Q) = – ∇2Q  + ∇(∇• Q) 
 
 18.  ∇ ∧  (v ∧  Q) = v (∇ • Q) – (v • ∇) Q    19.   ∇ ∧  (a ∧  ∇(1/x) )  =  ∇((a • x)/x3)   {if x ≠ 0 and a = const} 
 
 20.  ∇ • (a /x)  = a • ∇(1/x) = –(a • x) / x3    21.   ∇ ∧  (a ∧  Q)  =  a (∇ • Q ) + a ∧  (∇ ∧  Q) – ∇(a • Q)  

10.2	NATURAL	VECTOR	IDENTITIES	
These identities all use the basic conjugate multiplication form introduced in section 4.4 and 4.6; these formulae are 
evaluated using the 3D vector calculus results of section 10.1; again α and Q are scalar and vector functions. 
     
 1.   ∇*X  =  – 2 I0          2.   ∇*V  =  – i I •  ∂0v       3.   ∇*α  =  – i I0 ∂0α  +  I • ∇α 
  
 4.   ∇*(X*X)  =  – 2 X     5.   ∇*(V*V)  =  2 i (v • ∂0 v) I0 
 

 6.   ∇*(α Q)  =  α (∇*Q) + (∇*α)Q  7.   ∇* ∇α  =  ∇  ∇* α  =  I0 (∂0
2 –  ∇2 )α  ≡  – I0 !α  

 
 8.    V*∇*α  =  – I0 (c ∂0 + v • ∇)α  –  i I •  (c ∇ + v ∂0 )α  +  I • (v ∧  ∇α) 
 
 9.     Q ∇*α  =  I0 (Q0 ∂0α  – Q • ∇α)  +  i I • (Q0 ∇α  – Q ∂0α)  +  I •  (Q ∧  ∇α)  
 
 10.  ∇*(α V)  =  I0 (  c ∂0α  – v • ∇α)  +  i I • ( c ∇α  – v ∂0α – α ∂0v) – I •  (v ∧  ∇α) 
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