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Abstract

Euler-Lagrange variational principle is used to obtain analytical and numerical

flow relations in cylindrical tubes. The method is based on minimizing the total

stress in the flow duct using the fluid constitutive relation between stress and rate

of strain. Newtonian and non-Newtonian fluid models; which include power law,

Bingham, Herschel-Bulkley, Carreau and Cross; are used for demonstration.

Keywords: Euler-Lagrange variational principle; fluid mechanics; rheology; gen-

eralized Newtonian fluid; capillary flow; pressure-flow rate relation; Newtonian;

power law; Bingham; Herschel-Bulkley; Carreau; Cross.
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1 Introduction

Several methods are in use to derive relations between pressure, p, and volumet-

ric flow rate, Q, in tubes and conduits. These methods include the application

of first principles of fluid mechanics with utilizing the fluid basic properties [1–

3], the use of Navier-Stokes equations [4], the lubrication approximation [5], and

Weissenberg-Rabinowitsch-Mooney relation [1–3, 6]. Numerical methods related to

these analytical formulations, such as finite element and similar meshing techniques

[7], are also in use when analytical expressions are not available.

However, we are not aware of the use of the Euler-Lagrange variational principle

to derive p-Q relations in general and in capillaries in particular despite the fact

that this principle is more intuitive and natural to use as it is based on a more

fundamental physical principle which is minimizing the total stress combined with

the utilization of the fluid constitutive relation between stress and rate of strain.

The objective of this paper is to outline this method demonstrating its appli-

cation to Newtonian and some time-independent non-Newtonian fluids and fea-

turing its applicability numerically as well as analytically. In the following, we

assume a laminar, axi-symmetric, incompressible, steady, viscous, isothermal, fully-

developed flow for generalized Newtonian fluids moving in straight cylindrical tubes

where no-slip at wall condition [8] applies and where the flow velocity profile has

a stationary derivative point at the middle of the tube (r = 0) meaning the profile

has a blunt rounded vertex.

The plan for the present paper is that: following an outline of the theoretical

background of the proposed variational method, we demonstrate its use by six gen-

eralized Newtonian fluids that fall into three main categories: (a) Newtonian and

power-law fluids which are used to demonstrate and validate the method of uti-

lizing the variational principle and outline its theoretical merit, (b) Bingham and

Herschel-Bulkley yield stress fluids which are used to test the limits of the vari-



2 METHOD 7

ational method since these fluids before total yield are partially solid and hence

are not strictly subject to the stress-minimization argument as presented in the

present paper, and (c) Carreau and Cross fluids which are used to demonstrate the

practical value of the variational method as these fluids have no closed form flow

relations derived from other methods. These six fluid models are the most impor-

tant and widely used in rheology and fluid mechanics to describe the behavior of

the commonly occurring generalized Newtonian fluids in the natural and synthetic

worlds.

2 Method

The constitutive relation for generalized Newtonian fluids in shear flow is given by

τ = µγ (1)

where τ is the shear stress, γ is the rate of shear strain, and µ is the shear viscosity

which generally is a function of the rate of shear strain. It is physically intuitive

that the flow velocity profile in a tube (or in a flow path in general) will adjust

itself to minimize the total stress which is given by

τt =

∫ τw

τc

dτ =

∫ R

0

dτ

dr
dr =

∫ R

0

d

dr
(µγ) dr =

∫ R

0

(
γ
dµ

dr
+ µ

dγ

dr

)
dr (2)

where τt is the total stress, τc and τw are the shear stress at the tube center and tube

wall respectively, and R is the tube radius. The total stress, as given by Equation

2, can be minimized by applying the Euler-Lagrange variational principle which,

in its most famous form, is given by
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∂f

∂y
− d

dx

(
∂f

∂y′

)
= 0 (3)

where

x ≡ r, y ≡ γ, f ≡ γ
dµ

dr
+ µ

dγ

dr
, and

∂f

∂y′
≡ ∂

∂γ′

(
γ
dµ

dr
+ µ

dγ

dr

)
= µ (4)

However, to simplify the derivation we use here another form of the Euler-Lagrange

principle which is given by

d

dx

(
f − y′ ∂f

∂y′

)
− ∂f

∂x
= 0 (5)

that is

d

dr

(
γ
dµ

dr
+ µ

dγ

dr
− µdγ

dr

)
− ∂

∂r

(
γ
dµ

dr
+ µ

dγ

dr

)
= 0 (6)

i.e.

d

dr

(
γ
dµ

dr

)
− ∂

∂r

(
γ
dµ

dr
+ µ

dγ

dr

)
= 0 (7)

Since ordinary derivative is a special case of partial derivative, we can write this

equation as

∂

∂r

(
γ
dµ

dr
− γ dµ

dr
− µdγ

dr

)
= 0 (8)

that is

∂

∂r

(
µ
dγ

dr

)
= 0 (9)

In the following sections the use of this equation will be demonstrated to derive
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p-Q flow relations for generalized Newtonian fluids.

2.1 Newtonian

For Newtonian fluids, the viscosity is constant that is

µ = µo (10)

and hence Equation 9 becomes

∂

∂r

(
µo
dγ

dr

)
= 0 (11)

On integrating once with respect to r we obtain

µo
dγ

dr
= A (12)

where A is a constant. Hence

γ =
1

µo
(Ar +B) (13)

where B is another constant. Now from the two boundary conditions at r = 0 and

r = R, A and B can be determined, that is

γ (r = 0) = 0 ⇒ B = 0 (14)

and

γ (r = R) =
τw
µo

=
PR

2Lµo
=
AR

µo
⇒ A =

P

2L
(15)

where τw is the shear stress at the tube wall, P is the pressure drop across the tube

and L is the tube length. Hence
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γ (r) =
P

2Lµo
r (16)

On integrating this with respect to r the standard Hagen-Poiseuille parabolic

velocity profile is obtained, that is

v (r) =

∫
dv =

∫
dv

dr
dr =

∫
γdr =

∫
P

2Lµo
rdr =

P

4Lµo
r2 +D (17)

where v(r) is the fluid axial velocity at r and D is another constant which can be

determined from the no-slip at wall boundary condition, that is

v (r = R) = 0 ⇒ D = − PR
2

4Lµo
(18)

that is

v (r) =
−P

4Lµo

(
R2 − r2

)
(19)

where the minus sign at the front arises from the fact that the pressure gradient is

opposite in direction to the flow velocity vector. The volumetric flow rate will then

follow by integrating the flow velocity profile with respect to the cross sectional

area, that is

Q =

∫ R

0

|v| 2πrdr =
πP

2Lµo

∫ R

0

(
R2 − r2

)
rdr =

πPR4

8Lµo
(20)

which is the well-known Hagen-Poiseuille flow relation.

2.2 Power Law

For power law fluids, the viscosity is given by

µ = kγn−1 (21)
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On applying Euler-Lagrange variational principle (Equation 9) we obtain

∂

∂r

(
kγn−1

dγ

dr

)
= 0 (22)

On integrating once with respect to r we obtain

kγn−1
dγ

dr
= A (23)

On separating the two variables and integrating both sides we obtain

γ = n

√
n

k
(Ar +B) (24)

where A and B are constants which can be determined from the two boundary

conditions, that is

γ (r = 0) = 0 ⇒ B = 0 (25)

and

γ (r = R) = n

√
τw
k

=
n

√
PR

2Lk
= n

√
n

k
AR ⇒ A =

P

2nL
(26)

and therefore

γ =
n

√
P

2kL
r1/n (27)

On integrating this with respect to r the power law velocity profile is obtained,

that is

v (r) =

∫
dv =

∫
dv

dr
dr =

∫
γdr =

∫
n

√
P

2kL
r1/ndr =

n

n+ 1
n

√
P

2kL
r1+1/n +D

(28)
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where D is another constant. From the no-slip at wall boundary condition

v (r = R) = 0 ⇒ D = − n

n+ 1
n

√
P

2kL
R1+1/n (29)

that is

v (r) =
−n
n+ 1

n

√
P

2kL

(
R1+1/n − r1+1/n

)
(30)

The volumetric flow rate will then follow by integrating the velocity profile with

respect to the cross sectional area, that is

Q =

∫ R

0

|v| 2πrdr =
2πn

n+ 1
n

√
P

2kL

∫ R

0

(
R1+1/n − r1+1/n

)
rdr

=
πn

3n+ 1
n

√
P

2kL
R3+1/n (31)

which is mathematically equivalent to the expressions derived in [1–3, 5] using other

methods.

3 Numerical Implementation

For generalized Newtonian fluids with complex constitutive relations, it may be

very difficult, or even impossible, to obtain a flow analytical solution from the

Euler-Lagrange principle. In this case, the variational method can be used as a

basis for a numerical method by employing Equation 9 to obtain the rate of shear

strain as an explicit or implicit function of r which is then numerically solved

and integrated to obtain the flow velocity profile which, in its turn, is numerically

integrated to obtain the p-Q relation. For the fluids which have an explicit relation

between the rate of strain and radius, such as Newtonian and power law fluids

(refer to Equations 16 and 27), the rate of strain can be computed directly for each
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r. However, for the fluids which have no such explicit relation, such as Bingham,

Herschel-Bulkley, Carreau and Cross (refer to Equations 33, 36, 39 and 46), a

numerical solver, based for instance on a bisection method, is required to find the

rate of strain as a function of radius. A numerical integration scheme; such as

midpoint, trapezium or Simpson rule; can then be utilized to integrate the strain

rate with respect to radius to obtain the velocity profile in the first stage, and

to integrate the velocity profile with respect to the cross sectional area to get the

volumetric flow rate in the second stage.

The constant of the first integration (strain rate with respect to radius) is in-

corporated within a boundary condition by starting at the wall with zero velocity

(v = 0); the velocity growth at the next inner ring of the tube cross section,

obtained from numerically integrating the shear rate over radius, is then added

incrementally to the velocity of the neighboring previous outer ring to obtain the

velocity at the inner ring. The volumetric flow rate is then computed by multiply-

ing the velocity of the ring with its cross sectional area and adding these partial

flow rate contributions to obtain the total flow rate. This method is applied, for

the purpose of test and validation, to the Newtonian and power law fluids, for

which analytical solutions are available, and the numerical results were compared

to these analytical solutions. A sample of these comparisons are provided in Figures

1 and 2. As seen, the numerical solutions converge fairly quickly to the analytical

solutions; hence confirming the reliability of this numerical method and its theo-

retical foundations. It should be remarked that the numerical results presented in

the following sections were obtained by using three numerical integration schemes:

midpoint, trapezium and Simpson rules. In all cases the three schemes converged

to the same value although with different convergence rate. For the fluids with an

implicit γ-r relation, a bisection numerical solver was used to obtain γ as a function

of r.
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Figure 1: Q versus P plot for numeric solutions of a typical Newtonian fluid
with µo = 0.005 Pa.s, flowing in a tube with L = 0.1 m and R = 0.01 m for
r-discretization Nr = 4, Nr = 6 and Nr ≥ 100 alongside the analytical solution
(Equation 20).
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Figure 2: Q versus P plot for numeric solutions of a typical power law fluid with
n = 0.9 and k = 0.005 Pa.sn, flowing in a tube with L = 0.1 m and R = 0.01 m
for r-discretization Nr = 4, Nr = 6 and Nr ≥ 100 alongside the analytical solution
(Equation 31).
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4 Yield Stress Fluids

Experimenting with the use of Euler-Lagrange principle on different fluids, we

tested this method on some yield stress fluids, specifically Bingham plastic and

Herschel-Bulkley models, despite our awareness of the limitation of this method

and its restriction to fluids which makes it inapplicable to yield stress materials

since the solid-like plug flow at the center of the tube invalidates this assumption.

For Bingham fluids, the viscosity is given by [1, 2, 9, 10]

µ =
τo
γ

+ C (32)

where τo is the yield stress and C is the fluid consistency factor. On applying Euler-

Lagrange variational principle (Equation 9) and following the method outlined in

the Newtonian and power law fluid sections we obtain

τo ln γ + Cγ = Ar +B (33)

where A and B are the constants of integration. As seen in the last equation, the

boundary condition at r = 0 cannot be used to find B because γ = 0 is a singularity

point. We therefore followed the non-yield stress fluid style and arbitrarily set

B = 0. On applying the other boundary condition at r = R, we obtain

A =
τo
R

ln

(
PR

2LC
− τo
C

)
+

(
P

2L
− τo
R

)
(34)

For Herschel-Bulkley fluids, the viscosity is given by [1, 2, 9, 10]

µ =
τo
γ

+ Cγn−1 (35)

Following a similar approach to that outlined in the Bingham part, the following

relation was obtained
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τo ln γ +
C

n
γn = Ar (36)

where

A =
τo
R

ln

((
PR

2LC
− τo
C

)1/n
)

+
1

n

(
P

2L
− τo
R

)
(37)

These γ-r relations (i.e. Equation 33 for Bingham and Equation 36 for Herschel-

Bulkley) were then solved for γ at each r and numerically integrated to obtain the

flow velocity profile first and volumetric flow rate second. The numerical results

were interesting as the low yield stress fluids converged correctly to the analytic

solution (refer to Figures 3 and 4) especially at high flow rates, while the high

yield stress fluids diverged with finer discretization (refer to Figures 5 and 6). This

can be explained by the occurrence of plug flow at the middle of the tube which

is considerable in the case of high yield stress fluids. The minor deviation of the

low yield stress fluids at low pressures highlights this fact since the plug flow effect

diminishes as the pressure and flow rate increase. The failure of this approach for

high yield stress fluids is simply because our model applies to fluids; and yield stress

materials prior to yield at plug area behave like solids. The convergence of the low

yield stress fluids is due to the fact that negligible plug occurs at the middle of the

tube especially at high pressures.

5 Carreau and Cross Fluids

The Euler-Lagrange variational method was also applied to Carreau and Cross

fluids for which no analytical expressions are available; the details are outlined in

the following.

For Carreau fluids, the viscosity is given by [1, 11–14]
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Figure 3: Q versus P plot for numeric solutions of a typical Bingham fluid above
the yield point with C = 0.01 Pa.s and τo = 1.0 Pa flowing in a tube with L = 0.1 m
and R = 0.01 m for r-discretization Nr = 4, Nr = 14 and Nr ≥ 100 alongside the
analytic solution [1, 2].
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Figure 4: Q versus P plot for numeric solutions of a typical Herschel-Bulkley fluid
above the yield point with C = 0.01 Pa.sn, n = 0.8 and τo = 1.0 Pa flowing in a
tube with L = 0.1 m and R = 0.01 m for r-discretization Nr = 4, Nr = 10 and
Nr ≥ 100 alongside the analytic solution [1, 2].
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Figure 5: Q versus P plot for numeric solutions of a typical Bingham fluid above the
yield point with C = 0.01 Pa.s and τo = 10.0 Pa flowing in a tube with L = 0.1 m
and R = 0.01 m for r-discretization Nr = 4, Nr = 10 and Nr ≥ 100 alongside the
analytic solution [1, 2].
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Figure 6: Q versus P plot for numeric solutions of a typical Herschel-Bulkley fluid
above the yield point with C = 0.01 Pa.sn, n = 0.8 and τo = 10.0 Pa flowing in a
tube with L = 0.1 m and R = 0.01 m for r-discretization Nr = 4, Nr = 10 and
Nr ≥ 100 alongside the analytic solution [1, 2].
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µ = µ∞ + (µo − µ∞)
[
1 + (λγ)2

](n−1)/2
(38)

where µo is the zero-shear viscosity, µ∞ is the infinite-shear viscosity, λ is a time

constant, and n is the flow behavior index. On applying Euler-Lagrange variational

principle (Equation 9) and following the derivation, as outlined in § 2.1 and 2.2,

we obtain

µ∞γ + (µo − µ∞) γ 2F1

(
1

2
,
1− n

2
;
3

2
;−λ2γ2

)
= Ar +B (39)

where 2F1 is the hypergeometric function, and A and B are the constants of inte-

gration. Now from the two boundary conditions at r = 0 and r = R, A and B can

be determined, that is

γ (r = 0) = 0 ⇒ B = 0 (40)

and

γ (r = R) = γw ⇒ µ∞γw + (µo − µ∞) γw 2F1

(
1

2
,
1− n

2
;
3

2
;−λ2γ2w

)
= AR

(41)

where γw is the shear rate at the tube wall. Now, by definition we have

τw = µwγw (42)

that is

PR

2L
=
[
µ∞ + (µo − µ∞)

[
1 + (λγw)2

](n−1)/2]
γw (43)

From the last equation, γw can be obtained numerically by a numerical solver,
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based for example on a bisection method, and hence from Equation 41 A is obtained

A =
µ∞γw + (µo − µ∞) γw 2F1

(
1
2
, 1−n

2
; 3
2
;−λ2γ2w

)
R

(44)

Several types of Carreau fluids were used for testing the model and its numerical

implementation; a sample of these tests is presented in Figure 7 where the flow

did converge for a radius discretization Nr ≥ 50. A sample of the flow velocity

profile across the tube for the fluid of Figure 7 at a typical flow condition is also

presented in Figure 8. These figures are qualitatively correct despite the fact that

no analytical solution is available to fully validate the results.
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Figure 7: Q versus P plot for numeric solutions of a typical Carreau fluid with
n = 0.75, µo = 0.05 Pa.s, µ∞ = 0.001 Pa.s, and λ = 1.0 s flowing in a tube with
L = 0.5 m and R = 0.05 m for r-discretization Nr = 10 and Nr ≥ 50. The numeric
solutions were obtained using the real part of the hypergeometric function 2F1 in
Equations 39 and 44.

For Cross fluids, the viscosity is given by [15]

µ = µ∞ +
µo − µ∞

1 + (λγ)m
(45)

where µo is the zero-shear viscosity, µ∞ is the infinite-shear viscosity, λ is a time
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Figure 8: Flow velocity profile for the Carreau fluid of Figure 7 at a typical flow
condition where the radius is scaled to unity and the speed is scaled to its maximum
value at the tube center.

constant, and m is an indicial parameter. Following a similar derivation method

to that outlined in Carreau, we obtain

µ∞γ + (µo − µ∞) γ 2F1

(
1,

1

m
;
m+ 1

m
;−λmγm

)
= Ar (46)

where

A =
µ∞γw + (µo − µ∞) γw 2F1

(
1, 1

m
; m+1

m
;−λmγmw

)
R

(47)

with γw being obtained numerically as outlined in Carreau.

Several types of Cross fluids were used for testing the model and its numerical

implementation; a sample of these tests is presented in Figure 9 where the flow

did converge for a radius discretization Nr ≥ 50. A sample of the flow velocity

profile across the tube for the fluid of Figure 9 at a typical flow condition is also

presented in Figure 10. These figures are qualitatively correct despite the fact that

no analytical solution is available to fully validate the results. The features in
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these results are similar to those observed in Carreau due to the strong similarities

between these two fluids.
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Figure 9: Q versus P plot for numeric solutions of a typical Cross fluid with
n = 0.25, µo = 0.05 Pa.s, µ∞ = 0.001 Pa.s, and λ = 1.0 s flowing in a tube with
L = 0.5 m and R = 0.05 m for r-discretization Nr = 10 and Nr ≥ 50. The numeric
solutions were obtained using the real part of the hypergeometric function 2F1 in
Equations 46 and 47.
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Figure 10: Flow velocity profile for the Cross fluid of Figure 9 at a typical flow
condition where the radius is scaled to unity and the speed is scaled to its maximum
value at the tube center.
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6 Conclusions

In this paper we outlined a method based on Euler-Lagrange variational principle

which minimizes the total stress to obtain analytical and numerical flow relations for

generalized Newtonian fluids in straight cylindrical tubes. The method can be used

in conjunction with a numerical integration scheme to obtain numerical solutions

when analytical integration of the basic equations derived from the variational

principle is difficult or impossible to obtain. The method was validated analytically

and numerically for Newtonian fluids as well as a number of time-independent non-

Newtonian fluids.

The main advantages of the numerical approach based on this method are

simplicity, ease of implementation, low computational cost and rapid convergence

to a solution which, for all practical purposes, is identical to the analytical solution.

This convergence can be easily verified from two or more successive r-discretization

schemes being converged to the same solution.

The variational method can be used to obtain flow relations for some complex

fluids, such as Carreau, Carreau-Yasuda and Cross, for which no analytical flow

expressions have been derived from other methods due to mathematical difficulties.

The method, when implemented numerically in the case of analytical difficulties, is

more accurate and suitable than the use of empirical relations or numerical meshing

techniques that are currently in use.

Numerical experiments were performed on Bingham and Herschel-Bulkley yield

stress fluids to test the robustness of this method which is based on the assumption

of fluidity. Interestingly, the method converged correctly to the analytical solution

for low yield stress fluids although it did diverge for high yield stress fluids. The

obvious reason which can explain these observations is that the plug flow that

occurs at the middle of the tube in the first case is negligible especially at high flow

rates, while considerable plug flow occurs in the second case which invalidates the
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basic assumption of fluidity that this method relies upon.

A preliminary investigation of the applicability of this method to Carreau and

Cross fluids has been conducted and presented in this paper. More serious inves-

tigations related to these fluids and other complex generalized Newtonian fluids

by employing this variational technique are planned for the future. More serious

challenges in generalizing the method to include history-dependent non-Newtonian

fluids (e.g. thixotropic and viscoelastic) in transient and steady-state flow, and ex-

tending the flow geometry beyond the straight cylindrical shape are awaiting and

will be considered for the future adventures. Similar challenges are awaiting for

possible extension of the variational method to the flow of fluids through porous

media.

In principle there is no reason to prevent the applicability of the variational

method to the flow in conduits of complex geometries or to the history-dependent

non-Newtonian fluids. Optimization principles are underlying many physical laws;

hence if an optimization principle applies to the flow of generalized Newtonian

fluids through straight cylindrical conduits, it is likely to be valid for other types

of fluid and geometry. However, due to mathematical and technical difficulties,

it may not be possible to derive closed form relations or invent simple numerical

implementations based on the variational method.

With regard to the flow in porous media, the porous medium is simply a network

of complexly-shaped interconnected conduits through which fluids pass; therefore,

if the variational principle works for the individual conduits of the given geometries

and for the types of fluid flowing through them, then the same principle should

apply to porous media. However, as before, due to many complexities involved

in the flow through porous media, no simple analytical or numerical solutions are

expected to be obtained from this method.

Finally, the value of the present paper lies in two parts: theoretical because the
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variational method reveals the physical principle (stress-minimization) that fluid

flow in confined geometries (at least the straight cylindrical) is subject to, and

practical which is demonstrated in the use of this method to obtain flow relations

for fluids (Carreau and Cross) which do not have analytical relations derived from

other methods.
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Nomenclature

γ shear rate (s−1)

γw shear rate at tube wall (s−1)

λ time constant (s)

µ fluid dynamic shear viscosity (Pa.s)

µo zero-shear viscosity (Pa.s)

µ∞ infinite-shear viscosity (Pa.s)

τ shear stress (Pa)

τc shear stress at tube center (Pa)

τo yield stress (Pa)

τt total shear stress (Pa)

τw shear stress at tube wall (Pa)

C consistency factor in Bingham and Herschel-Bulkley models (Pa.sn)

2F1 hypergeometric function

k consistency factor in power law model (Pa.sn)

L tube length (m)

m indicial parameter in Cross model

n flow behavior index

Nr number of elements in radius discretization

p pressure (Pa)

P pressure drop (Pa)

Q volumetric flow rate (m3.s−1)

r radius (m)
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R tube radius (m)

v axial fluid velocity (m.s−1)
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