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TOPSIS for Solving Multi-Attribute Decision Making Problems 

under Bi-Polar Neutrosophic Environment 

Abstract  
The paper investigates a technique for order preference by similarity to ideal solution (TOPSIS) 

method to solve multi-attribute decision making problems with bipolar neutrosophic information. 
We define Hamming distance function and Euclidean distance function to determine the distance 
between bipolar neutrosophic numbers. In the decision making situation, the rating of performance 
values of the alternatives with respect to the attributes are provided by the decision maker in terms 
of bipolar neutrosophic numbers. The weights of the attributes are determined using maximizing 
deviation method. We define bipolar neutrosophic relative positive ideal solution (BNRPIS) and 
bipolar neutrosophic relative negative ideal solution (BNRNIS). Then, the ranking order of the 
alternatives is obtained by TOPSIS method and most desirable alternative is selected. Finally, a 
numerical example for car selection is solved to demonstrate the applicability and effectiveness of 
the proposed approach and comparison with other existing method is also provided. 
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1. Introduction 
Zadeh [1] introduced the concept of fuzzy set to deal with problems with imprecise information 

in 1965. However, Zadeh [1] considers one single value to express the grade of membership of the 
fuzzy set defined in a universe. But, it is not always possible to represent the grade of membership 
value by a single point. In order to overcome the difficulty, Turksen [2] incorporated interval 
valued fuzzy sets. In 1986, Atanassov [3] extended the concept of fuzzy sets [1] and defined 
intuitionistic fuzzy sets which are characterized by grade of membership and non-membership 
functions. Later, Lee [4, 5] introduced the notion of bipolar fuzzy sets by extending the concept of 
fuzzy sets where the degree of membership is expanded from [0, 1] to [-1, 1]. In a bipolar fuzzy 
set, if the degree of membership is zero then we say the element is unrelated to the corresponding 
property, the membership degree (0, 1] of an element specifies that the element somewhat satisfies 
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the property, and the membership degree [−1, 0) of an element implies that the element somewhat 
satisfies the implicit counter-property [6]. Zhou and Li [7] incorporated the notion of bipolar fuzzy 
semirings and investigated relative properties using positive t- cut, negative s- cut and equivalence 
relation. Smarandache [8, 9, 10, 11] incorporated indeterminacy membership function as 
independent component and defined neutrosophic set on three components truth, indeterminacy 
and falsehood.  However, from practical point of view, Wang et al. [12] defined single valued 
neutrosophic sets (SVNSs) where degree of truth membership, indeterminacy membership and 
falsity membership  [0, 1]. Deli et al. [13] introduced the notion of bipolar neutrosophic sets 
(BNSs) which is a generalization of the fuzzy sets, bipolar fuzzy sets, intuitionistic fuzzy sets, 
neutrosophic sets. Pramanik and Mondal defined rough bipolar neutrosophic set [14]. 

Zhang and Wu [15] presented a TOPSIS [16] method for solving single valued neutrosophic 
multi-criteria decision making with incomplete weight information. Chi and Liu [17] proposed an 
extended TOPSIS method for MADM problems where the attribute weights are unknown and the 
attribute values are expressed in terms of interval neutrosophic numbers. Biswas et al. [18] 
developed a new TOPSIS based approach for solving multi-attribute group decision making 
problem with simplified neutrosophic information. Broumi et al. [19] extended TOPSIS method 
for multiple attribute decision making based on interval neutrosophic uncertain linguistic variables. 
In neutrosophic hybrid environment, Pramanik et al. [20] extended TOPSIS method for singled 
valued soft expert set based multi-attribute decision making problems. Dey et al. [21] presented 
TOPSIS method for generalized neutrosophic soft multi-attribute group decision making. Mondal 
et al. [22] presented TOPSIS in rough neutrosophic environment and provided illustrative example.   

 Deli et al. [13] investigated a bipolar neutrosophic multi-criteria decision making approach 
based on bipolar neutrosophic weighted average and geometric operators and the score, certainty 
and accuracy functions. Uluçay et al. [23] studied similarity measures of bipolar neutrosophic sets 
and their application to multiple criteria decision making. Literature review suggests that TOPSIS 
method in bipolar neutrosophic environment is yet to appear. Therefore this issue needs to be 
addressed. 

In this paper, we define Hamming distances and Euclidean distances between two BNSs and 
develop a new TOPSIS based method for solving MADM problems under bipolar neutrosophic 
assessments.  

The content of the paper is organized as follows. Section 2 presents some basic definitions 
concerning neutrosophic sets, SVNSs, BNSs which are helpful for the construction of the paper.  
Hamming and Euclidean distances between two bipolar neutrosophic numbers (BNNs) are also 
defined in the Section 2. Section 3 is devoted to present TOPSIS method for MADM problems 
under bipolar neutrosophic environment. A car selection problem is solved in Section 4 to illustrate 
the applicability of the proposed method. Sectin 5 presents conclusion. 

2. Preliminaries 

In this Section, we provide basic definitions regarding neutrosophic sets, SVNSs, BNSs. 
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2.1 Neutrosophic Sets [8, 9, 10, 11] 

Consider U be a space of objects with a generic element of U denoted by x. Then, a neutrosophic 
set N on U is defined as follows: 

N = {x, )(F),(I),(T xxx NNN   xU} 

where, )(T xN , )(I xN , )(F xN : U ]-0, 1+[ represent respectively the degrees of truth-
membership, indeterminacy-membership, and falsity-membership of a point xU to the set N with 
the condition -0  )(T xN + )(I xN + )(F xN  3+. 

2.2 Single valued neutrosophic Sets [12] 

Let U be a universal space of points with a generic element of X denoted by x, then a SVNS S 
is presented as follows: 

S = {x, )(F),(I),(T xxx SSS   xU} 

where, )(T xS , )(I xS , )(F xS : U  [0, 1] and 0  )(T xS + )(I xS + )(F xS  3 for each point x U. 

2.3 Bipolar Neutrosophic Set [13] 

Definition 1. Let U be a universal space of points, then a BNS B in U is defined as follows 

B = {x, )(F ),(I ),(T),(F),(I),(T xxxxxx BBBBBB
   x U}, 

where )(T xB
 , )(I xB

 , )(F xB
 : U  [0, 1] and )(T xB

 , )(I xB
 , )(F xB

 : U  [-1, 0]. 

The positive membership degrees )(T xB
 , )(I xB

 , and )(F xB
 represent the truth membership, 

indeterminate membership, and false membership of an element x U corresponding to a bipolar 
neutrosophic set B and the negative membership degrees )(T xB

 , )(I xB
 , and )(F xB

  represent the 
truth membership, indeterminate membership, and false membership of an element x U to some 
implicit counter property corresponding to a bipolar neutrosophic set B. For convenience, a bipolar 
neutrosophic number is represented by b~ = < 

BT , 

BI , 

BF , 

BT , 

BI , 

BF >. 

Example: Consider U = {u1, u2, u3, u4}. Then 

B = {< u1, 0.6, 0.2, 0.1, -0.7, -0.1, -0.04>; < u2, 0.4, 0.3, 0.1, -0.5, -0.09, -0.4>; < u3, 0.8, 0.5, 
0.4, -0.3, -0.01, -0.5>; < u4, 0.3, 0.6, 0.7, -0.2, -0.3, -0.7>] 

is a bipolar neutrosophic subset of U. 

Definition 2. Let, B1 = {x, )(F ),(I ),(T),(F),(I),(T
111111

xxxxxx BBBBBB
   x U} and B2 = {x,

)(F ),(I ),(T),(F),(I),(T
222222

xxxxxx BBBBBB
   x U} be two BNSs. Then B1    B2 if and only 

if 

)(T
1

xB
  )(T

2
xB

 , )(I
1

xB
  )(I

2
xB

 , )(F
1

xB
  )(F

2
xB

 ; )(T
1

xB
  )(T

2
xB

 , )(I
1

xB
  )(I

2
xB

 , )(F
1

xB
 

)(F
2

xB
 for all x U. 
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Definition 3. Consider, B1 = {x, )(F ),(I ),(T),(F),(I),(T
111111

xxxxxx BBBBBB
   x U} and B2 = 

{x, )(F ),(I ),(T),(F),(I),(T
222222

xxxxxx BBBBBB
   x U} be two BNSs. Then B1 = B2 if and only 

if 

)(T
1

xB
 = )(T

2
xB

 , )(I
1

xB
 = )(I

2
xB

 , )(F
1

xB
 = )(F

2
xB

 ; )(T
1

xB
 = )(T

2
xB

 , )(I
1

xB
 = )(I

2
xB

 , )(F
1

xB
 =

)(F
2

xB
 for all x U. 

Definition 4.Consider, B = {x, )(F ),(I ),(T),(F),(I),(T xxxxxx BBBBBB
   x U} be a BNS. 

The complement of B is denoted by Bc and is defined by 

)(T c xB
 = {1+} - )(T xB

 , )(I c xB
 = {1+} - )(I xB

 , )(F c xB
 = {1+} - )(F xB

 ; 

)(T c xB
 = {1-} - )(T xB

 , )(I c xB
 = {1-} - )(I xB

 , )(F c xB
 = {1-} - )(F xB

  for all x U. 

Definition 5. Consider, B1 = {x, )(F ),(I ),(T),(F),(I),(T
111111

xxxxxx BBBBBB
   x U} and B2 = 

{x, )(F ),(I ),(T),(F),(I),(T
222222

xxxxxx BBBBBB
   x U} be two BNSs. Then their union B1B2 

is defined as follows: 

B1  B2 = {Max ( )(T
1

xB
 , )(T

2
xB

 ),
2

)(I)(I
21

xx BB
 

, Min ( )(F
1

xB
 , )(F

2
xB

 ), Min ( )(T
1

xB
 ,

)(T
2

xB
 ), 

2
)(I)(I

21
xx BB

 
, Max ( )(F

1
xB

 , )(F
2

xB
 )} for all x U. 

Definition 6. Consider, B1 = {x, )(F ),(I ),(T),(F),(I),(T
111111

xxxxxx BBBBBB
   x U} and B2 = 

{x, )(F ),(I ),(T),(F),(I),(T
222222

xxxxxx BBBBBB
   x U} be two BNSs. Then their intersection B1

B2 is defined as follows: 

B1 B2 = {Min ( )(T
1

xB
 , )(T

2
xB

 ),
2

)(I)(I
21

xx BB
 

, Max ( )(F
1

xB
 , )(F

2
xB

 ), Max ( )(T
1

xB
 ,

)(T
2

xB
 ), 

2
)(I)(I

21
xx BB

 
, Min ( )(F

1
xB

 , )(F
2

xB
 )}for all x U. 

Definition 7. Suppose 1
~b = < 

1
TB , 

1
I B , 

1
FB , 

1
TB , 

1
I B , 

1
FB > and 2

~b = < 

2
TB , 

2
I B , 

2
FB , 

2
TB , 

2
I B , 

2
FB > are 

two BNNs, then 

i. α . 1
~b = <1 – (1 - 

1
TB ) α , ( 

1
I B ) α , ( 

1
FB ) α , - (- 

1
TB ) α , - (- 

1
I B ) α , - (1 – (1 – (- 

1
FB )) α )>; 

ii. ( 1
~b ) α = < ( 

1
TB ) α , 1 - (1 - 

1
I B ) α , 1 -  (1 - 

1
FB ) α , - (1 – (1 – (- 

1
TB )) α ), - (- 

1
I B ) α ,  – (- 

1
FB )) α )>; 

iii. 1
~b + 2

~b = <


1
TB +



2
TB -



1
TB .



2
TB , 



1
I B .



2
I B ,



1
FB .



2
FB , -



1
TB .



2
TB , - (-



1
I B -



2
I B -



1
I B .



2
I B ), - (-



1
FB -



2
FB -  



1
FB .



2
FB )>; 
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iv. 1
~b . 2

~b = <


1
TB .



2
TB , 



1
I B +



2
I B -



1
I B .



2
I B ,



1
FB +



2
FB -



1
FB .



2
FB , (-



1
TB -



2
TB -



1
TB .



2
TB ), -



1
I B .



2
I B , -



1
FB .



2
FB )>, 

where α  > 0.  
2.4. The distance between two BNNs 

In this sub-section, we propose the distance between two BNNs. 

Consider 1B = 


m

1i
(xi, < 

1
TB (xi), 

1
I B (xi), 

1
FB (xi), 

1
TB  (xi), 

1
I B  (xi), 

1
FB  (xi)>) , 2B = 



m

1i
(xi, < 

2
TB (xi), 

2
I B  

(xi), 

2
FB (xi), 

2
TB  (xi), 

2
I B  (xi), 

2
FB  (xi)>) be two BNNs then, 

(1). The Hamming distance between two BNNs is defined as follows: 

DH ( 1B , 2B ) = 


m

1i
{|( 

1
TB (xi) - 

2
TB (xi))| + |( 

1
I B (xi) - 

2
I B (xi))| + |( 

1
FB (xi) - 

2
FB (xi))| + |( 

1
TB (xi)- 

2
TB  (xi))| 

+ |( 

1
I B (xi) - 

2
I B (xi))| + |( 

1
FB (xi) - 

2
FB (xi))|}                                                                                     (1) 

(2). The normalized Hamming distance between two BNNs is defined as follows: 

NDH ( 1B , 2B ) = 
m6
1 



m

1i
{|( 

iBT (xi) - 

2
TB (xi))| + |( 

1
I B (xi) - 

2
I B (xi))| + |( 

1
FB (xi) - 

2
FB (xi))| + |( 

1
TB (xi) -



2
TB (xi))| + |( 

1
I B (xi) - 

2
I B (xi))| + |( 

1
FB (xi) - 

2
FB (xi))|}                                                                       (2) 

(3). The Euclidean distance between two BNNs is defined as follows: 

EH ( 1B , 2B ) = 
 

















m

i 2
ii

2
ii

2
ii

2
ii

2
ii

2
ii

))(F)(F())(I)(I())(T)(T(

))(F)(F())(I)(I())(T)(T(

212121

212121

xxxxxx

xxxxxx

BBBBBB

BBBBBB

      

(3) 

(4). The normalized Euclidean distance between two BNNs is defined as follows: 

NEH ( 1B , 2B ) = 
 

















m

i 2
ii

2
ii

2
ii

2
ii

2
ii

2
ii

))(F)(F())(I)(I())(T)(T(

))(F)(F())(I)(I())(T)(T(

6m
1

212121

212121

xxxxxx

xxxxxx

BBBBBB

BBBBBB

    

(4) 

with the following properties: 

(1). 0DH ( 1B , 2B )6m 

(2). 0  NDH ( 1B , 2B ) 1 

(3). 0  EH ( 1B , 2B )  6m  

(4). 0  NEH ( 1B , 2B ) 1. 

3. TOPSIS method for MADM with bipolar neutrosophic information  

In this Section, we present an approach based on TOPSIS method to deal with MADM problems 
under bipolar neutrosophic environment.  
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Let A = {A1, A2, …, Am}, (m  2) be a discrete set of m feasible alternatives,  C = {C1, C2, …, 
Cn}, (n  2) be a set of attributes under consideration and w = (w1, w2, …, wn)T be the unknown 

weight vector of the attributes with 0wj1 and 


n

1j jw = 1. The rating of performance value of 

alternative Ai, (i = 1, 2, …, m) with respect to the predefined attribute Cj, (j = 1, 2, …, n) is presented 
by the decision maker (DM) and they can be expressed by BNNs. Therefore, the proposed 
approach is presented using the following steps: 

Step 1. Construction of decision matrix with BNNs 
The rating of performance value of alternative Ai (i = 1, 2, …, m) with respect to the attribute 

Cj, (j = 1, 2, …, n) is expressed by BNNs and they can be presented in the decision matrix as 
follows: 

nmijr~


= 























mnm2m1

2n2221

1n1211

r...rr
......
......
r...rr
r...rr

 

Here, we have rij = ( 

ijT , 

ijI , 

ijF , 

ijT , 

ijI , 

ijF ) with 

ijT , 

ijI , 

ijF , - 

ijT , - 

ijI , - 

ijF [0, 1] and 0  

ijT +


ijI + 

ijF - 

ijT - 

ijI - 

ijF 6 for i = 1, 2, …, m; j = 1, 2, …, n. 

Step 2. Determination of weights of the attributes 
We assume that the weights of the attributes are not equal and they are fully unknown to the 

DM. Therefore, in this paper, maximizing deviation method [24] is used to find the unknown 
weights. The main idea of maximizing deviation method can be expressed as follows. If the 
attribute values rij (j = 1, 2, …, n) in the attribute Cj have small differences between the alternatives, 
then Cj has a small significance in ranking of all alternatives and a small weight is assigned for the 
attribute. If the attribute values rij (j = 1, 2, …, n) in the attribute Cj are same, then Cj has no effect 
in the ranking results and zero is assigned to the weight of the attribute. However, if the attribute 
values rij (j = 1, 2, …, n) over the attribute Cj have big differences, then Cj will play a key role in 
ranking of all alternatives and we will allocate a big weight for the attribute. The deviation values 
of alternative Ai (i = 1, 2, …, m) to all other alternatives under the attribute Cj (j = 1, 2, …, n) can 

be defined as Zij (wj) = jkj
m

1k ij )wr,(rz


, then Zj (wj) = j
m

1i ijwZ


= jkj

m

1i

m

1k
ij )wr,(rz 

   
presents the total 

deviation values of all alternatives to the other alternatives for the attribute Cj (j = 1, 2, …, n). Now 

Z (wj) = )w(Z j
n

1j j


= jkj
m

1i

m

1k ij
n

1j
)wr,(rz






  

presents the total deviation of all attributes to the other 

alternatives with respect to all alternatives. Now we construct the non-linear optimizing model 
based on above analysis to obtain unknown attribute weight wj as follows: 

Max Z (wj) = jkj
m

1i

m

1k ij
n

1j
)wr,(rz






                                                                                                   

(5) 

Subject to 


n

1j

2
jw = 1, wj  0, j = 1, 2, …, n.  
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We now formulate the Lagrange multiplier function, and obtain 

L (wj, ρ ) = jkj
m

1i

m

1k ij
n

1j
w)r,(rz








+ρ  ( 


q

1j

2
jw -1) 

whereρ is the Lagrange multiplier. 

Then, we calculate the partial derivatives of L with respect to wj andρ respectively as follows: 

j

j

w
ρ),(wL




= jkj

m

1i

m

1k ij w)r,(rz





+ρ  ( 


n

1j

2
jw -1) = 0, 

ρ
ρ),(wL j




= 



n

1j

2
jw -1 = 0. 

Therefore, the weight of the attribute Cj is obtained as 

wj =
 














n

1j

2

kj
m

1i

m

1k ij

kj
m

1i

m

1k ij

)r,(rz

)r,(rz
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and the normalized weight of the attribute Cj is given by  
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Step 3. Construction of weighted decision matrix 
We find aggregated weighted decision matrix by multiplying weights [25] of the attributes and 

the aggregated decision matrix
nm

w
ij

jr


is constructed as follows: 
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
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ijI , jw
ijF ) with w

ijT , w
ijI , w

ijF , w
ijT , w

ijI , w
ijF [0, 1] and 0

w
ijT + w

ijI + w
ijF - w

ijT - w
ijI - w

ijF 6 for i = 1, 2, …, m; j = 1, 2, …, n. 

Step 4. Identify the bipolar neutrosophic relative positive ideal solution (BNRPIS) and 
bipolar neutrosophic relative negative ideal solution (BNRNIS) 

In real life decision making, we confront two types of attributes namely, benefit type attributes 
( 1β ) and cost type attributes ( 2β ). In bipolar neutrosophic environment, assume that w

BNRPISQ and
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w
BNRNISQ be the bipolar neutrosophic relative positive ideal solution (BNRPIS) and bipolar 

neutrosophic relative negative ideal solution (BNRNIS). Then, w
BNRPISQ and w

BNRNISQ  are   defined as 
follows: 
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where 
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Step 5. Calculation of distance of each alternative from BNRPIS and BNRNIS 

The normalized Euclidean distance of each alternative  jjjjjj w
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Similarly, normalized Euclidean distance of each alternative  jjjjjj w
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written as follows: 
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Step 6. Evaluate the relative closeness co-efficient 
The relative closeness co-efficient of each alternative Ai, (i = 1, 2, …, m) with respect to the 

BNRPIS w
BNRPISQ is defined as follows: 

*
icc  =





 i
N

i
N

i
N

EucEuc
Euc

                                                                                                                   (12) 

where, 0
*
icc 1, i = 1, 2, …, m.  

Step 7. Rank the alternatives 
Rank the alternatives according to the descending order of the alternatives and select the best 

alternative with maximum value of *
icc . 

4. A numerical example 

We consider the problem [13] where a customer wants to buy a car. There are four types cars 
(alternatives) Ai, i = 1, 2, 3, 4 are available. The customer considers four attributes namely Fuel 
economy (C1), Aerod (C2), Comfort (C3), Safety C4 to assess the alternatives.  Now we solve the 
problem with bipolar neutrosophic information based on TOPSIS method to select most desirable 
car for the customer. Then, the proposed TOPSIS approach for solving the problem is presented 
in the following steps: 

Step 1: Formulation of decision matrix 
We construct the decision matrix with bipolar neutrosophic information presented by the DM 

as given below (see Table 1). 

 

Table 1. The decision matrix provided by the DM 

                       C1                                     C2                                         C3                                      C4 

A1   (0.5, 0.7, 0.2, -0.7, -0.3, -0.6)       (0.4, 0.4, 0.5, -0.7, -0.8, -0.4)        (0.7, 0.7, 0.5, -0.8, -
0.7, -0.6)         (0.1, 0.5, 0.7, -0.5, -0.2, -0.8) 

A2   (0.9, 0.7, 0.5, -0.7, -0.7, -0.1)       (0.7, 0.6, 0.8, -0.7, -0.5, -0.1)        (0.9, 0.4, 0.6, -0.1, -
0.7, -0.5)         (0.5, 0.2, 0.7, -0.5, -0.1, -0.9) 

A3   (0.3, 0.4, 0.2, -0.6, -0.3, -0.7)       (0.2, 0.2, 0.2, -0.4, -0.7, -0.4)        (0.9, 0.5, 0.5, -0.6, -
0.5, -0.2)         (0.7, 0.5, 0.3, -0.4, -0.2, -0.2) 

A4   (0.9, 0.7, 0.2, -0.8, -0.6, -0.1)       (0.3, 0.5, 0.2, -0.5, -0.5, -0.2)        (0.5, 0.4, 0.5, -0.1, -
0.7, -0.2)         (0.4, 0.2, 0.8, -0.5, -0.5, -0.6) 
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Step 2. Calculation of the weights of the attributes 
We use normalized Hamming distance and obtain the weights of the attributes by maximizing 

deviation method as follows: 

w1 = 0.2585, w2 = 0.2552, w3 = 0.2278, w4 = 0.2585, where 


4

1j jw = 1. 

Step 3. Construction of weighted decision matrix 
The weighted decision matrix is obtained by multiplying weights to decision matrix as given 

below (see Table 2) 

Table 2. The weighted decision matrix  

         C1                                              C2                                             C3                                       

A1   (0.164, 0.912, 0.66, -0.912, -0.732, -0.211)     (0.122, 0.791, 0.838, -0.913, -0.945, -0.122)     
(0.24, 0.922, 0.854, -0.95, -0.922, -0.208)      

A2   (0.488, 0.912, 0.836, -0.912, -0.912, -0.027)   (0.264, 0.874, 0.945, -0.913, -0.838, -0.026)     
(0.408, 0.812, 0.89, -0.592, -0.922, -0.162)     A3   (0.088, 0.789, 0.66, -0.876, -0.732, -0.267)     
(0.055, 0.663, 0.663, -0.791, -0.913, -0.122)      (0.408, 0.854, 0.854, -0.89, -0.854, -0.055)      

A4   (0.448, 0.912, 0.66, -0.944, -0.876, -0.027)     (0.087, 0.838, 0.663, -0.838, -0.838, -0.055)      
(0.146, 0.812, 0.854, -0.592, -0.922, -0.055)      

______________________________ 
    C4 

______________________________ 
A1   (0.027, 0.836, 0.912, -0.836, -0.66, -0.337) 
A2   (0.164, 0.66, 0.912, -0.836, -0.551, -0.444) 
A3   (0.267, 0.836, 0.088, -0.789, -0.66, -0.055) 
A4   (0.124, 0.66, 0.944, -0.836, -0.836, -0.208) 

_______________________________ 

 
Step 4. Recognize the BNRPIS and BNRNIS 

The BNRPIS ( w
BPRPISR ) and BNRNIS ( w

BPRNISR ) are obtained from the weighted decision matrix 
as follows: 

w
BPRPISR = < (0.448, 0.789, 0.66, -0.944, -0.732, -0.027); (0.264, 0.663, 0.663, -0.913, -0.838, -

0.026); (0.408, 0.812, 0.854, -0.89, -0.854, -0.055); (0.267, 0.66, 0.88, -0.836, -0.551, -0.055) >;  
w

BPRNISR = < (0.088, 0.912, 0.836, -0.876, -0.912, -0.267); (0.055, 0.878, 0.945, -0.791, -0.945, -
0.122); (0.146, 0.922, 0.89, -0.592, -0.922, -0.208); (0.027, 0.836, 0.912, -0.789, -0.836, -0.444) 
>. 

Step 5. Distance measures of each alternative from the BNRPISs and BNRNISs  
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The normalized Euclidean distances of each alternative from the BNRPISs are computed as 
follows: 

1
NEuc = 0.0479, 2

NEuc = 0.0161, 3
NEuc = 0.013, 4

NEuc = 0.0469. 

Similarly, the normalized Euclidean distances of each alternative from the BNRNISs are 
computed as follows: 

1
NEuc = 0.0123, 2

NEuc = 0.0247, 3
NEuc = 0.0548, 4

NEuc = 0.0192. 

Step 6. Calculation of the relative closeness coefficient  

We determine the relative closeness co-efficient *
icc , (i = 1, 2, 3, 4) using Eq. (12). 

*
1cc = 0.2043, *

2cc = 0.6054, *
3cc = 0.8082, *

4cc = 0.2905. 

Step 7. Rank the alternatives 

The ranking order of the cars is presented according to the relative closeness coefficient as given 
below. 

A3   A2   A4  A1 
Consequently, A3 is the most preferable alternative. 

Note 1: Deli et al. [13] consider the weight vector of the attributes as w = (
2
1 ,

4
1 ,

8
1 ,

8
1 ) for 

car selection. However, if we take weight vector of the attributes as w = (
2
1 ,

4
1 ,

8
1 ,

8
1 ), then 

relative closeness co-efficient *
icc , (i = 1, 2, 3, 4) are computed as given below. 

*
1cc = 0.3746, *

2cc = 0.5761, *
3cc = 0.4716, *

4cc  = 0.6944.  

Therefore, the ranking order of the cars can be represented as follows: 

A4   A2   A3  A1 
So, A4 would be the most suitable alternative. 

5. Conclusion 

In this paper, we present a TOPSIS method for solving MADM problem with bipolar 
neutrosophic information. We define Hamming distance function and Euclidean distance function 
to determine the distance between BNNs. In the decision making situation, the rating of 
performance values of the alternatives with respect to the attributes are provided by the DM in 
terms of BNNs. The weights of the attributes are obtained by maximizing deviation method and 
we construct the weighted decision matrix. We also define BNRPIS and BNRNIS. Euclidean 
distance measure is employed to compute the distances of each alternative from BNRPISs as well 
as BNRNISs. Relative closeness coefficients are calculated to rank the alternative and to obtain 
the best alternative. Finally, the proposed method is applied to solve a car selection problem to 
verify the applicability of the proposed method and comparison with other existing method is also 
provided. 
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