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Abstract 
With respect to a combination of hesitant sets, and single-valued neutrosophic sets which are a 

special case of neutrosophic sets, the single valued neutrosophic hesitant sets (SVNHFS) have been 
proposed as a new theory set that allows the truth-membership degree, indeterminacy membership 
degree and falsity-membership degree including a collection of crisp values between zero and one, 
respectively. There is no consensus on the best way to determine the order of a sequence of single-
valued neutrosophic hesitant fuzzy elements. In this paper, we first develop an axiomatic system 
of distance and similarity measures between single-valued neutrosophic hesitant fuzzy sets and 
also propose a class of distance and similarity measures based on three basic forms such that the 
geometric distance model, the set-theoretic approach, and the matching functions. Then we utilize 
the distance measure between each alternative and ideal alternative to establish a multiple attribute 
decision making method under single-valued neutrosophic hesitant fuzzy environment. Finally, a 
numerical example of investment alternatives is provided to show the effectiveness and usefulness 
of the proposed approach. The advantages of the proposed distance measure over existing measures 
have been discussed. 
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1. Introduction 
Most of our traditional tools for formal modeling, reasoning and computing are crisp, 

deterministic and precise in character. However, there are many complicated problems in 
economics, engineering, environment, social science, medical science, etc., that involve data which 
are not always all crisp. Classical methods cannot successfully handle uncertainty, because the 
uncertainties appearing in these domains may be of various types. Zadeh (1965) introduced fuzzy 
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sets (FS) and applied them in many fields including uncertainty. As a generalization of the fuzzy 
sets, Atanassov (1986) introduced the concept of intuitionistic fuzzy set (IFS). Then Atanassov and 
Gargov (1989) extended the concept of IFS to interval-valued intuitionistic fuzzy set (IVIFS). 
Current literature has very large number of distance and similarity measures for FSs and IFSs 
(Atanassov 1986; Xuecheng 1992; Chen et al. 1995; Liu et al. 2015; Farhadinia 2014; Wang 1997; 
Szmidt and Kacprzyk 2000; Khaleie and Fasanghari 2012; Grzegorzewski 2004; Wang and Xin 
2005; Xu 2007; Hung and Yang 2007; Li 2007; Şahin 2015; Tan 2011). 

Torra and Narukawa (2009) and Torra (2010) proposed the concept of hesitant fuzzy set (HFS), 
discussed the relationship between hesitant fuzzy set and intuitionistic fuzzy set and showed that 
the envelope of hesitant fuzzy set is an intuitionistic fuzzy set. The membership degree of an 
element in hesitant fuzzy set includes a set of possible values between zero and one. Since its 
appearance, the hesitant fuzzy information has been used to solve multiple attribute decision 
making problems. Xia and Xu (2011) defined some techniques for aggregating hesitant fuzzy 
information and utilized their performances in decision making. Based on the relationship between 
HFS and IFS, they proposed the set-theoretic laws of HFSs. Xu and Xia (2011) defined a collection 
of distance measures for HFSs and generated the similarity measures associated with the proposed 
distance measures.  

Furthermore, Zhu et al. (2012) introduced dual hesitant fuzzy set (DHFS) as a generalization of 
FSs, IFSs, HFSs, and fuzzy multisets (FMSs) and presented some basic operations of DHFSs. A 
DHFS are characterized by two class of possible values, the membership degrees and 
nonmembership degrees. Therefore, DHFSs include FSs, IFSs, HFSs, and FMSs under certain 
conditions, and so they have the desirable performances and advantages of its own and appear to 
be a more favorable method than aforementioned sets because of considering much more 
information given by decision makers. Singh (2013) introduced a comprehensive family of distance 
measures and related similarity measures for DHFSs. 

As a new branch of philosophy that combines the knowledge of logics, philosophy, set theory, 
and probability, Smarandache (1999, 2005) proposed the concept of neutrosophic sets (NSs) as a 
further generalization of uncertainty modeling tools. Unlike the aforementioned sets, a 
neutrosophic set consists of three membership functions such that the truth-membership function, 
the indeterminacy-membership function and the falsity membership function. Additionally, the 
uncertainty presented here, i.e. the indeterminacy factor, is independent on the truth and falsity 
values, whereas the incorporated uncertainty is dependent on the degrees of belongingness and 
non-belongingness of existing sets. The structure of NSs is not appropriate to apply to real-life 
situations. Therefore, Wang et al. (2005, 2010) developed single-valued neutrosophic sets (SVNSs) 
and interval neutrosophic sets (INSs), which are an extension of NSs. Şahin (2014) proposed a 
neutrosophic hierarchical clustering algorithm based on relationship between SVNSs. Şahin and 
Küçük (2014) defined a subsethood measure for SVNSs and applied it in a decision making 
problem. The correlation coefficients of SVNSs as well as a decision-making method using SVNSs 
were proposed by Ye (2013). In addition, Ye (2014b) investigated the concept of simplified 
neutrosophic sets (SNSs), which can be expressed by three real numbers in the real unit interval 
[0,1], provided the set-theoretic operators of SNSs, and developed a multi criteria decision making 
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(MCDM) method based on the aggregation operators of SNSs. But, Peng et al. (2015) showed that 
some operations of Ye (2014b) may also be unrealistic in special cases, and defined the novel 
operations and aggregation operators and applied them to MCDM problems. Also, Ye (2014a) 
proposed the single valued neutrosophic cross-entropy for solving multicriteria decision making 
(MCDM) problems with single valued neutrosophic information. Broumi and Smarandache (2013) 
extended the correlation coefficient to INSs. Zhang et al. (2014) developed a MCDM method based 
on aggregation operators within an interval neutrosophic environment. Furthermore, Majumdar 
and Samanta (2014) proposed the distance and similarity measures between SVNSs. Ye (2014d) 
extended these measures to INSs as based on the relationship between similarity measures and 
distances. Liu and Wang (2014) discussed a single-valued neutrosophic normalized weighted 
Bonferroni mean (SVNNWBM) operator based on Bonferroni mean, the weighted Bonferroni 
mean (WBM), and the normalized WBM. Peng et al. (2015) introduced the multi-valued 
neutrosophic sets (MVNSs) and developed the operations of multi-valued neutrosophic numbers 
(MVNNs) based on Einstein operations. 

Recently, Ye (2015c) proposed the concept of single valued neutrosophic hesitant fuzzy set 
(SVNHFS) as a generalization of FSs, IFSs, HFSs, FMSs, and also SVNSs and discussed the basic 
operations and properties of SVNHFSs. SVNHFSs consist of three parts, first is the truth-
membership hesitancy function, second is the indeterminacy-membership hesitancy function, and 
third is the falsity-membership hesitancy function. The current sets, including FSs, IFSs, HFSs, 
FMSs, and SVNSs can be regarded as special cases of SVNHFSs. In a SVNHFS, the truth-
membership hesitancy degrees, indeterminacy-membership hesitancy degrees and falsity-
membership hesitancy degrees are represented by three sets of possible values between zero and 
one, respectively. Therefore, it is not only more general than aforementioned set but only more 
suitable for solving MADM problems due to considering much more information provided by 
decision makers. 

From above analysis, we cannot utilize the current measures for dealing with distance and 
similarity measure between SVNHFSs. Therefore, we need to develop new distance and similarity 
measures for SVNHFSs, because a SVNHFS consists of three basic membership function such that 
the truth-membership hesitancy function and indeterminacy-membership hesitancy function and 
falsity-membership hesitancy function. In this paper, we first define a compressive class of distance 
measures between SVNHFSs and then proposed the similarity measures based on the geometric 
distance model, the set-theoretic approach and the matching functions. Also, we show that the 
proposed measures satisfies the axiom definition of distance and similarity measures developed for 
SVNHFSs. Finally, we utilize the proposed distance measure to solve a MADM problem with 
single valued neutrosophic hesitant fuzzy information. The rest of this paper is organized as follows. 
In section 2, we introduce some basic concepts related to HFS, SVNS and SVNHFS, and some 
operational and theoretical laws. In Section 3, we propose a variety class of distance measures of 
SVNHFSs as a further generalization of the existing distance measure for HFSs, DHFSs, IFSs, and 
SVNSs. Based on the geometric distance model, the set-theoretic approach and the matching 
functions, we present some similarity measures between SVNHFSs. Section 4 develops a MADM 
method with single valued neutrosophic hesitant fuzzy information based on the proposed distance 
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measure for SVNHFSs. In Section 6, an illustrative example is provided to demonstrate the 
application and effectiveness of the developed method. Section 7 gives related comparative 
analysis. Finally, conclusions and future work are given in Section 8. 

2. Preliminaries 
In this subsection, we give some concepts related to NSs and SVNSs. 
2.1 Neutrosophic set 
Definition 1. (Smarandache 2005) Let 𝑋 be a universe of discourse, then a neutrosophic set is 
defined as: 

𝐴 = {〈𝑥, 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)〉: 𝑥 ∈ 𝑋},                                                             (1) 

which is characterized by a truth-membership function 𝑇𝐴: 𝑋 → ]0−, 1+[, an indeterminacy-
membership function 𝐼𝐴: 𝑋 → ]0−, 1+[and a falsity-membership function 𝐹𝐴: 𝑋 → ]0−, 1+[. 

There is not restriction on the sum of 𝑇𝐴(𝑥), 𝐼𝐴(𝑥) and 𝐹𝐴(𝑥), so 0− ≤ sup𝑇𝐴(𝑥) + sup 𝐼𝐴(𝑥) +
sup𝐹𝐴(𝑥) ≤ 3

+.  

In the following, we adopt the representations 𝑡𝐴(𝑥), 𝒾𝐴(𝑥) and 𝑓𝐴(𝑥) instead of 𝑇𝐴(𝑥), 𝐼𝐴(𝑥) and 
𝐹𝐴(𝑥), respectively. 
Wang et al. (2010) defined the single valued neutrosophic set which is an instance of 
neutrosophic set. 

2.2.Single valued neutrosophic sets 
Definition 2. Wang et al. (2010) Let 𝑋 be a universe of discourse, then a single valued 
neutrosophic set is defined as: 

𝐴 = {〈𝑥, 𝑡𝐴(𝑥), 𝒾𝐴(𝑥), 𝑓𝐴(𝑥)〉: 𝑥 ∈ 𝑋},                                                         (2) 

where 𝑡𝐴: 𝑋 → [0,1], 𝒾𝐴: 𝑋 → [0,1] and 𝑓𝐴: 𝑋 → [0,1] with 0 ≤ 𝑡𝐴(𝑥) + 𝒾𝐴(𝑥) + 𝑓𝐴(𝑥) ≤ 3 for all 
𝑥 ∈ 𝑋. The values 𝑡𝐴(𝑥), 𝒾(𝑥) and 𝑓𝐴(𝑥) denote the truth-membership degree, the indeterminacy-
membership degree and the falsity membership degree of 𝑥 to 𝐴, respectively. 
2.3.Hesitant fuzzy sets 
Definition 3. (Torra 2010) A hesitant fuzzy set 𝑀 on 𝑋 is defined in terms of a function ℎ𝑀 when 
applied to 𝑋, which returns a finite subset of [0,1], i.e.,  

𝑀 = {〈𝑥, ℎ𝑀(𝑥)〉: 𝑥 ∈ 𝑋},                                                                              (3) 

where ℎ𝑀(𝑥) is a set of some different values in [0,1], representing the possible membership 
degrees of the element 𝑥 ∈ 𝑋 to 𝑀. 
2.4.Single-valued neutrosophic hesitant sets 
Definition 4. (Ye 2014c) Let 𝑋 be a fixed set, then a single-valued neutrosophic hesitant fuzzy 
set 𝐴 on 𝑋 is defined as,  

𝐴 = {〈𝑥, (𝑡̃𝐴(𝑥), 𝒾̃𝐴(𝑥), 𝑓𝐴(𝑥))〉: 𝑥 ∈ 𝑋}                                                              (4) 

in which 𝑡̃𝐴(𝑥), 𝒾̃𝐴(𝑥), and 𝑓𝐴(𝑥) are  three sets of some different values in [0,1], denoting the 
truth-membership hesitant degrees, indeterminacy-membership hesitant degrees, and falsity-
membership hesitant degrees of the element 𝑥 ∈ 𝑋 to 𝐴, respectively, with the conditions 0 ≤
𝛾, 𝛿, 𝜂 ≤ 1 and 0 ≤ 𝛾+ + 𝛿+ + 𝜂+ ≤ 3, where 𝛾 ∈ 𝑡̃𝐴(𝑥), 𝛿 ∈ 𝒾̃(𝑥), 𝜂 ∈ 𝑓𝐴(𝑥), 𝛾+ ∈ 𝑡̃𝐴+(𝑥) =
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⋃ max{𝛾}𝛾∈𝑡̃𝐴(𝑥) , 𝛿+ ∈ 𝒾̃𝐴+(𝑥) = ⋃ max{𝛿}𝛿∈𝒾̃𝐴(𝑥) , and 𝜂+ ∈ 𝑓𝐴+(𝑥) = ⋃ max{𝜂}𝜂∈𝑓̃𝐴(𝑥)
 for 𝑥 ∈

𝑋. 
For convenience, the three tuple 𝐴 =  { (𝑡̃𝐴(𝑥), 𝒾̃𝐴(𝑥), 𝑓𝐴(𝑥))} is called a single-valued 
neutrosophic hesitant fuzzy element (SVNHFE) or a triple hesitant fuzzy element, which is 
denoted by the simplified symbol 𝐴 = { (𝑡̃𝐴, 𝒾̃𝐴, 𝑓𝐴)}.  

Now, we give the following definitions to propose the distance and similarity measures between 
SVNHFSs. 
Definition 5 Let 𝐴, 𝐵 and 𝐶 be three SVNHSs on 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛}, then the distance measure 
between 𝐴 and 𝐵 is defined as 𝑑̃(𝐴, 𝐵), which satisfies the following properties: 

(1) 0 ≤ 𝑑̃(𝐴, 𝐵) ≤ 1; 
(2) 𝑑̃(𝐴, 𝐵) = 0 if and only if 𝐴 = 𝐵; 
(3) 𝑑̃(𝐴, 𝐵) = 𝑑̃(𝐵, 𝐴). 
(4) 𝑑̃(𝐴, 𝐵) ≤ 𝑑̃(𝐴, 𝐶) and 𝑑̃(𝐵, 𝐶) ≤ 𝑑̃(𝐴, 𝐶), if 𝐴 ⊆ 𝐵 ⊆ 𝐶. 

Definition 6. Let 𝐴, 𝐵 and 𝐶 be three SVNHSs on 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛}, then the similarity 
measure between 𝐴 and 𝐵 is defined as 𝑠̃(𝐴, 𝐵), which satisfies the following properties: 

(1) 0 ≤ 𝑠̃(𝐴, 𝐵) ≤ 1; 
(2) 𝑠̃(𝐴, 𝐵) = 1 if and only if 𝐴 = 𝐵; 
(3) 𝑠̃(𝐴, 𝐵) = 𝑠̃(𝐵, 𝐴). 
(4) 𝑠̃(𝐴, 𝐵) ≥ 𝑠̃(𝐴, 𝐶) and 𝑠̃(𝐵, 𝐶) ≥ 𝑠̃(𝐴, 𝐶), if 𝐴 ⊆ 𝐵 ⊆ 𝐶. 

From Definitions 5 and 6, it is noted that 𝑠̃(𝐴, 𝐵) = 1 − 𝑑̃(𝐴, 𝐵). 
Similar to HFS, in most of the cases, the number of values in different SVNHFEs might be different, 
i.e.,  𝑙𝑡̃𝐴(𝑥𝑖) ≠  𝑙𝑡̃𝐵(𝑥𝑖) , 𝑙𝒾̃𝐴(𝑥𝑖) ≠  𝑙𝒾̃𝐵(𝑥𝑖)  and 𝑙𝑓̃𝐴(𝑥𝑖) ≠  𝑙𝑓̃𝐵(𝑥𝑖) . Let  𝑙𝑡̃(𝑥𝑖) =

max{𝑙𝑡̃𝐴(𝑥𝑖), 𝑙𝑡̃𝐵(𝑥𝑖)}, 𝑙𝒾̃(𝑥𝑖) = max{𝑙𝒾̃𝐴(𝑥𝑖), 𝑙𝒾̃𝐵(𝑥𝑖)} and 𝑙𝑓̃(𝑥𝑖) = max{𝑙𝑓̃𝐴(𝑥𝑖), 𝑙𝑓̃𝐵(𝑥𝑖)} for each 
𝑥𝑖 ∈ 𝑋. We can make them have the same number of elements through adding some elements to 
the SVNHFE which has less number of elements. The selection of this operation mainly depends 
on the decision makers’ risk preferences. Pessimists expect unfavorable outcomes and may add the 
minimum of the truth-membership degree and maximum value of indeterminacy-membership 
degree and falsity-membership degree. Optimists anticipate desirable outcomes and may add the 
maximum of the truth-membership degree and minimum value of indeterminacy-membership 
degree and falsity-membership degree That is, according to the pessimistic principle, if 𝑙𝑡̃𝐴(𝑥𝑖) <
𝑙𝑡̃𝐵(𝑥𝑖), then the least value of 𝑡̃𝐴(𝑥𝑖) or 𝑡̃𝐵(𝑥𝑖) will be added to 𝑡̃𝐴(𝑥𝑖). Moreover, if 𝑙𝒾̃𝐴(𝑥𝑖) <
 𝑙𝒾̃𝐵(𝑥𝑖), then the largest value of 𝑙𝑡̃𝐴(𝑥𝑖) or 𝑙𝑡̃𝐵(𝑥𝑖) will be inserted in 𝒾̃𝐴(𝑥𝑖) for 𝑥𝑖 ∈ 𝑋. Similarity, 
if 𝑙𝑓̃𝐴(𝑥𝑖) <  𝑙𝑓̃𝐵(𝑥𝑖), then the largest value of 𝑙𝑓̃𝐴(𝑥𝑖) or 𝑙𝑓̃𝐵(𝑥𝑖) will be inserted in 𝑓𝐴(𝑥𝑖) for 𝑥𝑖 ∈
𝑋.  

3. Some distance measures for SVNHFSs 
In this section, we give some distance measures between two SVNHFSs. 

Based on the geometric distance model for SVNHFSs, we define the following distance 
measures.  

(1) Generalized single valued neutrosophic hesitant normalized distance (GN), for 𝜆 > 0; 
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𝑑̃𝐺𝑁 = (
1

3𝑛
∑(

1

𝑙𝑡̃(𝑥𝑖)
∑ |𝑡̃𝐴

𝜎(𝑗)(𝑥𝑖) − 𝑡̃𝐵
𝜎(𝑗)(𝑥𝑖)|

𝜆
𝑙𝑡̃(𝑥𝑖)

𝑗=1

+
1

𝑙𝒾̃(𝑥𝑖)
∑ |𝒾̃𝐴

𝜎(𝑗)(𝑥𝑖) − 𝒾̃𝐵
𝜎(𝑗)(𝑥𝑖)|

𝜆
𝑙𝒾̃(𝑥𝑖)

𝑗=1

𝑛

𝑖=1

+
1

𝑙𝑓(𝑥𝑖)
∑ |𝑓𝐴

𝜎(𝑗)(𝑥𝑖)

𝑙𝑓̃(𝑥𝑖)

𝑗=1

− 𝑓𝐵
𝜎(𝑗)(𝑥𝑖)|

𝜆

))

1
𝜆

,                                                                                                              (5) 

where 𝑡̃𝐴
𝜎(𝑗)(𝑥𝑖), 𝑡̃𝐵

𝜎(𝑗)(𝑥𝑖); 𝒾̃𝐴
𝜎(𝑗)(𝑥𝑖), 𝒾̃𝐵

𝜎(𝑗)(𝑥𝑖) and 𝑓𝐴
𝜎(𝑗)(𝑥𝑖), 𝑓𝐵

𝜎(𝑗)(𝑥𝑖) are the 𝑗th largest values 
of truth-membership hesitant degrees, indeterminacy-membership hesitant degrees, and falsity-
membership hesitant degrees of 𝐴 and 𝐵, respectively. 

i. If λ = 1, Eq. (5) reduces a single valued neutrosophic hesitant normalized Hamming 
distance (NH): 

𝑑̃𝑁𝐻 =
1

3𝑛
∑(

1

𝑙𝑡̃(𝑥𝑖)
∑ |𝑡̃𝐴

𝜎(𝑗)(𝑥𝑖) − 𝑡̃𝐵
𝜎(𝑗)(𝑥𝑖)|

𝑙𝑡̃(𝑥𝑖)

𝑗=1

+
1

𝑙𝒾̃(𝑥𝑖)
∑ |𝒾̃𝐴

𝜎(𝑗)(𝑥𝑖) − 𝒾̃𝐵
𝜎(𝑗)(𝑥𝑖)|

𝑙𝒾̃(𝑥𝑖)

𝑗=1

𝑛

𝑖=1

+
1

𝑙𝑓(𝑥𝑖)
∑ |𝑓𝐴

𝜎(𝑗)(𝑥𝑖)

𝑙𝑓̃(𝑥𝑖)

𝑗=1

− 𝑓𝐵
𝜎(𝑗)(𝑥𝑖)|).                                                                                                             (6) 

ii. If λ = 2, Eq. (5) reduces a single valued neutrosophic hesitant normalized Euclidean 
distance (NE) 

𝑑̃𝑁𝐸 = (
1

3𝑛
∑(

1

𝑙𝑡̃(𝑥𝑖)
∑ |𝑡̃𝐴

𝜎(𝑗)(𝑥𝑖) − 𝑡̃𝐵
𝜎(𝑗)(𝑥𝑖)|

2
𝑙𝑡̃(𝑥𝑖)

𝑗=1

+
1

𝑙𝒾̃(𝑥𝑖)
∑ |𝒾̃𝐴

𝜎(𝑗)(𝑥𝑖) − 𝒾̃𝐵
𝜎(𝑗)(𝑥𝑖)|

2
𝑙𝒾̃(𝑥𝑖)

𝑗=1

𝑛

𝑖=1

+
1

𝑙𝑓(𝑥𝑖)
∑ |𝑓𝐴

𝜎(𝑗)(𝑥𝑖)

𝑙𝑓̃(𝑥𝑖)

𝑗=1

− 𝑓𝐵
𝜎(𝑗)(𝑥𝑖)|

2

))

1
2

.                                                                                                     (7) 

Equation (5) can be viewed as a most generalized case of distance measures. We can see that if 
there is no indeterminacy in SVNHFS, then the indeterminacy-membership value of SVNHFS will 
disappear, hence, Eqs. (5), (6), and (7) are reduced to a generalized dual hesitant normalized 
distance, a dual hesitant normalized Hamming distance and a dual hesitant normalized Euclidean 
distance, respectively (i.e., the distance measures proposed by Singh 2013). In addition, if there is 
no both indeterminacy and nonmembership in SVNHFS, then both indeterminacy-membership 
value and falsity-membership value of SVNHFS will disappear, hence, Eqs. (5), (6), and (7) are 
reduced to a generalized hesitant normalized distance, a hesitant normalized Hamming distance 
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and a hesitant normalized Euclidean distance, respectively (i.e., the distance measure proposed by 
Xu and Xia 2011). 
If we apply the Hausdorff metric to the distance measure, we obtain that 

(2) Generalized single valued neutrosophic hesitant normalized Hausdorff distance (GNH): 

𝑑̃𝐺𝑁𝐻 = (
1

3𝑛
∑max

𝑗
(|𝑡̃𝐴

𝜎(𝑗)(𝑥𝑖) − 𝑡̃𝐵
𝜎(𝑗)(𝑥𝑖)|

𝜆

, |𝒾̃𝐴
𝜎(𝑗)(𝑥𝑖) − 𝒾̃𝐵

𝜎(𝑗)(𝑥𝑖)|
𝜆

, |𝑓𝐴
𝜎(𝑗)(𝑥𝑖) − 𝑓𝐵

𝜎(𝑗)(𝑥𝑖)|
𝜆

)

𝑛

𝑖=1

)

1
𝜆

.   (8) 

i. If 𝜆 =  1, Eq. (6) reduces a single valued neutrosophic hesitant normalized Hamming–
Hausdorff distance (NHH): 

𝑑̃𝑁𝐻𝐻 = (
1

3𝑛
∑max

𝑗
(|𝑡̃𝐴

𝜎(𝑗)(𝑥𝑖) − 𝑡̃𝐵
𝜎(𝑗)(𝑥𝑖)| , |𝒾̃𝐴

𝜎(𝑗)(𝑥𝑖) − 𝒾̃𝐵
𝜎(𝑗)(𝑥𝑖)| , |𝑓𝐴

𝜎(𝑗)(𝑥𝑖) − 𝑓𝐵
𝜎(𝑗)(𝑥𝑖)|)

𝑛

𝑖=1

) .          (9) 

ii. If 𝜆 =  2, Eq. (6) reduces a single valued neutrosophic hesitant normalized Euclidean–
Hausdorff distance (NEH): 

𝑑̃𝑁𝐸𝐻 = (
1

3𝑛
∑max

𝑗
(|𝑡̃𝐴

𝜎(𝑗)(𝑥𝑖) − 𝑡̃𝐵
𝜎(𝑗)(𝑥𝑖)|

2

, |𝒾̃𝐴
𝜎(𝑗)(𝑥𝑖) − 𝒾̃𝐵

𝜎(𝑗)(𝑥𝑖)|
2

, |𝑓𝐴
𝜎(𝑗)(𝑥𝑖)

𝑛

𝑖=1

− 𝑓𝐵
𝜎(𝑗)(𝑥𝑖)|

2

))

1
2

.                                                                                                                        (10) 

In many practical situations, the weight of each element 𝑥𝑖 ∈ 𝑋 should be taken into account. For 
instance, in MADM problems, the considered attribute usually has different importance, thus needs 
to be assigned with different weights. Since in SVNHFSs, we have three types of degree, one is 
truth-membership degree, other is indeterminacy-membership and final is falsity-membership 
degree. Since three degrees may have different importance, according to decision maker, different 
weights can be assigned to each element in each degree. Assume that the weights 𝜔 =
(𝜔1, 𝜔2, … 𝜔𝑛)

𝑇 with 𝜔𝑗 ∈ [0,1], ∑ 𝜔𝑖
𝑛
𝑖=1 = 1;  𝜓 = (𝜓1, 𝜓2, … 𝜓𝑛)𝑇 with 𝜓𝑖 ∈ [0,1], ∑ 𝜓𝑖

𝑛
𝑖=1 =

1 and 𝜙 = (𝜙1, 𝜙2, …𝜙𝑛)𝑇  with 𝜙𝑖 ∈ [0,1], ∑ 𝜙𝑖
𝑛
𝑖=1 = 1  denote the weights assigned to truth-

membership degree, indeterminacy-membership degree and falsity-membership degree, 
respectively, of SVNHFS.  

Now, we present the following weighted distance measures for SVNHFSs. 

(3) Generalized single valued neutrosophic hesitant weighted distance (GW): 

𝑑̃𝐺𝑊 =

(

 
 1

3
∑

(

 
 
𝜔𝑖 (

1

𝑙𝑡̃(𝑥𝑖)
∑ |𝑡̃𝐴

𝜎(𝑗)(𝑥𝑖) − 𝑡̃𝐵
𝜎(𝑗)(𝑥𝑖)|

𝜆
𝑙𝑡̃(𝑥𝑖)

𝑗=1

) + 𝜓𝑖 (
1

𝑙𝒾̃(𝑥𝑖)
∑ |𝒾̃𝐴

𝜎(𝑗)(𝑥𝑖) − 𝒾̃𝐵
𝜎(𝑗)(𝑥𝑖)|

𝜆
𝑙𝒾̃(𝑥𝑖)

𝑗=1

)

𝑛

𝑖=1

+𝜙𝑖 (
1

𝑙𝑓(𝑥𝑖)
∑ |𝑓𝐴

𝜎(𝑗)(𝑥𝑖)

𝑙𝑓̃(𝑥𝑖)

𝑗=1

− 𝑓𝐵
𝜎(𝑗)(𝑥𝑖)|

𝜆

)

)

 
 

)

 
 

1
𝜆

.                                                                                      (11) 
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i. If 𝜆 =  1, then we get a single valued neutrosophic hesitant weighted Hamming distance 
(WH): 

𝑑̃𝑊𝐻 =
1

3
∑

(

 
 
𝜔𝑗 (

1

𝑙𝑡̃(𝑥𝑖)
∑ |𝑡̃𝐴

𝜎(𝑗)(𝑥𝑖) − 𝑡̃𝐵
𝜎(𝑗)(𝑥𝑖)|

𝑙𝑡̃(𝑥𝑖)

𝑗=1

) + 𝜓𝑗 (
1

𝑙𝒾̃(𝑥𝑖)
∑ |𝒾̃𝐴

𝜎(𝑗)(𝑥𝑖) − 𝒾̃𝐵
𝜎(𝑗)(𝑥𝑖)|

𝑙𝒾̃(𝑥𝑖)

𝑗=1

)

𝑛

𝑖=1

+𝜙𝑗 (
1

𝑙𝑓(𝑥𝑖)
∑ |𝑓𝐴

𝜎(𝑗)(𝑥𝑖)

𝑙𝑓̃(𝑥𝑖)

𝑗=1

− 𝑓𝐵
𝜎(𝑗)(𝑥𝑖)|)

)

 
 
.                                                                                               (12) 

ii. If  𝜆 =  2, then we get a single valued neutrosophic hesitant weighted Euclidean 
distance (WE): 

𝑑̃𝑊𝐸 =

(

 
 1

3
∑

(

 
 
𝜔𝑗 (

1

𝑙𝑡̃(𝑥𝑖)
∑ |𝑡̃𝐴

𝜎(𝑗)(𝑥𝑖) − 𝑡̃𝐵
𝜎(𝑗)(𝑥𝑖)|

2
𝑙𝑡̃(𝑥𝑖)

𝑗=1

) + 𝜓𝑗 (
1

𝑙𝒾̃(𝑥𝑖)
∑ |𝒾̃𝐴

𝜎(𝑗)(𝑥𝑖) − 𝒾̃𝐵
𝜎(𝑗)(𝑥𝑖)|

2
𝑙𝒾̃(𝑥𝑖)

𝑗=1

)

𝑛

𝑖=1

+ 𝜙𝑗 (
1

𝑙𝑓(𝑥𝑖)
∑ |𝑓𝐴

𝜎(𝑗)(𝑥𝑖)

𝑙𝑓̃(𝑥𝑖)

𝑗=1

− 𝑓𝐵
𝜎(𝑗)(𝑥𝑖)|

2

)

)

 
 

)

 
 

1
2

.                                                                                      (13) 

(4) Generalized single valued neutrosophic hesitant weighted Hausdorff distance (GWH), for 
𝜆 > 0; 

𝑑̃𝐺𝑊𝐻 = (
1

3
∑max

𝑗
(𝜔𝑖 |𝑡̃𝐴

𝜎(𝑗)(𝑥𝑖) − 𝑡̃𝐵
𝜎(𝑗)(𝑥𝑖)|

𝜆

, 𝜓𝑗 |𝒾̃𝐴
𝜎(𝑗)(𝑥𝑖) − 𝒾̃𝐵

𝜎(𝑗)(𝑥𝑖)|
𝜆

, 𝜙𝑗 |𝑓𝐴
𝜎(𝑗)(𝑥𝑖)

𝑛

𝑖=1

− 𝑓𝐵
𝜎(𝑗)(𝑥𝑖)|

𝜆

))

1
𝜆

.   

(14) 
i.  𝜆 =  1, then we get a single valued neutrosophic hesitant weighted Hamming–

Hausdorff distance (WHH): 

𝑑̃𝑊𝐻𝐻 = (
1

3
∑max

𝑗
(𝜔𝑖 |𝑡̃𝐴

𝜎(𝑗)(𝑥𝑖) − 𝑡̃𝐵
𝜎(𝑗)(𝑥𝑖)| , 𝜓𝑖 |𝒾̃𝐴

𝜎(𝑗)(𝑥𝑖) − 𝒾̃𝐵
𝜎(𝑗)(𝑥𝑖)| , 𝜙𝑖 |𝑓𝐴

𝜎(𝑗)(𝑥𝑖) − 𝑓𝐵
𝜎(𝑗)(𝑥𝑖)|)

𝑛

𝑖=1

).  

(15) 
ii. 𝜆 =  2, then we get a single valued neutrosophic hesitant weighted Euclidean–

Hausdorff distance (WEH): 
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𝑑̃𝑊𝐸𝐻 = (
1

3
∑max

𝑗
(𝜔𝑖 (|𝑡̃𝐴

𝜎(𝑗)(𝑥𝑖) − 𝑡̃𝐵
𝜎(𝑗)(𝑥𝑖)|

2

) ,𝜓𝑖 (|𝒾̃𝐴
𝜎(𝑗)(𝑥𝑖) − 𝒾̃𝐵

𝜎(𝑗)(𝑥𝑖)|
2

) , 𝜙𝑖 (|𝑓𝐴
𝜎(𝑗)(𝑥𝑖)

𝑛

𝑖=1

− 𝑓𝐵
𝜎(𝑗)(𝑥𝑖)|

2

)))

1
2

.                                                                                   (16) 

Next, we shall show that the proposed distance measures satisfy axiom definition of distance 
measure. 
Theorem 7. Let 𝐴, 𝐵 and 𝐶 be any SVNHFSs, then 𝑑̃𝑁𝐻(𝐴, 𝐵) is a distance measure. 

Proof. We should prove that 𝑑̃𝑁𝐻(𝐴, 𝐵) satisfies axioms (D1)-(D4). 

(D1) Suppose that 𝐴 and 𝐵 are two SVNHFSs with 𝑛 attributes, then  
|𝑡̃𝐴
𝜎(𝑗)(𝑥𝑖) − 𝑡̃𝐵

𝜎(𝑗)(𝑥𝑖)| ≥ 0, |𝒾̃𝐴
𝜎(𝑗)(𝑥𝑖) − 𝒾̃𝐵

𝜎(𝑗)(𝑥𝑖)| ≥ 0 and |𝑓𝐴
𝜎(𝑗)(𝑥𝑖) − 𝑓𝐵

𝜎(𝑗)(𝑥𝑖)| ≥ 0  

and so 
1

𝑙𝑡̃(𝑥𝑖)
∑ |𝑡̃𝐴

𝜎(𝑗)(𝑥𝑖) − 𝑡̃𝐵
𝜎(𝑗)(𝑥𝑖)|

𝑙𝑡̃(𝑥𝑖)

𝑗=1

≥ 0,

1

𝑙𝒾̃(𝑥𝑖)
∑ |𝒾̃𝐴

𝜎(𝑗)(𝑥𝑖) − 𝒾̃𝐵
𝜎(𝑗)(𝑥𝑖)| ≥ 0

𝑙𝒾̃(𝑥𝑖)

𝑗=1

and 
1

𝑙𝑓(𝑥𝑖)
∑ |𝑓𝐴

𝜎(𝑗)(𝑥𝑖) − 𝑓𝐵
𝜎(𝑗)(𝑥𝑖)|

𝑙𝑓̃(𝑥𝑖)

𝑗=1

≥ 0. 

Thus, we have that 

1

3𝑛
∑(

1

𝑙𝑡̃(𝑥𝑖)
∑ |𝑡̃𝐴

𝜎(𝑗)(𝑥𝑖) − 𝑡̃𝐵
𝜎(𝑗)(𝑥𝑖)|

𝑙𝑡̃(𝑥𝑖)

𝑗=1

+
1

𝑙𝒾̃(𝑥𝑖)
∑ |𝒾̃𝐴

𝜎(𝑗)(𝑥𝑖) − 𝒾̃𝐵
𝜎(𝑗)(𝑥𝑖)|

𝑙𝒾̃(𝑥𝑖)

𝑗=1

𝑛

𝑖=1

+
1

𝑙𝑓(𝑥𝑖)
∑ |𝑓𝐴

𝜎(𝑗)(𝑥𝑖) − 𝑓𝐵
𝜎(𝑗)(𝑥𝑖)|

𝑙𝑓̃(𝑥𝑖)

𝑗=1

) ≥ 0 

and 𝑑̃𝑁𝐻(𝐴, 𝐵) ≥ 0. 

On the other hand, since 

|𝑡̃𝐴
𝜎(𝑗)(𝑥𝑖) − 𝑡̃𝐵

𝜎(𝑗)(𝑥𝑖)| ≤ 1, |𝒾̃𝐴
𝜎(𝑗)(𝑥𝑖) − 𝒾̃𝐵

𝜎(𝑗)(𝑥𝑖)| ≤ 1 and |𝒾̃𝐴
𝜎(𝑗)(𝑥𝑖) − 𝒾̃𝐵

𝜎(𝑗)(𝑥𝑖)| ≤ 1,  

we get 

1

3𝑛
∑(

1

𝑙𝑡̃(𝑥𝑖)
∑ |𝑡̃𝐴

𝜎(𝑗)(𝑥𝑖) − 𝑡̃𝐵
𝜎(𝑗)(𝑥𝑖)|

𝑙𝑡̃(𝑥𝑖)

𝑗=1

+
1

𝑙𝒾̃(𝑥𝑖)
∑ |𝒾̃𝐴

𝜎(𝑗)(𝑥𝑖) − 𝒾̃𝐵
𝜎(𝑗)(𝑥𝑖)|

𝑙𝒾̃(𝑥𝑖)

𝑗=1

𝑛

𝑖=1

+
1

𝑙𝑓(𝑥𝑖)
∑ |𝑓𝐴

𝜎(𝑗)(𝑥𝑖) − 𝑓𝐵
𝜎(𝑗)(𝑥𝑖)|

𝑙𝑓̃(𝑥𝑖)

𝑗=1

) ≤ 1 

and so 𝑑̃𝑁𝐻(𝐴, 𝐵) ≤ 1.  

Then it implies that 0 ≤ 𝑑̃𝑁𝐻(𝐴, 𝐵) ≤ 1. 
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D2) 

𝑑̃𝑁𝐻(𝐴, 𝐵) =
1

3𝑛
∑(

1

𝑙𝑡̃(𝑥𝑖)
∑ |𝑡̃𝐴

𝜎(𝑗)(𝑥𝑖) − 𝑡̃𝐵
𝜎(𝑗)(𝑥𝑖)|

𝑙𝑡̃(𝑥𝑖)

𝑗=1

+
1

𝑙𝒾̃(𝑥𝑖)
∑ |𝒾̃𝐴

𝜎(𝑗)(𝑥𝑖) − 𝒾̃𝐵
𝜎(𝑗)(𝑥𝑖)|

𝑙𝒾̃(𝑥𝑖)

𝑗=1

𝑛

𝑖=1

+
1

𝑙𝑓(𝑥𝑖)
∑ |𝑓𝐴

𝜎(𝑗)(𝑥𝑖) − 𝑓𝐵
𝜎(𝑗)(𝑥𝑖)|

𝑙𝑓̃(𝑥𝑖)

𝑗=1

) 

=
1

3𝑛
∑(

1

𝑙𝑡̃(𝑥𝑖)
∑ |𝑡̃𝐵

𝜎(𝑗)(𝑥𝑖) − 𝑡̃𝐴
𝜎(𝑗)(𝑥𝑖)|

𝑙𝑡̃(𝑥𝑖)

𝑗=1

+
1

𝑙𝒾̃(𝑥𝑖)
∑ |𝒾̃𝐵

𝜎(𝑗)(𝑥𝑖) − 𝒾̃𝐴
𝜎(𝑗)(𝑥𝑖)|

𝑙𝒾̃(𝑥𝑖)

𝑗=1

𝑛

𝑖=1

+
1

𝑙𝑓(𝑥𝑖)
∑ |𝑓𝐵

𝜎(𝑗)(𝑥𝑖) − 𝑓𝐴
𝜎(𝑗)(𝑥𝑖)|

𝑙𝑓̃(𝑥𝑖)

𝑗=1

) 

= 𝑑̃𝑁𝐻(𝐵, 𝐴). 

(D3) Consider 𝐴 = 𝐵, then 

𝐴 = 𝐵 ⇔
1

𝑙𝑡̃(𝑥𝑖)
∑ 𝑡̃𝐴

𝜎(𝑗)(𝑥𝑖)

𝑙𝑡̃(𝑥𝑖)

𝑗=1

+
1

𝑙𝒾̃(𝑥𝑖)
∑ 𝒾̃𝐴

𝜎(𝑗)(𝑥𝑖)

𝑙𝒾̃(𝑥𝑖)

𝑗=1

+
1

𝑙𝑓(𝑥𝑖)
∑ 𝑓𝐴

𝜎(𝑗)(𝑥𝑖)

𝑙𝑓̃(𝑥𝑖)

𝑗=1

 

=
1

𝑙𝑡̃(𝑥𝑖)
∑ 𝑡̃𝐵

𝜎(𝑗)(𝑥𝑖)

𝑙𝑡̃(𝑥𝑖)

𝑗=1

+
1

𝑙𝒾̃(𝑥𝑖)
∑ 𝒾̃𝐵

𝜎(𝑗)(𝑥𝑖)

𝑙𝒾̃(𝑥𝑖)

𝑗=1

+
1

𝑙𝑓(𝑥𝑖)
∑ 𝑓𝐵

𝜎(𝑗)(𝑥𝑖)

𝑙𝑓̃(𝑥𝑖)

𝑗=1

 

⇔
1

𝑙𝑡̃(𝑥𝑖)
∑ |𝑡̃𝐴

𝜎(𝑗)(𝑥𝑖) − 𝑡̃𝐵
𝜎(𝑗)(𝑥𝑖)|

𝑙𝑡̃(𝑥𝑖)

𝑗=1

+
1

𝑙𝒾̃(𝑥𝑖)
∑ |𝒾̃𝐴

𝜎(𝑗)(𝑥𝑖) − 𝒾̃𝐵
𝜎(𝑗)(𝑥𝑖)|

𝑙𝒾̃(𝑥𝑖)

𝑗=1

+
1

𝑙𝑓(𝑥𝑖)
∑ |𝑓𝐴

𝜎(𝑗)(𝑥𝑖) − 𝑓𝐵
𝜎(𝑗)(𝑥𝑖)|

𝑙𝑓̃(𝑥𝑖)

𝑗=1

= 0 

⇔
1

3𝑛
∑(

1

𝑙𝑡̃(𝑥𝑖)
∑ |𝑡̃𝐵

𝜎(𝑗)(𝑥𝑖) − 𝑡̃𝐴
𝜎(𝑗)(𝑥𝑖)|

𝑙𝑡̃(𝑥𝑖)

𝑗=1

+
1

𝑙𝒾̃(𝑥𝑖)
∑ |𝒾̃𝐵

𝜎(𝑗)(𝑥𝑖) − 𝒾̃𝐴
𝜎(𝑗)(𝑥𝑖)|

𝑙𝒾̃(𝑥𝑖)

𝑗=1

𝑛

𝑖=1

+
1

𝑙𝑓(𝑥𝑖)
∑ |𝑓𝐵

𝜎(𝑗)(𝑥𝑖) − 𝑓𝐴
𝜎(𝑗)(𝑥𝑖)|

𝑙𝑓̃(𝑥𝑖)

𝑗=1

) = 0 

⇔ 𝑑̃𝑁𝐻(𝐴, 𝐵) = 0. 

(D4) Since 𝐴 ⊆ 𝐵 ⊆ 𝐶, we have  

1

𝑙𝑡̃(𝑥𝑖)
∑ 𝑡̃𝐴

𝜎(𝑗)(𝑥𝑖)

𝑙𝑡̃(𝑥𝑖)

𝑗=1

≤
1

𝑙𝑡̃(𝑥𝑖)
∑ 𝑡̃𝐵

𝜎(𝑗)(𝑥𝑖)

𝑙𝑡̃(𝑥𝑖)

𝑗=1

≤
1

𝑙𝑡(𝑥𝑖)
∑ 𝑡̃𝐶

𝜎(𝑗)(𝑥𝑖)

𝑙𝑡̃(𝑥𝑖)

𝑗=1

, 

1

𝑙𝒾̃(𝑥𝑖)
∑ 𝒾̃𝐶

𝜎(𝑗)(𝑥𝑖)

𝑙𝒾̃(𝑥𝑖)

𝑗=1

≤
1

𝑙𝒾̃(𝑥𝑖)
∑ 𝒾̃𝐵

𝜎(𝑗)(𝑥𝑖)

𝑙𝒾̃(𝑥𝑖)

𝑗=1

≤
1

𝑙𝒾̃(𝑥𝑖)
∑ 𝒾̃𝐴

𝜎(𝑗)(𝑥𝑖)

𝑙𝒾̃(𝑥𝑖)

𝑗=1

, 

1

𝑙𝑓(𝑥𝑖)
∑ 𝑓𝐶

𝜎(𝑗)(𝑥𝑖)

𝑙𝑓̃(𝑥𝑖)

𝑗=1

≤
1

𝑙𝑓(𝑥𝑖)
∑ 𝑓𝐵

𝜎(𝑗)(𝑥𝑖)

𝑙𝑓̃(𝑥𝑖)

𝑗=1

≤
1

𝑙𝑓(𝑥𝑖)
∑ 𝑓𝐴

𝜎(𝑗)(𝑥𝑖)

𝑙𝑓̃(𝑥𝑖)

𝑗=1

. 
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Then it follows that 

1

𝑙𝑡̃(𝑥𝑖)
∑ |𝑡̃𝐴

𝜎(𝑗)(𝑥𝑖) − 𝑡̃𝐵
𝜎(𝑗)(𝑥𝑖)|

𝑙𝑡̃(𝑥𝑖)

𝑗=1

≤
1

𝑙𝑡̃(𝑥𝑖)
∑ |𝑡̃𝐴

𝜎(𝑗)(𝑥𝑖) − 𝑡̃𝐶
𝜎(𝑗)(𝑥𝑖)|

𝑙𝑡̃(𝑥𝑖)

𝑗=1

, 

1

𝑙𝒾̃(𝑥𝑖)
∑ |𝒾̃𝐴

𝜎(𝑗)(𝑥𝑖) − 𝒾̃𝐵
𝜎(𝑗)(𝑥𝑖)|

𝑙𝒾̃(𝑥𝑖)

𝑗=1

≤
1

𝑙𝒾̃(𝑥𝑖)
∑ |𝒾̃𝐴

𝜎(𝑗)(𝑥𝑖) − 𝒾̃𝐶
𝜎(𝑗)(𝑥𝑖)|

𝑙𝒾̃(𝑥𝑖)

𝑗=1

, 

1

𝑙𝑓(𝑥𝑖)
∑ |𝑓𝐴

𝜎(𝑗)(𝑥𝑖) − 𝑓𝐵
𝜎(𝑗)(𝑥𝑖)|

𝑙𝑓̃(𝑥𝑖)

𝑗=1

≤
1

𝑙𝑓(𝑥𝑖)
∑ |𝑓𝐴

𝜎(𝑗)(𝑥𝑖) − 𝑓𝐶
𝜎(𝑗)(𝑥𝑖)|

𝑙𝑓̃(𝑥𝑖)

𝑗=1

 

and so 

𝑑̃𝑁𝐻(𝐴, 𝐵) =
1

3𝑛
∑(

1

𝑙𝑡̃(𝑥𝑖)
∑ |𝑡̃𝐴

𝜎(𝑗)(𝑥𝑖) − 𝑡̃𝐵
𝜎(𝑗)(𝑥𝑖)|

𝑙𝑡̃(𝑥𝑖)

𝑗=1

+
1

𝑙𝒾̃(𝑥𝑖)
∑ |𝒾̃𝐴

𝜎(𝑗)(𝑥𝑖) − 𝒾̃𝐵
𝜎(𝑗)(𝑥𝑖)|

𝑙𝒾̃(𝑥𝑖)

𝑗=1

𝑛

𝑖=1

+
1

𝑙𝑓(𝑥𝑖)
∑ |𝑓𝐴

𝜎(𝑗)(𝑥𝑖) − 𝑓𝐵
𝜎(𝑗)(𝑥𝑖)|

𝑙𝑓̃(𝑥𝑖)

𝑗=1

) 

≤
1

3𝑛
∑(

1

𝑙𝑡̃(𝑥𝑖)
∑ |𝑡̃𝐴

𝜎(𝑗)(𝑥𝑖) − 𝑡̃𝐶
𝜎(𝑗)(𝑥𝑖)|

𝑙𝑡̃(𝑥𝑖)

𝑗=1

+
1

𝑙𝒾̃(𝑥𝑖)
∑ |𝒾̃𝐴

𝜎(𝑗)(𝑥𝑖) − 𝒾̃𝐶
𝜎(𝑗)(𝑥𝑖)|

𝑙𝒾̃(𝑥𝑖)

𝑗=1

𝑛

𝑖=1

+
1

𝑙𝑓(𝑥𝑖)
∑ |𝑓𝐴

𝜎(𝑗)(𝑥𝑖) − 𝑓𝐶
𝜎(𝑗)(𝑥𝑖)|

𝑙𝑓̃(𝑥𝑖)

𝑗=1

) 

= 𝑑̃𝑁𝐻(𝐴, 𝐶). 

Similarly, we can prove 𝑑̃𝑁𝐻(𝐵, 𝐶) ≤ 𝑑̃𝑁𝐻(𝐴, 𝐶). 

Theorem 8. Let 𝐴 and 𝐵 be two SVNHSs, then 𝑑̃𝐺𝐻(𝐴, 𝐵) and 𝑑̃𝑁𝐸(𝐴, 𝐵) are two distance 
measures. 

Proof. By the similar proof manner of Theorem 7, we can also give the proof of Theorem 8 
(omitted). 

Theorem 9. Let 𝐴, 𝐵 and 𝐶 be any SVNHFSs, then 𝑑̃𝐺𝑁𝐻(𝐴, 𝐵) is the distance measure. 

Proof. We should prove that 𝑑̃𝐺𝑁𝐻(𝐴, 𝐵) satisfies axioms (D1)-(D4). 

(D1) Suppose that 𝐴 and 𝐵 are two SVNHFSs with 𝑛 attributes, then 

|𝑡̃𝐴
𝜎(𝑗)(𝑥𝑖) − 𝑡̃𝐵

𝜎(𝑗)(𝑥𝑖)| ≥ 0, |𝒾̃𝐴
𝜎(𝑗)(𝑥𝑖) − 𝒾̃𝐵

𝜎(𝑗)(𝑥𝑖)| ≥ 0 and |𝑓𝐴
𝜎(𝑗)(𝑥𝑖) − 𝑓𝐵

𝜎(𝑗)(𝑥𝑖)| ≥ 0  

and so 

(
1

3𝑛
∑max

𝑗
(|𝑡̃𝐴

𝜎(𝑗)(𝑥𝑖) − 𝑡̃𝐵
𝜎(𝑗)(𝑥𝑖)|

𝜆

, |𝒾̃𝐴
𝜎(𝑗)(𝑥𝑖) − 𝒾̃𝐵

𝜎(𝑗)(𝑥𝑖)|
𝜆

, |𝑓𝐴
𝜎(𝑗)(𝑥𝑖) − 𝑓𝐵

𝜎(𝑗)(𝑥𝑖)|
𝜆

)

𝑛

𝑖=1

)

1
𝜆

≥ 0. 

Thus, we have 𝑑̃𝐺𝑁𝐻(𝐴, 𝐵) ≥ 0. 
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(D2)  

𝑑̃𝐺𝑁𝐻(𝐴, 𝐵) = (
1

3𝑛
∑max

𝑗
(|𝑡̃𝐴

𝜎(𝑗)(𝑥𝑖) − 𝑡̃𝐵
𝜎(𝑗)(𝑥𝑖)|

𝜆

, |𝒾̃𝐴
𝜎(𝑗)(𝑥𝑖) − 𝒾̃𝐵

𝜎(𝑗)(𝑥𝑖)|
𝜆

, |𝑓𝐴
𝜎(𝑗)(𝑥𝑖) − 𝑓𝐵

𝜎(𝑗)(𝑥𝑖)|
𝜆

)

𝑛

𝑖=1

)

1
𝜆

 

= (
1

3𝑛
∑max

𝑗
(|𝑡̃𝐵

𝜎(𝑗)(𝑥𝑖) − 𝑡̃𝐴
𝜎(𝑗)(𝑥𝑖)|

𝜆

, |𝒾̃𝐵
𝜎(𝑗)(𝑥𝑖) − 𝒾̃𝐴

𝜎(𝑗)(𝑥𝑖)|
𝜆

, |𝑓𝐵
𝜎(𝑗)(𝑥𝑖) − 𝑓𝐴

𝜎(𝑗)(𝑥𝑖)|
𝜆

)

𝑛

𝑖=1

)

1
𝜆

 

= 𝑑̃𝐺𝑁𝐻(𝐵, 𝐴) 

(D3) Let 𝑑̃𝐺𝑁𝐻(𝐴, 𝐵) = 0, then 

⇔ (
1

3𝑛
∑max

𝑗
(|𝑡̃𝐴

𝜎(𝑗)(𝑥𝑖) − 𝑡̃𝐵
𝜎(𝑗)(𝑥𝑖)|

𝜆

, |𝒾̃𝐴
𝜎(𝑗)(𝑥𝑖) − 𝒾̃𝐵

𝜎(𝑗)(𝑥𝑖)|
𝜆

, |𝑓𝐴
𝜎(𝑗)(𝑥𝑖) − 𝑓𝐵

𝜎(𝑗)(𝑥𝑖)|
𝜆

)

𝑛

𝑖=1

)

1
𝜆

= 0 

⇔ 𝑡̃𝐴
𝜎(𝑗)(𝑥𝑖) = 𝑡̃𝐵

𝜎(𝑗)(𝑥𝑖), 𝒾̃𝐴
𝜎(𝑗)(𝑥𝑖) = 𝒾̃𝐵

𝜎(𝑗)(𝑥𝑖)      and       𝑓𝐴
𝜎(𝑗)(𝑥𝑖) = 𝑓𝐵

𝜎(𝑗)(𝑥𝑖)  

⇔ 𝐴 = 𝐵. 

(D4) Since 𝐴 ⊆ 𝐵 ⊆ 𝐶, we have 

𝑡̃𝐴
𝜎(𝑗)(𝑥𝑖) ≤ 𝑡̃𝐵

𝜎(𝑗)(𝑥𝑖) ≤ 𝑡̃𝐶
𝜎(𝑗)(𝑥𝑖), 𝒾̃𝐶

𝜎(𝑗)(𝑥𝑖) ≤ 𝒾̃𝐵
𝜎(𝑗)(𝑥𝑖) ≤ 𝒾̃𝐴

𝜎(𝑗)(𝑥𝑖) and 𝑓𝐶
𝜎(𝑗)(𝑥𝑖) ≤ 𝑓𝐵

𝜎(𝑗)(𝑥𝑖) ≤ 𝑓𝐴
𝜎(𝑗)(𝑥𝑖). 

Then it follows that 

max
𝑗
(|𝑡̃𝐴

𝜎(𝑗)(𝑥𝑖) − 𝑡̃𝐵
𝜎(𝑗)(𝑥𝑖)|

𝜆

, |𝒾̃𝐴
𝜎(𝑗)(𝑥𝑖) − 𝒾̃𝐵

𝜎(𝑗)(𝑥𝑖)|
𝜆

, |𝑓𝐴
𝜎(𝑗)(𝑥𝑖) − 𝑓𝐵

𝜎(𝑗)(𝑥𝑖)|
𝜆

) 

≤ max
𝑗
(|𝑡̃𝐴

𝜎(𝑗)(𝑥𝑖) − 𝑡̃𝐶
𝜎(𝑗)(𝑥𝑖)|

𝜆

, |𝒾̃𝐴
𝜎(𝑗)(𝑥𝑖) − 𝒾̃𝐶

𝜎(𝑗)(𝑥𝑖)|
𝜆

, |𝑓𝐴
𝜎(𝑗)(𝑥𝑖) − 𝑓𝐶

𝜎(𝑗)(𝑥𝑖)|
𝜆

) 

and so  

𝑑̃𝐺𝑁𝐻(𝐴, 𝐵) = (
1

3𝑛
∑max

𝑗
(|𝑡̃𝐴

𝜎(𝑗)(𝑥𝑖) − 𝑡̃𝐵
𝜎(𝑗)(𝑥𝑖)|

𝜆

, |𝒾̃𝐴
𝜎(𝑗)(𝑥𝑖) − 𝒾̃𝐵

𝜎(𝑗)(𝑥𝑖)|
𝜆

, |𝑓𝐴
𝜎(𝑗)(𝑥𝑖) − 𝑓𝐵

𝜎(𝑗)(𝑥𝑖)|
𝜆

)

𝑛

𝑖=1

)

1
𝜆

 

≤ (
1

3𝑛
∑max

𝑗
(|𝑡̃𝐴

𝜎(𝑗)(𝑥𝑖) − 𝑡̃𝐶
𝜎(𝑗)(𝑥𝑖)|

𝜆

, |𝒾̃𝐴
𝜎(𝑗)(𝑥𝑖) − 𝒾̃𝐶

𝜎(𝑗)(𝑥𝑖)|
𝜆

, |𝑓𝐴
𝜎(𝑗)(𝑥𝑖) − 𝑓𝐶

𝜎(𝑗)(𝑥𝑖)|
𝜆

)

𝑛

𝑖=1

)

1
𝜆

 

= 𝑑̃𝐺𝑁𝐻(𝐴, 𝐶). 

Similarly, we can prove 𝑑̃𝐺𝑁𝐻(𝐵, 𝐶) ≤ 𝑑̃𝐺𝑁𝐻(𝐴, 𝐶). 

Theorem 10. Let 𝐴 and 𝐵 be two SVNHSs, then 𝑑̃𝑁𝐻𝐻(𝐴, 𝐵) and 𝑑̃𝑁𝐸𝐻(𝐴, 𝐵) are two distance 
measures. 
Proof. By the similar proof manner of Theorem 9, we can also give the proof of Theorem 10 
(omitted). 

4. Some similarity measures for SVNHFSs 
In this section, we present some similarity measures based on the proposed distance measures 
between SVNHFSs. 
4.1. The similarity measures based on geometric distance model for SVNHFSs 
With respect to Eq. (5), the similarity measure can be defined as follows: 

(1) Similarity measure based on generalized single valued neutrosophic hesitant normalized 
distance: 
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𝑠̃𝐺𝑁(𝐴, 𝐵) = 1 − 𝑑̃𝐺𝑁(𝐴, 𝐵) = 1 − 

𝑑̃𝐺𝑁 = (
1

3𝑛
∑(

1

𝑙𝑡̃(𝑥𝑖)
∑ |𝑡̃𝐴

𝜎(𝑗)(𝑥𝑖) − 𝑡̃𝐵
𝜎(𝑗)(𝑥𝑖)|

𝜆
𝑙𝑡̃(𝑥𝑖)

𝑗=1

+
1

𝑙𝒾̃(𝑥𝑖)
∑ |𝒾̃𝐴

𝜎(𝑗)(𝑥𝑖) − 𝒾̃𝐵
𝜎(𝑗)(𝑥𝑖)|

𝜆
𝑙𝒾̃(𝑥𝑖)

𝑗=1

𝑛

𝑖=1

+
1

𝑙𝑓(𝑥𝑖)
∑ |𝑓𝐴

𝜎(𝑗)(𝑥𝑖) − 𝑓𝐵
𝜎(𝑗)(𝑥𝑖)|

𝜆

𝑙𝑓̃(𝑥𝑖)

𝑗=1

))

1
𝜆

           (17) 

Similarly, we give another similarity measures based on distance measure as follows: 

(i) Similarity measure based on single valued neutrosophic hesitant normalized 
Hamming distance: 

𝑠̃𝑁𝐻(𝐴, 𝐵) = 1 − 𝑑̃𝑁𝐻(𝐴, 𝐵)                                                                             (18) 
(ii) Similarity measure based on single valued neutrosophic hesitant normalized 

Euclidian distance: 
𝑠̃𝑁𝐸(𝐴, 𝐵) = 1 − 𝑑̃𝑁𝐸(𝐴, 𝐵)                                                                            (19) 

(2) Similarity measure based on generalized single valued neutrosophic hesitant normalized 
Hausdorff distance: 

𝑠̃𝐺𝑁𝐻(𝐴, 𝐵) = 1 − 𝑑̃𝐺𝑁𝐻(𝐴, 𝐵)                                                                            (20) 
(i) Similarity measure based on single valued neutrosophic hesitant normalized 

Hamming–Hausdorff distance: 
𝑠̃𝑁𝐻𝐻(𝐴, 𝐵) = 1 − 𝑑̃𝑁𝐻𝐻(𝐴, 𝐵)                                                                        (21) 

(ii) Similarity measure based on single valued neutrosophic hesitant normalized 
Euclidian–Hausdorff distance: 

𝑠̃𝑁𝐸𝐻(𝐴, 𝐵) = 1 − 𝑑̃𝑁𝐸𝐻(𝐴, 𝐵)                                                                        (22) 
(3) Similarity measure based on generalized single valued neutrosophic hesitant weighted 

Hausdorff distance: 
𝑠̃𝐺𝑊(𝐴, 𝐵) = 1 − 𝑑̃𝐺𝑊(𝐴, 𝐵)                                                                           (23) 

(i) Similarity measure based on single valued neutrosophic hesitant weighted Hamming 
distance: 

𝑠̃𝑊𝐻(𝐴, 𝐵) = 1 − 𝑑̃𝑊𝐻(𝐴, 𝐵)                                                                          (24) 
(ii) Similarity measure based on single valued neutrosophic hesitant weighted Euclidian 

distance: 
𝑠̃𝑊𝐸(𝐴, 𝐵) = 1 − 𝑑̃𝑊𝐸(𝐴, 𝐵)                                                                          (25) 

4.2. Similarity measure based on the set-theoretic approach 
Let A and B be two SVNHFSs, then we define a similarity measure from the point of set-
theoretic view as follows: 

𝑠̃𝑆𝑇(𝐴, 𝐵) =
1

3𝑛
∑

∑ (min∆𝑡̃𝐴𝐵 (𝑥𝑖)) + ∑ (min∆𝒾̃𝐴𝐵(𝑥𝑖)) +
𝑙𝒾̃(𝑥𝑖)

𝑗=1
∑ (min∆𝑓𝐴𝐵(𝑥𝑖))
𝑙𝑓̃(𝑥𝑖)

𝑗=1

𝑙𝑡̃(𝑥𝑖)

𝑗=1

∑ (max∆𝑡̃𝐴𝐵(𝑥𝑖)) + ∑ (max ∆𝒾̃𝐴𝐵(𝑥𝑖)) +
𝑙𝒾̃(𝑥𝑖)

𝑗=1
∑ (max∆𝑓𝐴𝐵(𝑥𝑖))
𝑙𝑓̃(𝑥𝑖)

𝑗=1

𝑙𝑡̃(𝑥𝑖)

𝑗=1

𝑛

𝑖=1

,                               (26) 

where ∆𝑡̃𝐴𝐵(𝑥𝑖) = (𝑡̃𝐴
𝜎(𝑗)(𝑥𝑖), 𝑡̃𝐵

𝜎(𝑗)(𝑥𝑖)), ∆𝒾̃𝐴𝐵(𝑥𝑖) = (𝒾̃𝐴
𝜎(𝑗)(𝑥𝑖) − 𝒾̃𝐵

𝜎(𝑗)(𝑥𝑖)), ∆𝑓𝐴𝐵(𝑥𝑖) = (𝑓𝐴
𝜎(𝑗)(𝑥𝑖) − 𝑓𝐵

𝜎(𝑗)(𝑥𝑖)) 

By taking into account the weight of each element 𝑥𝑖  ∈  𝑋 for truth-membership function, 
indeterminacy-membership function and falsity membership function, we define a similarity 
measure as: 
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𝑠̃𝑊𝑆𝑇(𝐴, 𝐵)

=
1

3𝑛
∑

∑ 𝜔𝑗(min∆𝑡̃𝐴𝐵(𝑥𝑖)) + ∑ 𝜓𝑗(min∆𝒾̃𝐴𝐵(𝑥𝑖)) +
𝑙𝒾̃(𝑥𝑖)

𝑗=1
∑ 𝜙𝑗(min∆𝑓𝐴𝐵(𝑥𝑖))
𝑙𝑓̃(𝑥𝑖)

𝑗=1

𝑙𝑡̃(𝑥𝑖)

𝑗=1

∑ 𝜔𝑗(max ∆𝑡̃𝐴𝐵 (𝑥𝑖)) + ∑ 𝜓𝑗(max∆𝒾̃𝐴𝐵 (𝑥𝑖)) +
𝑙𝒾̃(𝑥𝑖)

𝑗=1
∑ 𝜙𝑗(max ∆𝑓𝐴𝐵(𝑥𝑖))
𝑙𝑓̃(𝑥𝑖)

𝑗=1

𝑙𝑡̃(𝑥𝑖)

𝑗=1

𝑛

𝑖=1

                  (27) 

4.3. Similarity measure based on matching function 
The concept of similarity between FSs based on a matching function was defined by Chen et al. 

(1995). Then Xu (2007) extended the matching function to deal with the similarity measures for 
IFSs. In the following, we propose the similarity measure for SVNHFSs based on the matching 
function. 

Suppose that A and B are two SVNHFSs, then we define a similarity measure based on the 
matching function as follows: 

𝑠̃𝑀𝐹(𝐴, 𝐵) =
1

3𝑛
∑

∑ ∇𝑡̃𝐴𝐵(𝑥𝑖) + ∑ ∇𝒾̃𝐴𝐵(𝑥𝑖) +
𝑙𝒾̃(𝑥𝑖)

𝑗=1
∑ ∇𝑓𝐴𝐵(𝑥𝑖)
𝑙𝑓̃(𝑥𝑖)

𝑗=1

𝑙𝑡̃(𝑥𝑖)

𝑗=1

max(∑ ⊿𝑡̃𝐴𝐵
𝑙𝑡̃(𝑥𝑖)

𝑗=1
(𝑥𝑖),∑ ⊿𝒾̃𝐴𝐵(𝑥𝑖)

𝑙𝑡̃(𝑥𝑖)

𝑗=1
, ∑ ⊿𝑓𝐴𝐵(𝑥𝑖)

𝑙𝑡̃(𝑥𝑖)

𝑗=1
)

𝑛

𝑖=1

                                           (28) 

where ∇𝑡̃𝐴𝐵(𝑥𝑖) = (𝑡̃𝐴
𝜎(𝑗)(𝑥𝑖)×𝑡̃𝐵

𝜎(𝑗)(𝑥𝑖)), ∇𝒾̃𝐴𝐵(𝑥𝑖) = (𝒾̃𝐴
𝜎(𝑗)(𝑥𝑖)×𝒾̃𝐵

𝜎(𝑗)(𝑥𝑖)) and ∇𝑓𝐴𝐵(𝑥𝑖) = (𝑓𝐴
𝜎(𝑗)(𝑥𝑖)×

𝑓𝐵
𝜎(𝑗)(𝑥𝑖)), and ⊿𝑡̃𝐴𝐵(𝑥𝑖) = (𝑡̃𝐴

𝜎(𝑗)(𝑥𝑖))
2

+ (𝑡̃𝐵
𝜎(𝑗)(𝑥𝑖))

2

, ⊿𝒾̃𝐴𝐵(𝑥𝑖) = (𝒾̃𝐴
𝜎(𝑗)(𝑥𝑖))

2

+ (𝒾̃𝐵
𝜎(𝑗)(𝑥𝑖))

2

 and ⊿𝑓𝐴𝐵(𝑥𝑖) =

(𝑓𝐴
𝜎(𝑗)(𝑥𝑖))

2

+ (𝑓𝐵
𝜎(𝑗)(𝑥𝑖))

2

. 

If we consider weight of each 𝑥 ∈  𝑋, then we get 

𝑠̃𝑊𝑀𝐹(𝐴, 𝐵) =
1

3𝑛
∑

∑ 𝜔𝑗(∇𝑡̃𝐴𝐵(𝑥𝑖)) + ∑ 𝜓𝑗(∇𝒾̃𝐴𝐵(𝑥𝑖)) +
𝑙𝒾̃(𝑥𝑖)

𝑗=1
∑ 𝜙𝑗(∇𝑓𝐴𝐵(𝑥𝑖))
𝑙𝑓̃(𝑥𝑖)

𝑗=1

𝑙𝑡̃(𝑥𝑖)

𝑗=1

max(∑ 𝜔𝑗(⊿𝑡̃𝐴𝐵(𝑥𝑖))
𝑙𝑡̃(𝑥𝑖)

𝑗=1
, ∑ 𝜓𝑗(⊿𝒾̃𝐴𝐵(𝑥𝑖))

𝑙𝑡̃(𝑥𝑖)

𝑗=1
, ∑ 𝜙𝑗(⊿𝑓𝐴𝐵(𝑥𝑖))

𝑙𝑡̃(𝑥𝑖)

𝑗=1
)

𝑛

𝑖=1

                            (29) 

It is clear that 𝑠̃𝑊𝑀𝐹(𝐴, 𝐵) satisfies all the properties described in Definition 6. 

5. Decision-making method based on the single-valued neutrosophic hesitant fuzzy 
information 

In this section, we apply the developed distance and similarity measures to a MADM problem 
with single-valued neutrosophic hesitant fuzzy information.  

For the MADM problem, let 𝐴 = {𝐴1, 𝐴2, … , 𝐴𝑚} be a set of alternatives, 𝐶 = {𝐶1, 𝐶2, … , 𝐶𝑛} be 
a set of attributes. Suppose that 𝜔 = (𝜔1, 𝜔2, …𝜔𝑛)𝑇, 𝜓 = (𝜓1, 𝜓2, …𝜓𝑛)𝑇 and 𝜙 =
(𝜙1, 𝜙2, …𝜙𝑛)

𝑇 are the potential weighting vector assigned to the truth-membership, the 
indeterminacy-membership and the falsity-membership, respectively, in each alternative, where 
𝜔𝑗 ≥ 0,𝜓𝑗 ≥ 0 and 𝜙𝑗 ≥ 0, 𝑗 = 1,2, … , 𝑛, ∑ 𝜔𝑗

𝑛
𝑗=1 = 1, ∑ 𝜓𝑗

𝑛
𝑗=1 = 1 and ∑  𝜙𝑗

𝑛
𝑗=1 = 1. If the 

decision makers provide several values for the alternative 𝐴𝑖(𝑖 = 1,2,… ,𝑚) under the attribute 
𝐶𝑗 (𝑗 = 1,2,… , 𝑛),  these values can be characterized as a SVNHFN 𝑒𝑖𝑗 = {𝑡𝑖𝑗, 𝒾𝑖𝑗, 𝑓𝑖𝑗} (𝑗 =
1,2,… , 𝑛; 𝑖 = 1,2,… ,𝑚). Assume that 𝐸 = [𝑒𝑖𝑗]𝑚×𝑛 is the decision matrix, where 𝑒𝑖𝑗 is 
expressed by a single-valued neutrosophic hesitant fuzzy element. 

In multiple attribute decision-making environments, we can utilize the concept of ideal point to 
determine the best alternative in the decision set. Although the ideal alternative does not exist in 
real world, it does provide a useful theoretical construct against which to evaluate alternatives. 
Therefore, we propose each ideal SVNHFN in the ideal alternative 𝐴∗ = {〈𝐶𝑗, 𝑒𝑗∗〉: 𝐶𝑗 ∈ 𝐶}  as 𝑒𝑗∗ =
{𝑡̃𝑗
∗, 𝒾̃𝑗

∗, 𝑓𝑗
∗} = {{1}, {0}, {0}} (𝑗 = 1,2, … , 𝑛). 
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Thus, we can develop a procedure for the decision maker to select the best choice with single 
valued neutrosophic hesitant fuzzy information, which can be given as follows: 

Step1. Compute the distance (similarity) measure between an alternative 𝐴𝑖 (𝑖 =
 1,2, . . . , 𝑚) and the ideal alternative 𝐴∗ by using proposed distance (similarity) 
measure. 

Step 2. Rank all of the alternative with respect to the values of distance (similarity) measure. 
Step 3. Choose the best alternative with respect to the minimum value of distance (maximum 

value of similarity). 
Step4. End. 

6. Practical example 
Here, an example for the multicriteria decision-making problem of alternatives is used as the 
demonstration of the application of the proposed decision-making method, as well as the 
effectiveness of the proposed method. 

We take the example adopted from Ye (2014c) to illustrate the utility of the proposed distance 
and similarity measures. Also, we show that the results obtained using the proposed distance 
measure are more reasonable than the results obtained using Ye’s (2014c) cosine similarity 
measure. 

Example 11. Suppose that an investment company that wants to invest a sum of money in the best 
option. There is a panel with four possible alternatives in which to invest the money: (1) 𝐴1 is a car 
company, (2) 𝐴2 is a food company, (3) 𝐴3 is a computer company, and (4) 𝐴4 is an arms company. 
The investment company must make a decision according to the three attributes: (1) 𝐶1 is the risk 
analysis; (2) 𝐶2 is the growth analysis, and (3) 𝐶3 is the environmental impact analysis. Suppose 
that 𝜔 = (0.35, 0.25, 0.40), 𝜓 = (0.35, 0.40, 0.25), and 𝜙 = (0.30, 0.40, 0.30) are the attribute 
weight vector for truth-membership degree, the indeterminacy-membership degree and the falsity 
membership degree, respectively. The four possible alternatives are to be evaluated under these 
three attributes and are presented in the form of single valued neutrosophic hesitant fuzzy 
information by decision maker according to three attributes 𝐶𝑗 (𝑗 = 1,2,3), as expressed in the 
following single valued neutrosophic hesitant fuzzy decision matrix 𝐸: 

Table 1: Decision matrix 𝐸 

𝐸 = (

{ { 0.3, 0.4, 0.5 } , { 0.1 } , { 0.3, 0.4 } } { { 0.5, 0.6 } , { 0.2, 0.3 } , { 0.3,0.4 } } { { 0.2, 0.3 } , { 0.1, 0.2 } , { 0.5, 0.6 } }
{ { 0.6, 0.7 } , { 0.1, 0.2 } , { 0.2, 0.3 } } { { 0.6, 0.7 } , { 0.1 } , { 0.3 } } { { 0.6, 0.7 } , { 0.1, 0.2 } , { 0.1, 0.2 } }
{ { 0.5, 0.6 } , { 0.4 } , { 0.2, 0.3 } } { { 0.6 } , { 0.3 } , { 0.4 } } { { 0.5, 0.6 } , { 0.1 } , { 0.3 } }
{ { 0.7, 0.8 } , { 0.1 } , { 0.1, 0.2 } } { { 0.6, 0.7 } , { 0.1 } , { 0.2 } } { { 0.3, 0.5 } , { 0.2 } , { 0.1, 0.2, 0.3 } }

) 

To get the best alternative(s), the following steps are involved: 

Step 1. Using Eq. (12), we can compute the single valued neutrosophic hesitant weighted 
Hamming distance between the alternatives and the ideal alternative as: 

𝑑̃𝑁𝐻(𝐴1, 𝐴
∗) = 0.4370, 𝑑̃𝑁𝐻(𝐴2, 𝐴

∗) = 0.2383, 𝑑̃𝑁𝐻(𝐴3, 𝐴
∗) = 0.3679, 𝑑̃𝑁𝐻(𝐴4, 𝐴

∗) = 0.2654. 
Step 2. With respect to the values of weighted Hamming distance, we can rank the alternatives as 
𝐴2 ≻ 𝐴4 ≻ 𝐴3 ≻ 𝐴1.   

Step 3. The alternative 𝐴2 is the optimal choice according to the minimum value among weighted 
Hamming distances, which is not in agreement with the one obtained in Ye (2014c). 
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Above example clearly shows that the developed method is effective and applicable under single-
valued neutrosophic hesitant fuzzy environment. 

7. Related comparative analysis 
Case 1. Ye (2014c) proposed a method based on single-valued neutrosophic hesitant fuzzy 
aggregation operators and cosine measure function to find the best alternative. This method lacks 
the decision makers’ risk factor, which causes the distortion of similarity between an alternative 
and the ideal alternative and makes the proposed method more realistic. Therefore, the results of 
the proposed method don’t coincide with the existing method Ye (2014c). In proposed method, we 
not only consider the decision makers’ risk case but also the individual weighting vectors of truth-
membership, indeterminacy-membership, and falsity-membership degrees of each element in 
decision space, separately. From Table 2, we can see that the rankings are changed according to 
different parameters 𝜆, consequently, the proposed distance measure can provide a more flexible 
decision and more choice for decision makers because of the decision maker’ risk factor and the 
individual weighting vector of membership degrees. Combining the analyses above, our method is 
more precise and reliable than the result produced in Ye (2014c). 
 
Table 2: Results obtained by Eq. (5) corresponding different 𝜆 values 

𝜆 𝐴1 𝐴2 𝐴3 𝐴4 Ranking 
𝜆 = 1 0.4370 0.2383 0.3679 0.2654 𝐴2 ≻ 𝐴4 ≻ 𝐴3 ≻ 𝐴1 
𝜆 = 2 0.6611 0.5256 0.5942 0.5619 𝐴2 ≻ 𝐴4 ≻ 𝐴3 ≻ 𝐴1 
𝜆 = 5 0.8683 0.8102 0.8320 0.8455 𝐴2 ≻ 𝐴3 ≻ 𝐴4 ≻ 𝐴1 
𝜆 = 10 0.9395 0.9140 0.9214 0.9320 𝐴2 ≻ 𝐴3 ≻ 𝐴4 ≻ 𝐴1 

Case 2. In order to validate the feasibility of the proposed decision making method, we give another 
comparative study between our method and existing methods and use the concept of weighted 
Euclidian distance. Xu and Xia’s method (2011) is used to rank the HFSs which are only 
characterized by a set of the membership degrees, whereas Singh’s method (2013) is applied to 
DHFSs which are taken into account both the membership hesitant degree and the non-membership 
hesitant degree in decision making process.  

 
Table 3: Relationships between existing methods and proposed method 

Methods Rankings 
The best 
alternative(s) 

The worst 
alternative(s) 

Xu and Xia’s method 
(2011) 

𝐴2 ≻ 𝐴3 ≻ 𝐴4
≻ 𝐴1 

𝐴2 𝐴1 

Singh’s method (2015) 
𝐴2 ≻ 𝐴4 ≻ 𝐴3
≻ 𝐴1 

𝐴2 𝐴1 

Ye’s method (2005) 
𝐴4 ≻ 𝐴2 ≻ 𝐴3
≻ 𝐴1 

𝐴4 𝐴1 

Our method 
𝐴2 ≻ 𝐴4 ≻ 𝐴3
≻ 𝐴1 

𝐴2 𝐴1 

On the other hand, we also utilize the weighted Euclidian distance to determine the final ranking 
order of all the alternatives associated with SVNHFS, which are expressed by the truth-membership 
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hesitant degree, indeterminacy-membership hesitant degree, and falsity-membership hesitant 
degree, to calculate the distance measures and to rank all of the alternatives according to these 
values. Using the MCDM problem in Example 11, the results with different methods are shown in 
Table 3. 

According to the results presented in Table 3, if the distance methods in Xu and Xia (2011) and 
the Singh (2013) are used, then the best alternatives are 𝐴2 and the worst one is 𝐴1, respectively. 
Ye’s method (2014c) say that the best ones are 𝐴4 and the worst one is 𝐴1. With respect to proposed 
method in this paper, the best one is 𝐴2  and 𝐴1  is the worst one. But, there are some small 
differences in the ranking of the alternatives due to definition of set theories. Additionally, from 
results of Table 3, we can say that the concept of distance measure is more remarkable and more 
useable than cosine measure to determine the order of the alternatives. 

As mentioned above, the single valued neutrosophic hesitant fuzzy set is a generalization of FSs, 
IFSs, HFSs, FMSs, DHFSs and also SVNSs. Therefore a SVNHFS (truth-membership hesitant 
degree, indeterminacy-membership hesitant degree, and falsity-membership hesitant degree) 
contains more information than the HFS (membership hesitant degree), the IFS (both membership 
degree and nonmembership degree), the DHFS (membership hesitant degree and nonmembership 
hesitant degree), and also SVNS (truth-membership degree, indeterminacy-membership degree, 
and falsity-membership degree). Then, the proposed distance and similarity measures of SVNHFSs 
is a further generalization of the distance and similarity measures of FSs, IFSs, HFSs, FMSs, 
DHFSs and also SVNSs. In other words, the distance and similarity measures of FSs, IFSs, HFSs, 
FMSs, DHFSs and also SVNSs are special cases of the distance and similarity measures of 
SVNHFSs proposed in this paper. Therefore, the discrimination measures for SVNHFSs can be 
used to solve not only distance and similarity measures with SVNHFSs but also the problems of 
fuzzy environment, hesitant fuzzy environment, intuitionistic fuzzy environment, dual hesitant 
fuzzy environment and single valued neutrosophic environment, whereas the methods in Xu and 
Xia (2011), Xu (2007), Singh (2013) and Majumdar and Samanta (2014) are only sustainable for 
problems with HFSs, IFSs, DHFSs, and SVNSs, respectively. Moreover, since SVNHFSs include 
the aforementioned fuzzy sets, the decision-making method using the proposed distance and 
similarity measures is more general and more feasibility than existing decision-making methods in 
fuzzy setting, intuitionistic fuzzy setting, hesitant fuzzy setting, dual hesitant fuzzy setting, and 
single-valued neutrosophic setting. 

8. Conclusions 
Based on the combination of both HFSs and SVNSs as a further generalization of fuzzy concepts, 

the SVNHFS contains more information because it takes into account the information of its truth-
membership hesitant degree, indeterminacy-membership hesitant degree, and falsity-membership 
hesitant degree, whereas the HFS only contains the information of its membership hesitant degrees 
and DHFS contains the information of its membership hesitant degree and nonmembership hesitant 
degree. Therefore, it has the desirable characteristics and advantages of its own, appears to be a 
more flexible method than the existing methods and include much more information given by 
decision makers. Based on the geometric distance model, the set-theoretic approach, and the 
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matching functions, this paper proposed some distance and similarity measures between SVHNSs 
as a new extension of discrimination measures between fuzzy sets, hesitant fuzzy sets, dual hesitant 
fuzzy sets and the single-valued neutrosophic sets. In a multiple attribute decision making process 
with single-valued neutrosophic hesitant fuzzy information, the proposed distance measure 
between each alternative and the ideal alternative was used to rank the alternatives and determine 
the best one(s) according to the measure values. Finally, a numeric example was given to verify 
the proposed approach and to show its practicality and favorable. The developed method has 
useable and effective calculation, and presents a new model for handling decision-making 
problems under the single-valued neutrosophic hesitant fuzzy environment. In the future, we shall 
further develop more discrimination measures such as correlation coefficient, entropy and cross-
entropy for SVNHFSs and apply them to solve practical applications in these areas, such as group 
decision making, expert system, clustering, information fusion system, fault diagnoses, and 
medical diagnoses. 
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