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Logistics Center Location Selection Approach Based on 

Neutrosophic Multi-Criteria Decision Making 

Abstract 
 As an important and interesting topic in supply chain management, the concept of fuzzy set 

theory has been widely used in logistics center location in order to improve the reliability and 
suitability of the logistics center location with respect to the impacts of both qualitative and 
quantitative factor. However fuzzy set cannot deal with the indeterminacy involving with the 
problem. So the concept of single – valued neutrosophic set due to Wang et al. (2010) is very 
helpful to deal with the problem. A neutrosophic approach is a more general and suitable approach 
in order to deal with neutrosophic information than fuzzy set. Logistics center location selection 
is a multi-criteria decision making process involving subjectivity, impresion and fuzziness that can 
be easily represented by single-valued neutrosophic sets. In this paper, we use the score and 
accuracy function and hybrid score accuracy function of single- valued neutrosophic number and 
ranking method for single- valued neutrosophic numbers to model logistics center location 
problem. Finally, a numerical example has been presented to illustrate the proposed approach.  

Keywords 
Logistic center, multi-criteria group decision making, hybrid score-accuracy function, single 

valued neutrosophic set, single valued neutrosophic number. 
 

1. Introduction  
Logistics systems have become essential for economic development and the normal function of 

the society, and suitable site selection for the logistics center has direct impact on the efficiency of 
logistics systems. So it is necessary to adopt a scientific approach for site selection. The logistic 
center location selection problem can be considered as multi-criteria decision making (MCDM) 
problem.  Classical MCDM [1, 2, 3] problems deal with crisp numbers that is the ratings and the 
weights of the criteria are represented by crisp numbers. However, it is not always possible to 
present the information by crisp numbers. In order to deal this situation fuzzy set (FS) introduced 
by Zadeh [4] in 1965 can be used.  It is very useful for many real life problems involving 
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uncertainty. In 1986, Atanassov [5] grounded the notion of intuitionistic fuzzy set (IFS) by 
introducing non-membership function as independent component. However, it cannot handle 
indeterminacy part of the real life problems that exist in many real applications. Then in 1998, 
Smarandache proposed the neutrosophic set (NS) theory [6,7, 8, 9] which is the generalization of 
FS and IFS.  

 From scientific or engineering point of view, the neutrosophic set and set- theoretic view, 
operators need to be specified. Otherwise, it will be difficult to apply in the real applications. 
Therefore, Wang et al. [10] defined a single valued neutrosophic set (SVNS) and then provided 
the set theoretic operations and various properties of SVNS. The works on SVNS and their hybrid 
structure in theories and application have been progressing rapidly. Hence it is most important to 
conduct researches on MCDM approach based on SVNS environment. Biswas et al. [11] presented 
entropy based grey relational analysis method for multi-attribute decision making under SVNS. 
Ye [12] proposed the co-relation co-efficient of SVNSs for single-valued neutrosophic MCDM 
problem. While selecting the location for the logistics center not only quantitative factors likes 
costs, distances but also qualitative factors. Such as environmental impacts and governmental 
regulations should be taken into consideration. Tuzkaya et al. [13] presented an analytic network 
process approach to deal locating undesirable facilities.  Badri [14] studied  a method combinjing 
analytical hierarchy process (AHP) and goal programming model approach for international 
facility location problem. Chang and Chung [15] proposed a multi-criteria genetic optimization 
for distibution network problems. Liang and Wang [16] proposed a fuzzy multicriteria decision  
making method for facility site selection. Chu [17] proposed facility location selection using fuzzy 
TOPSIS under group decision.  Recently, Pramanik and Dalapati [18] presented generalized 
neutrosophic soft multi criteria decision making based on grey relational analysis by introducing 
generalized neutrosophic soft weighted average operator.  In this paper we present logistic center 
location model using score and accuracy function and hybrid score accuracy function of single- 
valued neutrosophic number due to Ye [19]. Finally, a numerical example has been provided to 
illustrate the proposed approach.  

Rest of the paper has been organized in the following way. Section 2 presents preliminaries of 
neutrosophic sets and section 3 presents criteria for logistic center location selection. Section 4 is 
devoted to present modeling of logistic center location seclection problem. Section 5 presents a 
numerical example of the logistic center location selection problem. In Section 6 we presents 
conclusion.  

2. Mathematical preliminaries  
In this section, we will recall some basic definitions and concepts that are useful to develop the 

paper. 
Definition 1: Neutrosophic sets [6, 7, 8, 9] 
Let P be a universe of discourse with a generic element in P denoted by p. A neutrosophic set 

Z in P is characterized by a truth-membership function t Z (p), an indeterminacy-membership 
function i Z (p) and a falsity-membership function f Z (p) and defined by  
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Z = { p, t Z (p), i Z (p), f Z (p): pP}.The function t Z (p) , i Z (p) and f Z (p) are real standard 
or nonstandard subsets of ]  0, 1  [  i.e., t Z (p) : P →]  0, 1+ [, 

i Z (u): P →]  0, 1+ [, and f Z (u) : P →]  0, 1+ [ Hence, there is no restriction on the sum of t Z

(p), i Z (p) and f Z (p) and  0 ≤ t Z (p) + i Z (p) + f Z (p) ≤ 3+. 
Definition 2: Single valued neutrosophic sets [10]. 
Let P be a universe of discourse with a generic element in P denoted by   p. A single valued 

neutrosophic set M in P is characterized by a truth-membership function t M (p), an 
indeterminacy-membership function i M (p) and a falsity-membership function f M (p). It can be 
expressed as   M = {< p, (t M (p), i M (p), f M (p)) >: p ∈ P, t M (p), i M (p), f M (p) ∈ [0, 1]}. It should 
be noted that there is no restriction on the sum of t M (p), i M (p) and f M (p). Therefore, 0 ≤ t M (p)+ 
i M (p) + f M (p)≤ 3. 

Definition 3: Single valued neutrosophic number (SVNN) [19] 
Let P be a universe of discourse with generic element in P denoted by p. A SVNS M in P is 

characterized by a truth-membership function t M (p), a indeterminacy-membership function i M (p) 
and a falsity-membership function f M (p). Then, a SVNS M can be written as follows: M = {p, t

M (p), i M (p), f M (p): p P}, where t M (p), i M (p), f M (p)  [0, 1] for each point p in P.  Since no 
restriction is imposed in the sum of t M (p), i M (p) and f M (p), it satisfies 0 ≤ t M (p) + i M (p) + f M

(p) ≤3. For a SVNS M in P the triple  t M (p), i M (p), f M (p)  is called single valued neutrosophic 
number (SVNN).  

Definition 4: Complement of a SVNS [10] 
The complement of a single valued neutrosophic set M is denoted by Mand defined as 
M= {<p: tM(p), iM(p), fM(p)>, p P },  
where tM(p)= f M (p), iM(p) = {1} - i M (p),fM(p) = t M (p). 
For two SVNSs M1 and M2 in P, M1 is contained in the M2, i.e. M1  M2, if and only if t M1 (p) 

≤ t M2 (p), i M1 (p) ≥ i M2 (p), f M1 (p) ≥ f M2 (p) for any p in P. 
Two SVNSs M1 and M2 are equal, written as M1 = M2, if and only if M1   M2 and M2   M1. 

2.1. Conversion between linguistic variables and single valued neutrosophic numbers 
A linguistic variable simply presents a variable whose values are represented by words or 

sentences in natural or artificial languages. Importance of the decision makers may be differential 
in the decision making process. Ratings of criteria can be exressed by using linguistic variables 
such as very poor (VP), poor (P), good (G), very good (VG), excellent (EX), etc. Linguistic 
variables can be transformed into single valued neutrosophic numbers as given in the Table- 1. 

2.2 Ranking methods for SVNNs 
 Now we recall the definition of the score function, accuracy function, and hybrid score-

accuracy function of a SVNN, and the ranking method for SVNNs. 
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Definition 5: Score function and accuracy function [19] 
The score function and accuracy function of the SVNN b= t(b), i(b), f(b)) can be expressed as 

follows: 
S(b) = (1+t(b) – f(b))/2 for s(b)  [0, 1]                                                          (1) 
ac(b) = (2 + t(b) – f(b) – i(b))/3 for h(b)  [0, 1]                                             (2) 
For the score function of a SVNN b, the truth membership t(b) is bigger and the falsity-

membership f(b) are smaller, than the score value of the SVNN a is greater. For the accuracy 
function of a SVNN b if the sum of t(b), 1-i(b) and 1-f(b) is bigger, then the statement is more 
affirmative, i.e., the accuracy of the SVNN b is higher. Based on score and accuracy functions for 
SVNNs, two theorems are stated below. 

Theorem 1. 
For any two SVNNs b1 and b2, if b1 > b2, then s(b1) > s(b2). 
Proof: See [19]. 
Theorem 2. 
For any two SVNNs b1 and b2, if s(b1) = s(b2) and b1 ≥b2, then ac(b1) ≥ ac(b2). 
Prof: See [19] 
Based on theorems 1 and 2, a ranking method between SVNNs can be given by the following 

definition. 
Definition 6: [19] 
Let b1 and b2 be two SVNNs. Then, the ranking method can be defined as follows: 
1.  If s(b1) > s(b2), then b1 > b2;  
2.  If s(b1) = s(b2) and ac(b1) ≥ ac(b2), then b1 ≥b2; 

3.  Criteria for logistics center location selection 
We choose the most appropriate location on the basis of six criteria adapted from the study [20], 

namely, cost (K1), distance to suppliers (K2), dsistance to customers (K3), conformance to 
governmental regulations and laws (K4), quality of service (K5) and environmental impact (K6). 

4.  MCGDM method based on hybrid – score accuracy functions under single-
valued neutrosophic environment 

Assume that B = {B1, …, B n }(n  2) be the set of logistics centers, K = {K1, K2, ..., K  }(  

2) be the set of criteria and E = {E1, E2, ..., Em} (m  2) be the set of decision makers or experts. 
The weights of the decision makers and criteria are not previously assigned, where the information 
about the weights of the decision- makers is completely unknown and information about the 
weights of the criteria is incompletely known in the group decision making problem. In such a 
case, we develop a method based on the hybrid score – accuracy function for MCDM problem 
with unknown weights under single-valued neutrosophic environment using linguistic variables. 
The steps for solving MCGDM by proposed approach have been presented below.  
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Step – 1 
 Formation of the decision matrix  
In the group decision process, if m decision makers or experts are required in the evaluation 

process, then the s-th (s = 1, 2,…, m) decision maker can provide the evaluation information of 
the alternative B i  (i = 1, ..., n) on the criterion K j  (j = 1, ...,  ) in linguistic variables that can be 
expressed by the SVNN ( see Table 1). A MCGDM problem can be expressed by the following 
decision matrix: 

 

M s = (b s
ij ) n  = 




























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                                                                       (3) 

B s
ij = { K j , t s

Bi
(K j ), i s

Bi
 (K j ), f s

Bi
 (K j ) ∕ K j   K} 

Here 0 ≤ t s
Bi

(K j ) + i s
Bi

(K j ) + f s
Bi

(K j ) ≤ 3 

t s
Bi

 (K j )  [0, 1], i s
Bi

 (K j )  [0, 1], f s
Bi

 (K j )  [0, 1] 

For s = 1, 2, ..., m, j =1, 2, …  , i = 1, 2, …n, 
For convenience b s

ij  = t s
ij  , i s

ij  , f s
ij ) is denoted as a SVNN in the SVNS B s

ij  (s =1, 2, ..., m, i = 

1, ..., n, j = 1, ...,  ) 
 
Step – 2 
Calculate hybrid score – accuracy matrix 
The hybrid score – accuracy matrix H s  = (h s

ij ) n  (s = 1, 2……, m; i = 1, 2, ..., n; j = 1, 2,  …, 

 ) can be obtained from the decision matrix M s = (b s
ij ) n . The hybrid score-accuracy matrix H s  

expressed as 

H s  = (h s
ij ) n  = 



















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



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22212

112
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                                                                      (4) 

h s
ij  = 

2
1
  (1+ t s

ij  - f s
ij ) + 

3
1  (1- ) (2 + t s

ij  – i s
ij - f s

ij )                                                 (5) 

Where   [0, 1]. When  = 1 the equation (3) reduces to equation (1) and when  = 0, the 
equation reduces to equation (2).  
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Step – 3 
Calculate the average matrix  
Form the obtained hybrid-score–accuracy matrix, the average matrix 
H*= (h *

ij ) n   (s =1, 2, ..., m; i = 1, 2, ..., n; j = 1, 2, ...,  ) is  

expressed by H* = (h *
ij ) n  = 






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
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











nn hh

hhB

hhh

K

....hB

......

h

 ...B

K......K     

2n1n

222212

112111

21

                                                   (6) 

Here    h *
ij = m

1 ∑ m
s 1 (h s

ij )                                                                                             (7) 

                                                                                            
Ye [19] defined the collective correlation co-efficient between H s  (s = 1, 2, ..., m) and H* as 

follows. 
 

s = 

n

i 1












1
2*

1
2

*
1

)()( j ijj
s
ij

ijj
s
ij

hh

hh                                                                                                                      (8)      

 

Step – 4 
Determination decision maker’s weights 
 In decision making situation, the decision makers may exhibit personal biases and offer unduly 

high or low preference values with respect to their preferred or repugnant objects. In order to deal 
such cases, very low weights to these false or biased opinions can be assigned. Since the “mean 
value” reflects the distributing center of all elements of the set, the average matrix H* represents 
the maximum compromise among all individual decisions of the group. In this sense, a hybrid 
score accuracy matrix Hs is closer to the average one H*. Then the preference value of the s-th 
decision maker is closer to the average value and his/her evaluation is more reasonable and more 
important. Therefore, the weight of the s-th decision maker is bigger.  Ye [19] defined weight 
model for decision maker as follows:  

 

    s  = 
 



 s
m

1s

s ,  0≤ s  ≤ 1, ∑ m
s 1 s = 1 for s = 1, 2, . . ., m.                                             (9)       

 
Step – 5 
Calculate collective hybrid score – accuracy matrix 
For the weight vector  = (  1,  2, . . .,  m)T of decision makers obtained from equation (6), 
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Ye [19] accumulates all individual hybrid score – accuracy matrix Hs = (h s
ij ) n   (s = 1, 2,..., m; 

i = 1, 2, ..., n; j = 1, 2, ...,  ) into a collective hybrid score accuracy matrix  

H=(h ij ) n  = 



































nn hh

hhB

hhh

K

....hB

......

h

 ...B

K......K     

2n1n

222212

112111

21

                                                                             (10) 

Here  h ij  = Σ m
s 1  s h s

ij                                                                                                 (11) 
 
Step – 6 
Weight model for criteria 
To deal decision making problem, the weights of the criteria can be given in advance in the 

form of partially known subset corresponding to the weight information of the criteria.  
To determine weights of the critria Ye [19]  introduced the following optimization model :  

Max 𝜔 =
n
1

 Σ n
i 1  Σ 

1j  𝜔 j  h ij                                                                                         (12)  

Subject to 

 Σ 
1j  𝜔 j  = 1 

 𝜔 j  > 0                                                                                                       
Solving the linear programming problem (12), the weight vector of the criteria  
 𝜔 = (𝜔 1, 𝜔 2, ..., 𝜔 n )T can be easily determined. 

 
Step 7 

Ranking of alternatives 
In order to rank alternatives, all values can be summed in each row of the collective hybrid 

score-accuracy matrix corresponding to the criteria weights by the overall weight hybrid score-
accuracy value of each alternative Bi (i = 1, 2, . . . , n): 

   )( iB  = Σ 
1j  𝜔 j

 h ij                                                                                                (13) 

Based on the values of )B( i  (i = 1, 2, ...., n), we can rank alternatives Bi (i = 1, 2, ..., n) in 
descending order and choose the best alternative. 

 
Step – 8  
End   
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5. Example of the Logistics Center Location Selection Problem 
Assume that a new modern logistic center is required in a town. There are four location B1 , B2 , 

B3 , B4. A committee of four decision makers or experts namely, E1 , E2 , E3 , E4 has been formed 
to select the most appropriate location on the basis of six criteria adopted from the study [20], 
namely, cost (K1), distance to suppliers (K2), distance to customers (K3), conformance to 
government regulation and laws (K4), quality of service (K5) and environmental impact (K6). Thus 
the four decision makers use linguistic variables (see Table 1) to rate the alternatives with respect 
to the criterion and construct the decision matrices ( see Table 2-5) as follows:  

 
 

Table 1: Conversion between linguistic variable and SVNNs 
 
                                              Linguistic term                     SVNNs 

1 
 
2 
 
3 
 
4 
 
5 

  Very Poor(VP) 
 
   Poor (P) 
 
   Good (G) 
 
   Very Good (VG) 
 
    Excellent (EX) 

      (.05,.95,.95) 
 
      (.25,.75,.75) 
 
      (.50,.50,.50) 
 
      (.75,.25,.25) 
 
       (.95,.05,.05) 

 
 
 
 

Table 2: Decision matrix for E1  in the form of linguistic term. 
 

Bi K1 K2 K3 K4 K5 K6 

B1 VG EX VG G G P 

B2 VG G G EX VG VG 

B3 G EX EX G  VG G 

B4 EX VG G EX VG VG 
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Table  3: Decision matrix for E2  in the form of linguistic term. 
 

Bi K1 K2 K3 K4 K5 K6 

B1 VG VG VG G VG P 

B2 EX VG VG VG P P 

B3 P EX EX VG G G 

B4 G G EX VG EX EX 

 
Table  4:  Decision matrix for E3  in the form of linguistic term. 

Bi K1 K2 K3 K4 K5 K6 

B1 VG VG EX VG VG G 

B2 EX G EX VG EX VG 

B3 P EX EX VG G VG 

B4 G G VG EX EX EX 

 
 

Table  5: Decision matrix for E4  in the form of linguistic term. 
Bi K1 K2 K3 K4 K5 K6 

B1 EX VP P VG VG VG 

B2 G G EX VG G EX 

B3 P EX VG G VG VG 

B4 VG VG G G VG G 

 
 
Step-1 
Formation of the decision matrix   
  Decision matrix for E1 in the form of  SVNN 
M1 = 























 .25)  .25,  (.75,   .25)  .25,  (.75,  .05)  .05,  (.95,  .50)  .50,  (.50,  .25)  .25,  (.75,  .05)  .05,  (.95,   B4
.50)  .50,  (.50,   .25)  .25,  (.75,  .50)  .50,  (.50,  .05)  .05,  (.95,  .05)  .05,  (.95,  .50)  .50,  (.50,   B3
.25)  .25,  (.75,   .25)  .25,  (.75,  .05)  05, . (.95,  .50)  .50,  (.50,  .50)  .50,  (.50,  .25)  .25,  (.75,   B2

.75) .75, (.25,   .50)  .50,  (.50,  .50)  .50,  (.50,  .25)  .25,  (.75,  .05)  .05,  (.95,  .25)  .25,  (.75,   B1
K6                  K5                   4K                 K3                          K2                  K1                
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 Decision matrix for E2 in the form of  SVNN 
M2 = 























.05) .05, (.95,     .05) .05, (.95, .25) .25, (.75, .05) .05, (.95, .50) .50, (.50,  .50) .50, (.50,   B4

.50) .50, (.50,   .50) .50, (.50,   .25) .25, (.75,  .05) .05, (.95, .25) .05, (.95, .75) .75, (.25,   B3
.75 .75, (.25,    .75) .75, (.25,  .25) .25, (.75, .25) .25, (.75,  .25) .25, (.75,  .05) .05, (.95,   B2
.75) .75, (.25,  .25) .25, (.75,  .50) .50, (.50,  .25) .25, (.75,   .25) .25, (.75,  .25) .25, (.75,   B1

K6                  K5                     K4                K3                    K2                 K1                

 

   Decision matrix for E3 in the form of  SVNN 
M3 = 























.05) .05, (.95,  .05) .05, (.95,  .05) .05, (.95,  .25) .25, (.75,  .50) .50, (.50,  .50) .50, (.50,    B4

.25) .25, (.75,  .50) .50, (.50,  .25) .25, (.75,  .05) .05, (.95,  .05) .05, (.95,  .75) .75, (.25,    B3

.25) .25, (.75,  .05) .05, (.95,  .25) .25, (.75,  .05) .05, (.95,  .50) .50, (.50,  .05) .05, (.95,    B2
.50) .50, (.50,  .25) .25, (.75,  .25) .25, (.75,  .05) .05, (.95,  .25) .25, (.75,  .25) .25, (.75,    B1

K6               K5                  K4                   K3                  K2                  K1                

 

 Decision matrix for E4  in the form of  SVNN 
M4 = 



























  .50) .50, (.50,  .25) .25, (.75,  .50) .50, (.50,  .50) .50, (.50,  .25) .25, (.75,  .25) .25, (.75,    B4
.25) .25, (.75,  .25) .25, (.75,  .50) .50, (.50,  .25) .25, (.75,  .05) .05, (.95,  .75) .75, (.25,    B3
.05) .05, (.95,  .50) .50, (.50,  .25) .25, (.75,  .05) .05, (.95,  .50) .50, (.50,  .50) .50, (.50,    B2
.25) .25, (.75,  .25) .25, (.75,  .25) .25, (.75,  .75) .75, (.25,  .95) .95, (.05, .05) .05, (.95,     B1

K6                 K5                 K4                  3K                    K2                  K1            

 

Now we use the above method for single valued neutrophic group decision making to choice 
appropriate location. We take   = 0.5 for demonstrating the computing procedure 

 
Step 2 
Calculate hybrid score – accuracy matrix 
Hybrid score- accuracy matrix can be obtained from above decision matrix using equation (5) 

are given below respectively.  
 
 Hybrid score-accuracy matrix for M1 

H1 = 























.75  .75  .95  .50  .75  .95    B4
 .50  .75   .50 .95  .95  .50    B3

.75  .75  .95  .50  .50  .75    B2
.25  .50  .50  .75  .95  .75    B1

  K6  K5  K4  K3   K2   K1        
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 Hybrid score-accuracy matrix for M2 

H2 = 























.95  .95  .75  .95  .50  .50   B4

.50  .50  .75  .95  .95  .25   B3

.25  .25  .75  .75  .75  .95   B2

.25  .75  .50  .75  .75  .75   B1
K6  K5  K4  K3  K2   K1       

 

 Hybrid score-accuracy matrix for M3 

H3 = 























.95  .95  .95  .75  .50  .50   B4

.75  .50  .75  .95  .95  .25   B3

.75  .95  .75  .95  .50  .95   B2
.50  .75  .75  .95  .75  .75   B1
K6  K5  K4  K3  K2  K1        

 

Hybrid score-accuracy matrix for M4 

H4 = 























.50  .75  .50  .50  .75  .75   B4

.75  .75  .50  .75  .95  .25   B3
.95  .50  .75  .95  .50  .50   B2
.75  .75  .75  .25  .05  .95   B1

 K6  K5  K4  K3  K2   K1       

 

Step – 3 
Calculate the average matrix  
Form the above hybrid score-accuracy matrix by using euation(7). We form the average matrix 

H* 

 The average matrix 

H*=    























.7875    .8500    .7875  .6750  .6250  .6750  B4
  0.6250  .6250    .6250  .9000  .9500  .3125  B3

0.6750  0.6125  .8000  .7875  .5625  .7875  B2
0.4375  0.6875  0.625  0.675  0.625  .8000  B1

K6       K5       K4      K3      K2      K1         

 

The collective correlation co-efficent between Hs and H* express follows by equation (8) :- 

s =  

4

1i 26
1

*6
1

2

*6
1

)()( 







j ijj
s
ij

ijj
s
ij

hh

hh    

 1 = 3.907  
2  = 3.964 
3  = 4.124 
4  = 3.800 



Florentin Smarandache, Surapati Pramanik (Editors) 

 

172 
 

Step – 4 
Determination decision maker’s weights 
From the equation (9) we determine the weight of the four decision makers as follows :- 

1  + 2
 + 3  + 4    = 15.79509754 

 1 = 4321

1





 

        = 79509754.15
90705306.3

      = .247 
 
 2  = .251  
 3 = .261 
  4  = .240 
Step – 5 
Calculate collective hybrid score – accuracy matrix 
Hence the hybrid score-accuracy values of the different decision makers choice are aggregated 

by eq.  (11) and the collective hybrid score-accuracy matrix can be formulated as follows: 
H =  

 

 

 
         
 
 

Step – 6 
Weight model for criteria  
Assume that the information about criteria weights is incompletely known given as follows: 

weight vectors, 
0.1≤ 𝜔 1 ≤  0.2,                      0.1 ≤   𝜔 2 ≤  0.2,   
0.1 ≤   𝜔 3 ≤  0.25,                  0.1 ≤   𝜔 4 ≤   0.2, 
0.1 ≤   𝜔 5 ≤   0.2,                   0.1 ≤   𝜔 6 ≤  0.2 
Using the linear programming model (12), we obtain the weight vector of the criteria as 

𝜔 =[0.1, 0.1, 0.25, 0.2, 0.15, 0.2]T. 
Step 7 

Ranking of alternatives 
 Using  euation (13) we calculate the over all hybrid score-accuracy values  

)B( i  (i = 1, 2, 3, 4): 
)B( 1 = .06288 
)B( 2 = .7193 























.792  .852  .792  .678  .622  .671   B4   

.625  .622  .628  .902  .950  .312   B3   
.673  .616  .799  .788  .563  .792   B2  

.436  .688  .625  .682  .631  .798  B1  
K6    K5    K4   K3    K2    K1          
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)B( 3 = .6956 
)B( 4 = .7434 

Based on the above values of )B( i  (i = 1, 2, 3, 4) the ranking order of the locations are as 
follows: 

B4 > B2 > B3 > B1 
Therefore the location B4 is the best location.   
Step – 8  
End   
 

6. Conclusion 
In this paper we have presented  modeling of logistics center location problem using the score 

and accuracy function, hybrid-score-accuracy function of SVNNs and linguistic variables under 
single-valued neutrosophic environment, where weight of the decision makers are completely 
unknown and the weight of criteria are incompletely known.  
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