SAFAA ABDALLAH MOALLIM MUHAMMAD

ABSTRACT. In this paper we prove that there exist infinitely many twin prime numbers by studying n when $6n \pm 1$ are primes. By studying n we show that for every n that generates a twin prime number, there has to be m > n that generates a twin prime number too.

1. INTRODUCTION

Considering that every twin prime can be written as $6n \pm 1$ except for 3 and 5. By studying the properties of n we make sure that there's m > n that generates a twin prime which means $6m \pm 1$ are primes. First values of n that generate twin primes are $\{1, 2, 3, 5, 7, 10, 12, 17, 18, 23 ...\}$. Let's name our n a twin prime generator.

Theorem 1.1.

If $k_1 < k_2$ where $k_1 = p(n_1) + rem_1$ or $k_1 mod p = rem_1$, $k_2 = p(n_2) + rem_2$, $k_1 \neq k_2$ and $rem_1 \neq rem_2$ then $6k_1 mod p \neq 6k_2 mod p$.

Where $n \in \mathbb{N}$ and p is a prime number.

Proof 1.1.

Let $k_1 = pn_1 + rem_1$, and $k_2 = pn_2 + rem_2$

Let $rem_1 \neq rem_2$

$$6k_1 = 6(pn_1 + rem_1)$$

$$6k_2 = 6(pn_2 + rem_2)$$

$$6k_1 = P(6n_1) + 6rem_1 \tag{1}$$

$$6k_2 = P(6n_2) + 6rem_2 \tag{2}$$

If $6rem_1$ and $6rem_1$ are bigger than p, then we divide it to values $6rem_3 + p(L_1)$ where n can be zero if $6rem_1$ is not bigger than p.

$$6k_1 = P(6n_1) + rem_3 + p(L_1)$$
 (3)

$$6k_2 = P(6n_2) + rem_4 + p(L_2)$$
 (4)

$$6k_1 = P(6n_1 + L_1) + rem_3$$

$$6k_2 = P(6n_2 + L_2) + rem_4$$

Let $rem_3 = rem_4$

Then from 3 and 4,
$$6k_1 - P(6n_1 + L_1) = 6k_2 - P(6n_2 + L_2)$$
 (5)

From 1,
$$6rem_1 = 6k_1 - P(6n_1)$$
 (6)

From 2,
$$6rem_2 = 6k_2 - P(6n_2)$$
 (7)

```
From 5, 6, and 7, 6rem_1 + pL_1 = 6rem_2 + pL_2

Since 6rem_1 = rem_3 + p(L_1) and 6rem_2 = rem_4 + p(L_2)

rem_3 + pL_1 + pL_1 = rem_4 + pL_2 + pL_2

L_1 = L_2

From 5, 6k_1 - P(6n_1) = 6k_2 - P(6n_2)

rem_1 = rem_2 which is a contradiction.
```

What we conclude from theorem 1 is that for every two numbers have not the same remainder from the division by a prime number, then after multiplying by 6 they can't have the same remainder too. In brief, every distinct remainder from the division by a prime number after multiplying by 6 will have a distinct remainder from the division by the same prime number.

Theorem 1.2.

If $6m \pm 1$ is divisible by (6n + 1) or (6n - 1) then $m \mod (6n + 1) = ((6n + 1) \pm n) \mod (6n + 1)$ or $m \mod (6n - 1) = ((6n - 1) \pm n) \mod (6n - 1)$, where (6n + 1) and (6n - 1) are primes.

Proof 1.2.

We know that
$$((6n+1)+n) \mod (6n+1) = n$$
, $((6n+1)-n) \mod (6n+1) = 5n+1$, $((6n-1)+n) \mod (6n-1) = n$ and $((6n-1)-n) \mod (6n-1) = 5n-1$

Let
$$x = k(6n + 1) + n$$
, Then $6x = 36kn + 6k + 6n$
 $6x + 1 = 36kn + 6k + 6n + 1$
 $6x + 1 = 6k(6n + 1) + (6n + 1)$
 $6x + 1 = (6k + 1)(6n + 1)$ which is divisible by $(6n + 1)$.
 $6x \mod (6n + 1) = 6n$

From theorem 1.1, the remainder n is the only reminder that can lead to the remainder 6n where the next number is divisible by 6n + 1 when it's multiplied by 6.

Let
$$x = k(6n + 1) - n$$
 that $x \mod (6n + 1) = 5n + 1$, Then $6x = 36kn + 6k - 6n$
 $6x - 1 = 36kn + 6k - 6n - 1$
 $6x - 1 = 6k(6n + 1) - (6n + 1)$
 $6x - 1 = (6k - 1)(6n + 1)$ which is divisible by $(6n + 1)$.
 $6x \mod (6n + 1) = 1$

From theorem 1.1, the remainder 5n + 1 is the only remainder that can lead to the remainder 1 where the behind number is divisible by 6n + 1 when it's multiplied by 6.

Let
$$x = k(6n - 1) + n$$
, Then $6x = 36kn - 6k + 6n$
 $6x - 1 = 36kn - 6k + 6n - 1$
 $6x - 1 = 6k(6n - 1) + (6n - 1)$

$$6x - 1 = (6k + 1)(6n - 1)$$
 which is divisible by $(6n - 1)$.

$$6x \bmod (6n-1) = 1$$

From theorem 1.1, the remainder n is the only reminder that can lead to the remainder 1 where the behind number is divisible by 6n - 1 when it's multiplied by 6.

Let
$$x = k(6n-1) - n$$
 that $x \mod (6n-1) = 5n-1$, Then $6x = 36kn - 6k - 6n$

$$6x + 1 = 36kn - 6k - 6n + 1$$

$$6x + 1 = 6k(6n - 1) - (6n - 1)$$

$$6x + 1 = (6k - 1)(6n - 1)$$
 which is divisible by $(6n - 1)$.

$$6x \bmod (6n-1) = 6n$$

From theorem 1.1, the remainder 5n-1 is the only remainder that can lead to the remainder 6n where the next number is divisible by 6n-1 when it's multiplied by 6.

Lemma 1.1.

For *m* to be a twin prime generator, it has to fulfill the condition that $m \mod (6n+1) \neq ((6n+1) \pm n) \mod (6n+1)$ and $m \mod (6n-1) \neq ((6n-1) \pm n) \mod (6n-1)$, where $n \in \mathbb{N}$ and $n \neq 0$.

We know that m to be a twin prime generator, $6m \pm 1$ shouldn't be divisible by 5 or 7, $6m \pm 1$ shouldn't be divisible by 11 or 13, $6m \pm 1$ shouldn't be divisible by 17 or 19, $6m \pm 1$ shouldn't be divisible by 23 or 25, and so on.

From theorem 1.2, m to be a twin prime generator, $m \pm 1$ shouldn't be divisible by 5 or 7, $m \pm 2$ shouldn't be divisible by 11 or 13, $m \pm 3$ shouldn't be divisible by 17 or 19, $m \pm 4$ shouldn't be divisible by 23 or 25, and so on. From here we can say that m to be a twin prime generator $m \mod (6n + 1) \neq ((6n + 1) \pm n) \mod (6n + 1)$ and $m \mod (6n - 1) \neq ((6n - 1) \pm n) \mod (6n - 1)$.

Theorem 1.3.

The longest interval of integers covered by the union of 4n arithmetic progressions $\pm k \mod (6k-1)$ and $\pm k \mod (6k+1)$ is less than $4n^2$ where $1 \le k \le n$ and $n \in \mathbb{Z}$.

Proof 1.3.

The number of integers that are covered at most in the interval $4n^2$ by $-k \mod(6k-1)$ equal $\left\lfloor \frac{4n^2}{6k-1} \right\rfloor + 1$ and by $+k \mod(6k-1)$ equal $\left\lfloor \frac{4n^2}{6k-1} \right\rfloor + 1$. Then, number of integers that are covered by $\pm k \mod(6k-1)$ equal $2 \left\lfloor \frac{4n^2}{6k-1} \right\rfloor + 2$ and by $\pm k \mod(6k+1)$ equal $2 \left\lfloor \frac{4n^2}{6k+1} \right\rfloor + 2$..

Maximum integers covered, keeping in mind integers that get overlapped, by the 4n progressions equal $2+2\left(1-\frac{2}{5}\right)+2\left(1-\frac{2}{5}-\frac{6}{35}\right)+\cdots+4n^2\left(\frac{2}{5}+\frac{2}{7}-\frac{2}{7}\left(\frac{2}{5}\right)+\frac{2}{11}-\frac{2}{11}\left(\frac{2}{5}\right)-\frac{2}{11}\left(\frac{2}{7}\right)+\frac{2}{11}\left(\frac{2}{7}\right)\left(\frac{2}{5}\right)+\frac{2}{13}-\frac{2}{13}\left(\frac{2}{5}\right)-\frac{2}{13}\left(\frac{2}{7}\right)-\frac{2}{13}\left(\frac{2}{11}\right)+\cdots+\frac{2}{(6(n)+1)}-\frac{2}{(6(n)+1)}\left(\frac{2}{6(1)-1}\right)-\cdots\right)=2+2\left(1-\frac{2}{5}\right)+2\left(1-\frac{2}{5}-\frac{6}{35}\right)+\cdots+4n^2\left(\frac{2}{5}+\frac{6}{35}+\frac{6}{77}+\frac{54}{1001}+\cdots+\frac{2}{(6(n)+1)}\left(1-\frac{2}{5}+\frac{6}{35}+\frac{6}{77}+\frac{54}{1001}+\cdots\right)\right).$ Thus 5 covers $\frac{2}{5}$, 7 covers $\frac{6}{35}$ and so on.

5 covers	$r_1 = \frac{2}{5}$
7 covers	$r_2 = (1 - r_1)\left(\frac{2}{7}\right) = \frac{6}{35}$
11 covers	$r_3 = (1 - r_1 - r_2) \left(\frac{2}{11}\right) = \frac{6}{77}$
13 covers	$r_4 = (1 - r_1 - r_2 - r_3) \left(\frac{2}{13}\right) = \frac{54}{1001}$
17 covers	$r_5 = (1 - r_1 - r_2 - r_3 - r_4) \left(\frac{2}{17}\right) = \frac{54}{1547}$
19 covers	$r_6 = (1 - r_1 - r_2 - r_3 - r_4 - r_5) \left(\frac{2}{19}\right) = \frac{810}{29393}$

Number of integers that aren't covered equal $4(n)^2(1-r_1-\cdots-r_{n2})-(2+2(1-r_1)+\cdots+2(1-r_1-\cdots-r_{n1}))$.

If we assume that $1-(r_1+r_2+r_3+r_4+\cdots+r_{n1}+r_{n2})=0$. Then $1-(r_1+r_2+r_3+r_4+\cdots+r_{n1})=r_{n2}$ which results in a contradiction because $r_{n2}=\left(1-(r_1+r_2+r_3+r_4+\cdots+r_{n1})\right)\left(\frac{2}{6n+1}\right)$. Thus for every n, $1-(r_1+r_2+r_3+r_4+\cdots+r_{n1}+r_{n2})>0$, and this is the inequality number (1).

In the case n = 3, we have the inequality number (2) that is

$$4(3)^2(1-r_1-r_2-r_3-r_4-r_5-r_6) > 2+2(1-r_1)+2(1-r_1-r_2)+2(1-r_1-r_2-r_3)+2(1-r_1-r_2-r_3-r_4)+2(1-r_1-r_2-r_3-r_4-r_5)$$

$$4(3)^2(1-r_1-r_2-r_3-r_4-r_5-r_6) > 2(2(3)) - 2r_1(2(3)-1) - 2r_2(2(3)-2) - 2r_3(2(3)-3) - 2r_4(2(3)-4) - 2r_5(2(3)-5)$$

$$4(3)^{2}(1-r_{1}-r_{2}-r_{3}-r_{4}-r_{5}-r_{6}) > 2(2(3))-2r_{1}(2(3))+2r_{1}-2r_{2}(2(3))+2r_{2}(2)-2r_{3}(2(3))+2r_{3}(3)-2r_{4}(2(3))+2r_{4}(4)-2r_{5}(2(3))+2r_{5}(5)$$

And this inequality holds true because it results in $8 + \frac{748}{1729} > 5.875442205$.

In the case n > 3, n = 3 + k, we got the inequality number (3)

$$\begin{split} &4(3+k)^2 \left(1-r_1-r_2-r_3-r_4-r_5-r_6-\cdots-r_{(3+k)1}-r_{(3+k)2}\right) > 2+2(1-r_1)+2(1-r_1-r_2)+\\ &2(1-r_1-r_2-r_3)+2(1-r_1-r_2-r_3-r_4)+2(1-r_1-r_2-r_3-r_4-r_5)+\cdots+2\left(1-r_1-r_2-r_3-r_4-r_5-\cdots-r_{(3+k)1}\right) \end{split}$$

$$4(3^{2}+6k+k^{2})\left(1-r_{1}-r_{2}-r_{3}-r_{4}-r_{5}-r_{6}-\cdots-r_{(3+k)1}-r_{(3+k)2}\right)>2\left(2(3+k)\right)-2r_{1}(2(3+k)-1)-2r_{2}(2(3+k)-2)-2r_{3}(2(3+k)-3)-2r_{4}(2(3+k)-4)-2r_{5}(2(3+k)-5)-\cdots-2r_{(3+k)1}\left(2(3+k)-(2(3+k)-1)\right)$$

$$4(3)^{2}\left(1-r_{1}-r_{2}-r_{3}-r_{4}-r_{5}-r_{6}-\cdots-r_{(3+k)1}-r_{(3+k)2}\right)+4(6k)\left(1-r_{1}-r_{2}-r_{3}-r_{4}-r_{5}-r_{6}-\cdots-r_{(3+k)1}-r_{(3+k)2}\right)+4k^{2}\left(1-r_{1}-r_{2}-r_{3}-r_{4}-r_{5}-r_{6}-\cdots-r_{(3+k)1}-r_{(3+k)2}\right)>2\left(2(3+k)\right)-2r_{1}\left(2(3+k)\right)+2r_{1}-2r_{2}\left(2(3+k)\right)+2r_{2}(2)-2r_{3}\left(2(3+k)\right)+2r_{3}(3)-2r_{4}\left(2(3+k)\right)+2r_{4}(4)-2r_{5}\left(2(3+k)\right)+2r_{5}(5)-\cdots-2r_{(3+k)1}\left(2(3+k)\right)+2r_{(3+k)1}\left(2(3+k)-1\right)$$

$$\begin{split} &4(3)^2 \left(1-r_1-r_2-r_3-r_4-r_5-r_6-\cdots-r_{(3+k)1}-r_{(3+k)2}\right)+4(6k) \left(1-r_1-r_2-r_3-r_4-r_5-r_6-\cdots-r_{(3+k)1}-r_{(3+k)2}\right) + 2(2k)-2r_1 \left(2(3)\right)-2r_1 (2k)+2r_1-2r_2 \left(2(3)\right)-2r_2 (2k)+2r_2 (2)-2r_3 \left(2(3)\right)-2r_3 (2k)+2r_3 (3)-2r_4 \left(2(3)\right)-2r_4 (2k)+2r_4 (4)-2r_5 \left(2(3)\right)-2r_5 (2k)+2r_5 (5)-\cdots-2r_{(3+k)1} \left(2(3)\right)-2r_{(3+k)1} (2k)+2r_{(3+k)1} \left(2(3+k)-1\right). \end{split}$$

Subtracting inequality number (2) from inequality number (3) we get

$$\begin{split} &4(3)^2 \left(-r_7 - \dots - r_{(3+k)1} - r_{(3+k)2}\right) + 4(6k) \left(1 - r_1 - r_2 - r_3 - r_4 - r_5 - r_6 - \dots - r_{(3+k)1} - r_{(3+k)2}\right) + \\ &4k^2 \left(1 - r_1 - r_2 - r_3 - r_4 - r_5 - r_6 - \dots - r_{(3+k)1} - r_{(3+k)2}\right) > 2(2k) - 2r_1(2k) - 2r_2(2k) - 2r_3(2k) - 2r_4(2k) - 2r_5(2k) - \dots - 2r_{(3+k)1} \left(2(3)\right) - 2r_{(3+k)1}(2k) + 2r_{(3+k)1}(2(3+k) - 1). \end{split}$$

$$4(3)^{2}\left(-r_{7}-\cdots-r_{(3+k)1}-r_{(3+k)2}\right)+4(6k)\left(1-r_{1}-r_{2}-r_{3}-r_{4}-r_{5}-r_{6}-\cdots-r_{(3+k)1}-r_{(3+k)2}\right)+\\4k^{2}\left(1-r_{1}-r_{2}-r_{3}-r_{4}-r_{5}-r_{6}-\cdots-r_{(3+k)1}-r_{(3+k)2}\right)>2(2k)\left(1-r_{1}-r_{2}-r_{3}-r_{4}-r_{5}-r_{6}-\cdots-r_{(3+k)1}\right)+\\2\left(2(3)\right)\left(-r_{6}-\cdots-r_{(3+k)1}\right)+2\left(2(3)\right)\left(r_{6}+\cdots+r_{(3+k)1}\right)+\\2\left(-2(3+k)r_{6}-\cdots-3r_{(3+k-1)1}-2r_{(3+k-1)2}-r_{(3+k)1}\right).$$

$$\begin{split} &36\left(-r_7-\cdots-r_{(3+k)1}-r_{(3+k)2}\right)+24k\left(1-r_1-r_2-r_3-r_4-r_5-r_6-\cdots-r_{(3+k)1}-r_{(3+k)2}\right)+\\ &4k^2\left(1-r_1-r_2-r_3-r_4-r_5-r_6-\cdots-r_{(3+k)1}-r_{(3+k)2}\right)>4k\left(1-r_1-r_2-r_3-r_4-r_5-r_6-\cdots-r_{(3+k)1}\right)+4k\left(r_6+\cdots+r_{(3+k)1}\right)+2\left(-2(3+k)r_6-\cdots-3r_{(3+k-1)1}-2r_{(3+k-1)2}-r_{(3+k)1}\right). \end{split}$$

$$\begin{split} &2\big(2(3+k)r_6+\cdots+3r_{(3+k-1)1}+2r_{(3+k-1)2}+r_{(3+k)1}\big)+4k\big(1-r_1-r_2-r_3-r_4-r_5-r_6-\cdots-r_{(3+k)1}-r_{(3+k)2}\big)+20k\big(1-r_1-r_2-r_3-r_4-r_5-r_6-\cdots-r_{(3+k)1}-r_{(3+k)2}\big)+4k^2\big(1-r_1-r_2-r_3-r_4-r_5-r_6-\cdots-r_{(3+k)1}-r_{(3+k)2}\big)+4k^2\big(1-r_1-r_2-r_3-r_4-r_5-r_6-\cdots-r_{(3+k)1}\big)+4k\big(r_6+\cdots+r_{(3+k)1}\big)+36\big(r_7+\cdots+r_{(3+k)1}+r_{(3+k)2}\big) \end{split}$$

$$\begin{split} &2\big(2(3+k)r_6+\cdots+3r_{(3+k-1)1}+2r_{(3+k-1)2}+r_{(3+k)1}\big)+20k\big(1-r_1-r_2-r_3-r_4-r_5-r_6-\cdots-r_{(3+k)1}-r_{(3+k)2}\big)+4k^2\big(1-r_1-r_2-r_3-r_4-r_5-r_6-\cdots-r_{(3+k)1}-r_{(3+k)2}\big)>4k\big(r_6+\cdots+r_{(3+k)1}+r_{(3+k)2}\big)+36\big(r_7+\cdots+r_{(3+k)1}+r_{(3+k)2}\big). \end{split}$$

Partitioning the inequality into smaller inequalities, we have

$$4k^2 \left(1 - r_1 - r_2 - r_3 - r_4 - r_5 - r_6 - \dots - r_{(3+k)1} - r_{(3+k)2}\right) > 4k \left(r_6 + \dots + r_{(3+k)1} + r_{(3+k)2}\right)$$

$$k(1-r_1-r_2-r_3-r_4-r_5-r_6-\cdots-r_{(3+k)1}-r_{(3+k)2}) > (r_6+\cdots+r_{(3+k)1}+r_{(3+k)2})$$

From inequality number (1), we know that $\left(r_6 + \dots + r_{(3+k)1} + r_{(3+k)2}\right) < 1 - r_1 - r_2 - r_3 - r_4 - r_5$, $\left(r_6 + \dots + r_{(3+k)1} + r_{(3+k)2}\right) < 0.261797$. In the case k = 2, $k\left(1 - r_1 - r_2 - r_3 - r_4 - r_5 - r_6 - \dots - r_{(3+k)1} - r_{(3+k)2}\right) > 0.3$.

Comparing between k and k+1 to know if $k(1-r_1-r_2-r_3-r_4-r_5-r_6-\cdots-r_{(3+k)1}-r_{(3+k)2})$ is increasing.

$$(k+1) \left(1 - r_1 - r_2 - r_3 - r_4 - r_5 - r_6 - \dots - r_{(3+k)1} - r_{(3+k)2} - r_{(3+k+1)1} - r_{(3+k+1)2}\right) > k(1 - r_1 - r_2 - r_3 - r_4 - r_5 - r_6 - \dots - r_{(3+k)1} - r_{(3+k)2})$$

$$k(1 - r_1 - r_2 - r_3 - r_4 - r_5 - r_6 - \dots - r_{(3+k)1} - r_{(3+k)2}) + k(-r_{(3+k+1)1} - r_{(3+k+1)2})$$

$$+ (1 - r_1 - r_2 - r_3 - r_4 - r_5 - r_6 - \dots - r_{(3+k)1} - r_{(3+k)2} - r_{(3+k+1)1} - r_{(3+k+1)2})$$

$$> k(1 - r_1 - r_2 - r_3 - r_4 - r_5 - r_6 - \dots - r_{(3+k)1} - r_{(3+k)2})$$

$$(1 - r_1 - r_2 - r_3 - r_4 - r_5 - r_6 - \dots - r_{(3+k)1} - r_{(3+k)2} - r_{(3+k+1)1} - r_{(3+k+1)2})$$

$$> k(r_{(3+k+1)1} + r_{(3+k+1)2})$$

$$\left(1-r_1-r_2-r_3-r_4-r_5-r_6-\cdots-r_{(3+k)1}-r_{(3+k)2}\right)>(k+1)(r_{(3+k+1)1}+r_{(3+k+1)2})$$

$$\begin{split} (k+1) & \Big(r_{(3+k+1)1} + r_{(3+k+1)2} \Big) \\ & = \Big(1 - r_1 - r_2 - r_3 - r_4 - r_5 - r_6 - \dots - r_{(3+k)1} - r_{(3+k)2} \Big) \Big(\frac{2k+2}{6(3+k)-1} \Big) \\ & + \Big(1 - r_1 - r_2 - r_3 - r_4 - r_5 - r_6 - \dots - r_{(3+k)1} - r_{(3+k)2} \\ & - r_{(3+k+1)1} \Big) \Big(\frac{2k+2}{6(3+k)+1} \Big) \\ & = \Big(1 - r_1 - r_2 - r_3 - r_4 - r_5 - r_6 - \dots - r_{(3+k)1} - r_{(3+k)2} \Big) \Big(\frac{24k^2 + 96k + 72}{36k^2 + 216k + 323} \Big) \\ & - \Big(\frac{2k+2}{6(3+k)+1} \Big) \Big(1 - r_1 - r_2 - r_3 - r_4 - r_5 - r_6 - \dots - r_{(3+k)1} \Big) \\ & - r_{(3+k)2} \Big) \Big(\frac{2k+2}{6(3+k)-1} \Big) \\ & = \Big(1 - r_1 - r_2 - r_3 - r_4 - r_5 - r_6 - \dots - r_{(3+k)2} \Big) \Big(\frac{20k^2 + 88k + 68}{36k^2 + 216k + 323} \Big) \end{split}$$

And this means that $(1-r_1-r_2-r_3-r_4-r_5-r_6-\cdots-r_{(3+k)2})\left(\frac{20k^2+88k+68}{36k^2+216k+323}\right)<(1-r_1-r_2-r_3-r_4-r_5-r_6-\cdots-r_{(3+k)1}-r_{(3+k)2})$ holds true. This inequality is inequality number (4).

Taking another part from the inequality, we get $20k(1-r_1-r_2-r_3-r_4-r_5-r_6-\cdots-r_{(3+k)2})> 36(r_7+\cdots+r_{(3+k)1}+r_{(3+k)2})$, with n holding any value $36(r_7+\cdots+r_{(3+k)1}+r_{(3+k)2})<8.432620012$.

In the case k=3, $20k(1-r_1-r_2-r_3-r_4-r_5-r_6-\cdots-r_{(3+k)2})>10$. From inequality number (4), we know that $20k(1-r_1-r_2-r_3-r_4-r_5-r_6-\cdots-r_{(3+k)2})$ is increasing.

So we conclude that $36\left(-r_7-\cdots-r_{(3+k)1}-r_{(3+k)2}\right)+20k\left(1-r_1-r_2-r_3-r_4-r_5-r_6-\cdots-r_{(3+k)1}-r_{(3+k)2}\right)+4k^2\left(1-r_1-r_2-r_3-r_4-r_5-r_6-\cdots-r_{(3+k)1}-r_{(3+k)2}\right)>4k\left(r_6+\cdots+r_{(3+k)1}+r_{(3+k)2}\right)+2\left(-2(3+k)r_6-\cdots-3r_{(3+k-1)1}-2r_{(3+k-1)2}-r_{(3+k)1}\right)$ is correct. Thus when n>3, there're integers in the interval $4n^2$ that are not covered.

Theorem 1.4.

Let m be a twin prime generator and x is the next twin prime generator where x > m then $x < m + 4 \left\lfloor \frac{m}{6} \right\rfloor^2 + 1$.

Proof 1.4.

From theorem 1.3 we know that the longest interval of integers covered by the union of 4n arithmetic progressions $\pm l \mod (6(l) - 1)$, (6(l) + 1) where $l \le n$ and $n = \left\lfloor \frac{m}{6} \right\rfloor$ is less than $4n^2$.

Let p be a prime number greater than m, then the integers covered by p equal $k_p = k(6s \pm 1) \pm s$ where $s > \lfloor \frac{m}{6} \rfloor$.

If k < s, then $k_p = k(6s \pm 1) \pm s = k6s \pm k \pm s = s(6k \pm 1) \pm k$ which means that they're already covered by primes less than m (by one of $\pm l \mod (6(l) - 1), (6(l) + 1)$). We conclude from here that k has to be greater than or equal n to cover an integer that's not covered already.

 $s(6s+1)+s>s(6s+1)-s>s(6s-1)-s>m+4\left\lfloor\frac{m}{6}\right\rfloor^2+1$ which means that for primes greater than m, they can't cover integers between m and $m+4\left\lfloor\frac{m}{6}\right\rfloor^2$. Thus, that leads to the fact that there has to be an integer that isn't covered (a twin prime generator) x where $m< x< m+4\left\lfloor\frac{m}{6}\right\rfloor^2+1$.

2. NEXT TWIN PRIME

Definition 2.1.

Let
$$o_1 = (6n + 1) + n$$
, $o_2 = (6n + 1) - n$, $o_3 = (6n - 1) + n$, $o_4 = (6n - 1) - n$.

Let c be a twin prime generator.

Let
$$k_1 = c \mod (6n + 1)$$
 and $k_2 = c \mod (6n - 1)$.

Let
$$f_1 = |k_1 - o_1 - (6n + 1)| \mod (6n + 1)$$
, $f_2 = |k_1 - o_2 - (6n + 1)| \mod (6n + 1)$, $f_3 = |k_2 - o_3 - (6n - 1)| \mod (6n - 1)$, $f_4 = |k_2 - o_4 - (6n - 1)| \mod (6n - 1)$.

Let
$$F = \{x \in \mathbb{N}: x \le \left(c + 4 \left| \frac{c}{6} \right|^2 + 1\right) \text{ and } x = f_1 \text{ or } x = f_2 \text{ or } x = f_3 \text{ or } x = f_4\}.$$

Let
$$T = \{x \in \mathbb{N} : x \le \left(c + 4\left|\frac{c}{6}\right|^2 + 1\right) \text{ and } x \notin F\}.$$

Then next twin prime generator = c + MIN[T]

Example 1.

We know that 12 is a twin prime generator, then

$$c = 12$$

The next twin prime generator is definitely within the next 7 numbers

We calculate just when $n \le \left| \frac{c}{6} \right|$ or $n \le 2$.

$$f_1(1) = |k_1 - o_1 - (6(1) + 1)| \mod (6(1) + 1) = |5 - 8 - 7| \mod 7 = 10 \mod 7 = 3$$

$$f_1(2) = |k_1 - o_1 - (6(2) + 1)| \mod (6(2) + 1) = |12 - 15 - 13| \mod 13 = 16 \mod 13 = 3$$

$$f_2(1) = |k_1 - o_2 - (6(1) + 1)| \mod (6(1) + 1) = |5 - 6 - 7| \mod 7 = 8 \mod 7 = 1$$

$$f_2(2) = |k_1 - o_2 - (6(2) + 1)| \mod (6(2) + 1) = |12 - 11 - 13| \mod 13 = 12 \mod 13 = 12$$

$$f_3(1) = |k_2 - o_3 - (6(1) - 1)| \mod (6(1) - 1) = |2 - 6 - 5| \mod 5 = 9 \mod 5 = 4$$

$$f_3(2) = |k_2 - o_3 - (6(2) - 1)| \mod (6(2) - 1) = |1 - 13 - 11| \mod 11 = 23 \mod 11 = 1$$

$$f_4(1) = |k_2 - o_4 - (6(1) - 1)| \mod (6(1) - 1) = |2 - 4 - 5| \mod 5 = 7 \mod 5 = 2$$

$$F = x \in \mathbb{N}: x \le \left(c + 4\left|\frac{c}{6}\right|^2 + 1\right) \text{ and } x = f_1 \text{ or } x = f_2 \text{ or } x = f_3 \text{ or } x = f_4)\} = \{1, 2, 3, 4, 12\}$$

$$T == \{x \in \mathbb{N}: x \le \left(c + 4\left|\frac{c}{6}\right|^2 + 1\right) \ and \ x \notin F\} = \{5,6,7,8,9,10,11,13,14,15,16,17,18,19,20,21,22\}$$

 $next\ twin\ prime\ generator = c + MIN[T] = 12 + MIN[5,6,7] = 12 + 5 = 17$

3. REFERENCES

- [1] Twin prime Wikipedia. (n.d.). Retrieved October 21, 2016, from https://en.wikipedia.org/wiki/Twin_prime
- [2] Module (mathematics) Wikipedia. (n.d.). Retrieved October 21, 2016, from https://en.wikipedia.org/wiki/Module_(mathematics)

 $\label{thm:conjecture} \begin{tabular}{l} [3] Twin Prime Conjecture -- from Wolfram MathWorld. (n.d.). Retrieved October 21, 2016, from http://mathworld.wolfram.com/TwinPrimeConjecture.html \end{tabular}$

Qassim University, Safa Abdallah Moallim Muhammad

E-mail address: safofoh.100@gmail.com