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Abstract

After a very brief introduction to generalized gravity in Clifford spaces
(C-spaces), generalized metric solutions to the C-space gravitational field
equations are found, and inspired from the (Anti) de Sitter metric solu-
tions to Einstein’s field equations with a cosmological constant in ordinary
spacetimes. C-space analogs of static spherically symmetric metrics so-
lutions are constructed. Concluding remarks are devoted to a thorough
discussion about Areal metrics, Kawaguchi-Finsler Geometry, Strings, and
plausible novel physical implications of C-space Relativity theory.
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1 Geometry of Clifford-spaces

In the past years, the Extended Relativity Theory in C-spaces (Clifford spaces)
and Clifford-Phase spaces were developed [5]. The Extended Relativity theory
in Clifford-spaces (C-spaces) is a natural extension of the ordinary Relativity
theory whose generalized coordinates are Clifford polyvector-valued quantities
which incorporate the lines, areas, volumes, and hyper-volumes degrees of free-
dom associated with the collective dynamics of particles, strings, membranes,
p-branes (closed p-branes) moving in a D-dimensional target spacetime back-
ground. C-space Relativity permits to study the dynamics of all (closed) p-
branes, for different values of p, on a unified footing.

∗Dedicated to the loving memory of Don Guillermo Zambrano Lozano, a maverick and
visionary entrepreneur from Monterrey, Mexico.
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Our theory has 2 fundamental parameters : the speed of a light c and a
length scale which can be set equal to the Planck length. The role of “photons”
in C-space is played by tensionless branes. An extensive review of the Extended
Relativity Theory in Clifford spaces can be found in [5]. The polyvector valued
coordinates xµ, xµ1µ2 , xµ1µ2µ3 , ... are now linked to the basis vectors generators
γµ, bi-vectors generators γµ ∧ γν , tri-vectors generators γµ1 ∧ γµ2 ∧ γµ3 , ... of
the Clifford algebra, including the Clifford algebra unit element (associated to
a scalar coordinate).

These polyvector valued coordinates can be interpreted as the quenched-
degrees of freedom of an ensemble of p-loops associated with the dynamics of
closed p-branes, for p = 0, 1, 2, ..., D − 1, embedded in a target D-dimensional
spacetime background. C-space is parametrized not only by 1-vector coordi-
nates xµ but also by the 2-vector coordinates xµν , 3-vector coordinates xµνρ,
..., called also holographic coordinates, since they describe the holographic pro-
jections of 1-loops, 2-loops, 3-loops,..., onto the coordinate planes . By p-loop
we mean a closed p-brane; in particular, a 1-loop is closed string. When X
is the Clifford-valued coordinate corresponding to the Cl(1, 3) algebra in four-
dimensions it can be decomposed as

X = s 1 + xµ γµ + xµν γµ∧γν + xµνρ γµ∧γν∧γρ + xµνρτ γµ∧γν∧γρ∧γτ (1.1)

where we have omitted combinatorial numerical factors for convenience in the
expansion of eq-(1.1). To avoid introducing powers of a length parameter L
(like the Planck scale Lp), in order to match physical units in the expansion of
the polyvector X in eq-(1.1), we can set it to unity to simplify matters.

The component s is the Clifford scalar component of the polyvector-valued
coordinate and dΣ is the infinitesimal C-space proper “time” interval

(dΣ)2 = (ds)2 + dxµ dx
µ + dxµν dx

µν + . . . (1.2)

that is invariant under Cl(1, 3) transformations and which are the Clifford-
algebraic extensions of the SO(1, 3) Lorentz transformations [5]. One should
emphasize that dΣ is not equal to the proper time Lorentz-invariant interval
dτ in ordinary spacetime (dτ)2 = gµνdx

µdxν = dxµdx
µ. Generalized Lorentz

transformations (poly-rotations) in flat C-spaces were discussed in [5]. An ex-
tensive analysis of the C-space generalized Lorentz transformations and their
physical implications can be found in [2].

Given X = XAγA, where A is a polyvector-valued index and γA span over
all the generators of the Clifford algebra, the quadratic form is defined as

< X† X > = XA X
A = s2 +Xµ X

µ +Xµ1µ2 X
µ1µ2 + ...... Xµ1µ2.....µD

Xµ1µ2....µD

(1.3)
where X† denotes the reversal operation obtained by reversing the order of the
gamma generators in the wedge products. The symbol < γA γB > denotes
taking the scalar part in the Clifford geometric product of γA γB . It is the
analog of taking the trace of a product of matrices.
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In curved C-space [5], [6] one introduces the X-dependent basis generators
γM , γ

M defined in terms of the beins EAM , inverse beins EMA and the flat tangent
space generators γA, γ

A as follows γM = EAM (X)γA, γ
M = EMA (X)γA. The

curved C- space metric expression gMN = EAME
B
NηAB also agrees with taking

the scalar part of the Clifford geometric product < γM γN >= gMN .
From now one we shall denote the curved C-space basis generators γM , γ

M

by EM , E
M , and the flat tangent space generators γA, γ

A by EA, E
A. The

indices A,B,C, ... from the beginning of the alphabet represent the tangent
space indices, while those from the middle of the alphabet L,M,N, ... represent
the base world indices. The covariant derivative of EAM (X), EMA (X) involves the
generalized connection and spin connection and are defined as

∇KEAM = ∂KE
A
M − ΓLKM EAL + ωAKB EBM (1.4)

∇KEMA = ∂KE
M
A + ΓMKL E

L
A − ω B

KA EMB (1.5)

If the nonmetricity is zero then ∇KEAM = 0, ∇KEMA = 0 in eqs-(1.4,1.5).
The coefficients (functions) W N

LM associated to the Clifford geometric prod-
uct are defined by

EA EB = W C
AB EC , given EL = EAL EA, EM = EAM EA ⇒

EL EM = W N
LM EN ⇒W N

LM = EAL EBM ENC W C
AB (1.6)

the Clifford algebra structure functions f N
LM , d N

LM are defined by

[EA, EB ] = f C
AB EC , [EL, EM ] = f N

LM EN ⇒ f N
LM = EAL EBM ENC f C

AB

(1.7)

{EA, EB} = d C
AB EC , {EL, EM} = d N

LM EN ⇒ d N
LM = EAL EBM ENC d C

AB

(1.8)
For simplicity we shall set the nonmetricity QLMN to zero. The torsionless

Levi-Civita connection is given by [1]

(lc)ΓLMN = {LMN} +
1

2
gLK ( fMKN + fNKM + fMNK ) (1.9)

where

{LMN} =
1

2
gLK ( ∂N gKM + ∂M gKN − ∂K gMN ) (1.10)

and fMKN are the Clifford algebra structure functions (coefficients). We should
notice that the Levi-Civita (LC) connection in eq-(1.10) has a symmetric (lc)ΓL (MN)

and antisymmetric (lc)ΓL [MN ] piece. The symmetric piece is given by the first

three terms in (1.9), while the antisymmetric piece is given by the last term in
(1.9).

The Torsion is defined by
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T = ∇X Y − ∇Y X − [X,Y] (1.11)

so that by inspection one can see that the Levi-Civita (LC) connection (1.9) is
torsionless

(lc)T L
MN ≡ (lc)ΓLMN − (lc)ΓLNM − f L

MN = 0 (1.12)

The last term −f L
MN in the expression for the torsion (2.17) originates from

the non-vanishing [X,Y] 6= 0 contribution and resulting from the fact that
[EM , EN ] = f L

MN EL 6= 0.
The curvature is defined as

R(X,Y) Z = [∇X, ∇Y] Z − ∇[X,Y] Z (1.13)

such that the explicit curvature components are given by

R K
MNJ = ∂M Γ K

NJ − ∂N Γ K
MJ − Γ L

MJ Γ K
NL + Γ L

NJ Γ K
ML − f L

MN Γ K
LJ

(1.14)
In [1] it is shown explicitly that the curvature (1.14) transforms homogeneously
under coordinate transformations XM → X̃M (XN ) despite that the connection
ΓKMJ transforms inhomogeneously.

By inserting the torsionless connection expression in eq-(1.9) of the form
ΓLMN = {LMN}+ fLMN ..... terms, and after using the covariantly constancy con-
dition on the curved C-space Clifford algebra structure functions ∇MfJKL = 0
[1], one can decompose the symmetrized part of the Ricci tensor as R(MJ) ∼
RMJ + fKLM fKLJ + fKLJ fKLM , and the Ricci scalar as R ∼ R + fJKLfJKL.
RMJ = RJM , R are the Ricci tensor and Ricci scalar analogs in C-space associ-
ated with the symmetric Christoffel connection {LMN} = {LNM}.

The physical significance of this curvature decomposition is that these extra
terms involving the curved C-space Clifford algebra structure functions can be
interpreted as an effective stress energy tensor which can mimic the effects
of “dark” matter/energy. To see how the cosmological constant Λ emerges,
it is straightforward to infer that the contraction fJKL fJKL involving the
Clifford-algebra structure functions in curved C-space turns out to be equal to
fABC fABC ∼ Λ1 = constant, when fABC , fABC are the tangent space Clifford
algebra structure constants. This finding is just a consequence of the definitions
of fJKL and fJKL in terms of the beins EAJ , and inverse beins EJA obeying
EJA EAM = δJM , ....

Therefore, to sum up, when the torsion is set to zero, the generalized vacuum
field equations in C-space were shown to be given by [1]

RMN ({}) − 1

2
gMN R({}) + Λ gMN = 0 (1.15)

where the cosmological constant Λ stems from the contractions involving the
quadratic terms of the form fJKLfJKL, and the curvature terms are defined in
terms of the symmetric Christoffel like connection coefficients {LMN} = {LNM}.
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Having presented this brief introduction of C-gravity in the next section we shall
explore metric solutions to the C-space gravitational field equations (1.15).

2 Generalized Metrics in C-spaces

2.1 (Anti) de Sitter Metrics in C-Spaces

The d-dim Anti de Sitter space AdSd can be parametrized in terms of stere-
ographic coordinates by embedding the d-dim hyperboloid (whose throat ra-
dius is L/2) in a d + 1-dim pseudo-Euclidean flat space Rd−1,2 of signature
(−,+,+, · · · ,+,−) as follows

yµ =
xµ

(1− xµxµ/L2)
, µ = 0, 1, 2, · · · , d− 1 (2.1)

yd+1 =
L

2

(1 + xµx
µ/L2)

(1− xµxµ/L2)
, xµx

µ = − (x0)2 + (x1)2 + (x2)2 + . . . + (xd−1)2

(2.2)
one can infer from eqs-(2.1,2.2) that

− (yd+1)2 − (y0)2 + (y1)2 + (y2)2 + . . . + (yd−1)2 = − (
L

2
)2 (2.3)

The d-dim de Sitter space dSd can be parametrized by the stereographic
coordinates by embedding the d-dim hyperboloid (whose throat radius is L/2)
into a d+1-dim pseudo-Euclidean flat space Rd,1 of signature (−,+,+, · · · ,+,+)
as follows

yµ =
xµ

(1 + xµxµ/L2)
, µ = 0, 1, 2, · · · , d− 1 (2.4)

yd+1 =
L

2

(1− xµxµ/L2)

(1 + xµxµ/L2)
, xµx

µ = − (x0)2 + (x1)2 + (x2)2 + . . . + (xd−1)2

(2.5)
obeying

(yd+1)2 − (y0)2 + (y1)2 + (y2)2 + . . . + (yd−1)2 = (
L

2
)2 (2.6)

The (Anti) de Sitter metric in stereographic coordinates become respectively

(dτ)2AdS =
(dxµ) (dxµ)

(1− xµxµ/L2)2
, (dτ)2dS =

(dxµ) (dxµ)

(1 + xµxµ/L2)2
(2.7)

5



namely, the metric is conformally flat. It is well known (to the experts) that
the scalar curvature of the d-dim Lorentzian spacetime corresponding to the
conformally flat metric g = e2φηµν = Ω2ηµν , and written in terms of inertial
coordinates, is given by the expression

R(g) = Ω−2 [ − 2 (d− 1) (∂µ∂
µln Ω) − (d− 2) (d− 1) (∂µln Ω) (∂µln Ω) ]

(2.8)
hence, given the conformal factors displayed above and plugging their values
into eq-(2.8) one ends up, respectively, with

RAdS = − d (d− 1)

(L/2)2
, RdS =

d (d− 1)

(L/2)2
(2.8)

Given this preamble we are going to exploit the conformally flat nature of
(Anti) de Sitter spaces and show that the generalization of the d-dim Anti de
Sitter space AdSd metric to C-spaces is given

(dΣ)2 =
(dXM ) (dXM )

(1−XMXM/L2)2
(2.9)

the C-space conformal factor is

Ω2(XM ) =
1

(1−XMXM/L2)2
(2.10)

the infinitesimal displacement squared is

(dXM ) (dXM ) = (LP )2 (ds)2 + (dxµ) (dxµ) + (LP )−2 (dxµν) (dxµν) +

(LP )−4 (dxµνρ) (dxµνρ) + . . . (2.11)

The norm squared is

XMX
M = (LP )2 s2 + xµx

µ + (LP )−2 xµν x
µν + (LP )−4 xµνρ x

µνρ + . . .
(2.12)

The Clifford scalar s is chosen to be dimensionless. We choose XMX
M to have

units of (length)2 and for this reason suitable powers of the Planck scale LP
must appear in eqs-(2.11, 2.12).

The bivectors, trivectors, ..... infinitesimal displacements containing the
temporal direction will appear with a negative sign due to the chosen Lorentzian
signature

(dxµ) (dxµ) = − (dx0)2 + (dx1)2 + (dx2)2 + . . . + (dxd−1)2 (2.13a)

(dxµν) (dxµν) = − (dx01)2 − (dx02)2 − (dx03)2 − . . . + (dx12)2 + (dx13)2 + . . .
(2.13b)
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(dxµνρ) (dxµνρ) = − (dx012)2 − (dx013)2 − (dx014)2 − . . . + (dx123)2 + (dx124)2 + . . .
(2.13c)

etc. There is an ambiguity in choosing the sign in the Clifford scalar part (ds)2

of eq-(2.11). We choose the + sign so the overall signature of the 2d-dimensional
C-space is split into an equal number of positive/negative signs.

Because the C-space corresponding to the Clifford algebra Cl(d − 1, 1) is
2d-dimensional one can show, after some straightforward and lengthy algebra is
performed in the defining expressions for the connection and curvature in eqs-
(1.9, 1.10, 1.14) , that the generalization of the Anti de Sitter space scalar curva-
ture to the 2d-dimensional C-space, and evaluated for the symmetric Christoffel
connection, is

R({}) = Ω−2
[
− 2 (2d − 1) (∂M∂

M ln Ω)
]
−

Ω−2
[

(2d − 2) (2d − 1) (∂M ln Ω) (∂M ln Ω)
]

(2.14)

where the expression for the C-space conformal factor Ω(XM ) is given by eq-
(2.10). Hence, one arrives finally at

R = − 2d (2d − 1)

(L/2)2
(2.15)

The generalization of the de Sitter space scalar curvature to the 2d-dimensional
C-space is derived from the C-space metric

(dΣ)2 =
(dXM ) (dXM )

(1 +XMXM/L2)2
(2.16)

leading to the (positive) value

R =
2d (2d − 1)

(L/2)2
(2.17)

Concluding this subsection, the generalized vacuum field equations in C-
space [1] displayed in eq-(1.15) are obeyed when the values for Λ associated
with the C-space version of (Anti) de Sitter spacetimes are respectively given
by

Λ = − (2d − 1) (2d − 2)

2(L/2)2
, Λ =

(2d − 1) (2d − 2)

2(L/2)2
(2.18)

These results are consistent with a throat radius ρ = L/2 of the underlying
(Anti) de Sitter spacetimes. The generalized Ricci tensors are respectively given
by

RMN = − (2d − 1)

(L/2)2
gMN , RMN =

(2d − 1)

(L/2)2
gMN (2.19)
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The embedding of the 2d-dimensional C-space “hyperboloid” into an abstract
space of 2d + 1 dimensions in the Anti de Sitter version of C-space can be at-
tained by writing

YM =
XM

(1−XMXM/L2)
, M = 1, 2, · · · , 2d (2.20a)

YM+1 =
L

2

(1 +XMX
M/L2)

(1−XMXM/L2)
, (2.20b)

whereas for the de Sitter version one has

YM =
XM

(1 +XMXM/L2)
, M = 1, 2, · · · , 2d (2.21a)

YM+1 =
L

2

(1−XMX
M/L2)

(1 +XMXM/L2)
(2.21b)

and leading to the a generalization of eqs-(2.1-2.6). Note that 2d + 1 6= 2d+1,
unless d = 0, however the abstract space of 2d + 1 dimensions is associated to
the dimensions of the direct sum of the Clifford algebras Cl(d− 1, 1)⊕ Cl(0).

2.2 A different family of C-space metrics

Another C-space metric associated with the generalization of the d-dim Anti
de Sitter space AdSd to C-spaces is given by a “diagonal sum” of the Clifford
scalar, vector, bivector, trivector, . . . contributions

(dΣ)2 = (LP )2
(ds)2

(1− s2)2
+

(dxµ) (dxµ)

(1− xµxµ/L2)2
+ (LP )−2

(dxµν) (dxµν)

(1− xµνxµν/L4)2
+

(LP )−4
(dxµνρ) (dxµνρ)

(1− xµνρxµνρ/L6)2
+ . . . (2.22)

The above C-space metric is not the same as

(dΣ)2 =
(dXM ) (dXM )

(1−XMXM/L2)2
(2.23)

and for this reason the metric (2.20) does not obey the field equations (1.15).
The above “diagonal sum” version in the de Sitter case is

(dΣ)2 = (LP )2
(ds)2

(1 + s2)2
+

(dxµ) (dxµ)

(1 + xµxµ/L2)2
+ (LP )−2

(dxµν) (dxµν)

(1 + xµνxµν/L4)2
+

(LP )−6
(dxµνρ) (dxµνρ)

(1 + xµνρxµνρ/L6)2
+ . . . (2.24)
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The above C-space metric does not solve the field equations (1.15) and does
not have the form

(dΣ)2 =
(dXM ) (dXM )

(1 +XMXM/L2)2
(2.25)

2.3 Analog of Static Spherically Symmetric Metrics in
C-spaces

To search for a generalization of static spherically symmetric metrics in C-
spaces, let us focus on the Clifford algebra Cl(3, 1) associated with a four-dim
Lorentzian spacetime and which is 24 = 16 dimensional. The C-space metric
defining the infinitesimal interval (dΣ)2 has a split signature (8, 8) [5]. Let us
examine what would be the analog of a “spherically” symmetric metric in C-
space. The analog of the “spatial radial distance” squared in the 16-dim C-space
is

|X|2 = (LP )2 s2 + (x1)2 + (x2)2 + (x3)2 +

(LP )−2
(

(x12)2 + (x13)2 + (x23)2
)

+ (LP )−4 (x123)2 (2.26)

from which one can infer that

d|X| = |X|−1
[

(LP )2 sds + x1dx1 + x2dx2 + x3dx3
]

+

|X|−1
[

(LP )−2
(
x12dx12 + x13dx13 + x23dx23

)
+ (LP )−4 x123dx123

]
(2.27)

where |X| is the square root of eq-(2.26).
The analog of the “temporal radial distance” squared in the 16-dim C-space

is

|T |2 = (x0)2 + (LP )−2
(

(x01)2 + (x02)2 + (x03)2
)

+

(LP )−4
(

(x012)2 + (x013)2 + (x023)2
)

+ (LP )−6 (x0123)2 (2.28)

from which one can infer the expression for the infinitesimal temporal displace-
ment

d|T | = |T |−1
[
x0dx0 + (LP )−2

(
x01dx01 + x02dx02 + x03dx03

) ]
+

|T |−1
[
(LP )−4

(
x012dx012 + x013dx013 + x023dx023

)
+ (LP )−6 x0123dx0123

]
(2.29)

where |T | is the square root of eq-(2.28).
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Hence, an ansatz for the analog of a “static spherically symmetric” metric
in the 16-dim C-space of split signature (8, 8) is

(dΣ)2 = −f(|X|) (d|T |)2 − |T |2 (dχ7)2 + h(|X|) (d|X|)2 + |X|2 (dΩ7)2 (2.30)

where |X|2(dΩ7)2 is the C-space metric analog a 7-dim sphere determined by
the spatial directions, and |T |2(dχ7)2 is the C-space metric analog of a 7-dim
sphere determined by the temporal directions. Ω7, χ7 are the respective solid
angles of the 7-dim spheres. All the other terms in (2.30) are defined by eqs-
(2.26-2.29). The real-valued functions f(|X|), h(|X|) in (2.30) are determined
by solving the very complicated C-space field equations (1.15). The flat C-space
limit is attained when f(|X|) = h(|X|) = 1.

The 4D (Anti) de Sitter-Schwarzschild metric in natural units h̄ = c = G = 1

(dτ)2 = − (1−2M

r
+ λ r2) (dt)2 + (1−2M

r
+ λ r2)−1 (dr)2 +r2 (dΩ2)2 (2.31)

is a solution of Einstein’s field equations with a cosmological constant. This
metric is just a slice of 16-dim C-space of split signature (8, 8) gived by eq-
(2.30). Guided by this metric (2.31) one could attempt to find the real-valued
functions f(|X|), h(|X|) in (2.30) which solve the C-space field equations (1.15).

We finalize this section by discussing the very restricted class of C-space
metrics (gMN = gNM ) that can be decomposed into products of ordinary met-
rics in spacetime. Firstly, one needs to have a C-space metric whose components
have the same grade like

g00, gµν , gµ1µ2 ν1ν2 , . . . , gµ1µ2...µD ν1ν2...νD (2.32)

and which can be decomposed as

g[µ1µ2] [ν1ν2](x
µ) = gµ1ν1(xµ) gµ2ν2(xµ) − gµ2ν1(xµ) gµ1ν2(xµ)

g[µ1µ2...µk] [ν1ν2...νk](x
µ) = det Gµiνj = εj1j2...jk gµ1νj1

gµ2νj2
. . . gµ2νjk

,
(2.33)

The determinant of Gµiνj can be written as

det


gµ1ν1(xµ) . . . . . . gµ1νk(xµ)
gµ2ν1(xµ) . . . . . . gµ2νk(xµ)

−−−−−−−−−−− −−−−−−−−−−−−−−
gµkν1(xµ) . . . . . . gµkνk(xµ)

 , (2.34)

The metric component g00 involving the Clifford scalar “directions” X0 = s
of the Clifford polyvectors in C-space must also be included. X0 = s must
not be confused with the temporal coordinate x0. g00 behaves like a Clif-
ford scalar under coordinate transformations in C-space. The other component
g[µ1µ2...µD] [ν1ν2...νD] involves the pseudo-scalar “direction”. The latter scalar
and pseudo-scalar components of the C-space metric might bear some connec-
tion to the dilaton and axion fields in Cosmology and particle physics. In the
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most general case the C-space metric does not factorize into antisymmetrized
sums of products of ordinary metrics . We presented above examples of metrics
in C-space which cannot be decomposed into antisymmetrized sums of products
of ordinary metrics.

3 Concluding Remarks on Areal Geometry and
Strings

C-space metrics are an extension of areal metrics of the form (dτ)2 = 1
4hijkl(dx

i∧
dxj)⊗ (dxk ∧dxl) which were studied long ago by Cartan. An areal metric gen-
eralization of the usual metric to Finsler geometry was developed by [9]. Such
a generalized notion of area, and more generally the volume of m-dimensional
submanifolds embedded in an n-dimensional space, have been considered under
the terminology of “areal geometry” [14]. In these considerations, the metric
and connection in general depend not only on x but also on the derivatives of
x with respect to world-volume coordinates. Applications of the Kawaguchi
Lagrangian formulation to string theory and p-branes can be found in [10]. The
classification of area metrics and the construction of vacuum field equations were
analyzed in [8]. Another family of equations for area metrics that reduce to the
vacuum Einstein’s equations in very special cases were studied in [7]. Static
spherical symmetric solutions were found for the generalized Einstein equation
in vacuum, including the Schwarzschild solution as a special case.

The Nambu-Goto action corresponding to the bosonic string is defined in
terms of its worldsheet area. Motivated by the possibility that string theory ad-
mits backgrounds where the notion of length is not well defined but a definition
of area is, propelled the authors [7] to study space-time geometries based on the
generalization of length metrics to area metrics. In analogy with Riemannian
geometry, they defined the analogues of connections, curvatures and Einstein
tensor.

In Einstein’s theory of gravity, the Bianchi identity provides a hint on how
to define Einstein’s equation such that the conservation of energy-momentum
tensor is guaranteed. The situation is different for the gravitational theory of
area metrics [7]. The conservation of energy-momentum is a result of the in-
variance of the theory under general coordinate transformations. In the theory
of area metrics, the gauge symmetry is still merely general coordinate transfor-
mations but the number of degrees of freedom of the areal metric, connection
and curvature are much larger than in the case of ordinary metrics. Therefore,
the authors [7] argued that one should not try to define the generalized Einstein
equation from the generalized Bianchi identity as one did in Einstein’s theory.

However, a key difference that gravity in C-spaces has is that one has
full diffeomorphism invariance under the polyvector-valued coordinate changes
XM → X ′M , thus the generalized energy-momentum polytensor in C-space is
conserved and consistent with the generalized C-space Bianchi identities, in the
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absence of torsion and nonmetricity, and which in turn, allows us to write down
the generalization of Einstein equations in C-spaces [1]. A discussion of matter
fields in C-spaces can be found in [5].

Another problem with the formulation of gravity of area metrics is that it
does not seem to admit an action principle due to the fact that the tensor
Rkl
ij mn does not admit the definition of scalar curvature through the contrac-

tion of indices, if the only additional tensor available is the area metric [7].
A possibility is that the action principle for the area metric theory is avail-
able only in certain dimensions when the volume form can be used to do the
trick to appropriately be able to contract indices [7]. Fortunately, in C-spaces
this problem does not arise since all polyvector-valued indices are contracted
with the C-space metric gMN = gNM , and its inverse gMN = gNM , which in
general has polyvector valued indices M,N of the same and different grades :
g[µ1µ2···µi] [ν1ν2···νj ].

To finalize, we should point out that when the C-space metric components
are of the same grade, and admit a decomposition as shown in eq-(2.34), it
is plausible to have in the putative quantum gravitational theory cases where
the expectation values of the areal metrics are not zero < ĝµν ĝρσ >6= 0, de-
spite that the expectation of the metric is < ĝµν >= 0 (Topological QFT’s are
characterized by physical correlations independent of the metric). This could
be a very natural explanation as to why quantum gravitational effects could be
essentially “stringy”. If on average < ĝµν >= 0, one does not observe lengths
but areas instead. Quantum gravitational effects are intrinsically relevant at
the Planck-scale (there are quantum gravitational phenomena which have cos-
mological manifestations at larger scales due to inflation, and/or compounding
effects). Since the Planck scale LP is an essential ingredient in the construction
of the extended relativity in C-spaces [5], and Quantum Gravity, this suggests
that C-space geometry is a natural arena to be explored. For this reason, we
believe that more novel physical phenomena could be unraveled behind C-space
gravity than we previously thought.
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